首页 / 专利库 / 纳米技术 / 纳米管 / 碳纳米管 / 单壁碳纳米管 / 直径可控单壁碳纳米管的制备方法

直径可控单壁纳米管的制备方法

阅读:371发布:2020-05-12

专利汇可以提供直径可控单壁纳米管的制备方法专利检索,专利查询,专利分析的服务。并且一种 纳米材料 技术领域的直径可控单壁 碳 纳米管 的制备方法,包括如下步骤:步骤一:以过渡金属为催化剂,将催化剂与99.99%的 石墨 粉按比例充分混合后制得直径为6mm的 阳极 棒, 阴极 采用直径为8mm的纯石墨棒;步骤二:将阳极石墨在充有含 一 氧 化碳 的缓冲气体的 电弧 室内与阴极石墨棒正对,进行电弧放电;通过控制阴阳两极间的放电 电流 和放电 电压 和一氧化碳压 力 ,即可制得直径可控的单壁 碳纳米管 。本 发明 的方法工艺简单、 单壁碳纳米管 管径可控、便于大规模制备。,下面是直径可控单壁纳米管的制备方法专利的具体信息内容。

1.一种直径可控单壁纳米管的制备方法,其特征在于,包括如下步骤:
步骤一:以过渡金属为催化剂,将催化剂与99.99%的石墨粉按比例充分混合后制得直径为6mm的阳极棒,阴极采用直径为8mm的纯石墨棒;
步骤二:将阳极石墨在充有含化碳的缓冲气体的电弧室内与阴极石墨棒正对,进行电弧放电;通过控制阴阳两极间的放电电流和放电电压和一氧化碳压,即可制得直径可控的单壁碳纳米管
2.根据权利要求1所述的直径可控单壁碳纳米管的制备方法,其特征在于:所述过渡金属催化剂为、钴、镍、钇的一种或几种混合物或者化合物。
3.根据权利要求1所述的直径可控单壁碳纳米管的制备方法,其特征在于:所述过渡金属催化剂摩尔百分数为1%~6%。
4.根据权利要求1所述的直径可控单壁碳纳米管的制备方法,其特征在于:所述阳极棒的制备方法为原料混合后填棒制得或混合后加粘结剂挤压成棒。
5.根据权利要求1所述的直径可控单壁碳纳米管的制备方法,其特征在于:所述一氧化碳,其气压为8~30kPa。
6.根据权利要求1所述的直径可控单壁碳纳米管的制备方法,其特征在于:所述缓冲气体有氦、氩、氢等气体或它们的混合气体,气压为10~30kPa。
7.根据权利要求1所述的直径可控单壁碳纳米管的制备方法,其特征在于:所述放电电弧的电压为40~80V,电流60~110A。

说明书全文

直径可控单壁纳米管的制备方法

技术领域

[0001] 本发明涉及一种纳米材料技术领域的制备方法,尤其是一种采用电弧放电法的直径可控单壁碳纳米管的制备方法。

背景技术

[0002] 碳纳米管(Carbon nanotubes;CNT)因具有卓越的机械、热学性能和独特的电学性能,因此在材料科学、化学、物理学、电子学以及其他交叉学科领域中,均具有极其广泛的应用前景,目前将碳纳米管已经被应用于纳电子器件、场发射技术、生物载药、储氢技术等等诸多领域。碳纳米管可分为单璧碳纳米管(SWNT)、双璧碳纳米管(DWNT)和多壁碳纳米管(MWNT)。其中SWNT作为优良的准一维纳米材料,因其具有较高的载流子迁移率而被用作制造场效应晶体管薄膜晶体管等纳电子器件,有望取代材料而成为下一代微电子器件的关键材料。众所周知,单壁碳纳米管的光学、电学性质取决于它们的直径和手性分布,根据直径和手性的不同,SWNT表现为金属性和半导体性。而且半导体性SWNT的带隙也与其直径大小有一定的关系。但是,传统方法制备的SWNT产物中,SWNT具有较宽的直径分布,金属性和半导体性SWNT混合在一起,因而其光学、电学性能变化比较大。因此如何通过各种技术控制SWNT的直径和手性分布,制备直径可控的单壁碳纳米管是解决采用SWNT大规模制造SWNT基纳电子器件的关键技术之一。
[0003] 近几年来,很多研究者致于直径可控的单壁碳纳米管的制备研究(M.G.Hahm,Y.K.Kwon,E.Lee,C.W.Ahn,Y.J.Jung.Diameter selective growth of vertically aligned singlewalled carbon nanotubes and study on their growth mechanism.J.Phys.Chem.C 2008,112(44),17143-17147),其主要手段是通过化学气相沉积法(CVD)控制催化剂大小、碳源或生长条件等来实现单壁碳纳米管的窄直径分布。但由于CVD法所制备的SWNT存在缺陷,对SWNT的电性能有影响。

发明内容

[0004] 本发明的目的在于克服现有技术中的不足,提供了一种直径可控单壁碳纳米管的制备方法。通过向缓冲气体中混合化碳气体来控制单壁碳纳米管直径的分布,所制的单壁碳纳米管产品直径可控,保证了SWNT基晶体管的性能一致性和高电子迁移率。
[0005] 本发明是通过以下技术方案实现,本发明包括以下步骤:
[0006] 步骤一:以过渡金属为催化剂,将催化剂与99.99%的高纯石墨粉按比例充分混合后制得直径为6mm的阳极石墨棒,阴极采用直径为8mm的纯石墨棒。
[0007] 所述过渡金属催化剂为(Fe)、钴(Co)、镍(Ni)、钇(Y)的一种或几种混合物或者化合物。
[0008] 所述过渡金属催化剂摩尔百分比为1%~6%。
[0009] 所述阳极棒是将催化剂与99.99%高纯石墨粉按比例充分混合后填棒制得。
[0010] 所述阳极棒是将催化剂与99.99%高纯石墨粉按比例充分混合后加粘结剂挤压成棒并烧结制得。
[0011] 步骤二:将步骤一所制备的阳极石墨在充有含一氧化碳的缓冲气体的电弧室内与阴极石墨棒正对,进行电弧放电。通过控制阴阳两极间的放电电流和放电电压和一氧化碳压力,即可制得直径可控的单壁碳纳米管。
[0012] 所述一氧化碳的压力为8~30kPa。
[0013] 所述缓冲气体为氦、氩、氢等气体或它们的混合气体,气压为10~30kPa。
[0014] 所述放电电弧的电压为40~80V,电流60~110A。
[0015] 与现有技术相比,本发明具有如下的有益效果:本发明通过调节缓冲气体中一氧化碳气体压力,利用电弧放电法可以大量制备直径可控的单壁碳纳米管,从而保证单壁碳纳米管在光学、电学性能的均一性,同时兼具电弧法制备单壁碳纳米管的低缺陷特点,将为制备高性能SWCNT基纳米器件提供更有利的保障。该发明工艺简单、产率高,便于大规模推广与应用。附图说明
[0016] 图1为实施例1所制备的单壁碳纳米管的扫描电镜(SEM)照片;
[0017] 图2为实施例1所制备的单壁碳纳米管的投射电镜(TEM)照片;
[0018] 图3为对比例所制备的单壁碳纳米管的拉曼光谱图;
[0019] 图4为实施例1所制备的单壁碳纳米管的拉曼光谱图。

具体实施方式

[0020] 以下结合附图对本发明的实施例作详细说明:以下实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和过程,但本发明的保护范围不限于下述的实施例。
[0021] 对比例
[0022] 步骤一:以高纯石墨粉、Ni粉、Y2O3粉为原料,按照摩尔比(C∶Ni∶Y为94∶4.8∶1.2),混合均匀后加入25wt%焦油混合挤压成直径为6mm的石墨棒,然后放入氮气保护的高温炉中1000℃处理2小时,即制得阳极石墨棒。
[0023] 步骤二:以步骤一所制阳极棒,直径为8mm纯石墨棒作为阴极,电弧放电在通有30kPa氦气的电弧室中进行。放电电流为80~90A,电压为50~60V。放电时间为5分钟,制得约0.6g单壁碳纳米管。所制备产物的拉曼光谱图如3所示,通过计算得出产物中直径为1.71nm、1.49nm、1.35nm和1.28nm。
[0024] 实施例1
[0025] 步骤一:以高纯石墨粉、Ni粉、Y2O3粉为原料,按照摩尔比(C∶Ni∶Y为94∶4.8∶1.2),混合均匀后加入25wt%煤焦油混合挤压成直径为6mm的石墨棒,然后放入氮气保护的高温炉中1000℃处理2小时,即制得阳极石墨棒。
[0026] 步骤二:以步骤一所制阳极棒,直径为8mm纯石墨棒作为阴极,电弧放电在通有18kPa氦气和12kPa一氧化碳气体的电弧室中进行。放电电流为80~90A,电压为50~
60V。放电时间为10分钟,制得约1g窄直径分布的单壁碳纳米管。所制备产物的拉曼光谱图如4所示,与对比例对照可以看出,直径较小的单壁碳纳米管(1.35nm、1.28nm)消失、只剩下直径较大的单壁碳纳米管(1.71nm、1.49nm)。
[0027] 实施例2
[0028] 步骤一:以高纯石墨粉、Fe粉为原料,按照摩尔比(C∶Fe为99∶1),混合均匀后加入25wt%煤焦油混合挤压成直径为6mm的石墨棒,然后放入氮气保护的高温炉中1000℃处理2小时,即制得阳极石墨棒。
[0029] 步骤二:以步骤一所制阳极棒,直径为8mm纯石墨棒作为阴极,电弧放电在通有12kPa氢气、18kPa氩气和8kPa一氧化碳气体的电弧室中进行。放电电流为60~70A,电压为60~70V。放电时间为12分钟,制得约0.8g窄直径分布的单壁碳纳米管。
[0030] 实施例3
[0031] 步骤一:以高纯石墨粉、Ni粉、Co粉、Fe粉为原料,按照摩尔比(C∶Ni∶Co∶Fe为95.8∶3∶0.6∶0.6),混合均匀后填充于内径4mm,深5cm的6mm石墨棒中,即为阳极石墨棒。
[0032] 步骤二:以步骤一所制阳极棒,直径为8mm纯石墨棒作为阴极,电弧放电在通有8kPa氢气、12kPa氩气和10kPa一氧化碳气体的电弧室中进行。放电电流为100~110A,电压为40~50V。放电时间为5分钟,制得约0.6g窄直径分布的单壁碳纳米管。
[0033] 实施例4
[0034] 以高纯石墨粉、Ni粉、Y2O3粉为原料,按照摩尔比(C∶Ni∶Y为94.8∶4.2∶1),混合均匀后填充于内径4mm,深4cm的6mm石墨棒中,即为阳极石墨棒。
[0035] 步骤二:以步骤一所制阳极棒,直径为8mm纯石墨棒作为阴极,电弧放电在通有18kPa氦气和12kPa一氧化碳气体的电弧室中进行。放电电流为100~110A,电压为60~
70V。放电时间为4分钟,制得约0.6g窄直径分布的单壁碳纳米管。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈