首页 / 专利库 / 纳米技术 / 纳米晶 / 一种铁离子诱导的氯化亚铜片状纳米晶体材料的界面快速可控制备方法

一种离子诱导的氯化亚片状纳米晶体材料的界面快速可控制备方法

阅读:663发布:2023-03-07

专利汇可以提供一种离子诱导的氯化亚片状纳米晶体材料的界面快速可控制备方法专利检索,专利查询,专利分析的服务。并且本 发明 提供一种 铁 离子诱导的氯化亚 铜 片状 纳米晶 体材料的快速可控制备方法。氯化铜溶液均匀涂覆于铜箔上发生归中反应,严格控制溶液的种类与氯化铜溶液的滴加量以保证反应过程能在短时间内完成,同时精确调节铁离子的添加量对氯化亚铜片状纳米晶体厚度进行调节。反应结束后,清洗掉未反应的产品,烘干后即可制得生长在铜箔表面的氯化亚铜片状纳米晶体材料。本发明所公开的方法,在铜箔基底上直接制备氯化亚铜片状纳米晶体材料,所用时间短,无需额外的反应添加剂,片状晶体厚度可控,成本低廉,工艺简单,用途广泛。,下面是一种离子诱导的氯化亚片状纳米晶体材料的界面快速可控制备方法专利的具体信息内容。

1.一种离子诱导的氯化亚片状纳米晶体材料的快速可控制备方法,包括如下步骤:
(1)采用易于挥发的液体作为氯化铜溶液的溶剂,得到处于一定浓度范围的氯化铜溶液,向氯化铜溶液添加三氯化作为调控剂;
(2)将氯化铜(含铁离子)溶液涂覆于铜箔表面,控制氯化铜溶液的添加量,置于一定范围的温度下使反应快速发生。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中溶剂的种类可以是乙醇、丙醇、二氯甲烷、汽油、丁醇、丙、乙醚、乙、石油醚等所有易于挥发的液体及其混合溶液。
3.根据权利要求1所述的制备方法,其特征在于,步骤(1)中处于一定浓度范围的氯化铜溶液是指氯化铜的浓度应控制氯化铜在每种溶剂中的饱和溶解度以内。
4.根据权利要求1所述的制备方法,其特征在于,步骤(1)中采用易于挥发的液体作为氯化铜溶液的溶剂,优选的溶液为乙醇、水或者两者的混合溶液,优选的温度为0~20℃,优选的浓度范围为0.01~1mol/L。
5.根据权利要求1所述的制备方法,其特征在于,步骤(1)中三氯化铁添加量的范围为氯化铜溶液摩尔浓度的0.01%-10%。
6.根据权利要求1所述的制备方法,其特征在于,步骤(2)中所述氯化铜溶液涂覆于铜箔表面方法适用于滴涂、线棒涂膜法、喷涂等多种溶液涂覆方法,优选线棒涂膜法。
7.根据权利要求1所述的制备方法,其特征在于,步骤(2)中所述铜箔适用于多种铜箔材料,优选经过表面抛光处理的铜箔。
8.根据权利要求1所述的制备方法,其特征在于,步骤(2)中所述氯化铜溶液的添加量需根据环境温度和涂覆面积来定,优选的温度为0~20℃,优选的氯化铜溶液的添加量为
0.5L/m2。
9.根据权利要求1所述的制备方法,其特征在于,步骤(2)中所述一定范围的温度下使反应快速发生,优选的温度为0~80℃,优选的时间为0.1~600s。

说明书全文

一种离子诱导的氯化亚片状纳米晶体材料的界面快速可

控制备方法

技术领域

[0001] 本发明涉及氯化亚铜片状纳米晶体材料制备领域,尤其涉及一种铁离子诱导的氯化亚铜片状纳米晶体材料的界面快速可控制备方法

背景技术

[0002] 氯化亚铜作为催化剂在有机合成工业中被广泛应用,在石油化工行业中也常用做脱硫剂、脱色剂及脱离剂,并且在农药工程、电池工业、电工业、医药化工、冶金工业及橡胶工业等领域中有着广泛的用途。目前氯化亚铜晶体材料的制备方法有很多种,例如向硫酸铜与氯化钠的混合溶液中通入二化硫即可制得氯化亚铜沉淀,但是由于存在原料(主要是硫酸铜)成本高、母液中含腐蚀性强的硫酸等弊端,限制了该方法的应用与推广。工业上采用的其他制备方法往往也会留下含酸、氯气、氯化钠、铁等物质的浓缩而造成环境污染。Andreas Taubert利用离子液体体系制备了厚度为几百纳米到几十微米的氯化亚铜片状晶体结构,反应过程始终需要处在离子液体体系中,反应时间为1-24h不等,片状晶体厚度在几百纳米以上。Ying Huang等人在共溶剂里制备了尺度在几十到几百纳米的无定型氯化亚铜纳米颗粒,反应过程中需要添加尿素与抗坏血酸,反应体系始终处于共溶剂中,而且反应时间为1h。Ting Xie等人用氯化铜、乙酰丙和乙二醇在100-140℃温度下反应8-72h,得到了几十到几百微米尺度的氯化亚铜四面体晶体材料。综合以上所述可知,已报道的各种氯化亚铜晶体制备方法都是在溶液中进行,反应过程需要多种添加剂,反应时间长,反应温度较高。片状氯化亚铜晶体具备独特的暴露晶面,可以起到独特的催化特性,并可用来作为有机反应的催化剂模板。开发实用、高效、低成本的片状氯化亚铜纳米晶体可控生产方法对科学和生产的发展都具有重要意义。

发明内容

[0003] 提出了一种铁离子诱导的氯化亚铜片状纳米晶体材料的界面快速可控制备方法,反应过程不再局限于在溶液中,制备的氯化亚铜片状纳米晶体材料厚度可调,拓展了氯化亚铜制备方法的领域。
[0004] 本发明采用如下技术方案:
[0005] 一种铁离子诱导的氯化亚铜片状纳米晶体材料的界面快速可控制备方法,包括如下步骤:
[0006] (1)采用易于挥发的液体作为氯化铜溶液的溶剂,得到处于一定浓度范围的氯化铜溶液,向氯化铜溶液添加三氯化铁作为调控剂;
[0007] (2)将氯化铜(含铁离子)溶液涂覆于铜箔表面,控制氯化铜溶液的添加量,置于一定范围的温度下使反应快速发生,
[0008] 步骤(1)中溶剂的种类可以是水、乙醇、丙醇、二氯甲烷、汽油、丁醇、丙酮、乙醚、乙、石油醚等所有易于挥发的液体及其混合溶液,优选的溶液为乙醇、水或者两者的混合溶液。
[0009] 步骤(1)中处于一定浓度范围的氯化铜溶液是指氯化铜的浓度应控制氯化铜在每种溶剂中的饱和溶解度以内,采用易于挥发的液体作为氯化铜溶液的溶剂,优选的温度为0~20℃,优选的浓度范围为0.01~1mol/L。
[0010] 步骤(1)中三氯化铁添加量的范围为氯化铜溶液摩尔浓度的0.01%-10%。
[0011] 步骤(2)中所述氯化铜溶液涂覆于铜箔表面方法适用于滴涂、线棒涂膜法、喷涂等多种方法,优选的方法为线棒涂膜法。
[0012] 步骤(2)中所述铜箔适用于多种铜箔材料,优选经过表面抛光处理的铜箔。
[0013] 步骤(2)中所述氯化铜溶液的添加量需根据环境温度和涂覆面积来定,优选的温度为0~20℃,优选的氯化铜溶液的添加量为0.5L/m2。
[0014] 步骤(2)中所述将铜箔置于一定范围的温度下使反应快速发生,优选的温度为0~80℃,优选的时间为0.1~600s。
[0015] 本发明具有如下优势:
[0016] (1)本发明提出了一种铁离子诱导的氯化亚铜片状纳米晶体材料的界面快速可控制备方法,通过精确调节铁离子的添加量对氯化亚铜片状纳米晶体厚度进行调节,具备制备简单、成本低、易于工业化批量生产的特点。
[0017] (2)本发明所制备的氯化亚铜片状纳米晶体材料具有厚度均一、形貌可控等优点,直接在铜箔上制备出微米级或纳米级厚度的氯化亚铜薄膜为后续应用提供了便捷。另外,可以将薄膜表面的氯化亚铜晶体材料刮除下来,从而反复利用底部的铜箔节约了成本。附图说明
[0018] 图1为本发明方法在不同Fe3+掺杂浓度下制备氯化亚铜片状纳米晶体材料的SEM图。图1a-d所用氯化铜溶液浓度均为0.001mol/L,图1a溶液中Fe3+与Cu2+浓度比为0.1%∶1;图1b溶液中Fe3+与Cu2+浓度比为0.5%∶1;图1c溶液中Fe3+与Cu2+浓度比为1%∶1;图1d溶液中Fe3+与Cu2+浓度比为5%∶1。
[0019] 图2为本发明方法所用铜箔基底与氯化亚铜片状纳米晶体材料的XRD图。
[0020] 图3为本发明方法制备氯化亚铜片状纳米晶体材料的TEM暗场图和透射电子衍射图。

具体实施方式

[0021] 为便于理解本发明,本发明列举实施例如下。本领域技术人员应该明了,所述实施例仅仅用于帮助理解本发明,不应视为对本发明的具体限制。
[0022] 实施例1
[0023] (1)选用25um厚度的铜箔,铜箔的一面或者两面是经过抛光处理的平面,用去离子水清洗铜箔表面后60℃烘干备用。
[0024] (2)将134.45mg二水合氯化铜粉末加入10ml去离子水中,搅拌2分钟,配置~0.1mol/L的氯化铜水溶液。将1.63mg无水三氯化铁粉末加入氯化铜水溶液。
[0025] (3)将10mL的~0.1mol/L的氯化铜水溶液滴加到铜箔的抛光面,经过线棒涂膜法将液体在铜箔表面分散均匀,形成均匀连续的薄膜。
[0026] (4)将承载氯化铜水溶液的铜箔置于温度为60℃的烘箱内干燥处理5min。
[0027] (5)将铜箔表面的氯化亚铜晶体薄膜用无水乙醇进行清洗,干燥保存。
[0028] 图1c包含本实施例所得氯化亚铜片状晶体的SEM图,表明氯化亚铜片状晶体的形貌特征。
[0029] 图2包含本实施例所得氯化亚铜片状晶体薄膜的XRD图,表明氯化亚铜片状晶体的结构特征。
[0030] 图3包含本实施例所得氯化亚铜片状晶体的TEM图,表明氯化亚铜片状晶体的结构特征。
[0031] 实施例2
[0032] (1)选用25um厚度的铜箔,铜箔的一面或者两面是经过抛光处理的平面,用去离子水清洗铜箔表面后60℃烘干备用。
[0033] (2)将134.90mg二水合氯化铜粉末加入10ml去离子水中,搅拌2分钟,配置~0.1mol/L的氯化铜水溶液。将8.0mg无水三氯化铁粉末加入氯化铜水溶液。
[0034] (3)将10mL的~0.1mol/L的氯化铜水溶液滴加到铜箔的抛光面,经过线棒涂膜法将液体在铜箔表面分散均匀,形成均匀连续的薄膜。
[0035] (4)将承载氯化铜水溶液的铜箔置于温度为60℃的烘箱内干燥处理5min。
[0036] (5)将铜箔表面的氯化亚铜晶体薄膜用无水乙醇进行清洗,干燥保存。
[0037] 图1d包含本实施例所得氯化亚铜片状晶体的SEM图。
[0038] 实施例3
[0039] (1)选用25um厚度的铜箔,铜箔的一面或者两面是经过抛光处理的平面,用去离子水清洗铜箔表面后60℃烘干备用。
[0040] (2)将134.90mg二水合氯化铜粉末加入10ml去离子水中,搅拌2分钟,配置~0.1mol/L的氯化铜水溶液。将0.8mg无水三氯化铁粉末加入氯化铜水溶液。
[0041] (3)将10mL的~0.1mol/L的氯化铜水溶液滴加到铜箔的抛光面,经过线棒涂膜法将液体在铜箔表面分散均匀,形成均匀连续的薄膜。
[0042] (4)将承载氯化铜水溶液的铜箔置于温度为60℃的烘箱内干燥处理5min。
[0043] (5)将铜箔表面的氯化亚铜晶体薄膜用无水乙醇进行清洗,干燥保存。
[0044] 图1b包含本实施例所得氯化亚铜片状晶体的SEM图。
[0045] 实施例4
[0046] (1)选用25um厚度的铜箔,铜箔的一面或者两面是经过抛光处理(的平面,用去离子水清洗铜箔表面后60℃烘干备用。
[0047] (2)将134.90mg二水合氯化铜粉末加入10ml去离子水中,搅拌2分钟,配置~0.1mol/L的氯化铜水溶液。将0.2mg无水三氯化铁粉末加入氯化铜水溶液。
[0048] (3)将10mL的~0.1mol/L的氯化铜水溶液滴加到铜箔的抛光面,经过线棒涂膜法将液体在铜箔表面分散均匀,形成均匀连续的薄膜。
[0049] (4)将承载氯化铜水溶液的铜箔置于温度为60℃的烘箱内干燥处理5min。
[0050] (5)将铜箔表面的氯化亚铜晶体薄膜用无水乙醇进行清洗,干燥保存。
[0051] 图1a包含本实施例所得氯化亚铜片状晶体的SEM图。
[0052] 申请声明,本发明通过上述实施例来说明本发明的详细工艺设备和工艺流程,但本发明并不局限于上述详细工艺设备和工艺流程,即不意味着本发明必须依赖上述详细工艺设备和工艺流程才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。
相关专利内容
标题 发布/更新时间 阅读量
一种纳米微晶板 2020-05-13 340
纳米晶体纳米乳剂 2020-05-13 614
一种纳米晶磁环装置 2020-05-12 992
一种铁基纳米晶磁粉芯 2020-05-13 540
纳米晶玉板 2020-05-11 101
药用纳米结晶罐 2020-05-11 732
纳米碳晶频谱发热板 2020-05-13 736
一种制备纳米晶的系统 2020-05-12 936
铁基纳米晶高频磁芯 2020-05-12 606
一种纳米晶磁环卷绕机 2020-05-12 141
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈