首页 / 专利库 / 纳米技术 / 纳米流体 / 纳米粒子 / 聚乙二醇纳米颗粒 / 链末端官能化的甲氧基聚乙二醇及其金属纳米颗粒

链末端官能化的甲基聚乙二醇及其金属纳米颗粒

阅读:909发布:2020-05-11

专利汇可以提供链末端官能化的甲基聚乙二醇及其金属纳米颗粒专利检索,专利查询,专利分析的服务。并且本 发明 公开了链末端官能化的甲 氧 基聚乙二醇(mPEG)、其制备方法、用于制备所述官能化的甲氧基聚乙二醇的活性甲氧基聚乙二醇、包封在由所述链末端官能化的甲氧基聚乙二醇形成的胶束结构中的过渡金属或金属盐的纳米颗粒,和制备所述过渡金属或金属盐的纳米颗粒的方法。,下面是链末端官能化的甲基聚乙二醇及其金属纳米颗粒专利的具体信息内容。

1.一种制备具有以下化学式2结构的链末端官能化的甲基聚乙二醇(mPEG)的方法:
[化学式2]
其中
X是羟基(-OH)、磺酸(-SO3H)、巯基(-SH)、磺酰胺(-SO2NH2)、甲基丙烯酸酯;
n是10~500的整数;
包括:
(a-2)使数均分子量(Mn)为500~20000g/mol的mPEG与烷基金属反应以得到端基被碱金属阳离子取代的活性mPEG;和
(b-2)使步骤(a-2)中得到的所述活性mPEG与官能材料在真空下反应以得到链末端官能化的mPEG。
2.一种制备具有以下化学式3的结构的链末端官能化的甲氧基聚乙二醇(mPEG)的方法:
[化学式3]
其中
Y是磺酰胺基团,选自磺胺苯、磺胺异 唑、乙酰磺胺、磺胺甲噻二唑、磺胺二甲氧嘧啶、磺胺嘧啶、磺胺甲氧哒嗪、磺胺甲嘧啶、磺胺异嘧啶和磺胺吡啶;维生素;或者含酰胺或磺酰胺基团的药物,选自吲地磺胺、阿霉素、紫杉酚、万古霉素和安泼那韦;
n是10~500的整数;
包括:
(a-3)使数均分子量(Mn)为500~20000g/mol的mPEG与烷基碱金属反应以得到端基被碱金属阳离子取代的活性mPEG;
(b-3)使步骤(a-3)中获得的所述活性mPEG与偏苯三酸酐酰氯在真空、氩气流或氮气流中反应;和
(c-3)使步骤(b-3)中获得的ω-酸酐mPEG与官能化材料在真空、氩气流或氮气流中反应。
3.一种制备具有以下化学式4的结构的链末端官能化的甲氧基聚乙二醇(mPEG)的方法:
[化学式4]
其中,
R1是氢或甲基,
R2是N-异丙基丙烯酰胺;磺酰胺,选自磺胺苯、磺胺异 唑、乙酰磺胺、磺胺甲噻二唑、磺胺二甲氧嘧啶、磺胺嘧啶、磺胺甲氧哒嗪、磺胺甲嘧啶、磺胺异嘧啶和磺胺吡啶;维生素;
或者含酰胺或磺酰胺基团的药物,选自吲地磺胺、阿霉素、紫杉酚、万古霉素和安泼那韦;
R3是氢、异丁基丙烯腈基、苯基或卤素;
n是10~500的整数;和
m是5~50的整数;
包括:
(a-4)使数均分子量(Mn)为500~20000g/mol的mPEG与烷基碱金属反应以得到端基被碱金属阳离子取代的活性mPEG;
(b-4)用2-溴异丁酰基或2-溴丙酰基在真空下使步骤(a-4)中所得的所述活性mPEG的链末端官能化;和
(c-4)用在步骤(b-4)中得到的链末端具有溴基团的mPEG作为引发剂,用磺酰胺甲基丙烯酸酯单体或N-异丙基丙烯酰胺单体实施原子转移自由基聚合反应以制备嵌段共聚物。
4.一种制备具有以下化学式5的结构的链末端官能化的甲氧基聚乙二醇(mPEG)的方法:
[化学式5]
其中
R1和R5各自独立地为氢或甲基;
R2是N-异丙基丙烯酰胺;磺酰胺,选自磺胺苯、磺胺异 唑、乙酰磺胺、磺胺甲噻二唑、磺胺二甲氧嘧啶、磺胺嘧啶、磺胺甲氧哒嗪、磺胺甲嘧啶、磺胺异嘧啶和磺胺吡啶;维生素;
或者含酰胺或磺酰胺基团的药物,选自吲地磺胺、阿霉素、紫杉酚、万古霉素和安泼那韦;
R3是氢、异丁基丙烯腈基、苯基或卤素;
R4是苯基或异丁基丙烯腈基;
n是10~500的整数;
k是1~10的整数;和
m是5~50的整数;
包括:
(a-5)使数均分子量(Mn)为500~20000g/mol的mPEG与烷基碱金属反应以得到端基被碱金属阳离子取代的活性mPEG;
(b-5)使步骤(a-5)所得的所述活性mPEG与甲基丙烯酰氯反应以得到链末端被甲基丙烯酸酯官能化的mPEG;和
(c-5)用在步骤(b-5)中得到的在链末端被甲基丙烯酸酯官能化的mPEG作为大分子单体与磺酰胺甲基丙烯酸酯单体或N-异丙基丙烯酰胺单体实施自由基聚合反应以制备接枝共聚物。
5.根据权利要求1~4的任意一项的方法,步骤(a-2)、(a-3)、(a-4)和(a-5)中的所述烷基碱金属是选自烷基锂、二异丙基基锂或以钠、、铯或铷取代上述烷基碱金属中的锂的烷基碱金属中的一种或更多种。

说明书全文

链末端官能化的甲基聚乙二醇及其金属纳米颗粒

技术领域

[0001] 本发明涉及链末端官能化的甲氧基聚乙二醇(mPEG)及其制备方法。本发明也涉及用于制备官能化甲氧基聚乙二醇的活性甲氧基聚乙二醇。此外,本发明涉及包封在由链末端官能化的甲氧基聚乙二醇形成的胶束结构中的过渡金属或金属盐的纳米颗粒。另外,本发明涉及制备过渡金属或金属盐的纳米颗粒的方法。

背景技术

[0002] 对于链末端官能化用于包封不溶性药品的PEO的多种方法及其应用已经被研究了很长时间(J.M.Harris等,Nature Reviews DrugDiscovery,2003,卷2,214-221页;Zalipsky等,Bioconjugate Chemistry,1995,卷6,150-165页)。在这方面,通过活性阴离子聚合制备聚环氧乙烷或聚乙二醇的方法也在许多文献中很好地描述了(例如:S.Slomkowski等, ″ Anionic Ring-opening Polymerization ″,inRing-Opening Polymerization:Mechanism,Catalysis,Structure,Utility,D.J.Brunelle 主编,1993,第 3 章,87-128 页;Quirk 等, ″ Macromonomers and Macromonomers ″,Ring-OpeningPolymerization:Mechanism,Catalysis,Structure,Utility,D.J.Brunelle主编,1993,卷9,263-293页)。
[0003] 另外,制备由PEO和其他聚合物构成的嵌段共聚物的方法也在各种文献中公开了(例如:Jankova等,Macromolecules,1998,卷31,538-541页;Topp等,Macromolecules,1997,卷30,8518-8520页)。
[0004] 另一方面,通过聚合具有羧酸、磺酸、胺或铵基的乙烯单体制备的聚合物电解质用作pH-响应水凝胶。(R.S.Harland等,″PolyelectrolyteGels,Properties,Preparation,and Applications, ″ ACS Symp.Series#480,Am.Chem.Soc,Washington,D.C,1992,Chap.17,page 285)。

发明内容

[0005] [技术问题]
[0006] 本发明一个实施方案的目的是解决上述问题。
[0007] 本发明另一个实施方案的目的是通过活性阴离子聚合来制备甲氧基聚乙二醇,和提供一种制备分子量可通过链末端官能化来调节的基于甲氧基聚乙二醇的聚合物物质的方法。
[0008] 本发明另一个实施方案的目的是提供用于制备链末端官能化的甲氧基聚乙二醇的活性甲氧基聚乙二醇。
[0009] 本发明另一个实施方案的目的是提供具有纳米尺寸的过渡金属或过渡金属盐的颗粒。
[0010] 本发明另一个实施方案的目的是提供由诸如维生素或抗癌药的药物和连接到该药物的甲氧基聚乙二醇构成的聚合物药品。
[0011] [技术方案]
[0012] 根据本发明的一个方面,提供了下式的活性mPEG,其中端基被金属阳离子取代:
[0013] [化学式1]
[0014]
[0015] 其中,Z选自锂、钠、、铯和铷。
[0016] 根据本发明的一个方面,提供了选自以下式2~5化合物的链末端官能化的mPEG:
[0017] [化学式2]
[0018]
[0019] [化学式3]
[0020]
[0021] [化学式4]
[0022]
[0023] [化学式5]
[0024]
[0025] 其中
[0026] R1和R5各自独立地为氢或甲基,
[0027] R2是酰胺,例如N-异丙基丙烯酰胺;磺酰胺,例如磺胺苯(sulfabenzene)、磺胺异噁唑、乙酰磺胺、磺胺甲噻二唑、磺胺二甲氧嘧啶、磺胺嘧啶、磺胺甲氧哒嗪、磺胺甲嘧啶、磺胺异嘧啶和磺胺吡啶;维生素,例如叶酸;或者含酰胺基团或磺酰胺基团的药物,例如吲地磺胺(indisulam)、阿霉素、紫杉酚、万古霉素和安泼那韦,
[0028] R3是氢、异丁基丙烯腈基(isobutylacrylonitryl)、苯基或卤素, [0029] R4是苯基或异丁基丙烯腈基,
[0030] X是氢、羟基(-OH)、磺酸(-SO3H)、巯基(-SH)、羧基(-COOH)、磺酰胺(-SO2NH-)、2-溴异丁酰基、2-溴丙酰基、甲基丙烯酸盐或酸酐,
[0031] Y是磺酰胺基团,例如磺胺苯、磺胺异噁唑、乙酰磺胺、磺胺甲噻二唑、磺胺二甲氧嘧啶、磺胺嘧啶、磺胺甲氧哒嗪、磺胺甲嘧啶、磺胺异嘧啶和磺胺吡啶;维生素,例如叶酸;或者含酰胺基团或磺酰胺基团的药物,例如吲地磺胺、阿霉素、紫杉酚、万古霉素和安泼那韦;
[0032] n是10~500的整数,
[0033] k是1~10的整数,和
[0034] m是5~50的整数。
[0035] 本发明的一个方面是制备具有化学式2结构的链末端官能化的甲氧基聚乙二醇(mPEG)的方法,包括:(a-2)使数均分子量(Mn)为500~20000g/mol的mPEG与烷基碱金属反应以得到端基被碱金属阳离子取代的活性mPEG;和(b-2)使步骤(a-2)中得到的活性mPEG与官能材料在真空下反应以得到链末端官能化的mPEG。
[0036] 本发明的另一个方面是制备具有以下化学式3结构的链末端官能化的甲氧基聚乙二醇(mPEG)的方法,包括:(a-3)使数均分子量(Mn)为500~20000g/mol的mPEG与烷基碱金属反应以得到端基被碱金属阳离子取代的活性mPEG;(b-3)使步骤(a-3)得到的活性mPEG与偏苯三酸酐酰氯在真空、氩气流或氮气流中反应;和(c-3)使ω-酸酐mPEG与官能材料在真空、氩气流或氮气流中反应。
[0037] 本发明的另一个方面是制备具有化学式4结构的链末端官能化的甲氧基聚乙二醇(mPEG)的方法,包括:(a-4)使数均分子量(Mn)为500~20000g/mol的mPEG与烷基碱金属反应以得到端基被碱金属阳离子取代的活性mPEG;(b-4)用2-溴异丁酰基或2-溴丙酰基在真空下使步骤(a-4)中所得的活性mPEG的链末端官能化;和(c-4)用链末端具有溴基团的mPEG作为引发剂,用磺酰胺甲基丙烯酸酯单体或N-异丙基丙烯酰胺单体实施原子转移自由基聚合反应以制备嵌段共聚物。
[0038] 本发明的另一个方面是制备具有以下化学式5结构的链末端官能化的甲氧基聚乙二醇(mPEG)的方法,包括:(a-5)使数均分子量(Mn)为500~20000g/mol的mPEG与烷基碱金属反应以得到端基被碱金属阳离子取代的活性mPEG;(b-5)使步骤(a-5)中所得的活性mPEG与甲基丙烯酰氯反应以得到链末端被甲基丙烯酸酯官能化的mPEG;和(c-5)用在链末端具有溴基团的链末端被甲基丙烯酸酯官能化的mPEG作为大分子单体与磺酰胺甲基丙烯酸酯单体或N-异丙基丙烯酰胺单体实施自由基聚合反应以制备接枝共聚物。 [0039] 根据本发明的另一方面,提供聚合物-药物复合物,由聚合物和与该聚合物结合的药物组成,即上述链末端官能化的mPEG,其中R2和Y选自维生素,例如叶酸;和含酰胺基团或磺酰胺基团的药物,例如吲地磺胺、阿霉素、紫杉酚、万古霉素和安泼那韦。 [0040] 根据本发明的另一方面,提供纳米尺寸的过渡金属或金属盐颗粒,其中过渡金属或金属盐被包封在由所述链末端官能化的mPEG或所述聚合物-药物复合物形成的胶束结构中。
[0041] 根据本发明的另一方面,提供制备纳米尺寸的过渡金属或金属盐颗粒的方法,包括:将链末端官能化的mPEG和诸如金属盐或水合物的含过渡金属的化合物溶解在溶剂中并且在还原剂存在下使它们反应。
[0042] [有益效果]
[0043] 本发明能够简单地制备聚合物药品,例如显示pH-响应或热-响应特性的基于mPEG的聚合物和接枝或嵌段共聚物,其中各种功能材料(例如,维生素、抗癌剂、磺酰胺材料等)连接在具有特定分子量的mPEG的链末端。另外,本发明能够简单地用所述各种基于链末端官能化的mPEG的聚合物来制备具有尺寸为1~500nm优选1~100nm的纳米尺寸的过渡金属或金属盐颗粒。附图说明
[0044] 图1是根据实施例1制备的活性mPEG的NMR数据。
[0045] 图2是根据实施例1制备的活性mPEG的GPC数据。
[0046] 图3是根据实施例2制备的mPEG大分子引发剂的NMR数据。
[0047] 图4是根据实施例2制备的mPEG大分子引发剂的GPC数据。
[0048] 图5是根据实施例3制备的mPEG大分子单体的NMR数据。
[0049] 图6是根据实施例3制备的mPEG大分子单体的GPC数据。
[0050] 图7是根据实施例4制备的ω-磺化的mPEG的NMR数据。
[0051] 图8是根据实施例4制备的ω-磺化的mPEG的GPC数据。
[0052] 图9是根据实施例5制备的ω-巯基化的mPEG的NMR数据。
[0053] 图10是根据实施例5制备的ω-巯基化的mPEG的GPC数据。
[0054] 图11是根据实施例6制备的ω-酸酐mPEG的NMR数据。
[0055] 图12是根据实施例6制备的ω-酸酐mPEG的GPC数据。
[0056] 图13是根据实施例7制备的mPEG-阿霉素的NMR数据。
[0057] 图14是根据实施例7制备的mPEG-阿霉素的GPC数据。
[0058] 图15是根据实施例8制备的mPEG-磺胺甲嘧啶的NMR数据。
[0059] 图16是根据实施例8制备的mPEG-磺胺甲嘧啶的GPC数据。
[0060] 图17是根据实施例9制备的mPEG-TMA-叶酸的NMR数据。
[0061] 图18是根据实施例9制备的mPEG-TMA-叶酸的GPC数据。
[0062] 图19是根据实施例10制备的mPEG-万古霉素的NMR数据。
[0063] 图20是根据实施例10制备的mPEG-万古霉素的GPC数据。
[0064] 图21是根据实施例11制备的mPEG-g-NiPAM共聚物的NMR数据。
[0065] 图22是根据实施例11制备的mPEG-g-NiPAM共聚物的GPC数据。
[0066] 图23是根据实施例12制备的mPEG-g-MASX共聚物的NMR数据。
[0067] 图24是根据实施例12制备的mPEG-g-MASX共聚物的GPC数据。
[0068] 图25是根据实施例13制备的mPEG-b-MASX共聚物的NMR数据。
[0069] 图26是根据实施例13制备的mPEG-b-MASX共聚物的GPC数据。
[0070] 图27是根据实施例14制备的mPEG-b-MASX和氧化的纳米颗粒 的TEM(透射电镜)照片。
[0071] 图28是根据实施例15制备的ω-磺化的mPEG和氧化铁的纳米颗粒的TEM照片。 [0072] 图29是根据实施例16制备的ω-巯基化的mPEG和Au的纳米颗粒的TEM照片。 [0073] 图30是根据实施例17制备的ω-磺化的mPEG和Au的纳米颗粒的TEM照片。 [0074] 图31是根据实施例18制备的mPEG-TMA-阿霉素和氧化铁的纳米颗粒的TEM照片。
[0075] 图32是根据实施例19制备的mPEG-TMA-叶酸和氧化铁的纳米颗粒的TEM照片。 [0076] 图33是根据实施例20制备的mPEG-g-MASX和氧化铁的纳米颗粒的TEM数据。 [0077] 图34是根据实施例21制备的mPEG-磺胺嘧啶的NMR数据。
[0078] 图35是根据实施例22制备的ω-磺化的mPEG和硫化镉的纳米颗粒的TEM照片。 [0079] 图36是根据实施例23制备的ω-巯基化的mPEG和硫化镉的纳米颗粒的TEM照片。
[0080] 图37是根据实施例24制备的mPEG-万古霉素和的纳米颗粒的TEM照片。 [0081] 图38是根据实施例25制备的mPEG-TMA-叶酸和银的纳米颗粒的TEM照片。 [0082] 图39是根据实施例26制备的ω-巯基化的mPEG和银的纳米颗粒的TEM照片。 [0083] [最佳方案]
[0084] 下面将详细描述本发明的优选实施例。
[0085] 在本发明的一个实施方案中,可以制备上述化学式2~5中任何一种 化合物,从而使得化合物包括磺酸基团(-SO3H)、巯基(-SH)、羧酸基团(-COOH)或者磺酰胺基团(-SO2NH-)。例如,可以通过向上述(a-2)、(a-3)、(a-4)或(a-5)(以下将所有这些都简称为″(a)″)步骤中获得的活性mPEG中分别加入1,3-丙烷磺内酯、硫化丙烯单体或二氧化从而将磺酸基团(-SO3H)、巯基(-SH)和羧酸基团(-COOH)引入链末端。
[0086] 另外,链末端(Y基团,R2)具有药物的mPEG的聚合物药品可以通过使化学式3的化合物与维生素,例如叶酸;或者基于酰胺(NH2)或磺酰胺(-SO2NH-基团)的药物,例如安泼那韦、阿霉素、紫杉酚和万古霉素反应来制备。
[0087] 上述化学式中的″n″优选为10~500的整数。这是因为如果分子量不限于此范围,反应性会显著降低并且反应产率会变差。另外,″k″优选为1~10的整数而″m″优选为5~50的整数。这是因为化学式4的大分子引发剂和化学式5的大分子单体可以引起结构空间位阻。
[0088] 在涉及制备链末端官能化的mPEG的方法的一个本发明实施方案中,步骤(a)的起始物mPEG的分子量优选为500~20000g/mol。当分子量不限于此范围时,反应性会因为空间位阻而显著降低并且导致低反应产率。
[0089] 在步骤(a)中,链末端被碱金属阳离子取代的活性mPEG可以通过使mPEG与烷基碱金属反应来制备。烷基碱金属可以是选自烷基锂、二异丙基基锂和以钠、钾、铯或铷取代上述锂的烷基碱金属中的一种或更多种。最优选的烷基碱金属是丁基锂。 [0090] 在涉及制备链末端官能化的mPEG的方法的一个本发明实施方案中,可通过在真空或氩气流或氮气流中使步骤(a)中获得的活性mPEG与磺内酯(如1,3-丙烷磺内酯和1,4-丁烷磺内酯)、硫化乙烯、硫化丙烯、偏苯三酸酐酰氯、甲基丙烯酰氯、2-溴异丁酰溴、
2-溴代丙酰溴或2-溴代丙酰氯等反应而实现步骤(b-2)、(b-3)、(b-4)和(b-5)(下文中所有这些都简称为″(b)″)。
[0091] 步骤b)中所用溶剂可以是苯/DMSO或苯/甲醇/DMSO。官能化步骤(b)也可在20~80℃温度下进行6~48小时。
[0092] 另外,在步骤b)中,多种官能团可以定量地引入mPEG的链末端,因此可以制备化学式2~5的链末端官能化的mPEG。官能团包括但不限于:氢、羟基(-OH)、磺酸基(-SO3H)、巯基(-SH)、羧基(-COOH)、磺酰胺基(^-SO2NH-);维生素基团,例如叶酸;和基于酰胺或磺酰胺的药物基团,例如阿霉素、紫杉酚、万古霉素和安泼那韦。
[0093] 另外,含酸酐的mPEG可以通过使步骤a)中获得的活性mPEG与偏苯三酸酐酰氯反应来制备。所得的含酸酐的mPEG与诸如叶酸的维生素或者诸如阿霉素、紫杉酚、万古霉素和安泼那韦的基于胺或磺酰胺的药物在诸如水或甲醇的溶剂中反应以获得化学式3的聚合物药品,其中药物被引入mPEG的链末端。
[0094] (c-3)、(c-4)和(c-5)(下文中所有这些都简称为″(c)″)是制备接枝或嵌段共聚物的步骤。具体地,式4的嵌段共聚物可以通过在催化剂体系存在下在溶剂中使大分子引发剂(如式2的化合物,其中X是2-溴异丁酰基或2-溴丙酰基)与N-异丙基丙烯酰胺(NiPAM)或磺酰胺甲基丙烯酰胺单体如磺胺嘧啶反应(原子转移自由基聚合)来获得。 [0095] 另外,显示热响应或pH响应特性的式5的接枝共聚物可以通过在引发剂(例如过氧化苯甲酰(BPO)或偶氮二异丁腈(AIBN))存在下,在溶剂中使大分子单体(如式2的化合物,其中X是甲基丙烯酸酯)与NiPAM或磺酰胺甲基丙烯酰胺单体如磺胺嘧啶反应(自由基聚合)来获得。
[0096] 适用于步骤c)的溶剂可以是水或环己烷或诸如苯或甲苯的非极性溶剂和诸如四氢呋喃(THF)和二甲亚砜(DMSO)的极性溶剂的混合物。非极性/极性溶剂的混合体积比可以是90/10~70/30。引发剂可以是过氧化苯甲酰(BPO)或2,2′-偶氮二异丁腈(AIBN)。可以使用基于的原子转移自由基聚合(ATRP)催化剂等。同样,自由基聚合步骤c)可以优选在20~80℃的温度下进行。
[0097] 如上所述,根据本发明,各种官能团(包括药物)可以有效地引入具有特定分子量的mPEG。另外,用链末端官能化的mPEG可以容易地获得纳米尺寸的含过渡金属化合物,例如金属盐或金属水合物。纳米尺寸的金属或金属盐颗粒以聚合物包封颗粒的形式获得,其中聚合物是水溶性的基于mPEG的材料。因此易于溶于含水介质以及有机溶剂中。 [0098] 此处,术语“含过渡金属化合物”指所有包含过渡金属的化合物。含过渡金属化合物包括但不限于过渡金属或金属水合物。含过渡金属化合物优选为选自FeCl3、FeCl2、HAuCl4、Cd(OAc)2·XH2O和AgNO3中的一个或多个。
[0099] 过渡金属如金(Au)、银(Ag)、铂(Pt)、钯(Pd)、硫化镉(CdS)、氧化铁(γ-Fe2O3或Fe3O4)、PbS等或它们的盐可以以纳米簇形式稳定化。纳米簇的尺寸优选为1~500nm,更优选1~100nm。
[0100] 过渡金属及其盐的纳米颗粒包括但不限于Au、Ag、Pt(II)、Pd(II)、CdS、PbS、TiO2、γ-Fe2O3和Fe3O4颗粒。
[0101] 在根据本发明的一个实施方案制备过渡金属及其盐的纳米颗粒的方法中,含过渡金属化合物的溶液,即起始物的浓度优选为0.01~1g/ml。反应温度优选为5~70℃,并且可以根据期望的颗粒尺寸或反应速率而改变。还原剂包括氢氧化铵(NH4OH)、一水合肼(N2H2)、NaBH4、H2O2、H2S、Na2S等。聚合物与金属或金属盐的摩尔比优选为100∶1~1∶1。当聚合物的量太大时,纳米颗粒的含量太低。当聚合物的量太小时,则金属纳米颗粒不被稳定化,并且形成不均匀颗粒和更多沉淀。上述方法能够在水中以及有机溶剂中制备金属或其盐的纳米簇。
[0102] [发明模式]
[0103] 以下实施例旨在进一步说明本发明而不是限制其范围。
[0104] <实施例1>
[0105] 将0.01摩尔mPEG(分子量:5000g/mol,Aldrich;聚乙二醇甲醚)加入2L的耐热玻璃(Pyrex)圆底烧瓶中,通过连接到真空线排出空气并干燥。然后蒸馏1L苯,将m-PEG溶于苯中。在氩气流中用注射器将N-丁基锂(30ml)缓慢加入所得溶液中,同时用浴冷却,然后缓慢温热至约30℃。48小时之后,当确定溶液的透明色逐渐变成黄色时,通过加入少量蒸馏甲醇到溶液中终止反应,然后使溶液接触空气。溶液在乙醚中沉淀以获得活性mPEG,其中端基被Li取代(mPEG-Li)。所得聚合物的数均分子量为5000g/mol。图1是以上所得活性mPEG的NMR数据,图2是以上所得活性mPEG的GPC数据。
[0106] <实施例2>
[0107] 将20mmol的2-溴异丁酰溴(在20ml THF中)加入200ml实施例1所得聚合物的醇盐溶液([mPEG-Li]=6.3mmol)中,然后在室温下搅拌24小时。反应完成后,通过减压蒸发除去其中的溶剂。所得残余物用乙醇重结晶,获得粉末(基于mPEG的大分子引发剂)。1
基于GPC分析,获得的聚合物的数均分子量是5300g/mol。基于 H-NMR分析,链末端溴化的产率为95mol%以上。图3是以上所得基于mPEG的大分子引发剂的NMR数据,图4是以上所得基于mPEG的大分子引发剂的GPC数据。
[0108] <实施例3>
[0109] 将30mmol的甲基丙烯酰氯加入200ml实施例1所得的活性mPEG溶液([mPEG-Li]=6.3mmol)中,然后在室温下搅拌24小时。反应完成后,通过减压蒸发除去其中的溶剂。得到的残余物再溶于THF中,在乙醚中沉淀,并用乙醇重结晶,获得基于mPEG的大分子单
1
体。获得的聚合物的数均分子量是5100g/mol。基于 H-NMR分析,链末端官能化的产率为大于95mol%。图5是以上所得基于mPEG的大分子单体的NMR数据,图6是以上所得基于mPEG的大分子单体的GPC数据。
[0110] <实施例4>
[0111] 将THF中的1,3-丙烷磺内酯加入200ml实施例1中获得的活性mPEG(Mw=5000g/mol)溶液中([mPEG-Li]/[磺内酯]=1/3,mol/mol),混合物在室温下反应24小时以获得ω-磺化mPEG。通过减压蒸发除去其中的部分溶剂。得到的残余物在乙醚中沉淀,溶于THF并用乙醇重结晶,获得粉末。基于GPC分析,获得的聚合物的数均分子量是5100g/mol。1
基于 H-NMR分析,链末端官能化的产率为大于95mol%。图7是以上所得ω-磺化mPEG的NMR数据,图8是以上所得ω-磺化mPEG的GPC数据。
[0112] <实施例5>
[0113] 将纯化的硫化丙烯加入200ml实施例1中获得的活性mPEG(Mw=5000g/mol,6.3mmol)溶液中([mPEG-Li]/[PPS]=1/3,mol/mol),在室温和高真空下反应6小时以在聚合物链末端引入巯基。所得产物通过在乙醚中沉淀,再溶于THF并用乙醇重结晶作为粉
1
末来回收。基于GPC分析,获得的聚合物的数均分子量是5100g/mol。基于 H-NMR分 析,链末端官能化的产率超过95mol%。图9是以上所得ω-巯基化mPEG的NMR数据,图10是以上所得ω-巯基化mPEG的GPC数据。
[0114] <实施例6>
[0115] 将0.005mol偏苯三酸酐酰氯(Aldrich)(98%)(在60ml THF中)用注射器加入到含有实施例1中获得的活性mPEG(Mw=5000g/mol)溶液([mPEG-Li]=0.001mmol)的反应器中。混合物在5℃下反应1小时,然后在35℃下再反应15小时,在乙醚中沉淀并除去其中的溶剂。所得残余物溶于THF并用乙醇重结晶,获得ω-酸酐mPEG。获得的聚合物的数均分子量是5200g/mol。链末端官能化的产率基于初始使用的聚合物溶液的浓度为约85mol%。图11是以上所得ω-酸酐mPEG的NMR数据,图12是以上所得ω-酸酐mPEG的GPC数据。
[0116] <实施例7>
[0117] 将1.5g实施例6中获得的ω-酸酐-mPEG(mPEG-TMA)(Mn=5200g/mol)和阿霉素氯化物(0.17g)/MeOH(50ml)加入到100ml反应器中,并且在氮气气氛下反应24小时。通过在甲醚中沉淀并用乙醚冲洗几次以回收所得产物。沉淀溶于THF,分离THF可溶和不可溶部分。THF可溶部分包含mPEG-阿霉素(mPEG-TMA-Dox),而THF不溶部分包含未反应的阿霉素。THF可溶部分浓缩获得红色固体粉末(mPEG-TMA-Dox)。所得粉末是在链末端具有阿1
霉素基团的mPEG聚合物药物。获得的聚合物的数均分子量为5800g/mol。基于 H-NMR分析,链末端官能化的产率为大于95mol%。图13是以上所得mPEG-阿霉素的NMR数据,图
14是以上所得mPEG-阿霉素的GPC数据。
[0118] <实施例8>
[0119] 将0.01mol实施例6中获得的mPEG-TMA(Mn=5200g/mol)和磺胺甲嘧啶(0.03mol)/乙醇(50ml)加入250ml反应器中。然后向其中加入100ml乙醇。混合物在70℃搅拌回流12小时。反应完成后,室温下将所得产物在乙醚中沉淀,从乙醇中重结晶以获得固体(mPEG-磺酰胺)。获得的聚合物的数均分子量为5400g/mol。基于所用mPEG的量的反应产率为大于95mol%。图15是以上所得mPEG-磺胺甲嘧啶的NMR数据,图16是以上所得mPEG-磺胺甲嘧啶的GPC数据。
[0120] <实施例9>
[0121] 室温下使1g实施例6中获得的mPEG-TMA(Mn=5200g/mol)和0.42g叶酸(等于mPEG摩尔数的5倍)在20ml DMSO中反应24小时。所得产物在乙醚中沉淀,再溶于THF并从乙醇中重结晶以获得黄色粉末(mPEG-TMA-FA)。获得的聚合物的数均分子量为5600g/mol,基于所用mPEG的量的反应产率超过98mol%。图17是以上所得mPEG-TMA-叶酸的NMR数据,图18是以上所得mPEG-TMA-叶酸的GPC数据。
[0122] <实施例10>
[0123] 使0.8g实施例6中获得的mPEG-TMA(Mn=5200g/mol)和0.68g万古霉素(等于mPEG摩尔数的3倍)在20ml DMSO中反应80小时。所得产物溶于甲醇并在乙醚中沉淀获1
得灰色粉末。获得的聚合物的数均分子量为6500g/mol。基于 H-NMR分析,链末端官能化的产率超过98mol%。图19是以上所得mPEG-TMA-万古霉素的NMR数据,图20是以上所得mPEG-TMA-万古霉素的GPC数据。
[0124] <实施例11>
[0125] 实施例3中获得的大分子单体(1.6mol%)和N-异丙基丙烯酰胺(NiPAM,98.4mol%)的共聚反应实施如下。
[0126] 在氮气气氛下将4-(溴甲基)苯甲酸(0.25mmol)、氢氧化钠(0.5mmol)和蒸馏水(20ml)加入250ml三口烧瓶。混合物缓慢搅拌30分钟。在氩气气氛下在100ml的两口烧瓶中制备mPEG大分子单体(2.25g,0.5mmol)/蒸馏水(50ml)溶液。在氩气气氛下在另一个100ml两口烧瓶中搅拌的同时制备NiPAM(3.4g,30mmol)/蒸馏水(50ml)溶液。Me6TREN(配体,0.25mmol)/Cu(I)Br(0.25mmol)混合物加入含引发剂的250ml烧瓶中。然后,1分钟后用插管和注射器分别将大分子单体和NiPAM溶液同时加入。所得混合物在室温下氩气气氛中搅拌3小时。所得溶液在50℃蒸馏水中沉淀,获得4.5g粉末。所得接枝共聚物的数均分子量为18000g/mol。图21是以上所得mPEG-g-NiPAM共聚物的NMR数据,图22是以上所得mPEG-g-NiPAM共聚物的GPC数据。
[0127] <实施例12>
[0128] 实施例3中获得的大分子单体(5mol%)和磺酰胺甲基丙烯酰胺单 体(MASX,95mol%)的共聚反应实施如下。
[0129] 在氮气气氛下将4-(溴甲基)苯甲酸(0.25mmol)、氢氧化钠(0.5mmol)和蒸馏水(20ml)加入250ml的三口烧瓶。混合物缓慢搅拌30分钟。在氩气气氛下在100ml的两口烧瓶中制备mPEG大分子单体(2.55g,0.5mmol)/蒸馏水(50ml)溶液。在氩气气氛下在另一个100ml的两口烧瓶中制备磺酰胺甲基丙烯酰胺单体(MASX,3.8g,10mmol)/NaOH(50mmol)/H2O(50ml)溶液。Me6TREN(配体,0.25mmol)/Cu(I)Br(0.25mmol)混合物加入含引发剂的
250ml烧瓶中。然后,1分钟后用插管和注射器分别将大分子单体和MASX溶液同时加入。所得混合物在室温下氩气气氛中搅拌3小时。加入过量HCl溶液终止反应。所得溶液在pH4.5的蒸馏水中沉淀,获得4.9g粉末。所得接枝共聚物的数均分子量为19000g/mol。图23是以上所得mPEG-g-MASX共聚物的NMR数据,图24是以上所得mPEG-g-MASX共聚物的GPC数据。
[0130] <实施例13>
[0131] 使用实施例2中获得的具有链末端溴基的mPEG按如下方式实施原子转移自由基聚合。
[0132] 将H2O/THF(100ml/10ml)加入250ml三口烧瓶中。然后在氩气气氛中向其中加入1.25g基于mPEG的大分子引发剂(Mn=5300g/mol)并且完全溶于其中。在100ml的两口烧瓶中,将MASX(2.6g,7mmol)/NaOH(0.301g,7mmol)混合物完全溶于蒸馏水(50ml)中。Me6TREN(0.25mmol)/Cu(I)Br(0.25mmol)混合物加入250ml烧瓶中,混合物搅拌约10分钟。
用插管将MASX溶液加入到所得混合物中,然后聚合2小时。终止聚合反应,所得溶液在HCl水溶液中沉淀获得粉末。粉末用HCl/甲醇洗几次并在真空烘箱中干燥。获得的嵌段共聚物的数均分子量为15000g/mol。图25是上述所得mPEG-b-MASX共聚物的NMR数据,图26是上述所得mPEG-b-MASX共聚物的GPC数据。
[0133] <实施例14>
[0134] 将0.15g实施例13中所得的嵌段共聚物(mPEG-b-聚磺酰胺)加入20ml小瓶中并且用3ml DMF(99%)完全溶解。用注射器向其中加入1ml FeCl3溶液(0.146g FeCl3/10ml DMF)。用磁棒缓慢搅拌混合物10分钟。小瓶内的溶液颜色为褐色。在搅拌的同时将1ml一水合肼(N2H2, Wako Junyaku Co.,98%)缓慢加入混合物中,直到颜色不再发生变化。当颜色改变或者不再有气泡产生时,所得混合物在过量甲醇中沉淀、过滤、冲洗和干燥,获得米黄色粉末。基于透射电子显微镜(TEM)分析,粉末尺寸为2~20nm。图27是以上获得的mPEG-b-MASX-氧化铁纳米颗粒的TEM照片。
[0135] <实施例15>
[0136] 将0.51g实施例4中获得的链末端磺化的mPEG放入20ml小瓶中并用5ml DMF(99%)完全溶解。用注射器向其中加入2ml FeCl2溶液(0.4g FeCl2/1ml DMF)。向混合物加入5ml NaOH水溶液(12.5N),加热到60℃并搅拌。用注射器向其中加入1.5ml NH4OH,搅拌6小时,冷却至室温并进一步搅拌24小时。通过过滤移除褐色不溶部分,所得溶液减压浓缩。所得的残余物溶解于甲醇并在甲醚中沉淀,获得黄色粉末。基于TEM分析的粉末尺寸为3~10nm。图28是以上获得的ω-磺化mPEG-氧化铁的纳米颗粒的TEM照片。 [0137] <实施例16>
[0138] 将0.51g实施例5中获得的具有链末端巯基的mPEG(Mn=5100g/mol)完全溶4
于10ml THF中。在30ml小瓶中将购自Aldrich公司的HAuCl4(2.0×10mol)溶解于-2
THF(10ml),用注射器向其中加入溶于10ml THF/甲醇(9/1,v/v)的NaBH4(1.6×10 mol)。
用注射器向混合物中加入溶于THF的聚合物溶液,然后在室温下搅拌24小时。蒸发除去部分溶剂,所得残余物在甲醚中沉淀,获得浅紫色粉末。基于TEM分析,粉末尺寸为2~10nm。
图29是以上获得的ω-巯基化mPEG-Au的纳米颗粒的TEM照片。
[0139] <实施例17>
[0140] 将0.51g实施例4中获得的链末端磺化的mPEG加入20ml小瓶中并用5ml4
DMF(99%)完全溶解。将购自Aldrich公司的HAuCl4(2.0×10mol)注入30ml小瓶中,用THF(10ml)溶解,用注射器向其中加入溶于10ml THF/甲醇(9/1,v/v)的-2
NaBH4(1.6×10 mol)。用注射器向混合物中加入溶于THF的聚合物溶液,然后在室温下搅拌
24小时。蒸发除去部分溶剂,所得残余物在甲醚中沉淀,获得浅紫色粉末。基于TEM分析,粉末尺寸为3~20nm。图30是以上获得的ω-磺化 mPEG-Au的纳米颗粒的TEM照片。 [0141] <实施例18>
[0142] 将1.0g实施例7中获得的mPEG-TMA-Dox(Mn=5800g/mol)加入20ml小瓶中并完全溶解于10ml甲醇中。用滴管向其中加入1ml FeCl3溶液(0.48g FeCl3/100ml甲醇)。用注射器缓慢加入1ml N2H2,然后搅拌2小时。过滤除去不溶部分,所得溶液在乙醚中沉淀。
然后,冲洗几次,获得紫色粉末。基于TEM分析,粉末是尺寸为2~20nm的纳米杂化形式。
图31是以上获得的mPEG-TMA-阿霉素-氧化铁的纳米颗粒的TEM照片。
[0143] <实施例19>
[0144] 将1.5g实施例9中获得的mPEG-TMA-FA(Mn=5600g/mol)溶于50ml脱氧蒸馏水中。向其中加入FeCl2/FeCl3(1mol/2mol,0.4g/1.0g)并在搅拌的同时加热到80℃。向混合物中加入1.5ml NH4OH溶液,然后搅拌30分钟。所得混合物冷却至室温并进一步搅拌24小时。通过过滤从所得混合物中除去深褐色不溶部分,然后除去水。所得残余物溶解于甲醇并在甲醚中沉淀,获得黄色粉末。基于TEM分析,粉末尺寸为2~10nm。图32是以上获得的mPEG-TMA-叶酸-氧化铁的纳米颗粒的TEM照片。
[0145] <实施例20>
[0146] 将0.15g实施例12中所得的接枝共聚物加入20ml小瓶中并且用3ml DMF(99%)完全溶解。用注射器向其中加入1ml FeCl3溶液(0.146g FeCl3/10ml DMF),并用磁棒缓慢搅拌10分钟。溶液颜色为褐色。将1ml一水合肼(N2H2,Wako Junyaku Co.,98%)作为还原剂在搅拌的同时缓慢加入混合物中,直到颜色不再发生变化。当颜色改变或者不再有气泡产生时,所得溶液在过量甲醇中沉淀、过滤、冲洗和干燥,获得米黄色粉末。基于TEM分析,粉末尺寸为3~30nm。图33是以上获得的mPEG-g-MASX-氧化铁纳米颗粒的TEM照片。 [0147] <实施例21>
[0148] 在250ml反应器中加入0.01mol实施例6中获得的mPEG-TMA(Mn=5200g/mol)和磺胺嘧啶(0.03mol)/乙醇(50ml),然后加入100 ml乙醇。混合物在70℃回流12小时,室温下在乙醚中沉淀,在乙醇中重结晶获得固体mPEG-磺酰胺。基于GPC分析,获得的聚合物的数均分子量是6000g/mol。基于所用mPEG的量反应产率超过85mol%。图34是以上所得的mPEG-磺酰胺的NMR数据。
[0149] <实施例22>
[0150] 将0.51g实施例4中获得的链末端磺化的mPEG(Mn=5100g/mol)加入20ml小瓶中并用5ml甲苯/甲醇(90/10,v/v)完全溶解。向其中加入溶于10ml甲苯/甲醇(90/10,-4v/v)的0.147g水合醋酸镉(Cd(OAc)2·xH2O,6.38×10 mol)。在搅拌的同时用注射器向混合物中缓慢加入气态硫化氢(H2S),直到混合物颜色变为黄色。然后搅拌6小时。所得混合物在乙醚中沉淀,获得黄色粉末。基于TEM分析,粉末尺寸为2~30nm。图35是ω-磺化mPEG-硫化镉的纳米颗粒的TEM照片。
[0151] <实施例23>
[0152] 重复如实施例22中所描述的相同过程,不同点在于将0.51g实施例5中获得的链末端具有巯基的mPEG(Mn=5100g/mol)放入20ml小瓶中,加入5ml甲苯/甲醇(90/10,v/v)完全溶解,以获得CdS粉末。基于SEM分析,粉末尺寸为2~30nm。图36是以上获得的ω-巯基化mPEG-硫化镉的纳米颗粒的TEM照片。
[0153] <实施例24>
[0154] 将0.5g实施例10中获得的mPEG-TMA-万古霉素(Mn=6500g/mol)完全溶解于100ml蒸馏水中。然后,AgNO3(等于mPEG摩尔数的1/5)和NaBH4(等于AgNO3的摩尔数)作为还原剂加入其中。混合物在室温下搅拌8小时。所得混合物溶于甲醇中然后在甲醚中沉淀获得灰色粉末。将粉末溶于甲醇后,基于TEM分析的粉末尺寸为5~15nm。图37是以上获得的mPEG-TMA-万古霉素的纳米颗粒的TEM照片。
[0155] <实施例25>
[0156] 将1.5g实施例9中获得的mPEG-TMA-FA(Mn=5600g/mol)溶于50ml脱氧蒸馏水中。向其中加入AgNO3(0.01mol)并在搅拌的同时加热到40℃。向混合物中加入1.5ml NH4OH溶液,搅拌30分钟,冷却至室温并且搅拌反应24小时。从所得溶液中过滤除去深褐色不溶部分, 然后除去水。所得残余物溶解于甲醇并在甲醚中沉淀,获得黄色粉末。基于TEM分析的粉末尺寸为2~50nm。图38是以上获得的mPEG-TMA-叶酸-银的纳米颗粒的TEM照片。
[0157] <实施例26>
[0158] 将2.5g实施例5中获得的ω-巯基化mPEG(Mn=5100g/mol)溶于50ml脱氧蒸馏水中,向其中加入AgNO3(0.01mol)并在搅拌的同时加热到40℃。向混合物中加入1.5ml NH4OH溶液,然后搅拌30分钟。所得混合物冷却至室温并进一步搅拌24小时。从所得混合物中过滤除去深褐色不溶部分,然后除去水。所得残余物溶解于甲醇并在甲醚中沉淀,获得黄色粉末。基于TEM分析的粉末尺寸为2~50nm。图39是以上获得的ω-巯基化mPEG-银的纳米颗粒的TEM照片。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈