首页 / 专利库 / 地球科学 / 岩石 / 火成岩 / 侵入岩 / 花岗岩 / 由超高性能水泥基复合材料浇筑的超高性能水泥基π形梁

由超高性能泥基复合材料浇筑的超高性能水泥基π形梁

阅读:681发布:2022-05-11

专利汇可以提供由超高性能泥基复合材料浇筑的超高性能水泥基π形梁专利检索,专利查询,专利分析的服务。并且本 发明 涉及一种由超高性能 水 泥基 复合材料 浇筑的超高性能 水泥 基π形梁,该π形梁满足:H1/B1=0.2~1;T1/H1=0.01~0.3;T2/B3=0.1~0.5;B2/B1=0.2~0.8;B3/B2=0.1~0.5;T2/H1=0.02~0.2;R2/R1=0.3~0.8;R3/R2=0.1~0.5;1500mm≤B1≤5000mm;500mm≤H1≤3000mm;跨度L=10m~200m。本发明涉及的超高性能水泥基复合材料,通过对多元胶凝材料的颗粒级配和 骨料 的颗粒级配进行优化,并通过化学添加剂,使材料在具有良好流动性的前提下,满足28d标养下抗压强度达到170MPa以上。本发明由于采用超高强度的水泥基复合材料以及高强筋材,并通过合理构造优化设计,整个构件在保证承载 力 的同时,具有轻质、耐久、上部结构与 桥面 板一体化、可实现快速预制装配等特点,可用于公路、 铁 路等领域中小型 桥梁 的快速建设。,下面是由超高性能泥基复合材料浇筑的超高性能水泥基π形梁专利的具体信息内容。

1.一种由超高性能泥基复合材料浇筑的超高性能水泥基π形梁,其特征在于,该π形梁由顶板(1)、对称布置的腹板(2)及球缘(3)、高强筋材(4)构成,将该梁的高度设为H1、顶板(1)宽度设为B1、顶板(1)厚度设为T1、腹板(2)厚度设为T2、球缘(3)内侧间距设为B2、球缘(3)高度设为H2、球缘(3)宽度设为B3、顶板(1)和腹板(2)内侧半径设为R1、顶板(1)和腹板(2)外侧倒角半径及腹板(2)和球缘(3)倒角半径设为R2、球缘(3)上部边缘倒角半径设为R3、梁跨度设为L时,满足:H1/B1=0.2~1;T1/H1=0.01~0.3;T2/B3=0.1~0.5;B2/B1=0.2~0.8;B3/B2=0.1~0.5;T2/H1=0.02~0.2;R2/R1=0.3~
0.8;R3/R2=0.1~0.5;1500mm≤B1≤5000mm;500mm≤H1≤3000mm;L=10m~200m;
所述超高性能水泥基π形梁由超高性能水泥基复合材料浇筑而成;所述超高性能水泥基复合材料包含胶凝材料、外加剂和水,所述胶凝材料为水泥和矿物掺合料,所述水泥为强度等级为42.5及以上的P·I、P·II或P·O代号水泥,所述矿物掺合料为灰、灰或矿粉的两种或三种;
其中,水泥用量占超高性能水泥基复合材料体积的20~70%,所述矿物掺合料占超高性能水泥基复合材料体积的10~60%;
所述胶凝材料各组分的配比分数通过理想堆积曲线和胶凝材料各组分的粒径累计分布曲线进行数值分析计算;
1)所述理想堆积曲线公式为:
π/2e
Psd=A+(100-A)·(d/Dmax) ;
其中,Psd为颗粒通过筛孔的百分比,A为经验常数,d为筛孔直径,Dmax为颗粒的最大粒径;
经验常数A的取值根据超高性能水泥基复合材料的设计坍落度或设计扩展度要求通过公式确定:
当h≤220mm时,A=5·h/h0,
当h>220mm时,A=5·(1-h)/h0,
l为扩展度设计值,h为坍落度设计值,h0为坍落度桶的高度300mm;
2)胶凝材料各组分的粒径累计分布曲线:
对胶凝材料中所需的组分水泥、硅灰、粉煤灰和矿粉经测试的得到各自累计分布曲线fc(d)、fsf(d)、ffa(d)和fbs(d);
3)数值分析计算如下:
设水泥占胶凝材料总量的体积分数为Xc、硅灰占胶凝材料总量的体积分数为Xsf、粉煤灰占胶凝材料总量的体积分数为Xfa和矿粉占胶凝材料总量的体积分数为Xbs,且满足Xc∈[0.250,0.875]、(Xsf+Xfa+Xbs)∈[0.125,0.750]、Xc+Xsf+Xfa+Xbs=1;
设定混合后胶凝材料的粒径累计分布曲线为:
P=Xcfc(d)+Xsffsf(d)+Xfaffa(d)+Xbs fbs(d),
对各组分的体积分数Xc、Xsf、Xfa和Xbs以0.001~0.01为步长,在各自的取值范围内穷举计算P,比较曲线P和Psd,计算相同纵坐标所对应的横坐标粒径d的标准差,取标准差最小的Xc、Xsf、Xfa和Xbs值作为胶凝材料的各组分配比分数;
水的用量与胶凝材料的质量比W/B为0.1~0.4,其中W表示水的用量,B表示胶凝材料质量;
按计算所得配比配制的超高性能水泥基复合材料拌和后,流动性性能如下:
坍落度GB/T50080: ≥10mm;
或扩展度GB/T50080: ≥450mm;
扩展度的值只有在高流动度即坍落度>220mm时才测试,此时混凝土流动性以扩展度为准;
材料硬化后性能如下:
抗压强度,标准养护28d: ≥170MPa。
2.根据权利要求1所述的超高性能水泥基π形梁,其特征在于,所述纵坐标依最大值
100%等分选取,至少取5个值;所述的W/B为0.12至0.28;所述水泥符合国标《通用硅酸盐水泥》GB175;所述硅灰符合《砂浆和混凝土用硅灰》GB/T 27690;所述粉煤灰符合《用于水泥和混凝土的粉煤灰》GB/T 1596;所述矿粉符合《用于水泥和混凝土中的粒化高炉矿渣粉》GB/T 18046;水符合《混凝土用水标准》JGJ 63;所述超所述外加剂为减水剂、消泡剂、增稠剂、早强剂、缓凝剂或减缩剂一种或者几种的组合,减水剂选用减水率25%以上的减水剂,掺量为所述胶凝材料质量的0.5%~5%,消泡剂掺量为胶凝材料的0.08%~2%,增稠剂掺量为胶凝材料的0.005%~0.5%,缓凝剂掺量为水泥材料0.005%~1.5%,减缩剂掺量为胶凝材料的0.1%~5%。
3.根据权利要求2所述的超高性能水泥基π形梁,其特征在于,所述减水剂的减水率为30%以上,掺量为所述胶凝材料质量的0.8%~3%。
4.根据权利要求1所述的超高性能水泥基π形梁,其特征在于,所述超高性能水泥基复合材料中还添加骨料,为细骨料或者细骨料和粗骨料的混合物;所述骨料与所述胶凝材料的体积比为0.5~2.5;
3
细骨料为天然砂或人工砂,细度模数为1.2~3.5,堆积密度为1.1~2.1g/cm;表观
3
密度为1.8~3.0g/cm;
3
粗骨料为碎石或卵石,粒径为5~15mm;堆积密度为1.1~2.1g/cm;表观密度为
3
1.8~3.0g/cm;
对于使用连续级配的骨料,配制细骨料和粗骨料的混合物时,计算出细骨料正好填充粗骨料空隙的砂率值,以此砂率值确定粗骨料和细骨料的比例;
对于使用间断级配的骨料,骨料的比例通过理想堆积曲线和各种骨料的累计分布曲线进行数值分析计算;
1)所述堆积曲线公式为:
π/2e
PsdA=B+(100-B)·(dA/DAmax) ;
其中,PsdA为骨料颗粒通过筛孔的百分比,b为骨料经验常数,dA为骨料筛孔直径,DAmax为骨料颗粒的最大粒径;
经验常数b的取值根据超高性能水泥基复合材料的坍落度或扩展度要求通过公式确定:
当h≤220mm时,b=5·h/h0,
当>220mm时,b=5·(1-h)/h0,
l为扩展度设计值,h为坍落度设计值,h0为坍落度桶的高度300mm;
2)各种骨料的颗粒累计分布曲线:
对骨料中所需的砂和石子经筛分测试得到各自的累计分布曲线fsm(d)和frn(d);
fsm(d)为m#级配砂,m=1~5;
frn(d)为n#级配石子,n=1~5;当不需要石子时,则不考虑石子的累计分布曲线;
3)数值分析计算如下:
设m#级配砂占骨料总量的体积分数为Xsm、和n#级配石子占骨料总量的体积分数为Xrn,且满足;
设定混合后骨料的粒径累计分布曲线为:
PA=ΣXAnfAn(d);
对各组分的体积分数Xsm和Xrn以0.001~0.05为步长,在各自的取值范围内穷举计算PA,比较曲线PA和PsdA,计算相同纵坐标所对应的横坐标粒径dA的标准差,取标准差最小的Xsm和Xrn值作为骨料的各组分配比分数。
5.根据权利要求4所述的超高性能水泥基π形梁,其特征在于,所述纵坐标依最大值
100%等分选取,至少取5个值;所述细骨料的细度模数为2.4~2.8;所述碎石为玄武岩花岗岩
6.根据权利要求1所述的超高性能水泥基π形梁,其特征在于,所述超高性能水泥基复合材料中还添加纤维,所述纤维为纤维或非金属纤维,非金属纤维为聚乙烯醇纤维、聚乙烯纤维、聚丙烯纤维、聚丙烯腈纤维、聚酯纤维、尼龙纤维、纤维素纤维、纤维、玻璃纤维或玄武岩纤维,占所述超高性能水泥基复合材料体积的0.05%~5%;所述纤维的直径为
15~1000μm,纤维长度为1~100mm。
7.根据权利要求1所述的超高性能水泥基π形梁,其特征在于,所述超高性能水泥基π形梁采用高强筋材(4)在腹板(2)与顶板(1)交界处及球缘(3)进行配筋,腹板(2)与顶板(1)交界处配筋率在0.02%~2%之间,球缘(3)配筋率在1%~20%之间,采用先张法对高强筋材(4)施加预应;所述高强筋材(4)为高强钢筋、钢绞线或纤维复合筋中的一种;所述纤维复合筋采用有机合成纤维、玻璃纤维、玄武岩纤维、碳纤维的一种或几种组合与树脂制成。
8.根据权利要求1所述的超高性能水泥基π形梁,其特征在于,梁的横截面积
2
为0.2~2m,总截面配筋率为0.5%~5%,结构自重为5~50kN/m,转动惯量为2~
14 4
20×10 mm。
9.根据权利要求1所述的超高性能水泥基π形梁,其特征在于,π形梁弯曲试验时跨中最大拉应变为2000~4000με,弯曲试验时高强筋材(4)最大应力为500~3000MPa,剪切试验时腹板(2)最大拉应变为100~1000με。
10.根据权利要求1所述的超高性能水泥基π形梁,其特征在于,梁高H1与跨度L存在对应关系,所述对应关系为:当H1在700~900mm之间,L在15~25m之间;当H1在900~
1000mm之间,L在23~30m之间;当H1在1000~1100mm之间,L在27.5~32m之间;当H1在1100~1300mm之间,L在30~41m之间。

说明书全文

由超高性能泥基复合材料浇筑的超高性能水泥基π形

技术领域

[0001] 本发明涉及一种轻质、高强π形梁体,更具体的说,涉及一种由超高性能水泥基复合材料浇筑的超高性能水泥基π形梁

背景技术

[0002] 公路、路等领域中小型桥梁的梁体结构多采用混凝土或预应钢筋混凝土结构的空心板梁、T梁或箱梁,其中公路中小型桥梁中以空心板梁结构居多,华东地区空心板梁结构至少占比80%以上,空心板梁一般适用于跨径在8~20m之间的桥梁,而T梁适用于单孔跨径在30~40m之间,箱梁的适用范围则相对较广。普通混凝土由于其廉价易得,成为梁体结构(包括空心板梁、T梁和箱梁)的主要结构材料,但其缺点也十分显著,如:(1)强度低,导致结构尺寸大、自重大、施工周期长;(2)脆性大、韧性差,极易出现裂缝,成为侵蚀介质进入混凝土内部的途径;(3)耐久性差,体现在渗透系数大、抗冻性能差、不耐腐蚀等;(4)耐疲劳性能差,在反复荷载下易出现疲劳裂缝。我国自改革开放以来就开始大规模的桥梁建设,过去的30年共建造了50多万座桥梁,据不完全调查统计,近1/4存在各种类型的病害,其中涉及到梁体的病害占有较大比例,包括梁的开裂、破损、盐类侵蚀、钢筋锈蚀、下挠、预应力损失、接缝渗漏等,后期的维护加固费用惊人,单座桥梁的维护加固费用尽可超过建设费用,对于损坏严重的梁体需要重新更换,此时需凿除桥面铺装及桥面板并使用大型设备才能将笨重的梁体移走,费用惊人,从梁结构的全生命周期来看,建设费用相对较低的钢筋混凝土梁其经济性是大打折扣的。目前桥梁建设需要一种轻质高强、耐久性高、施工周期短、维护费用低的新型梁体结构,来克服现有梁结构的各种弊端,提高桥梁整体的服役性能、安全性能和使用寿命。

发明内容

[0003] 为了解决现有技术存在的上述问题,本发明的目的是提供一种由超高性能水泥基复合材料浇筑的超高性能水泥基π形梁。
[0004] 本发明的由超高性能水泥基复合材料浇筑的超高性能水泥基π形梁,该π形梁由顶板(1)、对称布置的腹板(2)及球缘(3)、高强筋材(4)构成,将该梁的高度设为H1、顶板(1)宽度设为B1、顶板(1)厚度设为T1、腹板(2)厚度设为T2、球缘(3)内侧间距设为B2、球缘(3)高度设为H2、球缘(3)宽度设为B3、顶板(1)和腹板(2)内侧半径设为R1、顶板(1)和腹板(2)外侧倒角半径及腹板(2)和球缘(3)倒角半径设为R2、球缘(3)上部边缘倒角半径设为R3、梁跨度设为L时,满足:H1/B1=0.2~1;T1/H1=0.01~0.3;T2/B3=0.1~0.5;B2/B1=0.2~0.8;B3/B2=0.1~0.5;T2/H1=0.02~0.2;R2/R1=0.3~
0.8;R3/R2=0.1~0.5;1500mm≤B1≤5000mm;500mm≤H1≤3000mm;L=10m~200m;
[0005] 所述超高性能水泥基π形梁由超高性能水泥基复合材料浇筑而成;所述超高性能水泥基复合材料包含胶凝材料、外加剂和水,所述胶凝材料为水泥和矿物掺合料,所述水泥为强度等级为42.5及以上的P·I、P·II或P·O代号水泥,所述矿物掺合料为灰、灰或矿粉的两种或三种;
[0006] 其中,水泥用量占超高性能水泥基复合材料体积的20~70%,所述矿物掺合料占超高性能水泥基复合材料体积的10~60%;
[0007] 所述胶凝材料各组分的配比分数通过理想堆积曲线和胶凝材料各组分的粒径累计分布曲线进行数值分析计算;
[0008] 1)所述理想堆积曲线公式为:
[0009] Psd=A+(1.00-A)·(d/Dmax)π/2e;
[0010] 其中,Psd为颗粒通过筛孔的百分比,A为经验常数,d为筛孔直径,Dmax为颗粒的最大粒径;
[0011] 经验常数A的取值根据超高性能水泥基复合材料的设计坍落度或设计扩展度要求通过公式确定:
[0012] 当h≤220mm时,A=5·h/h0,
[0013] 当h>220mm时,A=5·(l-h)/h0,
[0014] l为扩展度设计值,h为坍落度设计值,h0为坍落度桶的高度300mm;
[0015] 2)胶凝材料各组分的粒径累计分布曲线:
[0016] 对胶凝材料中所需的组分水泥、硅灰、粉煤灰和矿粉经测试的得到各自累计分布曲线fc(d)、fsf(d)、ffa(d)和fbs(d);
[0017] 3)数值分析计算如下:
[0018] 设水泥占胶凝材料总量的体积分数为Xc、硅灰占胶凝材料总量的体积分数为Xsf、粉煤灰占胶凝材料总量的体积分数为Xfa和矿粉占胶凝材料总量的体积分数为Xbs,且满足Xc∈[0.250,0.875]、(Xsf+Xfa+Xbs)∈[0.125,0.750]、Xc+Xsf+Xfa+Xbs=1;
[0019] 设定混合后胶凝材料的粒径累计分布曲线为:
[0020] P=Xcfc(d)+Xsffsf(d)+Xfaffa(d)+Xbsfbs(d),
[0021] 对各组分的体积分数Xc、Xsf、Xfa和Xbs以0.001~0.01为步长,在各自的取值范围内穷举计算P,比较曲线P和Psd,计算相同纵坐标所对应的横坐标粒径d的标准差,取标准差最小的Xc、Xsf、Xfa和Xbs值作为胶凝材料的各组分配比分数;
[0022] 水的用量与胶凝材料的质量比W/B为0.1~0.4,其中W表示水的用量,B表示胶凝材料质量;
[0023] 按计算所得配比配制的超高性能水泥基复合材料拌和后,流动性性能如下:
[0024] 坍落度GB/T50080: ≥10mm;
[0025] 或扩展度GB/T 50080: ≥450mm;
[0026] 扩展度的值只有在高流动度即坍落度>220mm时才测试,此时混凝土流动性以扩展度为准;
[0027] 材料硬化后性能如下:
[0028] 抗压强度,标准养护28d: ≥170MPa。
[0029] 作为优选的技术方案:
[0030] 所述的超高性能水泥基π形梁,所述纵坐标依最大值100%等分选取,至少取5个值;所述的W/B为0.12至0.28;所述水泥符合国标《通用硅酸盐水泥》GB175;所述硅灰符合《砂浆和混凝土用硅灰》GB/T 27690;所述粉煤灰符合《用于水泥和混凝土的粉煤灰》GB/T 1596;所述矿粉符合《用于水泥和混凝土中的粒化高炉矿渣粉》GB/T 18046;水符合《混凝土用水标准》JGJ 63;所述超所述外加剂为减水剂、消泡剂、增稠剂、早强剂、缓凝剂或减缩剂一种或者几种的组合,减水剂选用减水率25%以上的减水剂,掺量为所述胶凝材料质量的0.5%~5%,消泡剂掺量为胶凝材料的0.08%~2%,增稠剂掺量为胶凝材料的0.005%~0.5%,缓凝剂掺量为水泥材料0.005%~1.5%,减缩剂掺量为胶凝材料的0.1%~5%。
[0031] 所述的超高性能水泥基π形梁,所述减水剂的减水率为30%以上,掺量为所述胶凝材料质量的0.8%~3%。
[0032] 所述的超高性能水泥基π形梁,所述超高性能水泥基复合材料中还添加骨料,为细骨料或者细骨料和粗骨料的混合物;所述骨料与所述胶凝材料的体积比为0.5~2.5;
[0033] 细骨料为天然砂或人工砂,细度模数为1.2~3.5,堆积密度为1.1~2.1g/cm3;3
表观密度为1.8~3.0g/cm;
[0034] 粗骨料为碎石或卵石,粒径为5~15mm;堆积密度为1.1~2.1g/cm3;表观密度为3
1.8~3.0g/cm;
[0035] 对于使用连续级配的骨料,配制细骨料和粗骨料的混合物时,计算出细骨料正好填充粗骨料空隙的砂率值,以此砂率值确定粗骨料和细骨料的比例;
[0036] 对于使用间断级配的骨料,骨料的比例通过理想堆积曲线和各种骨料的累计分布曲线进行数值分析计算;
[0037] 1)所述堆积曲线公式为:
[0038] PsbA=B+(100-B)·(dA/DAmax)π/2e;
[0039] 其中,PsdA为骨料颗粒通过筛孔的百分比,b为骨料经验常数,dA为骨料筛孔直径,DAmax为骨料颗粒的最大粒径;
[0040] 经验常数b的取值根据超高性能水泥基复合材料的坍落度或扩展度要求通过公式确定:
[0041] 当h≤220mm时,b=5·h/h0,
[0042] 当>220mm时,b=5·(l-h)/h0,
[0043] l为扩展度设计值,h为坍落度设计值,h0为坍落度桶的高度300mm;
[0044] 2)各种骨料的颗粒累计分布曲线:
[0045] 对骨料中所需的砂和石子经筛分测试得到各自的累计分布曲线fsm(d)和frn(d);
[0046] fsm(d)为m#级配砂,m=1~5;
[0047] frn(d)为n#级配石子,n=1~5;当不需要石子时,则不考虑石子的累计分布曲线;
[0048] 3)数值分析计算如下:
[0049] 设m#级配砂占骨料总量的体积分数为Xsm、和n#级配石子占骨料总量的体积分数为Xrn,且满足;
[0050] 设定混合后骨料的粒径累计分布曲线为:
[0051] PA=ΣXAnfAn(d);
[0052] 对各组分的体积分数Xsm和Xrn以0.001~0.05为步长,在各自的取值范围内穷举计算PA,比较曲线PA和PsdA,计算相同纵坐标所对应的横坐标粒径dA的标准差,取标准差最小的Xsm和Xrn值作为骨料的各组分配比分数。
[0053] 所述的超高性能水泥基π形梁,所述纵坐标依最大值100%等分选取,至少取5个值;所述细骨料的细度模数为2.4~2.8;所述碎石为玄武岩花岗岩
[0054] 所述的超高性能水泥基π形梁,所述超高性能水泥基复合材料中还添加纤维,所述纤维为钢纤维或非金属纤维,非金属纤维为聚乙烯醇纤维、聚乙烯纤维、聚丙烯纤维、聚丙烯腈纤维、聚酯纤维、尼龙纤维、纤维素纤维、纤维、玻璃纤维或玄武岩纤维,占所述超高性能水泥基复合材料体积的0.05%~5%;所述纤维的直径为15~1000μm,纤维长度为1~100mm。
[0055] 所述的超高性能水泥基π形梁,所述超高性能水泥基π形梁采用高强筋材(4)在腹板(2)与顶板(1)交界处及球缘(3)进行配筋,腹板(2)与顶板(1)交界处配筋率在0.02%~2%之间,球缘(3)配筋率在1%~20%之间,采用先张法对高强筋材(4)施加预应力;所述高强筋材(4)为高强钢筋、钢绞线或纤维复合筋中的一种;所述纤维复合筋采用有机合成纤维、玻璃纤维、玄武岩纤维、碳纤维的一种或几种组合与树脂制成。
[0056] 所述的超高性能水泥基π形梁,梁的横截面积为0.2~2m2,总截面配筋率为14 4
0.5%~5%,结构自重为5~50kN/m,转动惯量为2~20×10 mm。
[0057] 所述的超高性能水泥基π形梁,π形梁弯曲试验时跨中最大拉应变为2000~4000με,弯曲试验时高强筋材(4)最大应力为500~3000MPa,剪切试验时腹板(2)最大拉应变为100~1000με。
[0058] 所述的超高性能水泥基π形梁,梁高H1与跨度L存在对应关系,所述对应关系为:当H1在700~900mm之间,L在15~25m之间;当H1在900~1000mm之间,L在23~30m之间;当H1在1000~1100mm之间,L在27.5~32m之间;当H1在1100~1300mm之间,L在30~41m之间。
[0059] 有益效果:
[0060] (1)超高性能水泥基π形梁截面小、自重轻、结构设计合理、承载力高,可实现在现场快速安装;
[0061] (2)超高性能水泥基复合材料基于最紧密堆积设计,结构极其致密,具备较高的抗渗性能、抗碳化性能、抗氯离子渗透、抗冻融循环等耐久性能,对内部配筋形成较强的保护作用,从而使得整个梁体结构的寿命达到100年以上;
[0062] (3)超高性能水泥基π形梁结构自重远小于普通钢筋混凝土结构,材料成本以及吊装等施工成本低,具有一定经济优势;
[0063] (4)超高性能水泥基复合材料具备高韧性的特征,使得梁整体结构延性较好,结构的抗震抗灾性能远高于普通钢筋混凝土结构;
[0064] (5)超高性能水泥基π形梁的耐疲劳性能优越,在疲劳荷载作用下各项力学性能基本不衰减,特别适用于车流量较大的中小型公路、铁路桥梁。附图说明
[0065] 图1是H1为700~900mm时超高性能水泥基π形梁的截面图
[0066] 图2是H1为900~1000mm时超高性能水泥基π形梁的截面图
[0067] 图3是H1为1000~1100mm时超高性能水泥基π形梁的截面图
[0068] 图4是H1为1100~1300mm时超高性能水泥基π形梁的截面图
[0069] 图中,1是顶板;2是腹板;3是球缘;4是高强筋材;B1是顶板(1)宽度;B2是球缘(3)内侧间距;B3是球缘(3)宽度;H1是梁的高度;H2是球缘(3)高度;T1是顶板(1)厚度;T2是腹板(2)厚度;R1是顶板(1)和腹板(2)内侧倒角半径;R2是顶板(1)和腹板(2)外侧倒角半径及腹板(2)和球缘(3)倒角半径;R3是球缘(3)上部边缘倒角半径。

具体实施方式

[0070] 下面结合具体实施方式,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
[0071] 实施例1
[0072] 超高性能水泥基π形梁,其中:
[0073] B1=2500mm、B2=1250mm、B3=300mm、H1=890mm、H2=175mm、T1=100mm、T2=75mm、R1=200mm、R2=125mm、R3=40mm、L=24400mm;
[0074] 超高性能水泥基复合材料,包含胶凝材料、水和减水剂,水泥体积占20%,所述水泥为强度等级为52.5的P·I水泥,所述矿物掺合料为硅灰和粉煤灰,占54%。
[0075] 水泥、硅灰和粉煤灰的配比分数通过理想堆积曲线和其粒径累计分布曲线进行数值分析计算;
[0076] 1)所述理想堆积曲线公式为:
[0077] Psd=A+(100-A)·(d/Dmax)π/2e;
[0078] 其中,Psd为颗粒通过筛孔的百分比,A为经验常数,d为筛孔直径,Dmax为颗粒的最大粒径;
[0079] 经验常数A的取值根据超高性能水泥基复合材料的设计坍落度或设计扩展度要求通过公式确定:
[0080] 坍落度GB/T50080:140mm;坍落度桶的高度h0为300mm;
[0081] =2.333;
[0082] 2)胶凝材料各组分的粒径累计分布曲线:
[0083] 对水泥、硅灰和粉煤灰经测试的得到各自累计分布曲线fc(d)、fsf(d)和ffa(d);胶凝材料中水泥的最大粒径大于其他两种胶凝材料,所以Dmax取水泥的最大粒径110μm。
[0084] 3)数值分析计算如下:
[0085] 设水泥占胶凝材料总量的体积分数为Xc、硅灰占胶凝材料总量的体积分数为Xsf和粉煤灰占胶凝材料总量的体积分数为Xfa,且满足Xc∈[0.250,0.875]、(Xsf+Xfa)∈[0.125,0.750]、Xc+Xsf+Xfa=1;
[0086] 设定混合后胶凝材料的粒径累计分布曲线为:
[0087] P=Xcfc(d)+Xsffsf(d)+Xfaffa(d),
[0088] 对各组分的体积分数Xc、Xsf和Xfa以0.001为步长,在各自的取值范围内穷举计算P,比较曲线P和Psd,在纵坐标上取最大值内的5个等分点,计算相同纵坐标所对应的横坐标粒径d的标准差,经计算比较得到标准差最小的Xc=0.270,Xsf=0.365,Xfa=0.519,分别作为水泥、硅灰和粉煤灰的配比分数;
[0089] 水的用量与胶凝材料的质量比W/B为0.121,其中W表示水的用量,B表示胶凝材料质量。
[0090] 使用聚羧酸减水剂,粉剂,减水率30%,用量为胶凝材料的2.2%。
[0091] 超高性能水泥基复合材料的主要材料用量,体积百分比如下:
[0092]
[0093] 超高性能水泥基复合材料的各材料用量,质量比如下:
[0094]
[0095] 超高性能水泥基复合材料是指材料拌和后流动性性能如下:
[0096] 坍落度GB/T50080: 140mm;
[0097] 硬化后性能达到如下指标:
[0098] 抗压强度,标准养护28d: 188MPa。
[0099] 浇筑成横截面如图1所示的超高性能水泥基π形梁,其中高强筋材(4)为直径12.7mm、抗拉强度≥1860MPa的钢绞线,采用先张法施加预应力,腹板(2)与顶板(1)交界处各配筋2根,两侧球缘(3)各配筋16根,自上而下分四层布置,各层配筋数为1、5、
2
5、5;梁的横截面积为0.56m,总截面配筋率为0.64%,结构自重为13.5kN/m,转动惯量为
14 4
6.2×10 mm;梁弯曲试验时跨中最大拉应变为2820με,弯曲试验时高强筋材(4)最大应力为1730MPa,剪切试验时腹板(2)最大拉应变为455με。
[0100] 实施例2
[0101] 超高性能水泥基π形梁,其中:
[0102] B1=2500mm、B2=1250mm、B3=300mm、H1=990mm、H2=230mm、T1=100mm、T2=75mm、R1=200mm、R2=125mm、R3=40mm、L=29000mm;
[0103] 超高性能水泥基复合材料,包含胶凝材料、水和减水剂,水泥体积占49%,所述水泥为强度等级为62.5的P·I水泥,所述矿物掺合料为硅灰、粉煤灰和矿粉,体积占18%;胶凝材料的各组分配比分数按实施例1的计算方式,得Xc=0.731、Xsf=0.104、Xfa=0.094和Xbs=0.070。水胶比W/B=0.143,外加剂使用聚羧酸减水剂溶液,掺量为胶凝材料质量的2.3%。
[0104] 超高性能水泥基复合材料的主要材料用量,体积百分比如下:
[0105]
[0106] 超高性能水泥基复合材料的各材料用量,质量比如下:
[0107]
[0108] 超高性能水泥基复合材料是指材料拌和后流动性性能如下:
[0109] 扩展度GB/T50080: 650mm;
[0110] 硬化后性能达到如下指标:
[0111] 抗压强度,标准养护28d: 195MPa。
[0112] 浇筑成横截面如图2所示的超高性能水泥基π形梁,其中高强筋材(4)为直径12mm、抗拉强度≥1800MPa的碳纤维复合筋,采用先张法施加预应力,腹板(2)与顶板(1)交界处各配筋2根,两侧球缘(3)各配筋19根,自上而下分四层布置,各层配筋数为4、5、
2
5、5;梁的横截面积为0.61m,总截面配筋率为0.78%,结构自重为14.5kN/m,转动惯量为
14 4
7.65×10 mm;梁弯曲试验时跨中最大拉应变为2554με,弯曲试验时高强筋材(4)最大应力为1700MPa,剪切试验时腹板(2)最大拉应变为314με。
[0113] 实施例3
[0114] 超高性能水泥基π形梁,其中:
[0115] B1=2650mm、B2=1300mm、B3=355mm、H1=1100mm、H2=230mm、T1=100mm、T2=125mm、R1=200mm、R2=125mm、R3=40mm、L=32000mm;
[0116] 超高性能水泥基复合材料,包含胶凝材料、骨料、纤维、水和减水剂,水泥体积占20%,所述水泥为强度等级为62.5的P·II水泥,所述矿物掺合料为硅灰、粉煤灰和矿粉,占19%。胶凝材料的各组分配比分数按实施例1的计算方式,得Xc=0.512、Xsf=0.128、Xfa=0.205和Xbs=0.154。粗骨料为5~10mm的玄武岩连续级配碎石,细骨料为细度模数2.1的天然砂,经计算得砂率为37%,骨料与胶凝材料的体积比为0.921。纤维采用直径
40μm、长度12mm的高密度PE纤维,体积掺量为0.5%。水胶比W/B=0.208,外加剂使用聚羧酸减水剂溶液,掺量为胶凝材料质量的1.0%。
[0117] 超高性能水泥基复合材料的主要材料用量,体积百分比如下:
[0118]
[0119] 超高性能水泥基复合材料的各材料用量,质量比如下:
[0120]
[0121] 超高性能水泥基复合材料是指材料拌和后流动性性能如下:
[0122] 坍落度GB/T50080: 215mm;
[0123] 硬化后性能达到如下指标:
[0124] 抗压强度,标准养护28d: 171MPa。
[0125] 浇筑成横截面如图3所示的超高性能水泥基π形梁,其中高强筋材(4)为直径12.7mm、抗拉强度≥1860MPa的钢绞线,采用先张法施加预应力,腹板(2)与顶板(1)交界处各配筋2根,两侧球缘(3)各配筋20根,自上而下分四层布置,各层配筋数为3、5、
2
6、6;梁的横截面积为0.73m,总截面配筋率为0.6%,结构自重为17.8kN/m,转动惯量为
14 4
8.16×10 mm;梁弯曲试验时跨中最大拉应变为2505με,弯曲试验时高强筋材(4)最大应力为1710MPa,剪切试验时腹板(2)最大拉应变为149με。
[0126] 实施例4
[0127] 超高性能水泥基π形梁,其中:
[0128] B1=2650mm、B2=1300mm、B3=355mm、H1=1200mm、H2=280mm、T1=100mm、T2=125mm、R1=200mm、R2=125mm、R3=40mm、L=41000mm;
[0129] 超高性能水泥基复合材料,包含胶凝材料、骨料、减水剂和水,水泥体积占24.5%,所述水泥为强度等级为52.5的P·II水泥,所述矿物掺合料为硅灰和矿粉,占体积的11.2%;胶凝材料的各组分配比分数按实施例1的计算方式,得Xc=0.686、Xsf=0.134、和Xbs=0.179;
[0130] 骨料采用间断级配的石英砂和玄武岩碎石,如下:
[0131] 1#级配砂:10~20目
[0132] 2#级配砂:20~40目
[0133] 1#碎石:5~10mm
[0134] 2#碎石:10~15mm
[0135] 各骨料组分的体积分数按照实施例5的计算方式,得Xs1=0.227,Xs2=0.186,Xr1=0.352和Xr2=0.235;
[0136] 骨料与胶凝材料的比取1.275;水胶比为0.148;外加剂使用聚羧酸减水剂溶液,掺量为胶凝材料质量的1.9%;
[0137] 超高性能水泥基复合材料的主要材料用量,体积百分比如下:
[0138]
[0139] 超高性能水泥基复合材料的各材料用量,质量比如下:
[0140]
[0141] 超高性能水泥基复合材料是指材料拌和后流动性性能如下:
[0142] 坍落度GB/T50080: 185mm;
[0143] 硬化后性能达到如下指标:
[0144] 抗压强度,标准养护28d: 171MPa。
[0145] 浇筑成横截面如图4所示的超高性能水泥基π形梁,其中高强筋材(4)为直径12mm、抗拉强度≥1800MPa的碳纤维复合筋,采用先张法施加预应力,腹板(2)与顶板(1)交界处各配筋2根,两侧球缘(3)各配筋28根,自上而下分五层布置,各层配筋数为4、6、
2
6、6、6;梁的横截面积为0.78m,总截面配筋率为0.87%,结构自重为18.9kN/m,转动惯量
14 4
为9.92×10 mm;梁弯曲试验时跨中最大拉应变为2685με,弯曲试验时高强筋材(4)最大应力为1730MPa,剪切试验时腹板(2)最大拉应变为206με。
相关专利内容
标题 发布/更新时间 阅读量
一种仿花岗岩涂料 2020-05-13 3
一种花岗岩切割工艺 2020-05-13 781
花岗岩装饰板 2020-05-11 715
一种仿花岗岩涂料 2020-05-13 106
花岗岩铺装用工具钳 2020-05-14 334
一种液态花岗岩涂料 2020-05-14 869
天然花岗岩染色 2020-05-11 410
花岗岩音箱 2020-05-11 708
花岗岩清洁剂 2020-05-12 714
花岗岩板材切割翻转装置 2020-05-12 733
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈