首页 / 专利库 / 地球科学 / 温跃层 / 温跃层海域中基于蚁群算法避障的水下滑翔机路径规划方法

温跃层海域中基于蚁群算法避障的下滑翔机路径规划方法

阅读:116发布:2020-05-15

专利汇可以提供温跃层海域中基于蚁群算法避障的下滑翔机路径规划方法专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种 温跃层 海域中基于蚁群 算法 避障的 水 下滑翔机路径规划方法,首先,提出了基于通信半径的双水下滑翔机锯齿形滑翔方法,对水下网络进行分层,综合考虑了水下滑翔机在不同层面的通信半径,最佳滑翔 角 度,滑翔 频率 等问题,通过设定水下滑翔机在温跃层和普通层不同的滑翔频率和滑翔角度,实现水下滑翔机对整个海域的全 覆盖 ,能够合理的进行 滑行 ,减小不必要的滑行路径,降低数据收集的能耗和时间。最后为单个滑翔机提出基于蚁群算法的避障方式,通过寻找滑翔机导航点之间的期望,找出最佳的避障滑行路径。,下面是温跃层海域中基于蚁群算法避障的下滑翔机路径规划方法专利的具体信息内容。

1.一种温跃层海域中基于蚁群算法避障的下滑翔机路径规划方法,其特征在于,包括以下步骤:
(1)根据不同的通信半径对整个水下网络进行锯齿形滑翔
整个海域分为上层,温跃层和下层,两个水下滑翔机在所需探索海域的上下两端分别进行滑翔,一个负责上层和温跃层,另一个负责温跃层和下层;水下滑翔机在温跃层和普通的海域中有着不同的通信半径,根据通信半径大小来决定水下滑翔机的滑翔度α,进而实现整个海域的全覆盖;水下滑翔机根据在温跃层和普通层通信半径的比值f,确定在温跃层滑翔和普通层的滑翔频率,减少在普通层滑翔的时间;
(2)障碍物的规避方法
水下滑翔机在含有温跃层海域滑翔遇到障碍物时,通过自身的视觉空间观察障碍物是否横跨不同的海域层面,在保证滑翔机移动路径覆盖全海域的基础上,借助包含障碍物的上层和下层海域,利用蚁群算法求得最佳障碍物规避路径。
2.根据权利要求1所述的温跃层海域中基于蚁群算法避障的水下滑翔机路径规划方法 ,其 特 征 在 于 :所述 步 骤 (1) 中 代 表 滑 翔 角 度的α的 计 算 公 式 为其中αThermoc代表着温跃层中水
下滑翔机滑翔的角度,αcom表示普通层中水下滑翔机滑翔的角度,r和d分别表示水下滑翔机的当前通信半径和所在层的宽度。
3.根据权利要求1所述的温跃层海域中基于蚁群算法避障的水下滑翔机路径规划方法,其特征在于:所述步骤(1)中水下滑翔机在温跃层和普通层滑翔频率f的计算公式为rThermoc表示水下滑翔机在温跃层中的通信半径,rcom表示水下滑翔机在普通层中的通信半径,水下滑翔机根据不同的频率在温跃层和普通层来回滑翔,有效地减少水下滑翔机滑翔的路径与能量的消耗。
4.根据权利要求1所述的温跃层海域中基于蚁群算法避障的水下滑翔机路径规划方法,其特征在于:所述步骤(2)中水下滑翔机遇到障碍物时,采用蚁群算法找到在上层和下层中最合适的多个导航点,水下滑翔机改变自己的滑翔角度朝着导航点进行滑翔。
5.根据权利要求4所述的温跃层海域中基于蚁群算法避障的水下滑翔机路径规划方法,其特征在于:所述的蚁群算法选择下一个导航点Pj的公式为
Pj=argmax{τ[Pj]×ω[Pi,Pj]}
其中Pi为当前点的位置,τ[Pj]代表着在导航点Pj处引导信息素的值,
ω[Pi,Pj]表示的是导航点Pi和Pj之间路径的期望度。
6.根据权利要求5所述的温跃层海域中基于蚁群算法避障的水下滑翔机路径规划方法,其特征在于:在所述中导航点Pj的引导信息素τ[Pj]的更新阶段公式为τ[Pj]=τ[Pj]×(1-p)+τ×p
其中p为信息素的挥发系数,τ为初始化信息素的值。当引导信息素减小到一定量后,随后的蚁群将更倾向于探索信息量多的新的点,有效地避免算法的停滞。
7.根据权利要求5所述的温跃层海域中基于蚁群算法避障的水下滑翔机路径规划方法,其特征在于:所述导航点Pi和Pj之间路径的期望度ω[Pi,Pj]的计算公式为其中 表示两个导航点之间角度的期望,α和αbest分别表示当
前滑翔角度和最佳滑翔角度,而 表示安全的期望,其中d1表示障碍物
在这个航线上的投影,d2表示障碍物到航线的最短距离,γ1和γ2代表着两者的权重。

说明书全文

温跃层海域中基于蚁群算法避障的下滑翔机路径规划方法

技术领域

[0001] 本发明属于水下无线传感器网络路径规划技术领域,具体涉及水下滑翔机在含有温跃层海域的路径规划方法。

背景技术

[0002] 海洋中蕴含着极其丰富的自然资源,由于对海洋资源的开发晚于陆地,导致近年来各国对于海洋资源的开发十分积极,开发海洋资源对于各国来说都是具有战略意义的新的领域。海洋资源大致能分为矿产资源,食物资源,海水能源,海洋药物,油气资源等等,各国对于这些资源的竞争日益剧烈。海洋资源是人类巨大的需求,而争夺这些资源必然会引起冲突。所以,随着海洋资源的不断开发和海上各国冲突不断的剧烈要求下,一些能够适应水下环境并且完成任务需求的水下运载器比如水下滑翔机得到了越来越广泛的应用。
[0003] 水下滑翔机是一种新型的水下机器人,它自身的能源消耗非常小,只在调整自身净浮和自身的滑翔度时才会消耗很小的能量,并且有着高效率和续航能力十分强的特点。水下滑翔器相比一般的水下运载器速度比较低,但是制造它的成本和对它的维护的费用都很低,并且能够重复的利用,大量的投放,可以满足基本所有海域的任务需求。并且由于它无需推进力的这一特点,水下滑翔机滑翔时的噪声很低,不同意被发现,在军事上也有着许多应用价值。
[0004] 温跃层(thermocline)是指在海洋或者是胡等大型的海域中,水温在沿着垂直方向上急剧变化的层面,是上层的薄暖水层和下层的厚冷水层间出现水温急剧下降的层面,同时也是密度变化较大的层面。温度是影响海水密度的一个最为重要的因素,由于海面上的温度较高,所以它就比深海出的密度要小。温度和密度在温跃层中发生剧烈的变化,这使得它成为海域中的重要的组成部分。
[0005] 温跃层中由于温度的剧烈变化,使得它拥有丰富的温差能,利用这些温差能,一种低能耗,低成本和有着高续航能力的温差能驱动水下滑翔机就此诞生,这种水下滑翔机就在温跃层中获取能量,通过自身携带的特殊的动力将可再生的温跃层中的温差能转换为支持自身前进的机械能,同时也可以改变自身浮力和角度,驱动自身滑行。温差能驱动的水下滑翔机的动力能源取自于海洋,无需人工供电,降低了滑翔的成本和制造成本,并且能够有效地减少海洋污染,在对于海洋的探索上有着极为重要的价值。
[0006] 因为水下滑翔机对海底探索有着极为重要的价值,所以为水下滑翔机在含有温跃层的海域中进行路径规划具有十分重要的意义。随着我国对于海洋资源的不断探索,已经开始加大了对水下滑翔机路径规划方面的相关投入。中科院沈阳自动化研究所成功研制了水下滑翔机“海燕7000”,采用了无动力的推进系统,完成了1000多公里的作业里程。青岛海洋科学与技术国家实验室研制的“向阳红-18”不仅顺利完成了作业任务,还打破了全世界水下滑翔机下潜深度新记录。中国整个深海无人装备的发展,必然会在全球起到引领性作用。

发明内容

[0007] 针对上述问题,本发明提出一种温跃层海域中基于蚁群算法避障的水下滑翔机路径规划方法,在含有温跃层的海域中,上层,温跃层,下层三层之间水下滑翔机的通信半径和最佳滑行角度都不相同,通过改变水下滑翔机在不同层面锯齿形运动的频率和角度,在确保全覆盖基础上,减少了不必要的滑行路线,从而较少了全覆盖收集的时间,降低了能耗。
[0008] 实现上述技术目的,达到上述技术效果,本发明通过以下技术方案实现:
[0009] 一种温跃层海域中基于蚁群算法避障的水下滑翔机路径规划方法,包括以下步骤:
[0010] (1)根据不同的通信半径对整个水下网络进行锯齿形滑翔
[0011] 整个海域分为上层,温跃层和下层,两个水下滑翔机在所需探索海域的上下两端分别进行滑翔,一个负责上层和温跃层,另一个负责温跃层和下层。水下滑翔机在温跃层和普通的海域中有着不同的通信半径,根据通信半径大小来决定水下滑翔机的滑翔角度α,进而实现整个海域的全覆盖。水下滑翔机根据在温跃层和普通层通信半径的比值f,确定在温跃层滑翔和普通层的滑翔频率,减少在普通层滑翔的时间。
[0012] (2)障碍物的规避方法
[0013] 水下滑翔机在含有温跃层海域滑翔遇到障碍物时,通过自身的视觉空间观察障碍物是否横跨不同的海域层面,在保证滑翔机移动路径覆盖全海域的基础上,借助包含障碍物的上层和下层海域,利用蚁群算法求得最佳障碍物规避路径。
[0014] 上述步骤(1)中代表滑翔角度的α的计算公式为
[0015]
[0016] 其中αThermoc代表着温跃层中水下滑翔机滑翔的角度,αcom表示普通层中水下滑翔机滑翔的角度,r和d分别表示水下滑翔机的当前的通信半径和所在层的宽度。
[0017] 上述步骤(1)中水下滑翔机在温跃层和普通层滑翔频率f的计算公式为rThermoc表示水下滑翔机在温跃层中的通信半径,rcom表示水下滑翔机在普通层中的通信半径,水下滑翔机根据不同的频率在温跃层和普通层来回滑翔,可以有效地减少水下滑翔机滑翔的路径与能量的消耗。
[0018] 上述步骤(2)中水下滑翔机遇到障碍物时,采用蚁群算法找到障碍物跨越的层面的上端或者下端中最合适的多个导航点,水下滑翔机改变自己的滑翔角度朝着导航点进行滑翔。
[0019] 上述蚁群算法选择下一个导航点Pj的公式为
[0020] Pj=argmax{τ[Pj]×ω[Pi,Pj]}
[0021] 其中Pi为当前点的位置,τ[Pj]代表着在导航点Pj处引导信息素的值,ω[Pi,Pj]表示的是导航点Pi和Pj之间路径的期望度。
[0022] 上述导航点Pj的引导信息素τ[Pj]的更新阶段公式为
[0023] τ[Pj]=τ[Pj]×(1-p)+τ×p
[0024] 其中p为信息素的挥发系数,τ为初始化信息素的值。当引导信息素减小到一定量后,随后的蚁群将更倾向于探索信息量多的新的点,有效地避免算法的停滞。
[0025] 上述中导航点Pi和Pj之间路径的期望度ω[Pi,Pj]的计算公式为
[0026]
[0027] 其中 表示两个导航点之间角度的期望,α和αbest分别表示当前滑翔角度和最佳滑翔角度,而 表示安全的期望,其中d1表示
障碍物在这个航线上的投影,d2表示障碍物到航线的最短距离,γ1和γ2代表着两者的权重。通过这两者构成的期望度来选择下一个导航点,使得使水下滑翔机在规避障碍物时的安全性提高并且减少了能量的消耗。
[0028] 本发明的有益效果:
[0029] 本发明通过运用双水下滑翔机根据不同频率的方式在含有温跃层海域中进行全覆盖滑行,可以有效地解决其原本不能对海域进行全覆盖,以及通信范围重复和滑翔时间过长的问题,并且采用一种改进的蚁群算法,保障了水下滑翔机在遇到障碍物时的避障安全问题,并且尽可能的减少了滑翔机滑翔角度的变化,降低了能量的消耗,同时也确保了对整个海域的全覆盖,对水下全方位探索有着重要意义。附图说明
[0030] 图1为本发明一种实施例的网络模型图;
[0031] 图2为本发明一种实施例的水下滑翔机单层面路径二维示意图;
[0032] 图3为本发明一种实施例的水下滑翔机多层面路径三维示意图。

具体实施方式

[0033] 为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
[0034] 下面结合附图对本发明的应用原理作详细的描述。
[0035] 为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
[0036] 下面结合附图对本发明的应用原理作详细的描述。
[0037] 水下环境具有极其复杂的特性,在部署水下无线传感网时,不能确定每个节点的分布情况,节点在水下分布一般是稀疏,随机和密度不均的,因此需要水下运载器对整个海域进行全覆盖探索,确保每一个节点都被访问到,这样才能确保整个海域的数据全部被采集。因此将网络进行建模处理,如图1所示。
[0038] 整片海域建模在一个三维坐标上。因为整片海域可以分为上暖水层,温跃层和厚冷水层,根据海域的深度,在z轴方向上把整片海域分为上层,温跃层和下层从而进行分层式的收集。在上层,温跃层和下层中,水下的通信范围都不相同,取水下滑翔机在温跃层中的通信半径r,以2r的长度在海域的x轴方向上再次进行分层,滑翔机沿着x轴历遍所有的层面,从而达到历遍整个网络的效果。借助网络示意图1,按照上述描述,水下滑翔机在含有温跃层海域完成数据收集任务可以描述为:利用两个水下滑翔机通过历遍整个网络来收集节点数据,需要解决两个问题,一是如何做到在保证全覆盖的情况下,尽可能的减少能耗和重复的探索路径,二是在水下滑翔机进行滑翔时遇到障碍物应该如何处理。因此,本发明提出一种水下滑翔机在含有温跃层海域的全覆盖路径规划方法,包括以下步骤:
[0039] 步骤一、根据不同的通信半径对整个水下网络进行锯齿形滑翔
[0040] 如图2所示,整个海域分为上层,温跃层和下层,两个水下滑翔机在所需探索的海域的两端分别进行滑翔,一个负责上层和温跃层,另一个负责温跃层和下层。两个水下滑翔机在所需探索的海域的两端分别进行滑翔,水下滑翔机在温跃层和普通的海域中有着不同的通信半径,根据通信半径大小来决定水下滑翔机的滑翔角度α,确保通信范围覆盖整个海域。滑翔角度的α的计算公式为 其中αThermoc代表着温跃层中水下滑翔机滑翔的角度,αcom普通层中水下滑翔机滑翔的角度,r和d分别表示水下滑翔机的当前的通信半径和所在层的宽度。
[0041] 同时水下滑翔机根据温跃层和上下两层通信半径的比值f,确定在温跃层滑翔和普通层的频率,减少在普通层滑翔的时间。比值f的计算公式为 rThermoc表示水下滑翔机在温跃层中的通信半径,rcom表示水下滑翔机在普通层中的通信半径,水下滑翔机根据不同的频率在温跃层和普通层来回滑翔,可以有效地减少水下滑翔机滑翔的路径,减少能耗的消耗。
[0042] 当一个水下滑翔机沿着x轴历遍所有层面达到另一个水下滑翔机开始时的水上浮标位置时,则转向开始第二次滑行。第二次滑行相较于第一次滑行,不同之处在于水下滑翔机在温跃层中滑行的坐标和在上层或者下层滑行的坐标位置发生了改变。如果第一次在温跃层中滑行的y轴坐标集合为L1,在上层或者下层滑行的y轴坐标集合为L2,那么第二次滑行时,在坐标L1的区域时,水下滑翔机在上层或者下层收集数据,在坐标L2的区域时对温跃层进行探索滑行。由于在温跃层或者上层下层滑行时,水下滑翔机并不能收集到其他层面的数据,第一次滑行时在这些地方会产生通信空白区域,如此交替的滑翔可以确保对整个海域进行全覆盖。
[0043] 如图3所示,由于水下滑翔机在上层和下层的通信范围较大,为了更进一步的节约能耗和时间,水下滑翔机不用在每一个层面上都对上层或者下层进行数据的收集,而是根据温跃层和上下两层通信半径的比值f进行变换。在不用对上层或者下层进行收集的层面,水下滑翔机全程都在温跃层中进行滑翔,同时,在第二次滑行时直接略过这个层面,直接朝着尚未完成温跃层收集的层面移动。
[0044] 步骤二、水下滑翔机障碍物规避方法
[0045] 当完成了上述的路径规划后,两个水下滑翔机就按照预定的路线进行滑行,在滑行的过程中难免会遇到障碍物,因此需要设计一个障碍物规避方法使水下滑翔机有效地避开障碍物。障碍物的规避问题,事实上就是相对最优问题,传统的贪婪算法对路径规划来说计算量过大,因此并不适用于水下环境中。因此本文根据层面中两个导航点之间的期望度提出了一种蚁群算法,此算法根据导航点的信息素和两点之间期望度的大小来选择下一个导航点,使水下滑翔机在规避障碍物时的安全性提高并且减少能量的消耗。
[0046] 蚁群算法选择下一个导航点Pj的公式为Pj=argmax{τ[Pj]×ω[Pi,Pj]},其中Pi为当前点的位置,τ[Pj]代表着在点Pj处引导信息素的值,ω[Pi,Pj]的是点Pi和Pj之间路径的期望度。
[0047] 上述导航点Pj]的引导信息素τ[Pj]的更新阶段公式为τ[Pj]=τ[Pj]×(1-p)+τ×p,其中p为信息素的挥发系数,τ为初始化信息素的值。引导信息素不断减少,当减小到一定程度后,随后的蚁群将更倾向于探索信息量多的新的点,有效地避免算法的停滞。
[0048] 导航点路径之间的期望度ω[Pi,Pj]的公式为其中 表示两个导航点之间角度的期望,α和αbest分别表示当前
滑翔角度和最佳滑翔角度,而 表示安全的期望,其中d1表示障碍物在
这个航线上的投影,d2表示障碍物到航线的最短距离,γ1和γ2代表着两者的权重。通过这两者构成的期望度来选择下一个导航点,使得使水下滑翔机在规避障碍物时的安全性提高并且减少了能量的消耗。
[0049] 综上所述:
[0050] 本发明公开了一种温跃层海域中基于蚁群算法避障的水下滑翔机路径规划方法,首先,提出了基于通信半径的双水下滑翔机锯齿形滑翔方法,对水下网络进行分层,综合考虑了水下滑翔机在不同层面的通信半径,最佳滑翔角度,滑翔频率等问题,通过设定水下滑翔机在温跃层和普通层不同的滑翔频率和滑翔角度,实现水下滑翔机对整个海域的全覆盖,能够合理的进行滑行,减小不必要的滑行路径,降低数据收集的能耗和时间。最后为单个滑翔机提出基于蚁群算法的避障方式,通过寻找滑翔机导航点之间的期望,找出最佳的避障滑行路径。
[0051] 以上显示和描述了本发明的基本原理、主要特征以及本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈