首页 / 专利库 / 化学元素和化合物 / / 碳纤维环形基座

纤维环形基座

阅读:680发布:2021-10-30

专利汇可以提供纤维环形基座专利检索,专利查询,专利分析的服务。并且本文所述的实施方式一般涉及用于加热 基板 的设备。一个实施方式中,一种 基座 包括环形主体,该环形主体具有中央开口以及唇部,该唇部从该主体的边缘延伸且环绕该中央开口。该基座包括 碳 纤维 或 石墨 烯。另一实施方式中,一种用于形成基座的方法包括利用有机粘结剂将 碳纤维 模造成环基座的形状,且燃烧该有机粘结剂。尚有另一实施方式中,一种用于形成基座的方法包括将 石墨烯 薄 片层 叠成环基座的形状。,下面是纤维环形基座专利的具体信息内容。

1.一种基座,包括:
环形主体,具有前侧与中央开口;
唇部,从所述主体的边缘延伸,且环绕所述中央开口,其中所述基座包括纤维石墨烯。
2.如权利要求1所述的基座,其中所述环形主体具有少于约5mm的均匀厚度。
3.如权利要求1所述的基座,其中所述基座的所述唇部与所述前侧产生袋部,所述袋部装设成支撑基板
4.如权利要求1所述的基座,其中所述基座包括模造的碳纤维
5.如权利要求1所述的基座,其中所述基座中的所述碳纤维为径向对准。
6.如权利要求1所述的基座,其中所述基座涂布有碳化
7.如权利要求1所述的基座,其中构成所述基座的石墨烯是以薄片层叠。
8.一种基座,包括:
主体,具有顶表面与底表面,以及外周边;
唇部,从所述底侧延伸至所述顶侧上方,且邻近所述外周边,其中所述基座包括碳纤维或石墨烯。
9.如权利要求8所述的基座,其中所述唇部从所述顶表面至所述外周边向上渐缩。
10.如权利要求9所述的基座,其中渐缩的所述唇部从所述顶表面向上延伸至所述外周边处或接近所述外周边。
11.如权利要求8所述的基座,其中所述基座为约3mm厚且由碳纤维形成。
12.如权利要求11所述的基座,其中所述碳纤维于所述顶表面的平面中对准。
13.一种沉积腔室,包括:
石英圆顶与下石英圆顶;
基底环,将所述上石英圆顶与所述下石英圆顶分开;以及
基座,具有环形主体,所述环形主体具中央开口,其中所述基座被环绕在所述基底环内且包括碳纤维或石墨烯。
14.如权利要求13所述的沉积腔室,其中所述环形主体具有少于5mm的均匀厚度。
15.如权利要求13所述的沉积腔室,进一步包括:
灯,所述灯配置于所述下石英圆顶与所述基座之间,其中所述灯定向成提供辐射能量通过所述基座中的所述中央开口。

说明书全文

纤维环形基座

[0001] 背景发明领域
[0002] 本公开内容的实施方式一般涉及碳纤维基座(susceptor),且更详言之,涉及碳纤维环基座。
[0003] 相关技术的描述
[0004] 半导体基板经处理而用于广泛的各式各样应用,这些应用包括集成装置与微装置的制造。处理基板的一个方法包括将材料沉积在基板的上表面上。举例而言,外延是在基板表面上生长薄的超纯层的沉积工艺,该层通常是或锗层。该材料可于侧向流腔室中沉积,此是通过下述步骤实现:将工艺气体平行于基座上定位的基板的表面流动,以及热分解该工艺气体以从该气体沉积材料至基板表面上。
[0005] 当前硅技术中所用的最常见的外延(epi)膜沉积反应器提供类似的工艺条件。但是,为了增进外延沉积均匀度,反应器设计对膜质量而言是基本的,因为外延生长仰赖气流的准确度。先前的基座设计因引发对基板的不均热传(这会负面地影响基板上的沉积均匀度),而限制了工艺均匀度。
[0006] 外延膜沉积工艺期间的基板加热是在最高达(up to)1300摄氏度的高温下执行。传统的基座通常是由碳化硅(SiC)或涂布有碳化硅的烧结石墨制成,且该传统的基座具有高的热质量。在基座是环基座的例子中,基座的高热质量造成对基板背侧与边缘的热传不充分且不均匀,在该基板背侧与边缘处有最大的基板对基座的接触。从基座到基板的较缓慢热传转而诱发遍及基板上(特别是基板边缘处)的膜材料质量不均匀。
[0007] 因此,需要一种改良的基座。
[0008] 概述
[0009] 本文所述的实施方式一般涉及用于加热基板的设备。一个实施方式中,一种基座包括环形主体,该环形主体具有中央开口以及唇部,该唇部从该主体的边缘延伸且环绕该中央开口。该基座包括热质量比传统基座低的碳纤维或石墨烯
[0010] 另一实施方式中,一种用于形成基座的方法包括利用有机粘结剂将碳纤维模造成环基座的形状,且燃烧该有机粘结剂。尚有另一实施方式中,一种用于形成基座的方法包括将石墨烯薄片层叠成环基座的形状。
[0011] 附图简要说明
[0012] 通过参考实施方式(一些实施方式绘示于附图中),可得到上文简要总结的本发明的更特定的描述,而可详细了解本公开内容的前述特征。然而,应注意附图仅绘示本公开内容的典型实施方式,因此不应被视为限制本公开内容的范围,因为公开内容可容许其他同等有效的实施方式。
[0013] 图1是处理腔室的示意图。
[0014] 图2绘示基座的放大截面视图。
[0015] 图3绘示处理基板的流程图
[0016] 图4绘示适合用于图1的处理腔室中的基座的另一实施方式的截面视图。
[0017] 为了助于了解,如可能则已使用相同的标号指定各图共通的相同元件。应考虑一个实施方式的元件与特征可有利地并入其他实施方式而无需进一步记叙。
[0018] 具体描述
[0019] 在下文的叙述中,为了解释,提出许多特定细节以提供对本公开内容的透彻了解。一些例子中,以方图的形式(而非细节)显示已知的结构与装置,以避免混淆本公开内容。
以充分细节描述这些实施方式,使本领域技术人员能够操作本公开内容,且应了解可利用其他实施方式,且可不背离本公开内容的范围而制作逻辑、机械、电、与其他方面的改变。
[0020] 图1绘示根据一个实施方式的处理腔室100的示意图。处理腔室100可用于处理一或多个基板108,包括于基板108上表面上沉积材料。基板108可包括(但不限于)200mm、300mm、或更大型的单晶硅(Si)、多结晶体(multi-crystalline)硅、多晶(polycrystalline)硅、锗(Ge)、碳化硅(SiC)、玻璃、砷化镓(GaAs)、碲化镉(CdTe)、硫化镉(CdS)、铟镓的硒化物(CIGS)、铜铟的硒化物(CuInSe2)、镓铟的磷化物(GaInP2)、以及异质结基板,诸如GaInP/GaAs/Ge或ZnSe/GaAs/Ge基板。处理腔室100可包括辐射加热灯102阵列,该辐射加热灯102阵列除了用于加热其他部件之外,特别加热于处理腔室100的壁101内设置的基座120的背侧104以及基板108。图1与图2所示的实施方式中,基座120具有环形主体,该环形主体具中央开口103与唇部121,该唇部从该基座120的边缘延伸且环绕该中央开口103。唇部121与基座120的前侧102建立袋部(pocket)126,该袋部126从基板边缘支撑基板108,而助于基板108对灯102的热辐射的暴露。基座120由支座118支撑。基座120的细节将于下文中参考图2进一步探讨。基座120位于处理腔室100内且在上圆顶110与下圆顶112之间。上圆顶110、下圆顶112、与基底环114大体上界定处理腔室100的内部区域,该基底环114设置在上圆顶110与下圆顶112之间。一些实施方式中,辐射加热灯102的阵列可设置于上圆顶110上方。基座108可通过装载通口(图中未示)带至处理腔室100内且定位至基座120上。
[0021] 图中显示基座120位于升高的处理位置,但基座120可由致动器(图中未示)垂直移动到处理位置下方的装载位置,以容许升举销122通过基座支座118中的孔洞,且将基板108从基座120抬升。机器人(图中未示)可随后进入处理腔室100以接合基板108且通过装载通口将基板108从处理腔室100移出。基座120随后可被致动上升到处理位置以将基板108(装置侧124面向上)放置于基座120的前侧102上。
[0022] 基座120与基座支座118位于处理位置时将处理腔室100的内部空间划分成工艺气体区域128与净化气体区域130,该工艺气体区域128位在基板108上方,该净化气体区域130位在基座120与基座支座118下方。基座120与基座支座118于处理期间由支撑圆柱中央轴132旋转,以最小化处理腔室100内的热效应以及处理气流空间不规则效应且从而助于均匀地处理基板108。中央轴132于装载与卸除期间将基板108以上与下的方向134移动,且在一些例子中,处理基板108。
[0023] 大体而言,上圆顶110的中央窗部分以及下圆顶112的底部是由光学透明材料形成,该光学透明材料诸如石英。一或多盏灯(诸如灯102阵列)可以特定最适期望方式绕着中央轴132而配置于邻近下圆顶112且位于下圆顶112下方,以当工艺气体通过上方时独立地控制基板108的各位置的温度,从而助于材料沉积至基板108的上表面上。虽然未在此详细探讨,但一个实施方式中,沉积的材料可包括硅(Si)、锗(Ge)、或掺杂剂,以于基板上建立单一结晶层。
[0024] 灯102可装设成包括灯泡136,且可装设成将基板108加热至范围在约200摄氏度至约1600摄氏度内的温度,例如约300摄氏度至约1200摄氏度,或约500摄氏度至约580摄氏度。每一盏灯102耦接电力分配板(图中未示),电力通过电力分配板供应至每一盏灯102。灯102定位于灯头138内,该灯头138可于处理期间或之后通过例如冷却流体而冷却,该冷却流体导入位在灯102之间的通道152。灯头138以传导式及辐射式冷却下圆顶112,这部分是因为灯头138极为接近下圆顶112所致。灯头138也可冷却灯壁与灯周围的反射体(图中未示)的壁。或者,下圆顶112可通过本领域的已知的对流式方法冷却。取决于应用,灯头138可(或可不)与下圆顶112接触。由于背侧式加热基板108,故也可执行利用光学高温计142对基板
108及基座120上进行温度测量/控制。
[0025] 反射体144也视情况放置在上圆顶110外侧,以将从基板108辐射而出的红外光反射回到基板108上。反射体144可由诸如或不锈的金属制造。反射的效能可通过以高度反射性涂层(诸如以金)涂布反射体区域而改善。反射体144可具有一或多个机械切削(machined)通道146,该通道146连接冷却源(图中未示)。通道146连接形成于反射体144的侧上的通道(图中未示)。通道装设成携带流体(诸如)的流动,且可沿着反射体144的侧以任何期望的样式水平行进,而覆盖反射体144的部分或整个表面,以冷却反射体144。
[0026] 由工艺气体供应源148供应的工艺气体通过工艺气体入口150被导入工艺气体区域128,该工艺气体入口150形成于基底环114的侧壁中。工艺气体入口150装设成将工艺气体以大体上径向向内的方向引导。膜形成工艺期间,基座120可位于处理位置,该处理位置邻近与工艺气体入口150相同的高度且位于大约该高度,而容许工艺气体以层流的样式沿着流径横越基板108的上表面向上且到处流动。工艺气体通过气体出口155离开工艺气体区域128,该气体出口155位于处理腔室100的与工艺气体入口150相对的侧上。将工艺气体通过气体出口155移除可由真空156所助,该真空泵156耦接该气体出口155。因工艺气体入口150与气体出口155对准且配置于大约相同高度处,相信这样的平行排列方式在与平面锤状(flatter)上圆顶110相结合时会提供跨越基板108的大体上平面均匀的气流。进一步的径向均匀度可由通过基座120旋转基板108而提供。
[0027] 净化气体可由净化气体源158通过视情况任选的净化气体入口160(或通过工艺气体入口150)供应至净化气体区域130,该净化气体入口160形成于基底环114的侧壁中。净化气体入口160设置于工艺气体入口150下方的高度。净化气体入口160装设成以大体上径向向内的方向引导净化气体。膜形成工艺期间,基座120可位在一位置使得净化气体以层流的样式沿着流径横越基座120的背侧104向下且到处流动。不受限于任何特定理论的前提下,相信净化气体的流动防止或实质上避免工艺气体的流动进入净化气体区域130,或减少进入净化气体区域130(即,基座120下方的区域)的工艺气体的扩散。净化气体离开净化气体区域130且通过气体出口155排放出处理腔室100,该气体出口155位在处理腔室100的与净化气体入口160相对的侧上。
[0028] 图2绘示根据一个实施方式的基座120的放大截面视图。虽然图中显示基座120位于处理腔室100中,但应考虑基座120适合用于外延、快速热处理化学气相沉积原子层沉积、或要求均匀气流或温度的任何其他真空工艺。此外,虽基座120是环基座,但应考虑其他基座(即,非环基座)可受惠于前述公开内容。
[0029] 基座120是环形,具有内径252与外径124。内径252界定基座120的中央开口258,且小于基板108的直径,使得基板108可安置于基座120的袋部126上。袋部126形成于中央开口258与唇部121之间,该袋部126可具有大约介于约1mm至约7mm之间(诸如约4mm)的长度254。
一个实施方式中,唇部121可具有介于约2mm至约20mm之间的厚度260,诸如约16mm。唇部121的厚度260可从袋部126至外径124均匀。或者,唇部121的厚度260可于唇部121的至少一部分上从袋部126朝向外径124增加(见图4)。唇部121接近外径124的厚度260的增加有利地提供强度与抗翘曲力。
[0030] 基座120可装设成使得约0.5mm的缝隙256形成于基板108及唇部121之间。一个实施方式中,中央开口258为比基座120经装设而所能接受的基板108小约1mm。举例而言,基座120的中央开口258可为约449mm且装设成接受至少450mm直径的基板。第二范例中,基座120的中央开口258可为约299mm且装设成接受至少300mm直径的基板。尚有另一范例中,基座
120的中央开口258可为约199mm且装设成接受至少200mm直径的基板。缝隙256将基板108隔开唇部121所相关的材料的热质量,从而促进基板108的温度均匀度。
[0031] 一个实施方式中,基座120包括碳纤维。碳纤维的轻量以及低热质量产生热敏捷(thermally agile)基座120,这样的基座可比传统碳化硅基座还要更快响应温度变化。一个实施方式中,基座120比传统基座薄,且具有低于约5mm的均匀厚度,例如低于3mm。基座120的轻薄有利地将基板108与基座120之间的实体接触的量减至最低。
[0032] 一个实施方式中,基座120是通过以有机粘结剂模造碳纤维而形成。该有机粘结剂可于燃烧工艺期间经碳化或石墨化。一个实施方式中,基座120中的碳纤维径向对准以提供最适热传给基板108。另一实施方式中,基座120包括石墨烯,石墨烯为碳的同素异形体。基座120通过使用多层石墨稀薄片(诸如热解碳薄片)而形成。石墨稀薄片可为约10微米至约100微米厚。另一实施方式中,基座120可由以碳纤维碳复合物层粘结的多层热解薄片所形成。尚有另一实施方式中,石墨烯或碳纤维基座120可通过于高温炉(furnace)或烤炉(oven)(或任何其他适合的用于涂布的机构)中烧结而涂布有碳化硅。
[0033] 一个范例中,基座120可由以聚丙烯腈(PAN)为基础的碳纤维形成,其中碳原子更为随机地折叠在一起。另一范例中,碳纤维基座120可更为石墨性,诸如源自碳纤维的经热处理的中间相沥青(mesophase pitch)。尚有另一范例中,碳纤维基座120也可由PAN(或源自碳纤维的沥青)伴随其他适合材料的复合物所构成。石墨性碳纤维基座120可具有比以PAN为基础的碳纤维基座120更高的导热率,从而热传速率可据此调节。例如,石墨性碳纤维基座120具有遍及材料的更快速热传,且于径向方向上更均匀地加热该基座120上的基板108。因此,碳纤维基座120上的基板108将具有极微的热梯度,且碳纤维基座120有利地促进基座120上均匀地处理基板108。
[0034] 图3绘示加热基板的处理序列300。一个实施方式中,序列300对应处理腔室100中执行的处理。然而,应考虑序列300可于需要均匀气流的任何真空处理腔室中执行。处理序列300起始于方块302,该步骤为提供基板(诸如描绘于图1与图2中的基板108)至处理腔室中,该处理腔室诸如图1中所描绘的腔室100。于方块302,基板108有利地通过环基座120的开口103而于基板108的背侧吸收来自灯102的辐射能量。一个实施方式中,序列300是快速热处理序列,且基板108在介于约1050nm至约1100nm之间的波长为透明。灯102产生辐射能量,且将基板108加热到约500摄氏度或约580摄氏度,其中基板108变得不透明。于方块306,工艺气体流进工艺气体区域128中。方块306可于加热基板108之前或之后执行。在方块308,基板108的温度可取决于处理序列300而受到控制(例如,增加、减少、或维持)。一个实施方式中,处理序列300是快速热处理序列,且温度以每秒约300摄氏度斜线上升,抵达约1200摄氏度。给予灯102的电力随后关掉,以使基板108的温度得以冷却。
[0035] 图4绘示用于基座420的另一实施方式的截面视图,该基座420特别适合用于图1的处理腔室中。基座420具有主体410、底表面404、顶表面426、与外周边423。基座420的主体410可具有多个升举销孔422,所述升举销孔422配置成从底表面404穿过该主体410至顶表面426。基座420在形状上可为圆形,且具有唇部421,该唇部421从底表面404沿着基座420的外周边423延伸至顶表面426上方。
[0036] 唇部421是环形,具有内径425。类似上文所探讨的唇部121,唇部421可具有均匀厚度或具有渐缩部430。该渐缩部430从顶表面426向上延伸至外周边423处或接近该外周边423。即,渐缩部430可延伸至顶部唇部表面432,或者在没有界定的顶部唇部表面的实施方式中,该渐缩部430可延伸至外周边423。
[0037] 内周边425装设成接收基座420的顶表面426上所配置的基板108。顶表面426可具有与内周边425对应的长度452。长度452可大于基板108(诸如450mm、或300mm、或200mm的基板)的直径,使得缝隙457均匀地形成在基板108与唇部421之间。缝隙457可为约0.1mm至约1mm,诸如约0.5mm。举例而言,对装设成用于450mm的基板的基座420而言,长度452可为约
451mm。
[0038] 基座420(排除唇部421)在顶表面426与底表面404之间具有实质上均匀的厚度456。基座420的厚度456可介于约1mm至约5mm之间,诸如约3mm。厚度456可经选择而使基座
420薄然而不透明。因此,由放置在基座420上的基板108下方提供的IR热能可均匀地且快速地改变基板108的温度分布曲线,且对腔室中高温计的不利影响微乎其微。
[0039] 一个范例中,基座420可由沿着长度452有更高导热率的材料(相较于沿着厚度456)所形成。基座420的热质量可由用于形成该基座420的材料所装设。基座420可为非等向性,在纤维方向比横越纤维方向还要强韧。基座420可由PAN碳纤维形成,其中沿着纤维的导热率高,促进实质上均匀的热负载,且从中央到边缘的梯度微乎其微。于顶表面426平面中对准碳纤维产生用于基座420的可客制化的导热分布曲线。例如,基座420的导热率可为:从底表面404至顶表面426行进跨越纤维纹理(grain)的导热率低于沿着与纤维纹理一起行进的长度452上的导热率。因此,基座420具有良好的平面导热率,以促进快速的温度分布曲线,该温度分布曲线从置于基座420上的基板108的中央至边缘皆为均匀。在一个实施方式中,顶表面426的平面中的导热率介于约10W/(m*K)至约1000W/(m*K)之间,诸如大约介于
60W/(m*K)至约600W/(m*K)之间,诸如约220W/(m*K)。垂直于顶表面426的平面,基座420的导热率可为约10W/(m*K)至约120W/(m*K)。一些实施方式中,诸如于复合物,对于基座420而言,垂直于平面的导热率可为平面中的导热率的约1/4至约1/10。
[0040] 有利的是,如前文所述的碳纤维或石墨烯基座120、420快速地反应增加与减少的温度改变,且在从基座120、420至基板108的热传上有短暂的延迟时间。因此,基座120、420对温度改变的较快反应时间使得达到期望处理温度更为容易。由于基座120、420的低热质量及轻薄之故,基座120、420将不会从基板108边缘汲引热,且可耐受高温的斜线上升及快速冷却,而不会翘曲或挠曲。因此,基座120、420容许更均匀的至基板108的边缘的热传,且进而造成基板108上更均匀的膜沉积。
[0041] 一个范例中,可描述一种用于形成基座的方法,该方法是通过利用有机粘结剂将碳纤维模造成环基座的形状,且在燃烧工艺中碳化或石墨化该有机粘结剂。
[0042] 另一个范例中,可描述一种用于形成基座的方法,该方法是通过将石墨烯薄片层叠成环基座的形状。
[0043] 虽前文所述涉及本公开内容的实施方式,但可不背离本公开内容的基本范围而设计其他与进一步的实施方式,且本公开内容的范围由随附的权利要求书所决定。
相关专利内容
标题 发布/更新时间 阅读量
碳刷座 2020-05-12 595
碳刷 2020-05-11 139
一种碳刷 2020-05-12 445
电机碳刷 2020-05-11 714
碳蜂窝体 2020-05-11 226
碳酸钙碳化装置 2020-05-11 589
一种碳刷 2020-05-12 124
电机碳刷 2020-05-12 216
碳/碳复合材料保温筒 2020-05-13 87
碳酸钙碳化塔 2020-05-11 782
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈