首页 / 专利库 / 天文学 / 星风 / 太阳风 / 地球物理勘探方法及设备

地球物理勘探方法及设备

阅读:210发布:2020-07-17

专利汇可以提供地球物理勘探方法及设备专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种地球物理勘探方法及设备,基于地球的物理特性与地质的紧密联系,利用 驻波 确定探测目的物的底界面深度,利用本发明的电磁驻波勘探设备,通过“电 信号 接收器”及“磁信号接收器”接收 电磁波 ,由数据记录及处理器确定电磁驻波 波腹 频率 ,再根据输入探测目的物的已知电磁参数,计算并输出数据结果。本发明充分利用了自然 能源 ,经济实用,施测过程操作简单,成本低。,下面是地球物理勘探方法及设备专利的具体信息内容。

1.一种地球物理勘探方法,利用驻波确定探测目的物的底界面深度,包 括如下步骤:
(1)在探测目的物顶面确定测点;
(2)在测点接收电磁波,并根据接收到的电磁波,确定电磁驻波波腹频率, 其中,所述电磁驻波是由电磁波源产生的入射波与经探测目的物底界面反射 产生的反射波相干涉而形成的驻波;
(3)根据所述电磁驻波的波腹频率,以及探测目的物的已知电磁参数,确 定探测目的物的底界面深度。
2.如权利要求1所述的方法,其特征在于,所述探测目的物为地层
3.如权利要求1所述的方法,其特征在于,所述电磁波源包括:太阳辐 射的电磁波、太阳冲击地球磁场产生的电磁波、“范·辐射带”辐射的电 磁波、和/或雷雨放电形成的电磁波。
4.如权利要求2所述的方法,其特征在于,所述步骤(3)包括:在n2/μr2大 于n3/μr3的地区,根据公式:
h = π / ( ω 2 ϵ 2 μ 2 2 ) 1 / 2 { [ 1 + ( σ ω ϵ 2 ) 2 ] 1 / 2 + 1 } 1 / 2
确定地层底界面深度,其中:
n是介质的折射率,μr是介质的相对导磁率;脚标2和3分别表示底界面 的上与下;
h为地层底界面深度,ω是电场驻波波腹频率,ε2是地层的介电常数,μ2 是地层的导磁率,σ2是地层的电导率。
5.如权利要求2所述的方法,其特征在于,所述步骤(3)包括:在n2/μr2大 于n3/μr3的地区,根据公式:
h = π / ( 2 ω 2 ϵ 2 μ 2 ) 1 / 2 { [ 1 + ( σ 2 ω ϵ 2 ) 2 ] 1 / 2 + 1 } 1 / 2
确定地层底界面深度,其中:
n是介质的折射率,μr是介质的相对导磁率;脚标2和3分别表示底界面 的上与下;
h为地层底界面深度,ω是磁场驻波波腹频率,ε2是地层的介电常数,μ2 是地层的导磁率,σ2是地层的电导率。
6.如权利要求2所述的方法,其特征在于,所述步骤(3)包括:在n2/μr2小 于n3/μr3的地区,根据公式:
h = π / ( ω 2 ϵ 2 μ 2 2 ) 1 / 2 { [ 1 + ( σ ω ϵ 2 ) 2 ] 1 / 2 + 1 } 1 / 2
确定地层底界面深度,其中:
n是介质的折射率,μr是介质的相对导磁率;脚标2和3分别表示底界面 的上与下;
h为地层底界面深度,ω是磁场驻波波腹频率,ε2是地层的介电常数,μ2 是地层的导磁率,σ2是地层的电导率。
7.如权利要求2所述的方法,其特征在于,所述步骤(3)包括:在n2/μr2小 于n3/μr3的地区,根据公式:
h = π / ( 2 ω 2 ϵ 2 μ 2 ) 1 / 2 { [ 1 + ( σ 2 ω ϵ 2 ) 2 ] 1 / 2 + 1 } 1 / 2
确定地层底界面深度,其中:
n是介质的折射率,μr是介质的相对导磁率;脚标2和3分别表示底界面 的上与下;
h为地层底界面深度,ω是电场驻波波腹频率,ε2是地层的介电常数,μ2 是地层的导磁率,σ2是地层的电导率。
8.一种地球物理勘探设备,利用驻波确定探测目的物的底界面深度,包 括:
电磁信号接收装置,用于在测点接收电磁波;
电磁参数输入装置,用于输入探测目的物的已知电磁参数;及
数据记录及处理器,用于根据接收到的电磁波,确定电磁驻波波腹频率, 并根据所述输入的探测目的物的已知电磁参数,确定探测目的物的底界面深 度,
其中,所述电磁驻波是由电磁波源产生的入射波与经探测目的物底界面 反射产生的反射波相干涉而形成的驻波。
9.如权利要求8所述的设备,其特征在于,所述电磁信号接收装置,包 括:
电信号接收放大器,用于接收电场信号;
磁信号接收放大器,用于接收磁场信号。
10.如权利要求8所述的设备,其特征在于,所述探测目的物为地层; 所述数据记录及处理器,在n2/μr2大于n3/μr3的地区,根据公式:
h = π / ( ω 2 ϵ 2 μ 2 2 ) 1 / 2 { [ 1 + ( σ ω ϵ 2 ) 2 ] 1 / 2 + 1 } 1 / 2
确定地层底界面深度,其中:
n是介质的折射率,μr是介质的相对导磁率;脚标2和3分别表示底界面 的上与下;
h为地层底界面深度,ω是电场驻波波腹频率,ε2是地层的介电常数,μ2 是地层的导磁率,σ2是地层的电导率。
11.如权利要求8所述的设备,其特征在于,所述探测目的物为地层; 所述数据记录及处理器,在n2/μr2大于n3/μr3的地区,根据公式:
h = π / ( 2 ω 2 ϵ 2 μ 2 ) 1 / 2 { [ 1 + ( σ 2 ω ϵ 2 ) 2 ] 1 / 2 + 1 } 1 / 2
确定地层底界面深度,其中:
n是介质的折射率,μr是介质的相对导磁率;脚标2和3分别表示底界面 的上与下;
h为地层底界面深度,ω是磁场驻波波腹频率,ε2是地层的介电常数,μ2 是地层的导磁率,σ2是地层的电导率。
12.如权利要求8所述的设备,其特征在于,所述探测目的物为地层; 所述数据记录及处理器,在n2/μr2小于n3/μr3的地区,根据公式:
h = π / ( ω 2 ϵ 2 μ 2 2 ) 1 / 2 { [ 1 + ( σ ω ϵ 2 ) 2 ] 1 / 2 + 1 } 1 / 2
确定地层底界面深度,其中:
n是介质的折射率,μr是介质的相对导磁率;脚标2和3分别表示底界面 的上与下;
h为地层底界面深度,ω是磁场驻波波腹频率,ε2是地层的介电常数,μ2 是地层的导磁率,σ2是地层的电导率。
13.如权利要求8所述的设备,其特征在于,所述探测目的物为地层; 所述数据记录及处理器,在n2/μr2小于n3/μr3的地区,根据公式:
h = π / ( 2 ω 2 ϵ 2 μ 2 ) 1 / 2 { [ 1 + ( σ 2 ω ϵ 2 ) 2 ] 1 / 2 + 1 } 1 / 2
确定地层底界面深度,其中:
n是介质的折射率,μr是介质的相对导磁率;脚标2和3分别表示底界面 的上与下;
h为地层底界面深度,ω是电场驻波波腹频率,ε2是地层的介电常数,μ2 是地层的导磁率,σ2是地层的电导率。
14.一种地球物理勘探方法,利用驻波确定探测目的物的底界面深度, 包括如下步骤:
(1)在探测目的物顶面确定测点;
(2)在测点发射并接收弹性波,确定测点处所述弹性驻波的波腹频率, 其中,所述弹性驻波是由电机振动作为震源产生的入射波与经探测目的物底 界面反射产生的反射波相干涉而形成的驻波;
(3)根据所述弹性驻波的波腹频率,以及在探测目的物表面测得的波速, 确定探测目的物的底界面深度。
15.如权利要求14所述的方法,其特征在于,所述探测目的物为灌注桩, 所述探测目的物的底界面深度为灌注桩长。
16.如权利要求15所述的方法,其特征在于,所述弹性波通过电振荡器 驱动电磁振动器振动而产生,并通过位于灌注桩桩顶上的激发点发射进入灌 注桩中传播;通过连续改变电振荡器的频率,在接收点使用监波器监测到波 幅最大时,在电振荡器上读出的振荡频率,就是驻波波腹的频率。
17.如权利要求15所述的方法,其特征在于,所述步骤(3)中,根据公 式:l=u/4f确定灌注桩长,其中:
l为灌注桩长,f为驻波波腹的频率,u为波速,u=s/t,s为测定波速时激 发点到接收点之间的距离,t为弹性波在s之间的传播时间。

说明书全文

技术领域

驻波法地球物理勘探,是基于地球的物理特性与地质紧密联系,所以能 以地球物理勘探的方法,查明地质需要查明的问题。驻波法地球物理勘探, 是诸多地球物理勘探方法中一种崭新的方法。

背景技术

地球物质有各种物理特性,如密度、弹性、磁场强度、电阻率等。不同 的地球物质的同一项物性指标,往往又有所差别。根据这些差别,用地球物 理勘探的方法,达到地质勘探目的,于是产生了重勘探,地震勘探,磁法 勘探,电法勘探等诸多的地球物理勘探法,在国际上已形成一种成熟的专业。
已有的诸多地球物理勘探法各有长短:有的方法利用天然场源,仪器轻 便;设备简单是其优点,但成果资料的定量性则略显不足;有的方法数据采 集量大,成果资料直观,地质效果良好,但勘探队伍机构庞大,人员众多, 技术复杂,设备昂贵,投资甚巨。
驻波是频率相同、传播方向相对而行的两列波干涉后形成的波。波在介 质中传播时其波形不断向前推进,故称行波;上述两列干涉后波形并不向前 推进,故称驻波。振幅为零的点称为波节,振幅最大处称为波腹。波节两侧 的振动相位相反。相邻两波节或波腹间的距离都是半个波长。在行波中能量 随波的传播而不断向前传递,其平均能流密度不为零;但驻波的平均能流密 度等于零,能量只能在波节与波腹间来回运行。
测量两相邻波节间的距离就可测定波长。各种乐器,包括弦乐器、管乐 器和打击乐器,都是由于产生驻波而发声。为得到最强的驻波,弦或管内空 气柱的长度L必须等于半波长的整数倍。
然而,尽管驻波在高等学校的物理教科书振动与波一章中均有论述,但 在地球物理勘探的实践中,却并未见其涉及。
发明内容
本发明所要解决的技术问题在于提供一种地球物理勘探方法及设备,基 于地球的物理特性与地质紧密联系,就能利用驻波确定探测目的物的底界面 深度。
为解决上述技术问题,本发明提供一种地球物理勘探方法,利用驻波确 定探测目的物的底界面深度,包括如下步骤:
(1)在探测目的物顶面确定测点;
(2)在测点接收电磁波,并根据接收到的电磁波,确定电磁驻波波腹频率, 其中,所述电磁驻波是由电磁波源产生的入射波与经探测目的物底界面反射 产生的反射波相干涉而形成的驻波;
(3)根据所述电磁驻波的波腹频率,以及探测目的物的已知电磁参数,确 定探测目的物的底界面深度。
其中,所述探测目的物为地层
其中,所述电磁波源包括:太阳辐射的电磁波、太阳冲击地球磁场产 生的电磁波、“范·伦辐射带”辐射的电磁波、和/或雷雨放电形成的电磁波。
其中,所述步骤(3)包括:在n2/μr2大于n3/μr3的地区,根据公式:
h = π / ( ω 2 ϵ 2 μ 2 2 ) 1 / 2 { [ 1 + ( σ ω ϵ 2 ) 2 ] 1 / 2 + 1 } 1 / 2
确定地层底界面深度,其中:
n是介质的折射率,μr是介质的相对导磁率;脚标2和3分别表示底界面 的上与下;
h为地层底界面深度,ω是电场驻波波腹频率,ε2是地层的介电常数,μ2 是地层的导磁率,σ2是地层的电导率。
其中,所述步骤(3)包括:在n2/μr2大于n3/μr3的地区,根据公式:
h = π / ( 2 ω 2 ϵ 2 μ 2 ) 1 / 2 { [ 1 + ( σ 2 ω ϵ 2 ) 2 ] 1 / 2 + 1 } 1 / 2
确定地层底界面深度,其中:
n是介质的折射率,μr是介质的相对导磁率;脚标2和3分别表示底界面 的上与下;
h为地层底界面深度,ω是磁场驻波波腹频率,ε2是地层的介电常数,μ2 是地层的导磁率,σ2是地层的电导率。
其中,所述步骤(3)包括:在n2/μr2小于n3/μr3的地区,根据公式:
h = π / ( ω 2 ϵ 2 μ 2 2 ) 1 / 2 { [ 1 + ( σ ω ϵ 2 ) 2 ] 1 / 2 + 1 } 1 / 2
确定地层底界面深度,其中:
n是介质的折射率,μr是介质的相对导磁率;脚标2和3分别表示底界面 的上与下;
h为地层底界面深度,ω是磁场驻波波腹频率,ε2是地层的介电常数,μ2 是地层的导磁率,σ2是地层的电导率。
其中,所述步骤(3)包括:在n2/μr2小于n3/μr3的地区,根据公式:
h = π / ( 2 ω 2 ϵ 2 μ 2 ) 1 / 2 { [ 1 + ( σ 2 ω ϵ 2 ) 2 ] 1 / 2 + 1 } 1 / 2
确定地层底界面深度,其中:
n是介质的折射率,μr是介质的相对导磁率;脚标2和3分别表示底界面 的上与下;
h为地层底界面深度,ω是电场驻波波腹频率,ε2是地层的介电常数,μ2 是地层的导磁率,σ2是地层的电导率。
本发明还提供一种地球物理勘探设备,利用驻波确定探测目的物的底界 面深度,包括:
电磁信号接收装置,用于在测点接收电磁波;
电磁参数输入装置,用于输入探测目的物的已知电磁参数;及
数据记录及处理器,用于根据接收到的电磁波,确定电磁驻波波腹频率, 并根据所述输入的探测目的物的已知电磁参数,确定探测目的物的底界面深 度,
其中,所述电磁驻波是由电磁波源产生的入射波与经探测目的物底界面 反射产生的反射波相干涉而形成的驻波。
其中,所述电磁信号接收装置,包括:
电信号接收放大器,用于接收电场信号;
磁信号接收放大器,用于接收磁场信号。
其中,所述探测目的物为地层;所述数据记录及处理器,在n2/μr2大于 n3/μr3的地区,根据公式:
h = π / ( ω 2 ϵ 2 μ 2 2 ) 1 / 2 { [ 1 + ( σ ω ϵ 2 ) 2 ] 1 / 2 + 1 } 1 / 2
确定地层底界面深度,其中:
n是介质的折射率,μr是介质的相对导磁率;脚标2和3分别表示底界面 的上与下;
h为地层底界面深度,ω是电场驻波波腹频率,ε2是地层的介电常数,μ2 是地层的导磁率,σ2是地层的电导率。
其中,所述探测目的物为地层;所述数据记录及处理器,在n2/μr2大于 n3/μr3的地区,根据公式:
h = π / ( 2 ω 2 ϵ 2 μ 2 ) 1 / 2 { [ 1 + ( σ 2 ω ϵ 2 ) 2 ] 1 / 2 + 1 } 1 / 2
确定地层底界面深度,其中:
n是介质的折射率,μr是介质的相对导磁率;脚标2和3分别表示底界面 的上与下;
h为地层底界面深度,ω是磁场驻波波腹频率,ε2是地层的介电常数,μ2 是地层的导磁率,σ2是地层的电导率。
其中,所述探测目的物为地层;所述数据记录及处理器,在n2/μr2小于 n3/μr3的地区,根据公式:
h = π / ( ω 2 ϵ 2 μ 2 2 ) 1 / 2 { [ 1 + ( σ ω ϵ 2 ) 2 ] 1 / 2 + 1 } 1 / 2
确定地层底界面深度,其中:
n是介质的折射率,μr是介质的相对导磁率;脚标2和3分别表示底界面 的上与下;
h为地层底界面深度,ω是磁场驻波波腹频率,ε2是地层的介电常数,μ2 是地层的导磁率,σ2是地层的电导率。
其中,所述探测目的物为地层;所述数据记录及处理器,在n2/μr2小于 n3/μr3的地区,根据公式:
h = π / ( 2 ω 2 ϵ 2 μ 2 ) 1 / 2 { [ 1 + ( σ 2 ω ϵ 2 ) 2 ] 1 / 2 + 1 } 1 / 2
确定地层底界面深度,其中:
n是介质的折射率,μr是介质的相对导磁率;脚标2和3分别表示底界面 的上与下;
h为地层底界面深度,ω是电场驻波波腹频率,ε2是地层的介电常数,μ2 是地层的导磁率,σ2是地层的电导率。
本发明还提供一种地球物理勘探方法,利用驻波确定探测目的物的底界 面深度,包括如下步骤:
(1)在探测目的物顶面确定测点;
(2)在测点发射并接收弹性波,确定测点处所述弹性驻波的波腹频率, 其中,所述弹性驻波是由电机振动作为震源产生的入射波与经探测目的物底 界面反射产生的反射波相干涉而形成的驻波;
(3)根据所述弹性驻波的波腹频率,以及在探测目的物表面测得的波速, 确定探测目的物的底界面深度。
其中,所述探测目的物为灌注桩,所述探测目的物的底界面深度为灌注 桩长。
其中,所述弹性波通过电振荡器驱动电磁振动器振动而产生,并通过位 于灌注桩桩顶上的激发点发射进入灌注桩中传播;通过连续改变电振荡器的 频率,在接收点使用监波器监测到波幅最大时,在电振荡器上读出的振荡频 率,就是驻波波腹的频率。
其中,所述步骤(3)中,根据公式:l=u/4f确定灌注桩长,其中:
l为灌注桩长,f为驻波波腹的频率,u为波速,u=s/t,s为测定波速时激 发点到接收点之间的距离,t为弹性波在s之间的传播时间。
本发明具有以下特点:
1.利用自然能源,不需人工能源,或以轻便的电机振动作为震源,经济 实用。2.数据具体直观,直接给出地质界面埋深。3.仪器轻便、设备简单。4. 施测过程操作简单,只需接通电源,仪器自动输出数据。5.人员配备少,一 机一人。6.投资省。这些特点是传统物探方法不能兼有的。
附图说明
图1为地层界面示意图;
图2为电磁波的反射与折射示意图;
图3为入射电磁波在反射面上的电场与磁场的矢量图;
图4为根据本发明实施例所述的电磁驻波勘探设备框图
图5为根据本发明实施例所述的弹性驻波探测设备示意图。

具体实施方式

本发明提供的驻波法地球物理勘探中的电磁驻波法地球物理勘探,是利 用自然能源,包括以:1、太阳辐射的电磁波;2、太阳风冲击地球磁场产生 的电磁波;3、“范·艾伦辐射带”辐射的电磁波;或4、雷雨放电形成的电磁 波,作为能源。弹性驻波法地球物理勘探,则是以轻便的电机震源产生的震 动作震源。
波在地层中或灌注桩中传播时,受底界面反射。入射波与反射波相干涉 产生驻波。当波长λ与地层厚h,或波长λ与灌注桩长l满足一定关系时(h=λ/2, l=λ/4),在地面或桩顶,驻波形成波腹。在地面或桩顶测得波腹的频率f, 算出波速u,就能算出层厚h=u/2f,或桩长l=u/4f。驻波的电波腹与磁波腹不 能出现于同一频率。根据是电波腹还是磁波腹,来判断n2/μr2和n3/μr3的相对 大小(n是介质的折射率,μr是介质的相对导磁率;脚标2和3分别表示底 界面的上与下),从而判断界面两侧地层的地质属性与物理属性。根据大量 的、大面积的底界面埋深(层厚h)数据,绘制底界面的等高线图,达到寻 找构造的目的。或者根据l值,确定是否有断桩,夹泥等质量问题存在。
下面结合附图,详细介绍驻波法地球物理勘探:
1.驻波法地球物理勘探
将坐标原点定在平成层地层第一层的底界面,第一层层厚为h,以图1 示意,地层以上是大气,上下界面平行。一列圆频率为ω,波长为λ的波由 上届面垂直向下界面传播,在上界面处,入射波的方程是
E il = E 0 il cos ( ωt + 2 πh λ ) - - - ( 1 - 1 )
经过底界面反射后,反射波Er1回到上界面,反射波的方程是
E r 1 = E 0 r 1 e - 2 αh cos ( ωt - 2 πh λ )
式中e-2αh是波经过2h路程时的衰减因子,α称衰减系数。设两个波的波 幅比
E0r1/E0i1=p2    (1-2)

E r 1 = E 0 il p 2 e - 2 αh cos ( ωt - 2 πh λ ) - - - ( 1 - 3 )
p2的脚标2表示底界面(第2个界面)。在上界处Ei1与Er1干涉产生合 振动
E 1 = E i 1 + E r 1
= E 0 i 1 { cos ( ωt + 2 πh λ ) + p 2 e - 2 αh cos ( ωt - 2 πh λ ) } - - - ( 1 - 4 )
经过简单的运算,得
E 1 = E 0 il { ( 1 + p 2 e - 2 αh ) cos 2 πh λ cos ωt - ( 1 - p 2 e - 2 αh ) sin 2 πh λ sin ωt }
上式第一项是以 E 0 il ( 1 + p 2 e - 2 αh ) cos 2 πh λ 为振幅的余弦项,第二项是以 E 0 il ( 1 - p 2 e - 2 αh ) sin 2 πh λ 为振幅的正弦项,则合振动是两个振幅相异、频率相同 而相位差为π/2的振动的合成
E1=E01 cos(ωt+θ)
式中
θ = tan - 1 ( 1 - p 2 e - 2 αh ) sin 2 πh λ ( 1 + p 2 e - 2 αh ) cos 2 πh λ
E 01 = E 0 i 1 { ( 1 + p 2 e - 2 αh ) 2 cos 2 2 πh λ + ( 1 - p 2 e - 2 αh ) 2 sin 2 2 πh λ } 1 / 2
因为cos2β=(1+cos2β)/2及sin2β=(1-cos2β)/2,上式经整理后成为
E 01 = E 0 i 1 { 1 + p 2 2 e - 4 αh + 2 p 2 e - 2 αh cos 2 πh λ } 1 / 2 - - - ( 1 - 5 )
当p2为正值,并且满足条件
4 πh λ = 2 , k = 1,2,3 , . . . - - - ( 1 - 6 )

cos 4 πh λ = 1 , h = 2 - - - ( 1 - 7 )
振幅有极大值
E01=E0i1(1+p2e-2αh)    (1-8)
如果p2为负值,取其绝对值p2=-|p2|,(1-5)式成为
E 01 = E 0 i 1 { 1 + | p 2 | 2 e - 4 αh - 2 | p 2 | e - 2 αh cos 4 πh λ } 1 / 2 - - - ( 1 - 9 )
当满足条件 4 πh λ = ( 2 k + 1 ) π , k = 0,1,2 , . . . . . . - - - ( 1 - 10 )
cos 4 πh λ = - 1 , h = ( 2 k + 1 ) λ 4 - - - ( 1 - 11 )
(1-9)式有极大值
E01=E0i1(1+|p2|e-2αh)    (1-12)
因为(1-7)及(1-11)两式相等,故可得(取k=1,k′=0)
ω=2ω′    (1-12)′
也就是说:在底界面埋深h不变的情况下,p2为正值时,在地层上界面 的驻波波腹的圆频率ω是p2为负值时的圆频率ω′的两倍。
反射波到达地层上界面,又受到地层-空气界面再次向下反射,称这次反 射波为第二次入射波Ei2
E i 2 = E 0 i 2 cos ( ωt + 2 πh λ )
波幅E0i2是Er1的波幅E0i1p2e-2αh经过上界面的反射而得,所以
E0i2=E0i1p2e-2αh·p1
式中
p 1 = E 0 i 2 E 0 i 1 p 2 e - 2 αh - - - ( 1 - 13 )
于是
E i 2 = E 0 i 1 p 1 p 2 e - 2 αh cos ( ωt + 2 πh λ )
p1也可正可负,这里,姑且设它为正(证明见后),即E0i2与E0i1同相 位。
第二次从下界面反射至上界面的波幅,是Ei2的波幅再经过下界面反射, 以及途经2h的衰减而得,于是
E r 2 = E 0 i 1 p 1 p 2 2 e - 4 αh cos ( ωt - 2 πh λ )
Ei2与Er2形成驻波E2
E 2 = E i 2 + E r 2
= E 0 i 1 p 1 p 2 e - 2 αh cos ( ωt + 2 πh λ ) + E 0 i 1 p 1 p 2 2 e - 4 αh cos ( ωt - 2 πh λ )
= E 0 i 1 p 1 p 2 e - 2 αh { cos ( ωt + 2 πh λ ) + p 2 e - 2 αh cos ( ωt - 2 πh λ ) }
上式大括弧中的内容与(1-4)式相同,因此以计算E1相同步骤,算出E2 的幅值E02在满足条件(1-6)式时
E02=E0i1p1p2e-2αh(1+p2e-2αh)    (1-14)
总结(1-8)式及(1-14)式,并由此归纳出以后的多次反射形成的驻波波 幅
E03=E0i1p1 2p2 2e-4αh(1+p2e-2αh)
..............
E0n=E0i1p1 n-1p2 n-1e-2(n-1)αh(1+p2e-2αh)
把这些波幅相加,得出多次反射驻波总的波幅方程
E0=E01+E02+E03+……+E0n
=E0i1(1+p2e-2αh)+E0i1p1p2e-2αh(1+p2e-2αh)+E0i1p1 2p2 2e-4αh(1+p2e-2αh)
+……+E0i1p1 n-1p2 n-1e-2(n-1)αh(1+p2e-2αh)
=E0i1(1+p2e-2αh){1+p1P2e-2αh+p1 2p2 2e-4αh+……+p1 n-1p2 n-1e-2(n-1)αh} 上式大括弧内是一个公比为p1p2e-2αh的等比级数,级数的和
S = 1 - ( p 1 p 2 e - 2 αh ) n 1 - p 1 p 2 e - 2 αh
当n较大时,分子的第二项趋于零,得出驻波总波幅
E 0 = E 0 i 1 ( 1 + p 2 e - 2 αh ) 1 - p 1 p 2 e - 2 αh - - - ( 1 - 15 )
当p2为正值时,E0是驻波波腹;p2为负值时,E0是驻波波节。
当p1趋近于1时,由(1-15)式得出波腹与波节之比为

所以,波腹是能够辨认出来的。通过仪器,读出各个波腹的频率f,同 一地层厚度h,而k=1,2,3……,因此各频率之间大致有以下关系:
f1=f2/2=f3/3……
从而找出f1(k=1)。上式是设相速u等于常数,而实际上u是频率的函数, 所以上式只是大致的。从实测的f1、f2……,可以找出相速u与频率f之间的 函数关系:u=u(f);把测得的相速u代入(1-7)式,就得出了地层厚度:
h=λ1/2=u/f1    (1-16)
或由(1-11)式
h=λ0/4=u/f0    (1-17)
以上的讨论,未曾对平面波的属性作任何规定,所以上述结论适用于任 何平面波,不论它是电磁的或是弹性的。
2.电磁驻波法地球物理勘探
2.1电磁波源:
产生电磁波的能源之一是来自太阳,包括太阳辐射的电磁波,以及太阳 风冲击地球磁场产生的电磁波。
地球的磁场,在朝向太阳一面,被太阳风压缩;而背太阳的一面则被“延 伸”。设这一地区的导磁率是μ。地磁场在压缩以及压缩过程中的起伏、涨 落,从数学上就有一个量存在,它与电场的旋度有关,磁感应强度 B = μ H 。从而可以导出 × E = - B / t
从上式可以导出: · B = 0
以上两式就是第一对麦克斯韦方程。
另一对麦克斯韦方程由带电粒子和粒子的定向运动给出。设电荷密度为 ρe,有: · E = ρ e / ϵ
ε是介电常数。带电粒子的定向运动形成了电流密度J以及位移电流密 度于是: × B - ϵμ E / t = μJ
有了这两对麦克斯韦方程,射向地球的电磁波的波源之二便产生了。
地磁场俘获的带电粒子带,称为地球辐射带,也叫“范·艾伦辐射带”。这 些高能粒子在地磁场作用下,被地磁场拘留在一定区域中,沿磁力线作螺旋 运动并不断地辐射出电磁波。这是产生电磁波的第三个波源。
第四个电磁波源是雷雨放电。
这些电磁波源,以各种频率辐射电磁波。电磁波一经产生,便在地球表 面与电离层之间,来回作多次反射,是电磁驻波法地球物理勘探的基础,也 是人类第一次以太阳风和宇宙高能粒子作能源。
2.2电磁波的传播:
地球是导体,平面电波在导电介质中沿Z轴向下传播的方程是
2 E - ϵμ 2 E t 2 - σμ E t = 0 - - - ( 2 - 1 )
式中ε是介电常数、μ是导磁率、σ是电导率。
磁波有与电波在表达形式上相同的微分方程。磁波与电波相联系的方 程是
× E + jωμ H = 0 - - - ( 2 - 2 )
把(2-1)式描绘的电波写成指数形式就是
E = E 0 e j ( ωt - kZ ) i - - - ( 2 - 3 )
是x轴向的单位矢量。由(2-3)、(2-1)式解得
k2=ω2εμ(1-jσ/ωε)                            (2-4)
波数k是个复数
k=kr-jki                                           (2-5)
解(2-4)、(2-5)得
k r = ( ω 2 ϵμ 2 ) 1 / 2 { [ 1 + ( σ ωϵ ) 2 ] 1 / 2 + 1 } 1 / 2 - - - ( 2 - 6 )
k i = ( ω 2 ϵμ 2 ) 1 / 2 { [ 1 + ( σ ωϵ ) 2 ] 1 / 2 - 1 } 1 / 2 - - - ( 2 - 7 )
k的极式是
k = ( ω 2 ϵμ ) 1 / 2 [ 1 + ( σ ωϵ ) 2 ] 1 / 4 e - - - - ( 2 - 8 )
θ=tan-1ki/kr
由(2-2)、(2-3)及(2-8)式解得磁场
H = ( ϵ μ ) 1 / 2 [ 1 + ( σ ωϵ ) 2 ] 1 / 4 E 0 e - k r Z e j ( ωt - k r Z - θ ) j
= H 0 e - kiZ e j ( ωt - k r Z - θ ) j - - - ( 2 - 9 )
磁场的偏振幅方向垂直于电场的偏振方向以及传播方向,并滞后 电场一相θ。
(2-3)式中的波数
k=ω/u=2π/λ)                                (2-10)
u为相速。介质的折射率
n=c/u                                          (2-11)
c是真空中的波速。于是
k = / c = n / λ 0 2 π = n / λ 0 ~ - - - ( 2 - 12 )
λ0是真空中的波长,并记λ0/2π为,是角频率为ω的波在自由空间中 传播时的弧度长。
在非导体中,介质的电导率σ=0,(2-5)式中的虚数项为零,
k=ω(εμ)1/2                           (2-13)
但一般而言,对导电的大地物质k是复数如(2-5)式,(2-6)、(2-7)分别是 它的实部虚部
实部kr=2π/λ    (2-14)
虚部ki,是一个使波幅随传播距离的增加而衰减的函数。传播距离增加 时,E0e-k,Z将衰减,当Z值达到一个特殊数值时,命此Z值为δ,
δ=1/ki                                            (2-15)
此时振幅衰减到原振幅的1/e。量δ叫“衰减距离”,也称作“趋肤深度”, 意即经过δ距离后,电磁波的振幅仅为原来的波幅的0.368倍。
2.3电磁波的反射和折射:
在不连续介质中传播的电磁波,在界面两侧将发生反射和折射。设定两 种线性、均匀、各向同性介质间的分界面,是无限薄的,无穷大的平面。分 界面两侧介质的折射率分别是n1和n2,相对导磁率μr1和μr2。又定义包含入 射线、反射线和折射线的平面为入射平面,设此平面与XZ平面重合(见图 2),在图2中,在入射平面上有入射波、反射波和折射波;入射角等 于反射角
θi=θr    (2-16)
斯奈尔折射定律表述的入射波与折射波之间的关系是
sin θ i u 1 = sin θ t u 2
或者,由于波数k等于ω/u,则
k1sinθi=k2sinθt    (2-17)
也可以把上式写成
sin θ t sin θ i = k 1 k 2 - - - ( 2 - 18 )
= n 1 n 2
但是,在大气与岩土物质构成的界面两侧,大气的折射率n1远小于大地 物质的折射率n2。因此,以各种角度由大气进入地层的平面电磁波,按(2-18) 式,大多能够垂直或近乎垂直地层传播。这使得有可能在很多情况下,把从 大气进入地层的电磁波,当作垂直入射来处理。于是θi和θt等于零,入射平 面成为不确定的。
参照(2-3)式,分别以Ei、Er、Et表示电场的入射、反射和折射平面波, 在由大气垂直地层入射的情况下,它们是
Ei=E0iexpj{ωt+k1Z}    (2-19)
Er=E0rexpj{ωt-k1Z}    (2-20)
Et=E0texpj{ωt+k2Z}    (2-21)
它们波幅之间的关系,可根据费涅尔公式得出
E 0 r E 0 i = n 1 μ r 1 - n 2 μ r 2 n 1 μ r 1 + n 2 μ r 2 - - - ( 2 - 22 )
E 0 t E 0 i = 2 n 1 μ r 1 n 1 μ r 1 + n 2 μ r 2 - - - ( 2 - 23 )
当电波从空中射向地面时,空气的折射率n1和相对导磁率μr1均等于1; 再考虑到(2-18)式和(2-12)式,于是
E 0 r E 0 i = 1 - λ 0 ~ μ r 2 k 2 1 + λ 0 ~ μ r 2 k 2
k2是复数,代(2-4)入上式,得出
E 0 r E 0 i = 1 - ( ϵ r 2 / μ r 2 ) 1 / 2 ( 1 - j σ 2 / ω ϵ 2 ) 1 / 2 1 + ( ϵ r 2 / μ r 2 ) 1 / 2 ( 1 - j σ 2 / ω ϵ 2 ) 1 / 2
εr2是地层的相对介电常数。地面反射回空气中的反射波是
Er = E 0 i 1 - ( ϵ r 2 / μ r 2 ) 1 / 2 ( 1 - j σ 2 / ω ϵ 2 ) 1 / 2 1 + ( ϵ r 2 / μ r 2 ) 1 / 2 ( 1 - j σ 2 / ω ϵ 2 ) 1 / 2 expj { ωt - Z / c }
这个波经地球的电离层反射后,再度返回地面。
对于进入地层的折射波Et,由(2-23)式
E 0 t E 0 i = 2 1 + λ 0 ~ μ r 2 k 2
= 2 1 + ( ϵ r 2 / μ r 2 ) 1 / 2 ( 1 - j σ 2 / ω ϵ 2 ) 1 / 2 = q 1
q1的脚标1表示地层的上界面。可以看出,q1总是正数,这意味着,在 分界面上,透射波总是与入射波相位一致。得折射波Et的表达式
Et=Eoiq1exp{j(ωt+kr2Z)+kiZ}
这是一个经过地层上界面折射而进入地层的波。但对地层而言,它却是 入射波。因此,在以后讨论地层中电磁波物理现象时,就把这个波Et,称为 入射波Ei1。它的波幅:
E0i1=E0iq1
这个波在地层上界面的形式是
E i 1 = E 0 i q 1 expj ( ωt + 2 πh λ ) - - - ( 2 - 24 )
这里,仍然采用图1的坐标系统。波到达上界面,尚未在地层中传播, 此衰减因子e-kiZ=1。
这个波继续前进,就会受到底界面的反射。底界面下的物质折射率是n3, 相对导磁率是ur3。底界面反射的费涅尔公式是
E 0 r E 0 i q 1 = n 2 μ r 2 - n 3 μ r 3 n 2 μ r 2 + n 3 μ r 3
= ( ϵ r 2 / μ r 2 ) 1 / 2 ( 1 - j σ 2 / ω ϵ 2 ) 1 / 2 - ( ϵ r 3 / μ r 3 ) 1 / 2 ( 1 - j σ 3 / ω ϵ 3 ) 1 / 2 ( ϵ r 2 / μ r 2 ) 1 / 2 ( 1 - j σ 2 / ω ϵ 2 ) 1 / 2 + ( ϵ r 3 / μ r 3 ) 1 / 2 ( 1 - j σ 3 / ω ϵ 3 ) 1 / 2 = p 2
p2的脚标2表示地层的下界面。于是,反射波到达上界面时的方程是
Er1=E0iq1p2expj{ωt-k2Z}
=E0iq1p2exp{j(ωt-2πh/λ)-2kih}    (2-25)
比值p2可以是正的也可以是负的,它依赖于n2/μr2与n3/μr3的相对大小, 如果n2/μr2>n3/μr3,则反射波在下界面上对入射波的相位差是零;当 n2/μr2<n3/μr3,则是π。
在以上的讨论中,把波动方程写成指数形式,是为了数学上的方便。如 果取指数的实数部分,(2-24)、(2-25)两式就与(1-1)和(1-3)两式一样了,只是 要把Z换成h,把α换成ki。于是,“驻波法地球物理勘探”中所讨论的及其 结论,都能用在本节中。
不过,还需要证明(1-13)式的p1为正。根据(2-22)式,空气的折射率n2 与相对导磁率μr2均为1,大地物质的相对导磁率μr1的常见值也是1,而大地 物质的折射率n1远大于n2,故
E 0 i 2 E 0 r 1 = E 0 i 2 E 0 i q 1 q 2 e - 2 αh = n 1 μ r 1 - n 2 μ r 2 n 1 μ r 1 + n 2 μ r 2 = p 1 > 0
即被大地空气界面反射到地层内的入射波Ei2的波幅E0i2,与Er1的波幅 E0i1q1p2e-2αh在地面同相位。
经过以上的讨论,就可写出电场驻波的总波幅(1-15)式
E 0 = E 0 i q 1 ( 1 + p 2 e - 2 k i h ) 1 - p 1 p 2 e - 2 kih
与(1-15)式比较,只是
E0i1=E0iq1
当p2为正时,E0是电场驻波波幅,p2为负时,E0是波节。
可以用计算电场驻波的办法,从(2-9)式计算磁场驻波波幅。但众所周知 的是,电磁波的传播方向是是电场极化方向与磁场极化方向按右手 螺旋规则的叉积。即
i E × j H = k Z
以纸面表示地层的底界面(反射面)(见图3),电磁波从上向下入射 底界面时,将会有如图3所示的电场矢量和磁场如果在反射面上电场 形成波腹,则反射电矢量与入射电矢量同相位。而反射电磁波的传播方向却 与入射电磁波方向相反,所以反射波的磁矢量必然与入射磁矢量在相位 上差π。因此,在反射面上,磁场的驻波形成波节。也由此得知,在底界面, 如果电场驻波为波节,则磁场驻波必为波腹。这就给人们一种选择的可能: 在n2/μr2>n3/μr3的地区p2为正值,电场驻波在频率为ω时在地面有波腹,则 磁场驻波为波节。磁场驻波在地面出现波腹的频率是ω′=ω/2[见(1-12)′式],在 ω′频率上,电场驻波是波节。同理,在n2/μr2<n3/μr3,p2为负值的地区,磁场 驻波在频率为ω时在地面有波腹,则电场驻波为波节。电场驻波在地面出现 波腹的频率是ω′=ω/2。根据电场和磁场波腹出现的频率关系,为判断上、下 地层间物性的相对关系,提供了一种可供参考的依据。
2.4电磁驻波法地球物理勘探数据的解释
电磁驻波法地球物理勘探的解释工作,要回到(1-16)式:h=λ/2
将分子分母同乘以π,再代入(2-14)和(2-6)两式,得
h = πλ / 2 π = π / k r 2
= π / ( ω 2 ϵ 2 μ 2 2 ) 1 / 2 { [ 1 + ( σ ω ϵ 2 ) 2 ] 1 / 2 + 1 } 1 / 2 - - - ( 2 - 26 )
或者回到(1-11)式h=λ′/4
h = π / ( 2 ω 2 ϵ 2 μ 2 ) 1 / 2 { [ 1 + ( σ 2 ω ϵ 2 ) 2 ] 1 / 2 + 1 } 1 / 2 - - - ( 2 - 27 )
究竟采用(2-26)还是(2-27)式,这要由电场和磁场的驻波波腹频率[(1-12)′ 式]来决定。这是电磁驻波法地球物理勘探的最终结果。它把地层厚度h与地 层的电磁参数联系起来。地层的导磁率μ2和电导率σ2,可以从磁法地球物理 勘探与电法地球物理勘探部搜集到。这也是地球物理勘探惯用的方法。频 率f是仪器测得,ε2可实测,再根据(2-26)式或(2-27)式解出层厚h。如果无从 得知ε2,则可以ε0代ε2。当然这会产生误差,但是,对于一个地区来说,是 一个系统误差。经过钻探资料校正后,系统误差是可以解决的。
2.5  极限条件下电磁波的衰减
(2-6)和(2-7)式表明了kr与ki都与ωε/σ有关,这个比值也有人把它定义为 介质的Q,对非导体,传导电流密度σE=0,Q→∞。但对大地物质,电导率 的常见值σ>10-4姆欧/米(相当于电阻率ρ<104欧姆·米),取ε=ε0=8.85×10-12 法拉/米,在很大一段频率范围内,Q值都比1小很多。所以(2-6)、(2-7)两式 大括弧内变成
{(1+1/Q2)1/2±1}1/2≈(1/Q)1/2{1+Q2/2±Q}1/2
                   ≈(1/Q)1/2(1±Q/2)
                   ≈(1/Q)1/2                       (2-28)
当条件
Q=ωε/σ≤1/50
成立时(2-28)式的误差小于1%。这个不等式意味着传导电流密度σE至 少需比位移电流密度大50倍。
在Q比1小很多的情况下,以下关系成立
ki=kr=(ωμσ/2)1/2=2π/λ 及
k=(ωμσ/2)1/2(1-j)
这时,电磁波传播距离Z等于一个波长时,衰减因子
e-k,Z=e-2π=1.87×10-3
这个结论表明:在电阻率ρ=1/σ甚小于ωε的地区,电磁波将受到严重衰 减,应用电磁驻波法地球物理勘探来解决地质问题,将不会收到预期效果。
3.弹性驻波法地球物理勘探:
弹性驻波法用于地球物理勘探,对波源的要求之一是,能产生一个足够 面积的平面波;二,在时间上波要有连续性;三,频率连续可变。要同时满 足这三个条件很困难,但用于灌注桩质量检测却是可行的。制造一个输出能 量小的、频率连续可调的震源,是容易办到的事。至于平面波,如果杆状件 的长度远大于直径,则在杆中传播的波的波前近似平面波。于是在灌注桩顶, 弹性波的方程就是
Ai = A 0 i cos ( ωt + 2 πl λ ) - - - ( 3 - 1 )
这里,以A0i表示弹性波Ai的振幅,l是桩长。
在弹性波理论中,有与费涅尔公式在形式上一致的波幅比
A 0 r A 0 i = ρ 2 u 2 - ρ 1 u 1 ρ 2 u 2 + ρ 1 u 1 = p 2 - - - ( 3 - 2 )
式中ρ是介质的密度,桩外物质(土)的波速u2和密度ρ2总小于砼的速度 u1和密度ρ1,所以p2总为负值。
由桩底到桩顶的反射波是
Ar=A0re-2αlcos(ωt-2πl/λ)
=A0ip2e-2αlcos(ωt-2πl/λ)    (3-3)
把(3-1)、(3-3)两式与(1-1)、(1-3)两式比较,只是将层厚h换成了桩长l。 在桩顶,振动Ai与Ar干涉,驻波波幅的计算就回到(1-5)式
A 0 = A 0 i { 1 + p 2 2 e - 4 αl + 2 p 2 e - 2 αl cos 4 πl λ } 1 / 2
p2是负值,以绝对值表示:
p2=-|p2|
于是
A 0 = A 0 i { 1 + | p 2 | 2 e - 4 αl - 2 | p 2 | e - 2 αl cos 4 πl λ } 1 / 2
如果
4 πl λ = ( 2 k + 1 ) π , k = 0,1,2 . . . . . . - - - ( 3 - 4 )

cos 4 πl λ = - 1 , l = 2 k + 1 4 λ - - - ( 3 - 5 )
此时的波幅
A0=A0i{(1+|p2|2e-4αl)+2|p2|e-2αl}1/2
=A0i(1+|p2|e-2αl)                            (3-6)
是极大值即驻波波腹。连续改变振动器的发射频率,就会在k′=0,1,2...... 等处有关系:  f0=f1/3=f2/5......                 (3-7)
并在这些频率处找到最大波幅。根据(3-5)式计算出桩长:
l=λ0/4
=u/4f0                                        (3-8)
λ0是频率为f0时的波长。波速可以直接从桩顶测得。再根据桩长l判断是 否有断桩、夹泥等质量事故,还可以根据波速判断桩的整体质量。
4.驻波法地球物理勘探的仪器,工作开展及成果:
参考图4,根据本发明的实施例,电磁驻波勘探设备由两通道构成。“电 信号接收器”及“磁信号接收器”分别接收电场信号和磁场信号。“电信号 接收器”由平行板电容器组成,电容器内充有介电常数为ε的电介质,以减 小输出阻抗。“磁信号接收器”由多线圈组成。信号放大器的电压放大倍 率kv≥110分贝。其中,电信号通道和磁信号通道共同构成电磁信号接收装置, 并将信号送入数据记录及处理器。电磁参数输入装置(图中未示)是数据记 录及处理器的内容之一,输入探测目的物的已知电磁参数,例如地层的介电 常数,地层的导磁率,地层的电导率等;再通过数据记录及处理器记录电、 磁两个通道送来的信号,得出电磁驻波波腹频率,将确定的电磁波波腹频率 和输入设定的电磁参数结合处理、储存,并输出计算后的数据结果。
参考图5,根据本发明的实施例,弹性驻波探测设备主要包括一个弹性 驻波波腹频率确定装置,由电信号振荡器、电磁振动器组成弹性波发射部分; 由接收器和监波器组成信号接收部分。这四个小部分均处于线性工作状态。 电振荡器输出驱动电流,驱动振动器按驱动电流的频率振动。监波器监视接 收器收到的波幅,以确定所收到的信号是否驻波波腹。驻波频率由电振荡器 读出。通过连续改变电振荡器的频率,在接收点使用监波器监测到波幅最大 时,在电振荡器上读出的振荡频率,就是驻波波腹的频率。
此外,弹性驻波探测设备还包括一个波速测量装置(图中未示)和一个 桩长计算装置(图中未示),其中,波速测量装置根据所述发射点与接收点 的距离s,以及弹性波在s之间的传播时间t,测量获得波速u;桩长计算装 置,根据公式:l=u/4f确定灌注桩长,其中:
l为灌注桩长,f为驻波波腹的频率,u为波速,u=s/t,s为激发点到接收 点之间的距离,t为弹性波在s之间的传播时间。
本发明在具体实施时,由操作人员一人,携“电磁驻波勘探设备“一台, 在需要勘探的区域,按事先布置好的测点逐点施测。在测点上,接通仪器的 电源,向仪器输入测点编号以及必要的电磁参数,按下工作按钮,仪器即自 行工作,接收测点上的电磁驻波。由操作人员监视仪器工作状况。操作人员 判断已收到必要的信息后,即停机,该点数据储存在机内,结束该点工作, 转移至下一测点。
在本发明中,操作人员向仪器输入必要的电磁参数μr、σ、ε,则仪器储 存的数据是该测点,地层下界面的埋深h,否则,即为驻波波腹频率。
当天工作结束后,全部数据交数据整理人员,由数据整理人员根据每个 测点的地层下界面的埋深,绘制地层下界面等高线图(构造图),此即成果 资料。
关于计算公式:
h = π / ( ω 2 ϵμ 2 ) 1 / 2 { [ 1 + ( σ ωϵ ) 2 ] 1 / 2 + 1 } 1 / 2 - - - ( 7 )

h = π / ( 2 ω 2 ϵμ ) 1 / 2 { [ 1 + ( σ ωϵ ) 2 ] 1 / 2 + 1 } 1 / 2 - - - ( 8 )
如何使用的问题,可以总结为:
在p2值为正的地区,电波腹频率在ω点上,求h值时用方程(7)′ 式,磁波腹频率在ω′点上,求h值时用方程(8)′式。在p2<0的地区,磁波腹 的频率在ω点上,求h值用方程(7)′,电波幅成为驻波腹的频率点在ω′,求h 用方程(8)′而ω>ω′。
例如在某地区,收到电驻波腹的频率是f电=2.5×103Hz,磁波腹 频率f磁=104Hz。而这一地区的电导率σ=2.86×10-4姆欧/米,介电常数是 ε=8.85×10-12法拉/米,导磁率μ=12.75×10-7亨利/米。
第一步:比较f电与f磁孰大?因为ω>ω′,较大的频率选用
h = π / ( ω 2 ϵμ 2 ) 1 / 2 { [ 1 + ( σ ωϵ ) 2 ] 1 / 2 + 1 } 1 / 2
较小的频率选用
h = π / ( 2 ω 2 ϵμ ) 1 / 2 { [ 1 + ( σ ωϵ ) 2 ] 1 / 2 + 1 } 1 / 2
在本例中显然f磁>f电,故将f磁代入(7)′式中:


= 1 / 2 f H ( 56.4 × 10 - 19 ) 1 / 2 { [ 1 + ( 5143880 f H ) 2 ] 1 / 2 + 1 } 1 / 2
( 5143880 f H ) 2 > > 1 ,

h = 1 / 2 f H × 2.37 × 10 - 9 { 5143880 f H + 1 } 1 / 2
= 1 / 4.74 × 10 - 9 × 2268 f H 1 / 2 f H = 1 / 10750.3 f H 1 / 2 × 10 - 9
= 1 / 10750.3 × 10 2 × 10 - 9 = 9.30 × 10 2

用电驻波腹频率求h

= 1 / 2 f E ( 2 × 8.85 × 10 - 12 × 12.75 × 10 - 7 ) 1 / 2 { [ 1 + ( 2.86 × 10 - 4 2 π × 8.85 × 10 - 12 f E ) 2 ] 1 / 2 + 1 } 1 / 2
= 1 / 2 × ( 225.7 × 10 - 19 ) 1 / 2 f E { 5143880 f E } 1 / 2
= 1 / 2 × 4.75 × 10 - 9 × 2268 f E 1 / 2
= 1 / 21546 × 5 × 10 × 10 - 9 = 1 / 1077300 × 10 - 9

即电驻波腹频率与磁驻波腹频率计算出的反射面埋深有约0.2%的计算 误差。
而“弹性驻波法地球物理勘探设备”在具体使用时,把振动器和接收器 粘在灌注桩头上。接通电源后,仪器处于工作状态:电振荡器驱动电磁振动 器震动,产生弹性波。由监波器监示波幅的大小。操作人员连续改变电振荡 器的频率,当监波器察觉波幅最大时,在电振荡器上读出的震荡频率,就是 驻波波腹的频率f。再根据在桩上测得的波速u,按(3-8)计算桩长。
另外,需要说明的是,测定灌注桩弹性波速u的仪器,在这一行业中有 多种型号的商品,本发明实施例中就是使用现有商品仪器测定弹性波速u。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈