首页 / 专利库 / 天文学 / 星风 / 太阳风 / 加热油化装置及加热油化方法

加热油化装置及加热油化方法

阅读:1005发布:2020-06-16

专利汇可以提供加热油化装置及加热油化方法专利检索,专利查询,专利分析的服务。并且本 发明 提供一种加热油化装置及加热油化方法,通过有效引起容器内的自然 对流 ,来提高投入原料的加热效率。容器(2)的内部形成为热介质(7)可上下循环的闭环状。加热气体通路(5)包括,下部加热部(21),对下部贮存部(11)的热介质(7)进行加热;侧部加热部(22),对在下部贮存部(11)被加热后的第1侧部(12)的热介质(7)进行加热。原料(1)被投入到在第1侧部(12)被加热后朝向下部贮存部(11)在第2侧部(13)流动的热介质(7)内,促进热介质(7)的循环。在导 热管 (14a)内,原料(1) 沸腾 并产生热介质(7)的循环驱动 力 。,下面是加热油化装置及加热油化方法专利的具体信息内容。

1.一种加热油化装置,对通过原料投入部而投入到装有热介质的容器内的原料,用加热气体通路中流动的气体进行加热,至少使其一部分气化,其特征在于:
上述容器的内部,形成为上述热介质可上下循环的闭环状;
上述加热气体通路包括,下部加热部,对位于闭环下部的热介质进行加热;侧部加热部,对在上述闭环下部被加热后上升的闭环侧部的热介质进行加热;
上述容器的内部,由上述闭环下部、上述闭环侧部、不与上述加热气体通路接触地连通上述闭环侧部及上述闭环下部的回流部,形成为闭环状,
在上述闭环侧部被加热后通过上述回流部流向上述闭环下部的热介质中投入上述原料。
2.根据权利要求1所述的加热油化装置,其特征在于:
上述原料投入部,配置在上述回流部的上方。
3.根据权利要求1或2所述的加热油化装置,其特征在于:
上述下部加热部,包括配置在上述闭环下部内的多个导热管
上述各导热管,一端部贯通上述容器的侧壁贯通以便使上述气体流入,另一方面,另一端部贯通与上述侧壁相对的侧壁并与上述侧部加热部连接。
4.根据权利要求1或2所述的加热油化装置,其特征在于:
上述下部加热部,包括配置在上述闭环下部内的U型管;
上述U型管,一端部贯通上述容器的侧壁以便使上述气体流入,并且,另一端部上述侧壁贯通并与上述侧部加热部连接。
5.根据权利要求1或2所述的加热油化装置,其特征在于:
上述闭环侧部,包括多个导热管;
在这些导热管内,流入在闭环下部被加热后的热介质。
6.根据权利要求1或2所述的加热油化装置,其特征在于:
上述原料,包括原油
7.根据权利要求1或2所述的加热油化装置,其特征在于:
上述原料,包括固体成分;
上述固体成分,被上述气体加热熔化
8.根据权利要求7所述的加热油化装置,其特征在于:
上述固体成分,包括塑料。
9.根据权利要求1或2所述的加热油化装置,其特征在于:
上述闭环侧部的上端部,连接有使在上述容器内部蒸发的原料发生反应的催化槽以及将在上述容器内部蒸发的原料分馏分馏塔的至少一方。
10.根据权利要求1或2所述的加热油化装置,其特征在于还包括:
液面检测装置,检测上述热介质的液面。
11.根据权利要求1或2所述的加热油化装置,其特征在于还包括:
排出管路,排出停留在上述容器内的成分。
12.一种加热油化方法,在装有热介质的容器内投入原料,用气体加热该原料,并至少使其一部分气化,其特征在于:
作为上述容器,使用上述热介质可上下循环的闭环状结构,所述闭环状结构由闭环下部、闭环侧部、不与加热气体通路接触地连通上述闭环侧部及上述闭环下部的回流部形成;
通过上述气体在闭环下部加热热介质,并且对被加热后上升的该热介质,通过上述气体,在闭环侧部进一步进行加热;
在上述闭环侧部被加热后的热介质通过上述回流部朝上述闭环下部而向下方流动时,投入上述原料。
13.根据权利要求12所述的加热油化方法,其特征在于:
上述原料,包括固体成分;
上述热介质,在上述闭环侧部被加热至上述固体成分的熔化温度以上。

说明书全文

加热油化装置及加热油化方法

技术领域

[0001] 本发明涉及将原料油化的熔化炉等的加热油化装置及加热油化方法。 [0002] 背景技术
[0003] 以往,例如下述专利文献1公开了将作为原料的废塑料等用燃烧气体进行加热油化的熔化炉等的加热油化装置。该专利文献1中公开的加热油化装置,如图8所示,包括,容器100,贮存也可作为导热油使用的熔化塑料,在此容器100的下方,设置有用燃烧器101的燃烧气体从下方加热容器100的加热室102。另外、在容器100内,配置有由连通加热室102的U型管构成的导热管103,从加热室102流入的燃烧气体在导热管103内由下至上流动。由此、可以用在导热管103的下侧部分流动的、更加高温的燃烧气体来加热容器内底部的熔化塑料,以促进导热油105的自然对流
[0004] 但是,在以往的加热油化装置中,由于自然对流的产生仅限于导热管103的周围,因此远离导热管103的导热油105容易处于滞留状态。因此,虽然在容器100内的一部分产生自然对流,但是,还是有进一步提高容器100内的加热效率的余地。 [0005] 专利文献1:日本专利公开公报1999-323350号
[0006] 发明内容
[0007] 本发明鉴于上述问题,其目的在于通过有效引起容器内的自然对流,来提高投入原料的加热效率。
[0008] 本发明提供的加热油化装置,对通过原料投入部而投入到装有热介质的容器内的原料,用加热气体通路内流动的气体进行加热,至少使其一部分气化,上述容器的内部,形成为上述热介质可上下循环的闭环状,上述加热气体通路包括,下部加热部,对位于闭环下部的热介质进行加热; 侧部加热部,对在上述闭环下部被加热后上升的闭环侧部的热介质进行加热;上述容器的内部,由上述闭环下部、上述闭环侧部、不与上述加热气体通路接触地连通上述闭环侧部及上述闭环下部的回流部,形成为闭环状,在上述闭环侧部被加热后通过上述回流部流向上述闭环下部的热介质中投入上述原料。
[0009] 另外,本发明提供的加热油化方法,在装有热介质的容器内投入原料,用气体加热上述原料,并至少使其一部分气化,作为上述容器,使用上述热介质可上下循环的闭环状结构,所述闭环状结构由闭环下部、闭环侧部、不与加热气体通路接触地连通上述闭环侧部及上述闭环下部的回流部形成;通过上述气体在闭环下部对热介质进行加热,并且对上述被加热后上升的该热介质,通过上述气体在闭环侧部进一步进行加热,在上述闭环侧部被加热后的热介质通过上述回流部朝上述闭环下部而向下流动时,投入上述原料。 [0010] 在本发明中,将容器内形成为闭环状,并且,在闭环下部和闭环侧部对热介质进行加热,在闭环下部的热介质被加热上升后,在闭环侧部对热介质进一步进行加热。因此,在整个容器内可以产生热介质循环的自然对流。由此,不仅是加热气体通路周围的热介质,容器内的热介质整体流动,因此与只在容器内的一部分产生热介质的自然对流的结构相比,可以提高容器内热介质的加热效率,可以提高与此热介质一起流动的原料的加热效率。并且,由于在闭环侧部被加热后处于高温的热介质中导入原料,因此可以高效且迅速地加热原料。并且,由于容器内的热介质整体流动,原料容易被搅拌,由此,可以抑制由加热气体通路内的气体直接加热的部分被过度地加热,可以抑制原料中所含有的成分被化而附着于容器内面等情况。因此,也有可减少除去积碳的维修的频度的优点。
[0011] 如上说明,根据本发明,可以在容器内有效地引起自然对流,可以提高投入原料的加热效率。
[0012] 附图说明
[0013] 图1是表示本发明的实施例1所涉及的加热炉的简要外观图。
[0014] 图2是简要表示上述加热炉的内部结构的图。
[0015] 图3是表示在上述加热炉中的热介质的流动方向的说明图。
[0016] 图4是简要表示本发明的实施例2所涉及的加热炉的内部结构的图2相当图。 [0017] 图5是表示在上述加热炉中的热介质的流动方向的说明图。
[0018] 图6是简要表示本发明的实施例3所涉及的加热炉的内部结构的图2相当图。 [0019] 图7是简要表示本发明的实施例4所涉及的加热炉的内部结构的图2相当图。 [0020] 图8是表示以往的加热油化装置的内部结构的图。

具体实施方式

[0021] 以下、参照图详细说明实施本发明的最佳方式。
[0022] (实施例1)
[0023] 图1简要表示作为本发明所涉及的加热油化装置的一个实施例的加热炉10。该加热炉10,例如为对作为原料1投入的原油等重质油进行加热,提取轻质油成分的锅炉,可用来作为石油精炼装置用的加热炉或分馏精炼装置的加热炉。如图1所示,加热炉10包括不锈制的容器2。该容器2内,贮存有汽油油等热介质7。
[0024] 容器2的内部形成为闭环状。下面具体进行说明。容器2,在其下部具有内容积比较大的下部贮存部11。该下部贮存部11构成闭环的下侧部,相当于本发明所述的闭环下部。
[0025] 如简要图图2所示,下部贮存部11包括,第1侧部12,由下部贮存部11的上部的一端(图2的左侧)朝上方延伸;第2侧部13,由上部的另一侧(图2的右侧)朝上方延伸。第1侧部12包括,由分别由细管形成的多个导热管14a构成的导热管部14和,设在上述导热管部14的上端部的合流部15。
[0026] 上述导热管部14,其下端部与下部贮存部11的上部连接,各导热管14a以上下延伸的姿态设置。各导热管14a内部,通过在下部贮存部 11的上部形成的连通孔与下部贮存部11的内部连通。上述合流部15,由于横跨全部导热管14a而设置,因此从各导热管14a的上端部流出的热介质在该合流部15合流。导热管部14与合流部15,构成本发明所述的闭环侧部。即、导热管部14与合流部15,构成闭环的一个侧部。
[0027] 另一方面,第2侧部13,例如形成为圆筒状,内部为中空。在该第2侧部13及上述合流部15间,架设有间隔配置于下部贮存部11的上方的上部贮存部17。而且,由下部贮存部11与第1侧部12及第2侧部13及上部贮存部17所包围的空间,是向纸面纵深方向贯通的贯通空间。上部贮存部17形成为由第1侧部12向第2侧部13略微下降地倾斜配置的例如圆筒状。该上部贮存部17,构成闭环的上侧部。
[0028] 上述合流部15与第2侧部13,通过上部贮存部17连通。该第2侧部13,通过在下部贮存部11上部形成的连通孔与下部贮存部11连通。这样,容器2的内部,由下部贮存部11与第1侧部12及第2侧部13及上部贮存部17连通形成闭环状,热介质7可在容器2内上下循环。即、容器2的内部其整体形成作为热对流循环路径的封闭回路。在本实施例中,由上部贮存部17与第2侧部13构成本发明所述的回流部。即、从第1侧部12流出的热介质7通过上部贮存部17及第2侧部13流向下部贮存部11。上述容器2,其下部贮存部11、第1侧部12、第2侧部13及上部贮存部17以此方式构成为一体,在这些下部贮存部11、第1侧部12、第2侧部13及上部贮存部17的全领域内贮存热介质7。
[0029] 在第2侧部13的上端部,设有用于将原料1投入容器2内的原料投入部3。该原料投入部3连接于第2侧部13,以便使原料1可从上方流下。据此,被投入的原料流下后直接供给至第2侧部13内的热介质7中。
[0030] 在上述原料投入部3中,设有闸3a。该闸门阀3a,用于通过图中省略的等来调整由原料贮存槽(省略图示)向容器2内供给的原料1的投入量。通过调整此闸门阀3a的开闭量,可以调整容器2内整体的贮存量。另外,原料投入部3,也可由使原料1通过自重流下而供给至容器2内的漏斗构成。
[0031] 本实施例所涉及的加热炉10设有使加热容器2内热介质7的气体 4流通的加热气体通路5。该加热气体通路5包括,下部加热部21、侧部加热部22、及连通两个加热部21、22的连通部23。
[0032] 上述下部加热部21,用来加热下部贮存部11内的热介质7,包括,配置于容器2外部的外侧加热部25和配置于容器2的内部的内侧加热部26。外侧加热部25包括,导入部25a,在端部配置有燃烧器8并且基本呈平延伸;底面加热部25b,与该导入部25a的下流端连通,并沿容器2的底面2a基本呈水平延伸;连接部25c,与底面加热部25b的下流端连通,并沿下部贮存部11的侧壁2b朝上方延伸。外侧加热部25,其外壁由耐火性的绝热材料构成,使在该外侧加热部25内流动的气体4的热不向外部泄漏。另外,作为燃烧器8的燃料,可以使用廉价的C柴油等重质油燃料。
[0033] 通过上述燃烧器8的燃烧,产生气体4,该气体4依次流入导入部25a、底面加热部25b及连接部25c。此时在底面加热部25b中,气体4的热通过容器2的底面2a传至下部贮存部11内的热介质7中。换言之,容器2的底面2a,是用于将气体4的热传至热介质7的导热面。
[0034] 上述内侧加热部26配置于下部贮存部11内,由多个U型管26a构成。各U型管26a,以两端部上下配置的方式固定于下部贮存部11的一方(图2的左侧)侧壁2b上,并且由此侧壁2b向相向的侧壁2c水平延伸配置。并且,U型管26a的弯曲部,配置于相向的侧壁2c的附近。这样,由于弯曲部与容器侧壁2c以间隔的状态配置,因此即使U型管26a产生热膨胀也可抑制随之产生的对U型管26a的热应作用。
[0035] U型管26a的下侧的一端部,通过形成于容器侧壁2b的连通孔与上述连接部25c连通。另一方面,U型管26a的上侧的一端部,通过形成于容器侧壁2b的连通孔与上述连通部23连通。该连通部23,在下端部与上述U型管26a连通,并配置于容器2的外侧。而且,连通部23,在其上端部与上述侧部加热部22的下端部连通。连通部23,由图示省略的绝热材料覆盖
[0036] 上述侧部加热部22,用来加热上述第1侧部12的热介质7,配置成包围导热管部14,由从第1侧部12的下端部沿第1侧部12向上方 延伸的例如圆筒状的构件构成。而且,在侧部加热部22的下端部与上述连通部23连通。即、在侧部加热部22内,通过在导热管
14a的外侧流向上方的气体4来加热导热管部14内的热介质7。
[0037] 在容器2中,设有液面感测器29,作为液面检测装置的一例,用来检测被贮存的热介质7的液面7a。该液面感测器29,例如配置于第2侧部13的上端部,用来控制加热量及原料1的投入量,以便使容器2内的热介质量保持在可产生正常循环的规定范围内。 [0038] 而且,在容器2中设有排出管路6,用来排出滞留在该容器2内的成分。该排出管路6,被设置在下部贮存部11中的下端部,用于排山从原料1分馏后滞留于容器底部的重质油分。即、由于原料1中的重质油分的沸点高而难以蒸发,因此随着本装置运转时间的推移,重质油分的比率会增高,该重质油分会滞留于下部贮存部11的最下部。而且,如果对重质油分置之不理的话,其比率会递增,成为产生积碳的原因,因此通过从排出管路6抽出重质油分,使原料1中的重质油分的比率保持一定。并且,排山原料1可贮藏于图中省略的贮存槽中,但也可作为燃料来使用。即、在排出管路6没置开闭阀6a,并且如图1所示,通过将排出管路6与燃烧器8的燃料供给通路31连接,并在此连接通路中设置泵33,可将重质油分作为燃料来利用。
[0039] 在第1侧部12的上侧设有催化槽32。该催化槽32,用来将在容器2内蒸发的油性物质改质并精炼。另外,在第1侧部12的上侧,也可配置分馏塔来代替该催化槽32。 [0040] 下面参照图2及图3,就本加热炉10的运转动作进行说明。图2中所示的箭头,表示气体4的流向,图3的箭头,表示热介质7及原料1的流动。
[0041] 首先,在运转的初期,汽油或煤油等热介质7被供给至容器2内,通过燃烧器8燃烧产生的例如700~800℃程度的气体4,对容器2内进行加热。即、燃烧器8的燃烧气体4,流过导入部25a后,在底面加热部25b加热容器底面2a,再通过连接部25c流入内侧加热部26。在该内侧加热部26中,燃烧气体4对下部贮存部11内的热介质7进行加热,再通过连通部23流入侧部加热部22。在该侧部加热部22中,燃烧气 体4对第1侧部12内的热介质7进行加热,随后被排出。
[0042] 另一方面,在容器2内部,通过燃烧气体4在下部贮存部11加热后的热介质7,上升并流入导热管部14的各导热管14a内。该热介质7,被加热至在导热管14a内其一部分沸腾的程度。因此,在导热管14a内形成气液混合的总体平均密度低的流体而产生强烈的上升流。由此,在容器2内,产生热介质7按照下部贮存部11、第1侧部12、上部贮存部17及第2侧部13的顺序循环的循环流。该热介质7,被加热至例如350℃的程度。 [0043] 接着,由液面感测器29检测的液面7a如未达到规定位置的话,就开启闸门阀3a,从原料投入部3投入原料1。作为该原料1,适合用原油等的重质油。
[0044] 该原料1,从原料投入部3直接流下后与第2侧部13内的热介质7混合。在第2侧部13内,流入被导热管部14加热后的热介质7,而且在容器2内也流动着处于特别高温的热介质7,因此,投入的原料1可有效地被加热。由此,由于粘性高的原料1容易受热而,其流动性增大,因此,可防止因原料1的投入而抑制自然对流的情况。而且此时,由于热介质7中与低温的原料1混合,因此热介质7的比重增大,使在第2侧部13的下降加速。即、在导热管部14的上升流的基础上,在第2侧部13的下降促进容器2内的热介质7及原料1的混合流体的自然对流。由此,可以在下部贮存部11及第1侧部12有效地加热与热介质7一起流动的原料1。而且,在容器2内气化的蒸气V,被导入催化槽32进行改质。 [0045] 如以上说明,根据本实施例1所涉及的加热炉10,由于将容器2内形成为闭环状,并且设计成在下部贮存部11及第1侧部12加热热介质7,因此下部贮存部11的热介质7被加热上升后,在第1侧部12可进一步加热热介质7。因此,可产生热介质7在整个容器
2内循环的强力的自然对流。因此,不仅加热气体通路5周围的热介质7,而且容器2内的热介质7整体产生流动,因此与热介质7只在容器2内的一部分自然对流的结构相比,可提高容器2内的热介质7的加热效率,也可提高与该热介质7一起流动的原料1的加热效率。
而且,由于在第1侧部 12被加热后处于高温的热介质7中导入原料1,因此,可对原料1有效且迅速地进行加热。这样,由于在本加热炉10中,原料1的加热效率提高,因此,对例如需要处理大量原油的石油精炼装置等很有效。
[0046] 并且,由于容器2内的热介质整体产生流动,因此,通过使产生高速的循环流,并且使原料1易于搅拌,可抑制由加热气体通路5内的气体4直接加热的部分过度加热,并且可抑制原料1中含有的成分被碳化后附着于容器2的内面等情况。因此,可抑制因C2、C3等微粒碳的附着所导致的导热性能的劣化,并且也有可减少去除附着积碳的维修频度的优点。
[0047] 另外,在本实施例1中,由于原料投入部3配置于第2侧部13的上端部,因此,原料1供给至从上部贮存部17朝向下部贮存部11在第2侧部13内流动的热介质7中。因此,利用供给的原料1可促进闭环内的热介质7的自然对流。即、由于混合了比热介质7低温的原料,热介质7的比重则由此变重,因此原料的投入可促进热介质7在第2侧部13内的向下流动。其结果,可促进整个容器2内热介质7的自然循环,并可进一步提高原料1的加热效率。
[0048] 另外,在本实施例1中,由于内侧加热部26由两端部被固定于容器2的一侧壁2b的多个U型管26a构成,因此,即使在U型管26a与容器2分别由热膨胀系数不同的材质构成的情况下,也可抑制伴随U型管26a热膨胀所产生的热应力作用于U型管26a与容器2之间,以缓解容器2及U型管26a所受的材质限制。
[0049] 另外,在本实施例1中,由于在第1侧部12设有由多个导热管14a构成的导热管部14,因此,可在导热管14a的内部使原料1沸腾而产生气液二相流,使导热管14a内顺利地产生上升流。据此,可在容积比较大的下部贮存部11争取导热面积,并在导热管部14内有效获得循环驱动力。特别在本实施例中,由于导热管部14为细管的集合体,因此可以增大导热面积,基于此点也可实现提高导热效率。
[0050] 另外,在本实施例1中,由于设有液面感测器29,因此液面7a可被控制在规定范围内,可以防止热介质7的溢出。并且,也可防止因原料1的量过少,导热管部14等露出而被过度加热。
[0051] 另外,在本实施例1中,由于可以通过排出管路6将滞留成分排出至外部,因此可以抽除无法蒸发的重质成分。
[0052] 另外,通过在原料投入部3的上流一侧设置闸门阀3a,可以控制原料1的投入量,因此可控制整个炉内的油量等。
[0053] 另外,容器2的材质并不限定于不锈钢,形状、材质可进行各种变更。 [0054] 而且,燃烧气体4,并不限定为通过燃烧C柴油等的重质油而获得的燃烧气体,也可采用燃烧例如天然气等其它燃料而得到的燃烧气体。
[0055] 在此,对于本实施例1的特征,说明如下。
[0056] (1)上述容器的内部,由上述闭环下部、上述闭环侧部、不与上述加热气体通路接触地与上述闭环侧部及上述闭环下部连通的回流部,构成为闭环状。
[0057] (2)上述原料投入部,配置于上述回流部的上方。因此,通过使原料流下,可使原料供给至在回流部内向闭环下部流动的热介质中,从而,利用供给的原料可以促进闭环内的热介质的自然对流。即、通过混合比热介质低温的原料,可使热介质的比重变重,因此,可以利用原料的投入来促进热介质在同流部内的向下流动。其结果,可促进整个容器内的热介质的自然循环,可进一步提高原料的加热效率。
[0058] (3)上述下部加热部,包括配置在上述闭环下部内的U型管,上述U型管的一端部贯通上述容器的侧壁以使上述气体流入,并且另一端部贯通上述侧壁与上述侧部加热部连接。因此,即使在U型管与容器分别由热膨胀系数不同的材质构成的情况下,也可抑制伴随U型管26a热膨胀所产生的热应力作用于U型管及容器之间,因此可缓解容器及U型管所受的材质限制。
[0059] (4)上述闭环侧部,包括多个导热管,在各导热管内流入在闭环下部被加热后的热介质。因此,由于在闭环下部被加热后的热介质流入闭环侧部的各导热管内,在该导热管内对热介质进行进一步加热,因此,通过使导热管内的原料沸腾而产生气液二相流,可顺利产生导热管内的上升流。
[0060] (5)上述原料,包括原油。因此,可适用于例如需要处理大量原油的石油精炼装置等的原油加热装置。
[0061] (6)在上述闭环侧部的上端部,连接有使在上述容器内部蒸发的原料发生反应的催化槽和将在上述容器内部蒸发的原料进行分馏的分馏塔中的至少一个。因此,可对蒸发成分进行改质等。
[0062] (7)包括用来检测上述热介质液面的液面检测装置。因此,由于可以检测热介质的液面,因此可将液面控制在规定范围内。
[0063] (8)包括将滞留于上述容器内的成分排出的排出管路。因此,由于可通过排山管路将滞留成分排出至外部,因此可抽除无法蒸发的重质成分等。
[0064] (实施例2)
[0065] 图4及图5简要表示第2实施例所涉及的加热炉10。另外,在图4中,用箭头表示燃烧气体4的流向,在图5中,用箭头表示热介质7及原料1的流动方向。 [0066] 在上述实施例1中,内侧加热部26是由多个U型管26a构成的,但在本实施例2中,内侧加热部26,由笔直延伸的多个导热管26b构成。即、内侧加热部26为细管的集合体。就其它结构,由于与实施例1相同,因此对相同的构成要素附加相同的符号,并省略其说明。
[0067] 各导热管26b,以沿水平方向延伸的姿势配置,并且架设在容器2中相向的侧壁2b、2c之间。而且,各导热管26b的一方(图4的右侧)端部,与底面加热部25b连通,另一方面,另一端部与连接部25c连通。该连接部25c,沿着容器2下部的侧壁2b上下延伸,其上端部与侧部加热部22连通。
[0068] 在该加热炉10中,燃烧器8的燃烧气体4,流入到底面加热部25b后加热下部贮存部11的底面2a,随后流入各导热管26b并沿水平方向流动。该燃烧气体4,在对下部贮存部11内的热介质7及原料1进行加热后,又在侧部加热部22对第1侧部12内的热介质7及原料1进行加热。由此,在整个容器2内,热介质7及原料1自然循环,可使原料 1有效气化。
[0069] 根据本实施例2,内侧加热部26可使用市售廉价的各种管材,并且由于可在有限的空间内增加下部加热部21的导热面积,因此,可抑制零件成本的增加并提高加热效率。 [0070] 在此,对于本实施例2的特征,说明如下。
[0071] (1)上述下部加热部,包括配置在上述闭环下部内的多个导热管,上述各导热管的一端部分别贯通上述容器的侧壁以使上述气体流入,另一方面,另一端部贯通与上述侧壁相向的侧壁与上述侧部加热部连接。因此,可使用市售廉价的各种管材,而且由于可在有限的空间内增大下部加热部的导热面积,因此可以抑制零件成本的增加并提高加热效率。 [0072] 另外,其它的结构、作用及效果与实施例1相同。
[0073] (实施例3)
[0074] 图6简要地表示第3实施例所涉及的加热炉10。在本实施例3中,下部加热部21及侧部加热部22的结构与上述实施例1、2相比更为简单化。
[0075] 具体而言,在下部加热部21中不设置内侧加热部,而只设置了外侧加热部25。下部加热部21,由导入部25a、底面加热部25b及下侧面加热部25d形成。因此,在本实施例3中,下部贮存部11,只从容器2的外侧被进行加热。
[0076] 侧部加热部22,其下端部与下侧面加热部25d连通,并且由连通处沿着第1侧部12向上方延伸。
[0077] 第1侧部12,由连接在下部贮存部11的上部的上下延伸的例如圆筒状的构件构成。而且,由于该第1侧部12内未配置导热管,因此热介质7及原料1不分流地流动于第1侧部12内。因此,与上述实施例相比,可以降低热介质7及原料1的流动阻力。 [0078] 在本实施例3中,由于在整个容器2内热介质7及原料1自然循环,因此可使原料
1有效气化。
[0079] 另外,其它的结构、作用及效果与实施例1相同。
[0080] (实施例4)
[0081] 图7简略表示作为本发明所涉及的加热油化装置的一个实施例的熔化炉20。该熔化炉20,用来熔化作为原料投入的废塑料等的固体成分并油化。
[0082] 该熔化炉20的结构,基本上与实施例1所涉及的加热炉10的结构相同。即、容器2包括,下部贮存部11、第1侧部12、上部贮存部17及第2侧部13,内部为闭环状。而且,对容器2内部的热介质7及原料1进行加热的气体4流入的加热气体通路5,包括下部加热部21、侧部加热部22、及连通两个加热部21、22的连通部23。
[0083] 本实施例4与上述实施例1~3的不同点在于,原料中含有固体成分,在容器2内熔化该固体成分。作为原料,可适用表1所示的种类的塑料。这些塑料均具有300℃以下的融点。
[0084] [表1]
[0085]塑料 融点℃ 密度 沸点℃ 备注
聚乙烯H 120~140 0.94~0.96 180~380 高密度
聚乙烯L 122~124 0.92~0.94 130~250 直链状低密度
聚丙烯 167~170 0.90~0.91 180~380
聚苯乙烯 230 1.05 180~360
聚碳酸酯 46~300 1.2 130~390
尼龙6 225 1.13 260~380
尼龙66 260 1.14 270~390
ABS树脂 1.03~1.11 250~380
酯 1.1~1.25 260~390 泡沫氨基甲酸脂规格
聚氯乙烯H 1.36~1.54 180~350 硬质
[0086] 在固体塑料的油化还原第一阶段的加热液化中,用以往的方法,要 熔化这些塑料是非常困难的,关键在于如何对导热特性不佳的塑料有效地进行加热。为此,在本实施例4所涉及的熔化炉20中,通过向加热到300℃以上的、在容器2内高速流动的热介质7内,投入适量的塑料42,有效地对塑料42进行加热。
[0087] 具体而言,在运转的初期将汽油或煤油等的热介质7供给至容器2,加热至300℃以上。此时,在下部贮存部11被加热后的热介质7在第1侧部12的导热管14a内进一步被加热,在导热管14a内产生强烈的热介质7的上升流。而且,在整个容器2内产生热介质7按照下部贮存部11、第1侧部12、上部贮存部17及第2侧部13的顺序循环的循环流。另外,在图7中,用实线箭头表示该循环方向,用虚线表示气体4的流动。 [0088] 在此状态下,由原料投入部3适量供给作为原料被切碎的废塑料42。即、通过由液面感测器29检测出容器2内的贮存量,并根据该检测结果相应地调整闸门阀3a的开启度,可适量供给能有效熔化的废塑料42。而且,从原料投入部3投入的废塑料42,由于在第
1侧部12的导热管部14被加热至350℃程度的热介质7向下部贮存部11以高流速进行大量流动时被混入,因此立即被加热而液化。并且,热介质7与该液化的塑料42一起流动,在下部贮存部11及第1侧部12被进一步加热。由此,轻质油成分蒸发形成蒸气V,可对塑料
42进行油化。
[0089] 因此,依据本实施例4,在整个容器2内可使热介质7自然循环,可有效地熔化固体塑料42,可以容易且确实地进行塑料42的油化还原第一阶段的加热液化。 [0090] 在此,对于本实施例4的特征,说明如下。
[0091] (1)上述原料,包括固体成分,该固体成分,由上述气体加热熔化。 [0092] (2)上述固体成分,包含塑料。因此,可适用于对例如废塑料等进行油化的熔化炉等。
[0093] (3)本实施例所涉及的加热油化方法为,上述原料包括固体成分,上述热介质在上述闭环侧部被加热至上述固体成分的熔化温度以上的 加热油化方法。
[0094] 另外,在本实施例4中作为原料投入塑料42,但不限定于此,例如、作为原料也可投入原油等的重质油与塑料的混合物。而且,作为塑料也可适用表1所示以外的种类。 [0095] 另外,在本实施例4中,内部加热部由多个U型管26a构成,但取而代之,也可由如实施例2的多个笔直的导热管构成。并且,取代在第1侧部12设置由多个导热管构成的导热管部14,也可以如实施例3,第1侧部12由例如圆筒状的构件构成,使热介质7不在该管部中分流地进行流动。
[0096] 产业上的可利用性
[0097] 本发明可利用于对原料进行油化的熔化炉等。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈