首页 / 专利库 / 电磁学 / 电磁辐射 / 电磁辐射解耦器

电磁辐射解耦器

阅读:90发布:2020-05-11

专利汇可以提供电磁辐射解耦器专利检索,专利查询,专利分析的服务。并且用于对处于 波长 范围λmin到λmax内的 辐射 解耦的 电磁辐射 解耦器。所述解耦器具有与 电介质 层 接触 的第一导体层,所述第一导体层包括至少一个缺失区域,所述解耦器的厚度小于λmin/4n,其中,所述n是所述电介质的折射率。可以将所述电介质层夹在两个导体层之间,所述两个导体层之一具有上述结构。本 发明 还设计这样的解耦器的使用方法和包括这样的解耦器的各种物品。,下面是电磁辐射解耦器专利的具体信息内容。

1.一种用于电子器件的辐射解耦器,所述解耦器包括夹在至少一 个第一导体层和至少一个第二导体层之间的至少一个电介质层,其中, 所述至少一个第一导体层具有至少一个缺失区域,在所述缺失区域处, 所述第一导体层未覆盖所述电介质层,所述解耦器适于在使用中使电磁 场在所述第一导体层的所述缺失区域附近被增强。
2.一种用于电子器件的辐射解耦器,其用于使辐射与导电表面解 耦,所述解耦器包括与至少一个电介质层接触的至少一个第一导体层, 其中,所述至少一个第一导体层具有至少一个缺失区域,在所述缺失区 域处,所述第一导体层未覆盖所述电介质层,所述解耦器适于在使用中 使电磁场在所述第一导体层的所述缺失区域附近被增强。
3.根据权利要求1或权利要求2所述的解耦器,其中,所述第二 导体层至少具有与所述第一导体层相同的长度。
4.根据前述权利要求中的任何一项所述的解耦器,其中,所述电 子器件为RF标签。
5.根据前述权利要求中的任何一项所述的解耦器,其中,所述解 耦器的厚度小于λ/4n,其中,n是所述电介质的折射率。
6.根据权利要求5所述的解耦器,其中,所述解耦器的厚度小于 λ/10。
7.根据权利要求6所述的解耦器,其中,所述解耦器的厚度小于 λ/300。
8.根据权利要求7所述的解耦器,其中,所述解耦器的厚度小于 λ/1000。
9.根据前述权利要求中的任何一项所述的解耦器,其中,由G≈ λ/2n确定所述第一导体层的至少一个边缘与所述缺失区域之间的间隔 G,其中,n是所述电介质的折射率,λ是所述解耦器的操作的预期波 长。
10.根据前述权利要求中的任何一项所述的解耦器,还包括与第二 电介质层相邻的第三导体层,其中,所述第三导体层具有至少一个缺失 区域,在所述缺失区域处,所述第三导体层未覆盖所述第二电介质层,并 且其中,所述第二电介质层位于所述第三导体层和所述第二导体层之间。
11.根据权利要求10所述的解耦器,其中,所述第一导体层的长 度不同于所述第三导体层的长度。
12.根据前述权利要求中的任何一项所述的解耦器,其中,在所述 第一导体层内存在多个缺失区域。
13.根据权利要求12所述的解耦器,其中,所述多个缺失区域实 质上是周期性的。
14.根据前述权利要求中的任何一项所述的解耦器,其中,所述缺 失区域为狭缝结构。
15.根据前述权利要求中的任何一项所述的解耦器,其中,所述第 一导体层的至少一个缺失区域将所述第一导体层划分为至少两个岛。
16.根据权利要求15所述的解耦器,其中,所述岛中的至少一个 具有长度G≈λ/2n。
17.根据权利要求15所述的解耦器,其中,所述第一导体层包括 由两个相交的正交狭缝分离的至少4个岛。
18.根据权利要求14所述的解耦器,其中,存在至少两个基本平 行的狭缝。
19.根据权利要求18所述的解耦器,其中,由G≈λ/2n确定所述 的至少两个狭缝之间的间隔,其中,n是所述电介质的折射率,λ是所 述解耦器的操作的预期波长
20.根据权利要求1到14中的任何一项所述的解耦器,其中,所 述缺失区域包括三个或更多狭缝,所述狭缝相交以形成具有n条边的多 边形,其中,n是大于等于3的整数。
21.根据权利要求14到20中的任何一项所述的解耦器,其中,所 述狭缝宽度小于500微米。
22.根据权利要求21所述的解耦器,其中,所述狭缝宽度小于150 微米。
23.根据权利要求22所述的解耦器,其中,所述狭缝宽度小于50 微米。
24.根据前述权利要求中的任何一项所述的解耦器,其中,所述电 介质层由塑料、聚合物、陶瓷、玻璃、纸板、波纹纸板、纸或充裕的空 隙形成。
25.根据前述权利要求中的任何一项所述的解耦器,其中,能够有 控制地改变所述电介质层的折射率。
26.根据权利要求25所述的解耦器,还包括折射率控制器
27.根据前述权利要求中的任何一项所述的解耦器,其中,所述 RF标签位于所述第一导体层的缺失区域的附近,并且与所述第一导体 层电隔离
28.根据权利要求1到26中的任何一项所述的解耦器,其中,使 所述RF标签与所述第一导体层和所述第二导体层电隔离,并且所述RF 标签位于所述电介质层上,至少部分位于所述电介质层内,或者位于所 述电介质层的边缘。
29.根据权利要求27或28所述的解耦器,其中,所述RF标签为 低Q RF标签。
30.根据权利要求27所述的解耦器,其中,所述缺失区域出现在 在所述解耦器内形成的驻波波腹处。
31.根据权利要求17所述的解耦器,其中,所述RF标签基本位于 所述相交的正交狭缝的交叉点处,并且与所述第一导体层电隔离。
32.根据权利要求1到16中的任何一项所述的解耦器,其中,所 述RF标签的天线的主轴基本上垂直于所述第一导体层的至少一个边 缘。
33.根据权利要求27所述的解耦器,其中,所述RF标签在所述解 耦器的表面之上与所述表面相隔小于2000微米的距离。
34.根据权利要求33所述的解耦器,其中,所述非导电间隔体位 于所述解耦器和所述RF标签之间。
35.根据权利要求34所述的解耦器,其中,所述间隔体和所述RF 标签的衬底的厚度总共处于10到1000微米的范围内。
36.根据权利要求35所述的解耦器,其中,所述厚度处于175到 800微米的范围内。
37.根据前述权利要求中的任何一项所述的解耦器,包括位于所述 解耦器和/或所述RF标签的部分、全部或者基本全部上的保护外壳
38.根据前述权利要求中的任何一项所述的解耦器,其中,所述解 耦器适于使安装于其上的电子器件与某种表面基本解耦,所述表面为导 电材料、包括高液体含量的材料或者形成了流体盛纳装置的部分的表 面。
39.根据权利要求38所述的解耦器,其中,所述导电材料为、 金属或金属合金
40.根据权利要求38所述的解耦器,其中,包括高液体含量的材 料为纤维素材料、林材或天然生成的材料。
41.根据权利要求38所述的解耦器,其中,所述盛纳装置为食品、 饮料或化学品容器。
42.一种用于使RF标签与表面解耦的解耦器,其包括夹在第一导 体层和第二导体层之间的电介质层,其中,将所述解耦器的谐振频率选 择为与所述RF标签和/或RF询问源的谐振频率基本匹配,并且其中, 所述第一导体层的至少一个边缘未延伸至所述电介质层的边缘,所述第 一导体层的所述边缘与所述电介质层之间的缝隙小于所述谐振频率上 的EM辐射的波长。
43.一种用于使RF标签与导电表面解耦的解耦器,其包括与至少 一个电介质层表面接触的至少一个导体层,其中,将所述解耦器的谐振 频率选择为与所述RF标签和/或RF询问源的谐振频率基本匹配,并且 其中,所述第一导体层的至少一个边缘未延伸至所述电介质层的边缘, 所述第一导体层的所述边缘与所述电介质层之间的缝隙小于所述谐振 频率上的EM辐射的波长。
44.根据权利要求2所述的解耦器,还包括用于使所述解耦器附着 至所述表面,从而使所述电介质层与所述导电表面相邻的装置。
45.一种包括至少一个根据前述权利要求中的任何一项所述的解耦 器的粘合带。
46.一种包括至少一个根据权利要求1到44中的任何一项所述的 解耦器或根据权利要求45所述的粘合带的物体或容器。
47.根据权利要求46所述的物体或容器,其中,所述至少一个RF 标签位于所述解耦器上。
48.根据权利要求47所述的物体或容器,其中,所述物体或容器 的至少一个表面呈单曲面或双曲面。
49.一种金属物体或容器,其中,所述容器的表面的部分在根据权 利要求2所述的解耦器中被覆盖。
50.根据权利要求49所述的金属物体或容器,其中,至少一个RF 标签位于所述解耦器上。
51.根据权利要求47所述的物体或容器,包括所述物体或容器的 表面内的凹陷部分,所述凹陷包括根据权利要求1到37中的任何一项 所述的解耦器和位于所述解耦器上的至少一个RF标签,以及任选的包 封所述解耦器和RF标签的保护层,从而使所述解耦器和RF标签至少与 所述物体或容器的表面平齐。
52.根据权利要求50所述的金属物体或容器,包括所述物体或容 器的表面内的凹陷部分,所述凹陷包括根据权利要求1到37中的任何 一项所述的其第一导体层与所述表面电隔离的解耦器和位于所述解耦 器上的至少一个RF标签,以及任选的包封所述解耦器和RF标签的保护 层,从而使所述解耦器和RF标签至少与所述物体或容器的表面平齐。
53.一种制作具有波纹纸板电介质芯的纸板解耦器的方法,其包括 的步骤有:将第一导体层放在第一纸板层上,将第二导体层放在第二纸 板层上,将所述第一和第二纸板层放在一起,并使波纹纸板嵌片与其邻 接,从而使覆盖所述第二导体层的第一纸板层上的第一导体层上存在至 少一个缺失区域。
54.根据权利要求53所述的方法,其中,所述第一导体层位于与 所述波纹纸板嵌片相邻的所述第一纸板层的内表面上,并且/或者,所述 第二导体层位于与所述波纹纸板嵌片相邻的所述第二纸板层的内表面 上。
55.一种跟踪物体或容器的方法,其包括的步骤有:将根据权利要 求1所述的解耦器和至少一个RF标签加到所述物体或容器的表面的部 分上,采用RF辐射询问所述至少一个RF标签,探测来自所述至少一个 RF标签的响应。
56.根据权利要求3所述的解耦器,其中,所述电介质层、第一导 体层和第二导体层基本具有相同的长度,其中,通过λ≈2nG确定所有 的三个层的所述长度G,其中,使RF标签位于基本与所述解耦器的主 轴所在的平面垂直的板的边缘处,并且其中,使所述RF标签与所述第 一和第二导体层电隔离,其中,n是所述电介质的折射率,λ是所述解 耦器的操作的预期波长。
57.根据权利要求56所述的解耦器,其中,所述解耦器是双面金 属包层印刷电路板。
58.根据权利要求1到37中的任何一项所述的解耦器,其中,所 述缺失区域基本上与所述解耦器的边缘中的至少一个不平行。
59.根据权利要求1到37中的任何一项所述的解耦器,其中,所 述第一导体层的缺失区域的至少一个边缘为非直线图案。
60.根据权利要求59所述的解耦器,其中,所述第一导体层的缺 失区域包括至少一个环形图案。
61.根据权利要求60所述的解耦器,其中,所述环形图案是处于 所述第一导体层中的环形狭缝。
62.根据权利要求1到37中的任何一项所述的解耦器,其中,所 述电介质层至少部分由物品的包装材料或加标签材料形成。
63.根据权利要求62所述的解耦器,其中,所述包装材料或加标 签材料是天然的或人造的纤维、塑料、纤维素、玻璃、纸板、波纹纸板 或陶瓷。
64.一种适于在根据权利要求1到37中的任何一项所述的解耦器 上使用的低Q RF标签,其中,所述天线具有基本上小于2cm的主要尺 寸。
65.根据权利要求64所述的低Q RF标签,其中,所述天线具有基 本上小于1cm的主要尺寸。
66.根据权利要求65所述的安装在根据权利要求1到37中的任何 一项所述的解耦器上的低Q RF标签,其中,存在位于所述低Q RF标签 和所述解耦器之间的间隔体。
67.根据权利要求66所述的低Q RF标签,其中,所述间隔体和所 述低Q RF标签的总共的厚度处于175到800微米的范围内。
68.一种包括带有任选的间隔体的RF标签或低Q RF标签和根据权 利要求1到37中的任何一项所述的解耦器的零件套件。
69.一种表面探测或识别方法,其包括的步骤有:
i)将包括低Q RF标签的非导电表面与位于所述低Q RF标签的上 表面上的任选间隔体放在一起,
ii)使所述表面与根据权利要求1到37中的任何一项所述的解耦器 具有临近关系,
iii)询问所述低Q RF标签,其中,只有在所述低Q RF标签紧靠所 述解耦器时,才能读取所述低Q RF标签。
70.一种形成适于表面探测或识别的解耦器的方法,其包括的步骤 有:
i)提供包括RF标签或低Q RF标签的非导电表面,在所述RF标签 的上表面上具有任选的间隔体,并提供与至少一个电介质层的部分或基 本全部接触的至少一个第一导体层,其中,所述至少一个第一导体层具 有至少一个缺失区域,在所述缺失区域处,所述第一导体层未覆盖所述 电介质层,
ii)将步骤i)的所述表面与第二导体层或导电表面放到一起,以形 成根据权利要求1到37中的任何一项所述的解耦器。
71.一种用于RF标签的单岛解耦器,其用于使所述器件与表面解 耦,所述单岛解耦器包括夹在至少一个第一导体层和至少一个第二导体 层之间的至少一个电介质层,其中,将所述第一导体层调谐至询问辐射 的谐振频率,其中,通过λ≈2nG确定所述第一导体层的所述长度G, 其中,所述至少一个第一导体层具有处于至少一个边缘处的一个缺失区 域,在所述缺失区域处,所述第一导体层不覆盖所述电介质层,其中, 与所述第一导体层电隔离的RF标签位于所述第一导体层的所述缺失区 域的附近。
72.一种用于RF标签的单岛解耦器,其用于使所述器件与表面解 耦,所述单岛解耦器包括夹在至少一个第一导体层和至少一个第二导体 层之间的至少一个电介质层,其中,将所述第一和第二导体层独立调谐 至询问辐射的谐振频率,其中,通过λ≈2nG确定所述导体层的所述长 度G,其中,与所述第一和第二导体层电隔离的RF标签位于所述电介 质层上的缺失区域的附近。
73.一种用于RF标签的单岛解耦器,其用于使所述器件与表面解 耦,所述单岛解耦器包括夹在至少一个第一导体层和至少一个第二导体 层之间的至少一个电介质层,其中,将所述第一导体层调谐至第一询问 辐射的谐振频率,将所述第二导体层调谐至第二询问辐射的谐振频率, 其中,通过λ≈2nG确定所述第一导体层和第二导体层的所述长度G, 其中,所述第一和第二导体层具有处于至少一个边缘处的一个缺失区 域,从而使所述第一导体层的缺失区域不覆盖所述电介质层或所述第二 导体层上的缺失区域,其中,电隔离的RF标签位于所述第一导体层的 所述缺失区域的附近,并且任选有另一RF标签位于所述第二导体层的 所述缺失区域的附近。
74.在附图和/或说明书中充分定义的使用、产品和方法。

说明书全文

技术领域

发明涉及电磁辐射隔离或衰减装置领域,更具体而言,涉及将能 量耦合到RF(射频)标签内的领域。本发明允许使RF标签与降低标签 性能的表面,例如金属表面解耦(即隔离)。本发明涉及任何RF标签, 尤其是依赖传播波相互作用(与磁标签所表现出的电感耦合相对照)的 RF标签,因而我们的优选实施例涉及对长距离系统标签(例如,UHF 范围和微波范围标签)的应用。

背景技术

RF标签广泛应用于物品的识别和跟踪,尤其是商店或仓库环境下 的物品的识别和跟踪。就这样的标签而言,通常遇到的一项缺点是,如 果直接放置在金属表面上(或者放置在与之相距几毫米的范围内),那 么所述标签的读取范围就会降至无法接受的平,在更典型的情况下, 将无法读取或询问所述标签。这是因为传播波RF标签采用内部天线接 收入射辐射:天线的尺寸和几何形状决定着其谐振频率,并由此左右所 述标签的工作频率(对于UHF(超高频)范围标签而言通常为866MHz 或915MHz,对于微波范围标签而言通常为2.4-2.5GHz或5.8GHz)。在 将标签放在金属表面附近或者使之与金属表面直接接触时,所述标签的 导电天线与所述表面相互作用,因而劣化或者在更典型的情况下消除了 其谐振特性。因此,采用UHF RF标签很难实现对盒子或箱子等金属物 品的跟踪,因而必须采用诸如GPS的其他更为昂贵的定位系统。
在应用于与RF(射频)电磁波相互作用的其他表面,例如,某些 类型的玻璃以及具有相当高的含水量的表面(例子包括具有高含水量或 高树液含量的某些类型的林材)时,UHF RFID标签也面临着类似的问 题。在为含有/容纳水的材料,例如,水瓶、饮料罐或人体等添加标签时, 也会遇到问题。
解决这一问题的一种方法是在RF标签和所述表面之间放置泡沫间 隔体,以防止天线和所述表面之间的相互作用。就当前可用的系统而言, 所述泡沫间隔体通常必须至少为10-15mm厚,才能真正地使所述RF标 签与所述表面间隔足够的距离。显然,具有这一厚度的间隔体对于很多 种应用来说是不切实际的,并且易于受到无意中的碰撞和损坏。
其他方法涉及提供独特构图的天线,所述天线被设计为在特定环境 下与特定的RF标签阻抗匹配。例如,Avery Dennison的国际专利申请 WO 2004/093249、WO 2004/093246和WO 2004/093242尝试采用具有携 带补偿元件的天线的标签解决这一问题。在考虑表面影响的情况下设计 所述天线,并对其进行调谐,以适应特定环境或一定范围内的可能的环 境。这一方案不需要大间隔体,但是需要相对复杂的天线设计,所述天 线设计必须是阻抗匹配的,因而对于每一标签是不同的,因此增加了制 造的成本和复杂性。

发明内容

因此,本发明的目的在于提供一种起着电磁辐射解耦器材料的作用 的RF标签的固定件,其至少能够缓解某些与现有技术系统相关的问题, 即,厚度、尺寸和灵活性方面的问题。
根据本发明的第一方面,提供了一种用于电子器件的辐射解耦器, 所述解耦器包括夹在至少一个第一导体层和至少一个第二导体层之间 的至少一个电介质层,其中,所述至少一个第一导体层具有至少一个缺 失区域,在所述缺失区域处,所述第一导体层未覆盖所述电介质层,所 述解耦器适于在使用中使电磁场在所述第一导体层的所述缺失区域附 近受到增强。
所述第二导体层的长度优选是至少与所述第一导体层的长度相同 的长度。更优选地,所述第二导体层长于所述第一导体层。
根据本发明的另一方面,提供了一种用于RF标签的辐射解耦器, 其用于在λmin到λmax的波长范围内使辐射与表面解耦,所述解耦器包 括夹在第一和第二导体层之间的电介质层,其中,所述第一导体层包括 通过至少一个具有亚波长尺寸的开口分隔的两个或更多岛,其中,将所 述解耦器的谐振频率选择为与所述RF标签和/或RF读取器的谐振频率 基本匹配。所述开口为空隙或者所述第一导体层材料的缺失区域。
两个或更多岛之间的彻底的电隔离并不是本发明的必要特征。所述 第一导体层上的岛可以是基本与相邻的导电材料区域隔离的导电材料 区域。所述的两个或更多岛优选相互电隔离。
所述电子器件或RF标签优选基本位于所述缺失区域之上。还可以 使电磁场在电介质芯层的某些边缘处得到增强,因此还可以方便地使所 述电子器件位于表现出了增强的电场的电介质芯层的至少一个边缘上。
至少一个具有亚波长尺寸的缺失区域是指所述缺失区域沿至少一 个尺寸小于λmin。
可以将RF标签设计为在任何频率下工作,例如,所述频率处于 100MHz到600GHz的范围内。在优选实施例中,所述RF标签为UHF (超高频)标签,例如,具有芯片和天线并在866MHz、915MHz或 954MHz上工作的标签,或者在2.4-2.5GHz或5.8GHz上工作的微波范 围标签。
所述电子器件的工作波长优选与所述解耦器的基波谐振频率基本 匹配,更优选地,所述解耦器可以在λmin到λmax的范围内为所述电子 器件提供增大的读取范围,因而所述电子器件的工作波长优选处于λmin 到λmax的范围内。
应当注意,本文中所提及的波长都是指真空波长,除非另作说明。
所述缺失区域可以是小的分立的十字形或L形,但是更方便地可以 是狭缝宽度小于λmin的狭缝。狭缝可以是导体层材料中的任何直线或曲 线沟道、槽或空隙。可以任选采用非导电材料或其他电介质芯层材料填 充所述狭缝。
本发明提供了一种起着辐射解耦器件的作用的多层结构。第一和第 二导体层夹着电介质芯。在第一导体层含有通过缺失区域或狭缝分离的 至少两个岛时,所述一个或多个缺失区域为亚波长缺失区域(即,沿至 少一个尺寸小于λ)或者更优选为亚波长宽度狭缝,其将所述电介质芯 暴露至空气。方便地,在缺失区域出现在解耦器的周围以形成单岛时, 或者在电介质芯的至少一个边缘形成了所述缺失区域时,所述缺失区域 的宽度不必满足亚波长。
应当注意导体层未必一定要与电介质芯层直接接触。例如,可以存 在薄的粘合剂层或其他非导电材料层将其隔开。
可以采用在感兴趣的电磁波长上具有金属或相反的导电响应的任 何材料作为相应的导体层内的导电材料。适当的材料的例子为金属、金 属合金、金属复合材料。这样的导电材料的厚度必须满足使其相对 于所采用的电磁辐射的频率至少部分不透明(其由阻抗失配和趋肤深度 计算二者确定,所述计算是本领域技术人员公知的)。所述导体层材料 的厚度可以大于0.10微米,所述厚度优选处于0.25到5微米的范围内, 更优选处于1到2微米的范围内。如果希望,可以使该厚度增大到超过 5微米,由其是在需要这样做来确保所选择的导电材料对目标波长提供 了至少部分不透明的阻挡的情况下。但是,任何厚度的显著提高都可能 影响柔软性并提高造价。显然,对第二导体层没有最大厚度要求。方便 地,可以从与第一导体层相同的范围内选择第二导体层的厚度。可能希 望通过这样做来保持柔软性。
解耦器结构的电介质芯和第一导体层的厚度之和可以小于该结构 的总厚度中的四分之一波长,因此与现有技术系统相比更薄、更轻。电 介质层的选择能够使解耦器变得柔软,从而能够将其施加到非平面表面 或曲面表面上。方便地,所述解耦器可以不是平面的,其可以采取非平 面几何形状或曲面几何形状的形式。
本发明的上述方面提供了两个导体层来形成解耦器。但是,在将所 述材料直接施加到金属表面(例如,汽车、集装箱、船只、机身或滚笼 (roll cage))上,或者使所述材料形成所述金属表面的组成部分的情 况下,只需要第一导体层和电介质芯层,因为一旦所述材料形成了第一 导体层,并将电介质芯施加到所述金属结构上,那么所述金属结构自身 将起着第二导体层的作用。
因此,本发明的另一方面提供了一种用于电子器件的辐射解耦器, 其用于使辐射与导电表面解耦,所述解耦器包括与至少一个电介质层接 触的至少一个第一导体层,其中,所述至少一个第一导体层具有至少一 个缺失区域,在所述缺失区域处,所述第一导体层未覆盖所述电介质层, 所述解耦器适于在使用中使电磁场在所述第一导体层的所述缺失区域 附近受到增强。所述电子器件优选为RF标签。
相应地,本发明的另一方面提供了一种用于RF标签的辐射解耦器, 其用于在λmin到λmax的范围内使辐射与金属表面解耦,所述辐射解耦 器包括与电介质层接触的导体层,其中,所述导体层包括通过至少一个 具有亚波长尺寸的开口分离的两个或更多的岛,其中,将所述解耦器的 谐振频率选择为与RF标签和/或RF读取系统的谐振频率基本匹配。
在某些应用中,解耦器的尺寸或覆盖面积不重要,例如,在处于运 销容器上时。但是,越来越多的批量生成和成批供货的消费品需要通过 RF标签装置跟踪。因此,非常希望得到一种具有较小覆盖面积的解耦 器,因此提供了一种用于RF标签的单岛解耦器,其用于在λmin到λmax 的范围内使辐射与表面解耦,所述解耦器包括夹在第一和第二导体层之 间的电介质层,其中,所述第一导体层包括基本位于所述解耦器上对应 于增强的电磁场的点处的至少一个缺失区域,其中,诸如收发器的电子 器件基本位于所述缺失区域上,此外,将所述解耦器的谐振频率选择为 与所述RF标签和/或RF询问源的谐振频率基本匹配。
可以通过λ≈2nG确定第一导体层的长度G,其中,n是电介质的 折射率,λ是解耦器的预期工作波长。显然,这是针对第一谐波(即基 波)频率的,但是也可以采用其他谐振频率。
方便地,可能希望提供一种解耦器,其具有的长度G间隔对应于除 了基波谐振频率以外的谐波频率。因此,可以通过λ≈(2nG)/N表示长 度G,其中,N是整数(N=1表示基波)。在大多数情况下,希望采用 基波频率,因为其通常能够提供最强的响应。
此外,显然,在电介质芯层由两种或更多种成分的复合材料形成时, 可以将折射率n看作是处于第一和第二导体层之间的所有组成部分的相 对折射率。在分隔两个或更多岛的缺失区域或狭缝的宽度在其尺寸上大 于亚波长时,采用约等号,因为所述公式存在偏差。
对于可以采用较大面积的解耦器,即,文中定义的2岛或更多岛的 解耦器的情况下;缺失区域的这些实例可以采取分立的十字形或L形的 形式,或者更方便地采取狭缝的形式。狭缝可以是直线缺失区域,所述 缺失区域可以部分、全部或基本全部跨越解耦器的宽度和/或长度延伸。 在狭缝整个跨越解耦器延伸时,其可以形成两个或更多电隔离岛(即, 在两个区域之间存在非导电路径,尽管存在共同经受的电磁场)。但是, 如果狭缝不是充分延伸,即部分或基本全部跨越解耦器的表面延伸,那 么所述岛可能在狭缝的末端电连接。两个或更多岛之间的彻底的电隔离 并不是本发明的必要特征。
在本发明的一个实施例中,提供了一种宽带解耦器,所述解耦器是 可以在一个以上的谐振频率上工作的解耦器。在这一实施例中,所述解 耦器还包括与第二电介质层相邻的第三导体层,其中,所述第三导体层 具有至少一个缺失区域,在所述缺失区域处,所述第三导体层不覆盖所 述第二电介质,并且其中,所述第二电介质层位于所述第三导体层和所 述第二导体层之间。为了获得宽带解耦器,所述第一导体层优选与所述 第三导体层具有不同的长度。可以将这样的宽带解耦器设置为(例如) 在RF标签的公共工作频率上工作。因而,可以将若干个不同的RF标签 中的任何一个安装在解耦器上的适当点上,并使其正常工作。此外,在 使用当中,每者具有不同工作频率的两个不同的电子器件,例如RF标 签可以位于适当调谐的第一和第三导体层上。可以使每一标签与表面影 响解耦,并且可以在正确的工作频率上单独读取每一标签。如果需要, 可以进一步采用导体层和电介质层形成能够在多个不同的波长上工作 的解耦器。
在备选设置中,可以提供既位于第二导体层的上表面上又位于其下 表面上的至少一个第一导体层和至少一个电介质层,换言之,第二导体 层的两面均设有电介质层并进一步设有第一导体层。将第一导体层安装 到第二导体层的相对的两面上。所述第一导体层可以具有相同或不同的 长度。
在一个实施例中,至少一个缺失区域或狭缝可以基本上与解耦器的 边缘中的至少一个不平行。这将提供一种具有带有多个不同的周期长度 的第一导体层的解耦器,引起其能够在多个波长上工作。因此,采用非 直线缺失区域或非直线狭缝,或者采用呈直线但与解耦器的一个或多个 边缘都不平行的缺失区域或狭缝能够实现扩大的工作波长范围。可以将 其与上文定义的多层宽带解耦器实施例结合使用。采用非直线狭缝或缺 失区域也能够获得相同的效果。
在使用中,可以使解耦器位于任何表面上,并且与不采用解耦器的 情况相比,所述解耦器能够提供优势,在下文中将对其予以说明。显然 可以将所述解耦器用在表面上,否则,所述表面在材料内部或者基本位 于材料表面上的电相互作用的影响下将对RF标签自身的天线的工作造 成不利影响。
所述解耦器将允许正确地位于第一导体层的附近的RF标签在对入 射RF辐射不反射或反射的表面上或紧靠该表面处工作,因为解耦器实 际上起着对电磁辐射的进一步传播加以阻挡的作用。在对入射辐射存在 反射或者对入射辐射存在影响从而不利于电子装置对其的接收的表面 上,本发明的优点是显而易见的。典型地,这样的RF反射表面可以是 导电材料、包括高液体含量的材料或者可以是形成了此类流体的盛纳装 置的部分的表面。已经发现,某些类型的玻璃与RF标签相互作用,因 而还可以将所述解耦器应用到玻璃、石或陶瓷上。
流体盛纳装置可以是使位于表面的一侧的流体与位于所述表面的 另一侧的不同环境隔离的任何阻挡层、隔膜或容器的部分。所述表面的 相反侧可以优选是解耦器所处的外表面;所述盛纳装置优选是容器的部 分,并且可以是食品、饮料或化学品容器。可以将所述解耦器安装在表 面或盛纳装置上,或者所述表面或盛纳装置可以形成解耦器的组成部 分,例如,非导电表面或非导电盛纳装置可以部分地包括电介质层。或 者,对于导电表面或导电盛纳装置而言,所述表面或容器可以部分地形 成所述第二导体层。
典型的RF反射导电材料可以是碳、金属、金属合金或金属复合材 料。所述RF反射材料还可以是液体,或者诸如纤维素材料的包括高液 体含量的材料,例如,某些木材、卡片、纸或任何其他可以具有高含湿 量的天然生成的材料。
因此,可以将所述解耦器加到处于具有高湿度的环境或区域内的表 面上、潮湿表面上或者部分或全部浸没在流体表面下的表面上,例如, 所述流体可以是诸如水的液体。因此,所述解耦器和RF标签可以借助 适当的封装位于饮料或食品容器的外侧或内侧。
有利地,发现四岛解耦器能够使位于其上的RF标签提供在所述解 耦器和RF标签在彻底浸没在水箱内时仍然可读取的标签。不位于解耦 器上的RF标签在浸没时将无法提供读取范围。其在诸如水下施工或油 气施工的应用中尤为有利,例如,可以利用其进行管道识别,从而通过 RF系统容易地识别部件。显然,可以在存在RF反射环境并且妨碍目视 识别或者无法进行目视识别的系统中应用所述解耦器。
所述表面可以形成流体盛纳装置的组成部分。已知,诸如水的液体 与RF辐射相干扰因而将对处于其附近的RF标签的性能造成不利影响。 因此,所述表面可以是食品、饮料或化学品容器的表面。
可以在诸如水瓶、饮料罐、食品容器或人体等的含有/容纳水的材料 构成的表面上采用解耦器。此外,可以将加标签系统直接或间接应用于 人或动物,以跟踪其在特定区域内的行踪或移动,具体的例子可以是人 尤其是易受伤害的人,例如,医院环境下的儿童或婴儿。另一种用法是 采用光盘(CD和DVD)的金属层作为第二导体层,采用光盘的电介质 衬底作为电介质芯层,因而第一导体层可以位于衬底上(远离所述金属 层一侧)以形成完整的解耦器。之后,可以使低Q RF标签位于第一导 体层的缺失区域的附近。
已经发现,在放置到诸如抗静电袋的金属涂覆袋内时,所述解耦器 和RF标签能够起作用。这将有利地使计算机部件等在不从保护袋中取 出的情况下得到跟踪。可以应用解耦器的环境的其他例子为在 内,在混凝土结构内以及在冰冻的动物畜体内。
可以将解耦器应用到平直的或基本平直的表面上,或者应用到呈单 曲或双曲面的平面上,例如,柱面或球面上。因此,本发明促进了带有 RF标签而不是条型码的食品或饮料容器的制造。可以将所述解耦器应 用于柱形容器(例如,食品和饮料罐),从而利用RF ID跟踪技术确定 它们在受控环境中的所在之处。
显然,用于RF标签的解耦器的使用不限于跟踪物品,可以将其用 于任何适于使用RF标签的用途,例如,售货点、智能卡、车辆识别、 收费等。
下述讨论适用于本发明的两个方面,即,解耦器设有分立的第二导 体层,或者施加了RF标签的物品的表面起着解耦器的第二导体层的作 用。
不对本发明的范围构成限制的针对工作模式的一种解释是RF标签 是谐振电路,并且可以将解耦器看作不同的谐振电路。如果将RF标签 电连接到解耦器,即,如果解耦器起着天线的作用,那么由于两个系统 一般不存在阻抗匹配,因而能量转移非常差。但是,如果没有电接触, 则不存在阻抗问题。所述解耦器在标签的附近起着与表面无关的场增强 器的作用,因而能量被耦合到所陷获的驻波内。只要所述标签位于高电 场区域内,那么所述标签就会有效地耦合至辐射本身。因此,本发明的 解耦器能够与任何在特定频率下工作的标签设计协同工作,而不像现有 技术调谐天线系统那样需要针对不同标签的单独设计。
还可以设想其他会聚或引导能量以建立高能量区域的手段。
方便地,解耦器的厚度(即,通常是第一导体层和电介质芯层的厚 度之和)远小于入射辐射的四分之一波长。例如,在所述厚度小于等于 1/10,优选小于1/100,更优选小于1/300乃至千分之几的情况下,辐射 将与解耦器发生相互作用,还可能希望采用入射辐射的波长小于1/3000 乃至1/7000。
例如,866MHz的频率对应于真空中的346mm的波长,因而,50 微米PETG解耦器将构成厚度为波长的1/7000左右的器件。典型地,现 有技术天线系统依赖几毫米的密度来实现一定程度的表面无关性。
如上所述,所述解耦器的第一导体层可以包括一个或多个狭缝或缺 失区域,例如,具有2个或更多岛的解耦器。
所述狭缝在第一导体层上的布置将影响能够与所述结构相互作用 的辐射的一个或多个波长。所述狭缝布置优选是周期性的。
在一个实施例中,所述狭缝布置包括平行狭缝。已经确定,借助平 行狭缝布置,具有波长λ的辐射可以根据下述关系受到解耦:
λN≈2nG/N
其中,λN是处于发生最大解耦的λmin到λmax的范围内的波长,n 是芯部的折射率,G是狭缝间隔,N是整数(≥1)。我们的优选实施 例利用了N=1的情况,其代表第一谐波(即,基波)模式。注意:对于 由两个或更多岛构成的解耦器而言,狭缝可以窄于波长。还假设,所述 辐射线偏振,从而使电场矢量的取向垂直于狭缝的轴(即,其长度): 根据针对这一研究领域的典型定义,如果入射面平行于狭缝,那么所述 辐射必须是TE-(s-)偏振的(电场矢量垂直于入射面);如果入射面 垂直于狭缝,那么所述辐射必须是TM-(p-)偏振的(电场矢量处于入 射面内)。对于电磁学领域的任何技术人员而言,显然所述器件还可以 与具有椭圆或圆偏振的电磁辐射协同工作,因为所述电磁辐射表现出了 适当对准的电场分量。
从上述关系可以看出,所解耦的辐射的波长与狭缝间隔G和电介质 芯层的折射率线性相关。改变这些参数中的任一个将能够实现通过所述 结构对特定波长解耦。对于单岛解耦器而言,上述等式仍然适用,其中, G表示第一导体层的长度。
还可以看出,还可以在对应于不同的N值的若干个波长处对辐射解 耦。所述频率中的每者包括作为文中使用的术语的解耦器的谐振频率。 但是,所述标签的谐振频率优选与解耦器的第一谐振频率,即N=1时的 谐振频率匹配。显然,也可以采用其他谐波频率提供解耦。
上述等式是近似式,其在电介质芯层的厚度等于狭缝的宽度时,以 及在这一厚度值大于1毫米左右时最为精确。如果狭缝宽度缩小,将存 在向更长的波长的渐进谐振漂移(确切的漂移与狭缝宽度和芯厚度的比 值相关)。还存在这样的一般事实,即,电介质芯层的厚度的增大,不 管是均匀增大还是分立区域内的增大都将趋向于增大谐振波长,反之亦 然。
还应当注意,如果使辐射沿法向入射入射到所述结构上,那么只有 N的奇数值才能引起谐振。
所述解耦器可以包括通过一个缺失区域分立的至少两个金属岛。在 一个实施例中,所述RF标签可以跨越所述缺失区域,从而使标签上的 芯片基本按照其中心设置在所述缺失区域上,并使天线位于至少两个金 属岛上。所述岛可以是任何几何形状,但所述岛优选为方形或矩形。但 是,利用其他多边形,例如三形、六角形或圆形岛可以获得关于(例 如)偏振不敏感性的优点。
可以根据所采用的RF标签的工作波长选择金属岛的长度(例如, 前述等式中的G)。将与芯部材料的折射率相乘的岛长度选择为约等于 RF标签的工作波长的一半。一些市面可得的RF标签,例如Alien Technology制造的标签,所携带的天线具有可与其工作波长相比拟的长 度(所述波长的1/3或更大)。这为典型解耦器的长度设置了下限,因 为该器件通常便于为标签提供机械支撑(即,解耦器不小于其支撑的标 签往往是方便的)。因而,如下文中定义的,希望找到更小的标签用在 解耦器上。
可以通过所选择的RF标签的尺寸确定导电层金属岛的宽度。仅作 为例子而言,对于平常使用的UHF RF标签而言,所采用的岛的宽度是 标签的宽度的4到5倍。但是,在需要不太突出的解耦器和标签时,可 以降低解耦器的宽度,从而使其至少为芯片和天线的宽度。解耦器宽度 的降低将趋向于缩小RF标签的读取范围,反之亦然。
优选通过选择缺失区域的宽度以及电介质芯部材料的电容率和厚 度二者提供一种谐振频率与RF标签的谐振频率基本相同的解耦器。
通过所述电介质芯,以及在一定程度上通过位于所述电介质芯上的 第一和第二导体层耗散了能量,因此,这些材料的电容率和磁导率是设 计过程中的重要参数。
一种消除对解耦器相对于入射辐射的方位取向的依赖性的方法是 第一导体层优选包括至少一个狭缝的正交集(“二光栅”布局)。其可 以提供降低单狭缝阵列(“单光栅”布局)所表现出的偏振相关效应的 优点,对于单狭缝阵列而言,在任何取向下只能对一个线偏振解耦(即, 电场分量垂直于狭缝方向的偏振状态)。但是,对于本领域技术人员而 言,显然任何能够使入射电场的分量与狭缝垂直交叉的取向都将带来一 定程度的功能性(即,除了狭缝平行于电偏振矢量之外,在任何取向下 都将发生解耦,但是随着样本朝向这一取向旋转,读取范围将极大降 低)。但是,二光栅布局将对两种偏振解耦,因为其对于电偏振矢量的 分量而言总是具有适当对准的狭缝。
在另一方案中,可以存在具有60度的方位分离度的三组狭缝布局 (即,形成三角形图案)。在下文中定义了趋向于无穷的高阶图案,例 如,环形。
还发现,对于“宽”狭缝(即,对于866MHz的辐射而言,狭缝宽 度大于1毫米)而言,解耦波长根据辐射入射到第一导体层的表面上所 处的角度而变化。随着隙缝宽度的缩小,角依赖性的显著性降低。因此, 在优选实施例中,消费小于有待解耦的辐射的波长。
对于对应于电磁波谱中的微波波段或接近所述微波区的波长λ而 言(例如,λ一般处于毫米到米的范围内),典型的狭缝或缺失区域的 宽度小于1000微米,优选小于500微米,更优选小于150微米,并且 还可以小于等于50微米。因此,对于其他波段而言,希望缺失区域可 以小于入射辐射的波长的1/50,更优选小于该波长的1/100。
所述电介质芯层材料可以是任何适当的或通常使用的电介质材料, 但所述电介质芯层的材料优选是非损耗的(即,复电容率和磁导率的虚 部最好为零)。所述电介质芯层可以是第一和第二导体层之间的空隙, 例如,局部真空或者气体,例如,所述气体可以是所述第一和第二导体 层之间的部分或全部空气隙。方便地,采用空隙的芯部可以部分地利用 导体层之间的非导电材料加固,例如,波纹纸板、蜂窝结构或具有高孔 隙率的泡沫。
可以从聚合物中,例如,PET、聚苯乙烯、BOPP、聚碳酸酯以及任 何低损耗RF层压体中选择电介质芯层材料。可以形成电介质芯层的部 分或基本全部的通常使用的容器材料可以是纤维素材料,例如,纸、卡 片、波纹纸板或木材。或者,可以采用某些陶瓷、体或玻璃。
在一个实施例中,被选为在电介质芯层中使用的材料具有能够可控 变化的折射率,以控制有待解耦的辐射的波长。例如,可以采用分散了 液晶的聚合物(PDLC)材料作为芯。如果将解耦器解耦设置为能够跨 越电介质芯层材料施加电压,那么就能够改变其折射率,从而使解耦波 长按照定制的方式移动。由于可以将一个解耦器用于一定的RF标签波 长范围,或者可以对其加以控制以开启和关闭解耦操作,因而这一方案 尤为有利。
此外,如果附着解耦器的物体需要用于不同地点(例如,不同国家) 的不同RF标签,那么具有可调谐折射率的电介质芯层材料将允许对在 不同波长上工作的RF标签采用同一解耦器。或者,可以将所述解耦器 制备成使其具有含有不同的间距长度或周期的不同区域,其可以对通常 使用的RF标签频率/波长解耦,例如所述频率为866MHz、915MHz、2.4 到2.5GHz以及5.8GHz。所述解耦器可以具有包括适于不同谐振频率RF 标签的不同周期的一个或多个区域。
RF标签一般由电连接到必要的天线的芯片构成,所述天线的长度 通常可以与其工作波长相比拟(例如,是该波长的1/3)。本发明人惊 讶地发现,可以将具有小得多的未调谐天线的RF标签(即,通常预计 其无法在UHF波长上有效工作)与根据本发明的解耦器结合使用。通 常具有这样的“矮小”天线(下文称为低Q天线,这是本领域技术人员 所能认识到的)的标签在开放空间内只具有几厘米乃至几毫米的读取范 围。但是,已经令人惊讶地发现,采用这样的安装在本发明的解耦器上 的具有低Q天线的标签可以工作,并且具有有用的读取范围,所述读取 范围接近(乃至超过)不带解耦器的在自由空间内工作的市面可得的优 化RF标签的读取范围。低Q天线的造价更低,并且可以比常规调谐天 线占据更少的表面面积(即,这样的标签的天线长度可以短于通常可能 的天线长度)。因此,在尤为优选的方案中,可以将具有基本降低的天 线面积/长度的RF标签安装到根据本发明的解耦器上。优选地,可以将 低Q RF标签安装到上文定义的单岛解耦器上,以提供具有降低的面积 的解耦器和标签系统,所述系统可以具有基本满足λ≈2nG/N的第一导 体层长度,其中,λ是产生最大吸收的范围λmin到λmax内的波长,n 是电介质的折射率,G是至少一个第一导体层的周期,N是大于等于1 的整数。
RF标签及其必要的天线通常安装在或打印在电介质衬底上,可以 使所述电介质衬底与解耦器的表面直接接触。优选地,可以存在放置在 RF标签和解耦器材料之间的被定义为间隔体的另一电介质材料。在存 在间隔体时,间隔体的长度和宽度尺寸必须至少与RF标签的金属区域 (例如,天线)的尺寸相同。所提供的大多数RF标签已经安装在了其 各自的衬底上,所述衬底因制造者的不同的具有厚度差异。RF标签的 天线一定不能与第一导体层或第二导体层直接电接触。
所述RF标签的金属部分和所述解耦器之间的(总)缝隙(即,间 隔体厚度+RF标签衬底厚度)小于2000微米,优选处于100到1000微 米的范围内,优选处于175到800微米的范围内,更优选处于175到600 微米的范围内。如果采用具有损耗性或者折射率异常高或异常低的间隔 体或标签衬底(即,如果采用除了诸如PET的标准聚合物衬底之外的某 物),那么这些值可能存在差异。类似地,向更高或更低的工作频率漂 移可能影响间隔体厚度。在存在其他装置使RF标签位于距第一导体层 的固定距离处时,可以不需要间隔体。应当认识到,在2000微米之外 还可能在一定程度上存在电场,但是,这一点可能不是特别希望的。
已经表明电场在缺失区域内具有最大值,并且在解耦器平面之上随 着距该平面的距离的增大而呈指数下降。一种不对本发明的范围造成限 制的、对间隔体的作用的解释是在不存在标签的情况下,解耦器按照预 期发生谐振。但是,由于引入了标签,其与解耦器相互作用,并开始干 扰其谐振。随着标签接近解耦器表面,干扰程度增大。最后,干扰程度 变得如此大,以致于不再建立谐振,并由此不再建立与解耦器的操作不 符的区域增强场。因而,间隔体是一种在使标签暴露至最大电场和不对 解耦器造成足以破坏解耦机制的干扰之间折中的手段。因此,显然,任 何RF标签都可以位于上文定义的100到1000微米的总距离处,并提供 非常有用的读取范围。但是,显然,简单的距离测量可以为指定的RF 标签提供距指定解耦器的表面的优选距离,这样可以进一步提高RF标 签的读取范围。
可以通过普通的处理刻划RF标签的金属天线或使其变形。有利地, 可以通过保护外壳部分地覆盖或封装RF标签和解耦器。所述外壳可以 是淀积在RF标签和解耦器的表面上的非导电材料。所述非导电材料可 以只是(例如)通过旋涂技术涂覆的另一电介质材料、诸如PET、PETG UPVC、ABS的淀积材料或者诸如环氧树脂等的任何适当的密封剂。已 经发现,这样的处于250到2000微米的范围内的,乃至高达5000微米 的外壳涂层不会影响RF标签的读取范围。显然,可以根据环境和标签 所需的柔软性选择外壳的厚度。
可以通过任何已知的工艺制造形成解耦器的导体层,例如:对涂覆 金属的电介质表面的蚀刻、光刻、使用诸如碳墨水或高负载墨水的导 电墨水、箔(block foil)的淀积(例如,通过热冲压)、气相淀积(之 后任选进行蚀刻)、粘附的金属箔或者将催化剂墨水与图案转移机制结 合使用以实现加性(additive)无电淀积和任选的电淀积。
相应地,就本发明的另一方面而言,提供了一种形成根据本发明的 解耦器的方法,其包括的步骤有:按照根据本发明的图案采用墨水成分 涂覆电介质材料,其中,所述墨水成分包括适于印刷有待涂覆的衬底的 墨水配方、作为可还原银盐的银和填充剂颗粒,其中,将所述可还原银 盐选择为,在能够还原时,一旦将经涂覆的衬底放到自动催化淀积溶液 内,在催化作用下,金属就会从自动催化淀积溶液中淀积到衬底的涂覆 区域上,并且其中,所述可还原银盐的比例使得所述墨水成分在重量上 含有小于10%的银,任选对所述涂覆区域进行电淀积。方便地,可以采 用诸如未决专利申请No.GB 0422386.3中所公开的墨水和/或方法。
可以通过任何已知的图案转移机制,例如,喷墨、凹板印刷、橡胶 板或丝网印刷技术。可以对所淀积的墨水实施标准的无电淀积技术,以 实现自动催化淀积。可能希望采用电淀积进一步提高无电淀积的金属的 厚度,这一点可以通过卷到卷工艺实现。
例如,金属食品容器可以起着第二导体层的作用,可以将其施加由 电介质材料构成的薄涂层以形成电介质层。之后,可以通过任何已知的 手段在电介质芯层材料上按照预期的解耦器图案淀积第一导体层。可以 任选涂覆另一电介质以形成间隔体材料。RF标签可以位于缺失区域或 开口之上,并且任选具有印刷或涂覆到所述标签和/或解耦器之上的保护 外壳。所述保护外壳可以包括用于所要出售的货品的精致的彩色设计。 可能希望解耦器位于金属食品容器的表面内的凹陷中,从而使最终的解 耦器和RF标签与所述容器的表面平齐。显然,第一导体层必须与金属 食品容器的导电材料电隔离。可以通过确保第一导体层不恰好抵达解耦 器的边缘或者通过采用非导电保护外壳容易地实现这一目的。
在本发明的一个实施例中,可以构造柔性的解耦器。如果在其背面 设置粘合剂,那么就能够将其以胶带或补贴膜的形式施加到任何感兴趣 的表面上。构建非常薄(相对于有待解耦的辐射的波长而言)的解耦器 的能是指能够有效地将其模制成任何表面轮廓。在通过金属表面或向 其施加解耦器的物品提供第二导体层时,可以利用位于电介质层上的粘 合剂将第一导体层和电介质层粘附至所述金属表面。
本发明的另一方面提供了安装在解耦器表面上的RF标签,如下文 所述。
还提供了一种基本与表面无关的RF标签,其包括安装在解耦器上 的RF标签,如上文中所定义的。一种可能的有利的做法是将一个以上 的RF标签安装到所述缺失区域上,例如通过叠置布局。已经表明所述 解耦器可以与Gen 1和Gen 2协议标签协同工作。因此,如果不同的受 体采用不同的协议标签,那么能够将所述标签安装在相同的解耦器上, 任选通过叠置布局将其安装在相同的缺失区域内。显然,RF标签可以 遵守相同的协议,因而可以只是为用户提供不同的识别用途。
就本发明的另一方面而言,提供了一种表面,其中,所述表面的部 分在上文定义的解耦器或与表面无关的RF标签中被局部覆盖、基本覆 盖或完全覆盖。
还提供了一种物体或容器,其包括至少一个上文定义的表面。在一 个实施例中,所述的至少一个表面可以是曲面。在另一优选实施例中, 所述物体或容器可以是诸如滚笼、堆装架的运销容器或者食品或饮料容 器,具体的例子可以是饮料罐或罐头食品。
就本发明的另一方面而言,可以提供一种根据上述实施例中的任何 一个所述的解耦器,其中,所述电介质层可以部分地或者基本全部由非 导电盛纳装置形成。具体地,所述非导电盛纳装置的优选材料可以是天 然或人造纤维、塑料、纤维素、玻璃或陶瓷。在这一设置中,由非导电 材料(例如塑料或卡片)构成的诸如瓶或纸盒的容器可以部分地形成所 述电介质层。因此,可以在所述容器的任一侧上利用上文定义的任何手 段形成第一导体层和第二导体层,从而对所述导体层协同定位,以形成 根据本发明的解耦器。一种可能的方便的做法是采用位于非导电盛纳装 置的一面或两面上的另一电介质材料(即,形成多层电介质芯),以改 善电介质芯的电介质特性。
还可以采用非导电标牌的部分或全部或者有待加标签的物品的覆 层形成解耦器的电介质芯。
具有一个或多个狭缝或缺失区域并且与具有定向天线(即,优先与 具有特定取向的线偏振相互作用的天线)的RF标签结合使用的解耦器 可能只在读取器和安装在解耦器上的标签基本平行时实现大的场增强 效应。可以采用利用圆偏振或椭圆偏振的发射器/接收器系统或者多个不 同对准的天线缓和这一影响。或者,就本发明的另一方面而言,提供了 一种与偏振无关的解耦器,使得RF标签在解耦器上的位置和接下来的 启动与入射辐射的偏振或取向无关。相应地,第一导体层的缺失区域包 括至少一个非直线缺失区域,优选包括基本上为曲线或更优选具有圆形 图案的缺失区域,更优选可以在第一导体层内形成圆形狭缝。也可以采 用三角形、六角形或其他多边形岛形状。
作为本发明的又一方面,提供了一种金属容器,其中,所述容器的 表面的部分在如上文定义的解耦器或与表面无关的RF标签中受到覆 盖。
运销容器(例如,滚笼、托架等)的类型只是用于在运销链中传输 货物的有轮带罩容器的类属名。在所有类型的供销系统中,例如,在超 市、邮局、快递、航空或奶场中均可以找到它们的踪影。显然,有待跟 踪的任何运销容器或货品均可以装有包括文中定义的与表面无关的RF 标签的加标签系统,例如,集装箱、海运货柜、超市手推车或篮子、医 院的床和/或设备、衣物、动物、人、食品和饮料容器。
例如,诸如滚笼的运销容器通常带有标识板,其通常显示条型码或 目视识别特征,即,书写/打印标识手段。如上所述,在标识板上已经安 装了前述采用厚泡沫间隔体的用于RFID的解耦器,但这些器件从板的 表面突出,易于受到撞击,并在无意中从板上脱落。
本发明的另一方面提供了一种诸如滚笼的运销容器,其包括根据本 发明的解耦器或加标签系统。还提供了一种包括凹陷部分的标识板,所 述部分包括上文定义的加标签系统和保护层,以形成基本平齐的标识 板。可以从与上文定义的保护外壳相同的材料范围内选择所述保护层。 在这一实施例中,保护层可以替代对保护外壳的需求。已经发现,这样 的处于250到2000微米的范围内的,乃至高达5000微米的保护层不会 影响RF标签的读取范围。可以涂覆液体,例如,可以通过固化而封装 部件的封装化合物作为所述保护层,或者,可以采用镶到所述标识板内 的膜或薄板作为所述保护层。
优点在于,所述加标签系统(即,解耦器和RF标签)位于所述标 识板的表面的下面,从而为所述部件提供了进一步的保护,例如,避免 了恶劣天气等来自环境的损害以及碰撞、划擦等损害。之后可以将包括 所述加标签系统的标识板直接焊接铆接到所述运销容器或滚笼上。其 提供了一种有用的解决方案,因为解耦器变成了运销容器或滚笼的内在 部分。
标识板可以由任何适当的材料制成,例如,金属及其合金、层压材 料、塑料、橡胶、硅或陶瓷。如果所述板由导电材料制造,那么必须 使解耦器的金属部件(而不是衬底)与所述板电隔离。应当注意,如果 所述板为金属性的,那么所述板可以提供解耦器的衬底层,如先前所述。
另一优点在于,所述包括加标签系统的标识板可以具有所采用的另 一标识手段,例如,常规使用的标识手段,例子包括条型码或目视识别 特征(即,书写/打印识别手段)。其允许将RF跟踪系统逐渐集成到工 作环境内,并允许不同的公司通过不同的跟踪方法监视运销容器。
就本发明的另一方面而言,提供了一种金属物体或容器,其包括位 于所述物体或容器的表面内的凹陷部分,所述凹陷部分包括与所述表面 电隔离的上文定义的解耦器和至少一个位于所述解耦器上的RF标签以 及任选的封装所述解耦器和RF标签的保护层,使所述解耦器和所述RF 标签至少与所述物体或容器的表面平齐。在所述金属物体或容器提供了 第二导体层时,必须将所述解耦器设计为将所述第一导体层电连接到所 述金属物体或容器。例如,通常使用的饮料罐和食品罐可以具有形成于 其表面内的简单的凹陷来容纳解耦器,从而使罐体保持令人愉悦的美 感。零售业中的RFID的优点在于,货品均可以通过读取器受到单遍扫 描,从而降低了将各个货品扫描到销售寄存器的电子点内的负担。采用 凹陷设计的另一优点在于,不能将标签从货品上容易地去掉。这将减少 未加标签的货品出现在购物推车或篮子中的机会。还可以将凹陷解耦器 设计应用到非导电容器或物体中,但是,不需要使第一导体层与容器或 物体电隔离。
还提供了一种跟踪物体或容器的方法,其包括的步骤有:将在上文 中定义的解耦器或加标签系统加到所述物体或容器的表面的部分上,采 用RF辐射询问所述至少一个RF标签,探测来自所述至少一个RF标签 的响应。所述物体或容器可以由上文定义的任何适当的导电材料制造。
可以采用市面可得的双面PCB半成品(即,板的两面都具有导电层 的PCB半成品)制造效率相对较低的解耦器(与前述例子相比)。之后 将该板切割为约等于入射辐射的波长的一半的长度。在这一设置中,可 以将缺失区域看作暴露的电介质。之后,可以将RF标签放在所述板的 侧面的边缘处,从而使所述RF标签与所述板垂直。因此,如果受到限 制的读取范围足够大,就能够通过这一方法提供与金属表面的解耦。
能够在自由空间内读取的市面可得的标签可以具有处于10cm的量 级的天线,因而其可能不适于识别通常在医药、化学等领域的实验室内 出现的很多小的样本。来自UHF标签的有源芯片具有1或2毫米的量级, 因此可以容易地布置到小的容器或物品上。或者,可能希望将RF标签 放到有待加标签的表面或物品的分立的或有限的区域内。即使将询问系 统紧挨着芯片放置,没有天线的UHF芯片也不会起作用。但是,在芯 片和任选的间隔体位于文中定义的解耦器上时,在存在有限的金属连 接,从而将能量耦合至芯片的条件下可以读取芯片,即使所述金属连接 可能只是金属截线。此外,可能不适于将解耦器直接放置在小容器或物 品上。因此,就本发明的另一方面而言,提供了一种表面或物品的探测 或识别方法,其包括的步骤有:
将包括RF标签或低Q RF标签的表面与任选的间隔体放到一起,并 使其接近文中定义的解耦器,
-询问所述RF标签,其中,所述RF标签只有在非常接近所述解耦 器时才能被读取。
在可以将具有优化的尺寸的解耦器(用于与读取装置通信)容易地 采用到小的物体或容器上时,这一点尤为有用。
可能希望RF发射器/读取器系统包括作为组成部分的解耦器。因此, 优点在于,可用采用根据本发明的解耦器成功地询问小的物体,所述物 体的表面上可能只具有容纳带有低Q天线的RF标签的空间。
例如,可以将所述标签和任选的间隔体放到任何有待识别的小的容 器、器皿、表面或套件零件上。可能的例子包括医疗样本、手术设备、 载玻片、小瓶或瓶子,因而在使带有RF标签和任选间隔体的表面紧靠 所述解耦器时,将能够被询问装置读取。
就本发明的另一方面而言,提供了一种低Q标签,其中,所述天线 具有基本上小于2cm的主要尺寸,更优选所述天线具有基本小于1cm 的主要尺寸。
还提供了一种适于与文中定义的解耦器结合使用的低Q RF标签, 其中,所述低Q RF标签任选安装在间隔体上,所述间隔体和所述低Q RF 标签的总共的厚度处于175到800微米的范围内。另一优点在于,可以 方便地采用具有更小的尺寸的单岛解耦器,以提供具有更小的覆盖面积 的加标签系统。
采用低Q RF标签的优点在于,它们显著小于市面可得的RF标签, 后者具有更大的天线。因此,可以将与文中定义的解耦器结合的具有最 小天线的低Q RF标签更为谨慎地放置到文件和/或具有信用卡那样尺寸 的信息文件内,例如,护照、身份证、禁卡、驾驶证、收费卡等,其 中,所述文件的卡或页的塑料部分地形成了电介质层。因此,可以有助 于人或货物在受控区域内或者通过受控的入口点移动,而不需要与所述 文件直接接触或对其进行目视扫描。
采用低Q天线的另一优点在于,它们不在特定频率上工作,所述芯 片也不能。由于大多数读取器不在定点频率上工作,而是跨越一定的频 率范围工作,因此US系统和欧洲系统均能够驱动解耦器上的芯片,其 将在两种询问器发射的频率上谐振。因而,例如,将解耦器设计为在 890MHz下工作(处于866(EU)和915(USA)之间),并采用低Q 天线:两种系统均能够发射足够的890MHz的辐射为芯片提供能量。一 种严格定义的866MHz天线无法与915MHz系统良好地协同工作,反之 亦然。
就另一方面而言,提供了一种零件套件,其包括具有任选的间隔体 的RF标签和根据本发明的解耦器。
在另一实施例中,可能希望为RF标签提供加强的保护。相应地, 还提供了一种如上文定义的解耦器,其中,RF标签或低Q RF标签至少 部分地位于所述电介质层之内或者形成所述电介质层的不可分割的部 分。在存在具有相当大的尺寸的天线的情况下,所述天线可能延伸到电 介质芯的外部,但是其必须与第一和第二导体层电隔离。其优点在于, RF标签和解耦器或RF加标签系统的总厚度基本只是解耦器的厚度。
作为建立与表面无关的RF标签并将其直接放置到表面上的备选方 案可能希望有效地就地形成解耦器,从而在将解耦器的构成部分对准时 使解耦器工作。相应地,提供了一种形成适于表面探测或识别的解耦器 的方法,其包括的步骤有:
i)提供包括具有任选的间隔体的RF标签或低Q RF标签的表面, 并提供与至少一个电介质层部分或基本全部接触的至少一个导体层,其 中,所述至少一个第一导体层具有至少一个缺失区域,其中,所述RF 标签位于所述缺失区域内,
ii)将步骤i)中的表面与第二导体层或导电表面放到一起,以形成 文中定义的解耦器。显然,所述第二导体层可以任选包括位于其表面上 的电介质材料,以形成所述电介质层的部分或基本全部。显然,所述 RF标签还可以位于所述电介质层的边缘上,其中,所述第一导体层和 所述电介质芯层基本具有相同的长度。
优点在于,可以通过将组成部分对准这样的工作来形成解耦器。例 如,可以将折叠或铰合的物品,例如文件、盒子或门等构造为,在具有 低Q RF天线的折页的一面上设置第一导体层,在所述折页的第二面上 设置第二导体层,因而,在打开状态下,不能读取该书,但是在合上书 的页或物品内容时形成了电介质层,并使第一和第二导体层对准,从而 形成了根据本发明的解耦器,因而可以询问和读取所述低Q RF标签。
还提供了一种用于RF标签的单岛解耦器,其用于使所述器件与表 面解耦,所述单岛解耦器包括夹在至少一个第一导体层和至少一个第二 导体层之间的至少一个电介质层,其中,将所述第一导体层调谐至询问 辐射的谐振频率,其中,通过λ≈2nG确定所述第一导体层的所述长度 G,其中,所述至少一个第一导体层具有处于至少一个边缘处的一个缺 失区域,在所述缺失区域处,所述第一导体层不覆盖所述电介质层,其 中,与所述第一导体层电隔离的RF标签位于所述第一导体层的所述缺 失区域的附近。
还提供了一种用于RF标签的单岛解耦器,其用于使所述器件与表 面解耦,所述单岛解耦器包括夹在至少一个第一导体层和至少一个第二 导体层之间的至少一个电介质层,其中,将所述第一和第二导体层独立 调谐至询问辐射的谐振频率,其中,通过λ≈2nG确定所述导体层的所 述长度G,其中,与所述第一和第二导体层电隔离的RF标签位于所述 电介质层上的缺失区域的附近。
根据本发明的又一方面,提供了一种用于RF标签的单岛解耦器, 其用于使所述器件与表面解耦,所述单岛解耦器包括夹在至少一个第一 导体层和至少一个第二导体层之间的至少一个电介质层,其中,将所述 第一导体层调谐至第一询问辐射的谐振频率,将所述第二导体层调谐至 第二询问辐射的谐振频率,其中,通过λ≈2nG确定所述第一导体层和 第二导体层的所述长度G,其中,所述第一和第二导体层具有处于至少 一个边缘处的一个缺失区域,从而使所述第一导体层的缺失区域不覆盖 所述电介质层或所述第二导体层上的缺失区域,其中,电隔离的RF标 签位于所述第一导体层的所述缺失区域的附近,并且任选有另一RF标 签位于所述第二导体层的所述缺失区域的附近。
还提供了一种制作具有波纹纸板电介质芯的纸板解耦器的方法,其 包括的步骤有:将第一导体层放在第一纸板层上,将第二导体层放在第 二纸板层上,将所述第一和第二纸板层放在一起,并使波纹纸板嵌片与 其邻接,从而使覆盖所述第二导体层的第一纸板层上的第一导体层上存 在至少一个缺失区域。
在一个实施例中,所述第一导体层位于与所述波纹纸板嵌片相邻的 所述第一纸板层的内表面上,并且/或者,所述第二导体层位于与所述波 纹纸板嵌片相邻的所述第二纸板层的内表面上。
还提供了一种跟踪物体或容器的方法,其包括的步骤有:将在上文 中定义的解耦器和至少一个RF标签加到所述物体或容器的表面的部分 上,采用RF辐射询问所述至少一个RF标签,探测来自所述至少一个 RF标签的响应。
附图说明
下文仅通过举例的方式并参考附图对本发明的实施例予以说明,在 附图中:
图1示出了根据本发明的电磁辐射解耦器的基本表示。
图2示出了根据本发明的另一解耦器。
图3a和3b分别示出了双岛解耦器的侧视图和平面图。
图4a-c示出了a)UHF标签,其接下来在b)平面图和c)侧视图 中将位于四岛解耦器上。
图5a-c示出了如例子中所描述的UHF标签在4岛解耦器上的备选 位置的平面图。
图6是沿平行于入射电场的狭缝(即,解耦器的长轴)的电场矢量 的图表。
图7是沿垂直于入射电场的狭缝的电场矢量的图表。
图8是沿垂直于解耦器的表面的线的电场矢量的图表。
图9示出了沿线1的处于y方向的电场的幅度,所述的线1平行于 z轴穿过解耦器电介质芯和上面的空气隙。
图10a和b示出了沿3条不同的全部平行于z轴的线的处于y方向 的电场的幅度的图表。
图11示出了沿线4的处于y方向的电场的幅度的图表(与在图10a 和b中生成的一样)。
图12示出了凹陷标识板的横截面。
图13示意性地示出了凹陷标识板的构造。
图14示出了对于指定几何形状和材料组合而言凭借Sensormatic 读取器实现的读取范围与间隔体厚度之间的关系。
图15是在基本谐振频率上解耦器的电介质芯中的电场的幅度的图 表。
图16示出了具有两个或更多岛的宽带解耦器的横截面。
图17示出了在不具有解耦器的情况下866MHz标签和Sensormatic 读取器的性能的曲线图。
图18示出了解耦器曲线和与图17中相同的那条读取器曲线的模拟 曲线图。
图19示出了具有低Q天线(小面积的非优化天线)的单岛标签。
图20a和b示出了宽带单岛解耦器的示范性构造。
图21a-g示出了第一导体层的各种图形设计的顶视图。
图22a和b示出了处于隔离状态下和安装在单岛解耦器上的状态下 的低Q标签的例子。
图22c示出了低Q天线的示范性示意图。
图22d示出了安装到解耦器上的一个天线的例子。
图23示出了在各种厚度下,对不同芯部材料的读取范围的影响的 曲线图,包括对聚酯的理论预测。
图24a和b分别示出了双岛和单岛解耦器,其中,将谐振腔设计为 使其在一定的波长范围内谐振,因而提供了宽带操作。
图25示出了位于电介质层内的RF标签的横截面。
图26a、b和c示出了通过空气隙隔离第一和第二导体层的解耦器 的三种构造。
图27示出了RF标签具有变化的位置的环形解耦器。
图28a示出了用于确定改变第一导体层的长度的影响的实验设置。
图28b示出了用于确定改变第二导体层的长度的影响的实验设置。
图29示出了用于确定相对于第一导体层旋转RF标签的影响的实验 设置。
图30示出了不具有第二导体层的宽带解耦器。

具体实施方式

来看图1,多层电磁辐射解耦材料包括第一导体层1和第二导体层 3。导体1和3夹着电介质芯5。
在为了与866MHz UHF RF标签结合使用而构造的解耦器的例子 中,每一导体层1和3的厚度为2.5微米,电介质的厚度大约为360 微米。狭缝宽度(9)为0.490mm。受到调谐的第一导体层(7)的长度 为95mm。这样的构造得到了在大约95mm的半波长处的谐振。866MHz 在真空中为346mm,在PETG中约为190mm(因而95mm为半波长), 因为芯部折射率大约为n=1.8。应当注意,三个层的总厚度(约为400 微米)大约是入射辐射的波长的1/1000。
图2示出了根据本发明的辐射解耦器的另一例子。在这种情况下, 铜层11和13夹着聚酯层15。上部铜层11含有狭缝12。
通过将铜层11自动催化淀积岛聚酯层15上来构造图2的结构。采 用敏化材料17促进淀积反应。粘合剂层19将聚酯层15接合至底部铜 层13。
在所形成的并加以测试的例子中,铜层11具有1.5-2.0微米的厚度, 敏化物层17具有大约3-4微米的厚度,聚酯层15具有大约130微米的 厚度,粘合层19具有大约60微米的厚度,底部铜层具有18微米的厚 度。
图3a-b示出了根据本发明的双岛解耦器,其具有夹着电介质层25 的铜层21和23,所述电介质层25通过粘合层29接合至下部铜层23。 通过继之以电解淀积的无电法在敏化材料27上淀积上部铜层21(即 “岛”),将所述层构造为含有狭缝22。将RF标签24安装到间隔体 26上,以提供与解耦器的表面的隔离。将所述标签加间隔体安装到第一 导体层21的顶部,从而使标签中央处的芯片(标签24的平面图b上的 黑圆圈)恰好位于两岛之间的中点上。
图4a示出了市面可得的标准UHF标签(在这一例子中为866MHz 的Alien technologies UHF标签)的平面图,其包括芯片37并且带有天 线40。标签的宽度(41)为8mm,标签的长度(42)为95mm。这是一 个具有能够针对自由空间操作下(假设是自由空间操作)的入射辐射而 进行调谐的天线的标签,能够看出,整个RF标签的大部分尺寸被天线 所占据。而具有毫米量级的芯片自身则小得多。
图4b和4c示出了四岛解耦器。将四个岛31布置到电介质芯部材 料35的表面上。通过缺失区域32隔离岛31。所述缺失区域基本相互垂 直。它们所处的位置使得两个狭缝32的交叉点穿过解耦器的中心相交。 基准标记46表示长度尺寸的绝对中心,基准标记45表示宽度尺寸的绝 对中心。将标签34恰好放在交叉点之上,从而使芯片37恰好位于从点 46和45绘制的线的交叉点上。
岛31具有采用岛长度≈λ/(2n)的近似式计算的长度44,其中,n 是芯部的折射率,这里提供大约95mm的岛长度44(以PETG作为芯部 材料)。岛宽度43取决于RF标签的实际尺寸和所采用的询问辐射的波 长。在这一具体的例子中,使岛宽度43为标签宽度的四倍,大约为 35mm。
图5a-c示出了针对RF标签的位置的各种构造的平面图。图5a示出 了十六岛解耦器,从而在一幅示意图上对感兴趣的取向举例说明:图5b 和5c示出了先前讨论的四岛解耦器。将在具体的例子6、7和8中讨论 所述构造的效果。
尽管上述例子涉及毫米到厘米波长的吸收,但是本领域技术人员将 认识到,可以将上述原理应用于不同的狭缝结构、层厚度、岛长度和芯 部折射率,以形成能够与e/m光谱中的其他部分的辐射,例如,红外光、 可见光、无线电波等相互作用的电磁解耦材料。
图6示出了由Ansoft提供的高频结构仿真器(HFSS)生成的图表, 其用于模拟被设计为在866MHz下工作的又被称为二光栅(因为可以将 其看作具有两个交叉的正交狭缝)的四岛解耦器。尽管模拟了整个解耦 器71的性能,但是仅示出了中央部分70的场图案。
电介质芯是1mm厚的PET,所述结构的总周期为95.12mm,其宽 度为190mm,并且具有0.49mm宽的狭缝。其目的在于识别出具有增强 的电场的区域,并确定场强如何根据距表面的距离以及沿平行于或垂直 于入射电场矢量的狭缝而发生变化。在所有的实例中,入射电场都具有 1V/m的幅度,并且平行于图5b中定义的y轴偏振。通过箭头示出了入 射电场矢量的方向。
能够清楚地看到半波长谐振:节点存在于模型的边界处(位于狭缝 之间的中间处),并且在狭缝交叉处具有波腹。从所述图表可以看出, 具有增强电场(即,最长的箭头)的区域的中心处于预测的波腹处。方 便地,将RF标签放在具有增强的电场的区域上是有利的,因而优选使 芯片位于所述交叉点处。
图7示出了沿垂直于入射电场的狭缝的电场矢量的图表。注意量度 的变化:对于原来的狭缝而言,作为与75V/m的对比,场已经增强到了 超过120V/m(即,场沿x轴狭缝比沿y轴狭缝更强)。与图6中一样, 所述图表也不是针对整个解耦器的,而只是针对中央部分的。
图8示出了沿垂直于解耦器的表面的线的电场矢量的另一图表(同 相瞬态图),其仍然具有最大值120V/m的量度。电场的强度随着与解 耦器表面的垂直距离的增大而衰落。
图9示出了处于y方向的电场的幅度如何沿平行于z轴,即穿过解 耦器电介质芯的厚度并进入处于其上的空气隙的线(可以看作沿图10a 中的线1)而变化。图9示出了被分解为x、y和z分量的来自图7和图 8的数据。随着叠加在所述曲线图上的解耦器的位置绘制了y分量,以 演示在哪里产生了高场区域。带有狭缝的顶表面31形成于电介质芯35 上,并且包括第二金属性表面33。所述曲线图示出了所预期的趋势:场 在临近所述芯内的下部金属表面处低,并在所述狭缝内增大到220V/m 的最大值。在该图中以黄色表示的小狭缝只是被模拟出来表明在z尺度 内,即非X或Y尺度内哪里场最高。超过前面的模型的200V/m的增加 值归结于数据来自更为高度精细的模型:更高密度的有限元网络和更高 数量的数据点,从而恰好选出电场的峰值。在解耦器自身之上的空气中, 场强高但是随着与解耦器表面的距离的增大而迅速下降。超过10mm, 增强场就不再明显,场特性返回至正弦曲线。
图10a和b示出了沿3条不同的全部平行于z轴的线(1-3)的处于 y方向的电场的幅度的图表。所述线全部穿过垂直于入射电场矢量(即 沿平行于x轴的线4)延伸的狭缝。
图10b表明,对于所有的三条线趋势相同:在狭缝区域内存在高电 场,随着沿z轴的距离的增大,即,随着场离开解耦器的表面,该场迅 速降低。线2和3的最大场强比线1的最大场强大40V/m左右。其原因 可能在于狭缝交叉点,即线1穿过的点处的场线的弯曲。这一点在图11 中可以看得更清楚,在图11中绘制了沿线4的场强,其与图8的图表 一致。其他因素,例如,标签处于狭缝之上的量也对性能存在影响。
图11示出了沿线4测得的并且如图10a和10b所示的处于y方向的 电场的幅度的曲线图。线4通过平行于x轴的狭缝延伸。所述狭缝为 0.49mm宽,并且其中心处于47.6mm处。曲线图上的主要特征为0.5mm 宽,并且其中心处于所述狭缝上,因而可以证实,处于y方向的电场在 狭缝交叉处稍弱。但是,将标签放在这一交叉点是有利的,因为其天线 沿y轴狭缝布置。
对称性表明,沿线2和3的场强应当相等。它们之间的偏差将指示 出该解决方案的准确度。作为近似测量:沿线2的峰值场强处于比沿线 3的峰值场强大10%的范围内,因此可以说所有的场值均带有+/-10%的 误差。这是因为电场梯度(dE/dz)是快速变化的函数,其需要高度致密 的有限元网络和高密度的数据点来准确地反映其特性。
图12示出了凹陷标识板的横截面。标识板58并非按比例绘制,其 壁厚与其他部件之间可能并非具有准确的比例。解耦器50具有处于表 面层51内的四个岛,所述岛布置在电介质芯部材料55的表面上。通过 缺失区域52分离所述岛51。所述缺失区域或狭缝基本相互正交。它们 所处的位置使得两个狭缝52的交叉点穿过解耦器的中心相交。将标签 54恰好放置在所述交叉点之上,从而使芯片57恰好位于所述交叉点上。 利用间隔体材料56将标签54与解耦器50隔开。
解耦器的下部金属表面53可以是分立的层,或者在板58的基底由 导电材料构成时,其可以形成板58的部分。之后,采用保护层材料59 填充板的空隙区,从而基本包封所述加标签系统,以避免对芯片57和 解耦器50造成损坏。该图还示出了处于金属主体或容器内的凹陷部分, 因而板58包括处于金属主体或诸如饮料或食物容器内的凹陷。该图并 非按比例绘制,并将其制造为,使所述凹陷的深度小于1mm,更优选小 于0.5mm,乃至小于250微米。
图13示出了凹陷标识板58的分解投影图。该板的顶部可以任选具 有唇缘60。带有缺失区域52的解耦器50具有放置在两个狭缝的交叉点 之上的RF标签54(仅示出了轮廓)。所述解耦器或加标签系统可以反 转附着于板58,并且可以涂覆保护层59作为覆盖解耦器的薄板材料。 可以从标识板去除所述解耦器50(或加标签系统)和保护层59。所述 保护层可以是诸如聚酯、环氧树脂、PVC或ABS的适当的化合物。 板58可以由任何薄板金属或铸造金属支座。板58可以由任何适当的材 料构成,例如,采用冲床形成的1mm厚的软,同时诸如合金或的 更轻的材料同样价格低廉并且易于制造。类似地,标识板的壁可以代表 处于金属主体或容器内的凹陷的壁。
图14示出了对于在特定的解耦器几何结构内采用的PET薄板间隔 体材料而言读取范围对间隔体厚度的依赖性,参考例8。所述结果是借 助Seonsormatic读取器得到的,所述读取范围通常小于针对Alien Technology系统的范围。本领域技术人员应当清楚,不同的读取系统采 用具有不同功率水平的发射器。因此,只有在针对同一系统比较结果时 绝对读取范围才具有重要性。功率更大的发射器能够获得更大的读取范 围。因此,只能将所有实验中的结果作为趋势考虑,而不是凭借每一可 用系统得到的绝对读取范围。但是,功率更大的发射器无法减轻附近的 诸如金属的RF反射表面的影响。
图15示出了在基本谐振频率上处于解耦器的电介质芯内(从图表 的底部看)以及处于狭缝的附近的电场的幅度的图表。阴影越淡,电场 越强,狭缝之上的白色区域表示大约150到200倍的场增强。
图16示出了宽带解耦器,即,可以在不只一个频带处对辐射解耦 的解耦器的横截面。图16a和16b示出了两个示范性构造,二者均以二 岛解耦器原理为基础。在图16a所示的例子中,所述解耦器具有形成上 述解耦器结构的第一导体层71、电介质层72和第二导体层73,即,电 介质72夹在导体层71和73之间。将第一导体层设计为对处于频率λB 上的辐射解耦(并且其可以具有λB/2的周期),将所述第一导体层形 成为通过缺失区域隔离的两个岛。可以将RF标签76B放置在所述缺失 区域之上。此外,在第二导体层73的相反表面上,将电介质层74夹在 额外的导体层75和第二导体73之间。这一额外的导体层也是两岛结构, 其被设计为对处于频率λA上的辐射解耦(并且其可以具有λA/2的周 期)。可以将与标签76b具有不同工作频率的第二RF标签76a放置到 导体层75的缺失区域上(通过与放置在层71上的标签76b类似的方式)。 在需要具有不同谐振频率的RF标签时,这种方案是有用的。
为了更加清晰地示出解耦器的具体结构,在某些示意图中,简化了 RF标签,只采用方框对其加以表示,其可以代表低Q或普通RF标签, 并且可以任选将其安装到间隔体上。
图16b示出了宽带解耦器的不同结构。在这一结构中,分别通过电 介质层74和72隔离不同的半波长导体层75和71,并且所述的不同的 半波长导体层75和71二者都安装在第二导体层73的同一第一(上) 表面上。层75的长度使得通过与解耦器的其他尺寸和材料相结合,能 够产生对应于频率λA的谐振,并且层71具有通过相同的机制对应于 频率λB的长度。可以存在一个或多个安装在层71的表面上的RF标签 76a和76b,所述标签在频率λA和λB上启动。有可能使这一结构具有 位于所述第二导体层73的两面上的两个或更多解耦器,从而提供4个 或更多的不同频率。
图17示出了采用既具有自由空间内的(即未安装在解耦器上) 866MHz标签又具有Sensormatic读取器天线的矢量网络分析器测得的性 能的曲线图。读取器曲线越深,读取器天线发射的功率越大。标签曲线 越深,标签从读取器天线发射的波中获取的功率越大。进入标签的功率 越大,读取范围越大,因此,最好使两个曲线的中心处于相同的频率上: 标签优选在读取器发射最大功率的频率处采集功率。尽管对准两条曲线 将产生最佳性能,但是如果其曲线与读取器曲线的任何部分重叠,标签 将以较小的读取范围工作。
图18示出了与图17所示的同一读取器相比,根据本发明的解耦器 的性能的模拟曲线图。所述解耦器截取由读取器天线发射的功率。在高 电磁能点处将这一功率通过缺失区域导入到所述第一导体层和第二导 体层之间的电介质芯内。正是采用这些强电场为所述标签提供功率。
所述解耦器很像所述读取器和标签,其在一定的频率范围内截取功 率,并优选在某一特定功率处工作。如图17中所示,通过使最大的功 率量进入解耦器并由此进入标签而实现解耦器上的标签的最大读取范 围。可以通过使两条性能曲线,即解耦器、标签和读取器的性能曲线的 中心对准而实现这一目的。
已经发现,最初针对866MHz设计的解耦器也能对在自由空间内的 915MHz处工作的标签解耦。Alien 915MHz标签与Alien 866MHz标签 非常类似,唯一的差别在于针对915MHz调谐的天线的主块(main bulk)。 两种标签的天线都结合了阻抗环,所述的相关阻抗环大致等同。已经表 明,解耦器使得天线的主块变得多余。因此,在天线处于解耦器上时, 只有阻抗环相关。该图是针对Sensormatic套件的。其目的在于比较谐 振频率和带宽。因此,解耦器曲线优选落在所述系统(解耦器加标签) 工作的读取器曲线内,更优选所述谐振频率(两条曲线的最小值)应当 重合。
解耦器仍然截取优选处于866MHz处的功率,几乎不截取处于 915MHz处的功率,因为在该频率上其性能曲线接近0dB,这一点可以 从曲线图上看出(需要一定的外延)。因此,尽管所述标签被设计为在 915MHz上工作,但是其被驱动至866MHz上的操作。这是可能的,因 为芯片将几乎在866MHz上工作,正像其将在915MHz上工作一样。因 此,解耦器将在一定频率范围内起作用,但是在解耦器、读取器和(具 有较低的重要程度的)标签在相同的频率上工作时,将获得最高性能。
图19示出了安装在单岛解耦器上的具有低Q天线(小面积天线) 86的标签。所述解耦器具有与二岛解耦器类似的结构,只是在第一导体 层81上具有一个岛,缺失区域87位于第一导体层81的末尾。第一导 体层81和第二导体层83夹着电介质层82。第一导体层的长度将决定解 耦器的频率(对于具体电介质层而言,还决定材料和厚度,以及(在较 低的程度上)决定导体层的导电性)。
图20a和b示出了宽带单岛解耦器的两个示范性构造(基于图16a 和b)。图20a示出了一种宽带解耦器的横截面,在所述宽带解耦器中 提供了第二导体层93,在第一表面上具有第一导体层91,电介质层92 夹在导体层91和93之间。将第一导体层设计为使所述解耦器对处于频 率λB的辐射解耦(并且其可以具有λB/2的周期)。可以将RF标签 96放置在缺失区域之上。类似地,在第二导体层93的第二表面上具有 电介质层94,所述电介质层94夹在额外的导体层95和第二导体93之 间。将这一额外的导体层设计为对处于对应于波长λA的频率上的辐射 解耦(并且其可以具有λA/2的周期)。可以将RF标签96放置在缺失 区域97上。在需要具有不同谐振频率的RF标签时,这种方案是有用的。
图20b示出了宽带解耦器的不同构造。在这一构造中,分别通过电 介质层94和92分离导体层95和91,并且将导体层95和91二者安装 在第二导体层93的同一第一表面上。层95对应于波长λA,层91对应 于波长λB。可以在层91的表面上安装了在对应于波长λA和λB的频 率上启动的一个或多个RF标签96。有可能使这一结构具有位于所述第 二导体层93的两面上的两个或更多解耦器,从而提供4个或更多的不 同频率。
图21a-g示出了针对具有缺失区域102的第一导体层101的各种几 何设计的平面图,其中,将RF标签106放置在所述缺失区域上。图a-d 是单岛解耦器,可以根据物品或者可以为所述解耦器提供的表面选择其 形状或几何形状。第一导体层可以优选显示出谐振金属/电介质/金属腔 长度,λ≈2nG/N,(所述系统仍然是谐振的),其中,λ是处于发生 最大耦合的λmin到λmax的范围内的波长,n是电介质的折射率,G 是至少一个第一导体层的腔长度,N是大于等于1的整数。
可以存在一个或多个放置在所述缺失区域或狭缝上的标签,在理想 的情况下,其所处距离满足上述关系。例如,在图b中,在第一导体层 的一个、两个、三个或四个侧面上均可以存在缺失区域。可以按照具有 若干条边(n)的任何多边形形状形成所述解耦器,所述多边形形状含 有1到n个相应的缺失区域。其将倾向于提供一种基本为圆形的构造, 例如图d所示。在备选构造中,可能希望采用具有多个RF标签的偏振 相关解耦器,这样随着RF标签进入与询问场的对准状态,RF标签随后 启动,由此可以推断物品相对于偏振辐射源的取向。
图c、d、e、f和g示出了基本为圆形的解耦器,所述解耦器基本与 偏振无关,因而不管入射的RF场的方向/偏振如何,均可以实现对所述 标签的询问。图f示出了与偏振无关的标签的特定优选构造,其中,第 一导体层101具有环形缺失区域或狭缝102。可以将RF标签106,尤其 是具有标称尺寸天线的低Q标签放置在这一狭缝的任何位置上。已经表 明,在这一特定构造中,所述第一导体层的其余部分的形状,即,处于 环形狭缝之外的整个解耦器的形状未必是环形的,实际上,非环形的外 部形状看起来是有利的,另一个优点在于基本非均匀的外侧形状,已经 表明,在狭缝的直径接近λ/4,而不是像其他解耦器设计那样接近λ/2 时,获得了最为有利的结果。图f的侧视图示出了夹着电介质层102a 的第一导体层101和第二导体层101a,其中,缺失区域102存在于所述 第一导体层内。另一优选构造为图21g,其中,在第一导体层101内存 在扩大的缺失区域102,RF标签206位于所述缺失区域的边缘上。
图22a示出了低Q标签116的例子,其具有连接至芯片117的小电 感/阻抗环118。再来参考图4a,可以看出,调谐标签具有芯片和有效电 感环,此外还具有额外的显著量的调谐天线结构。因此,可以认为低Q 标签是调谐标签的较小的变型。低Q标签116无法在所设计的频率上在 自由空间内工作(但是在周长等于波长时可以在较高的频率上工作,接 近6GHz),除非读取器位于距芯片1或2mm的距离内,因为天线118 不足以耦合至入射辐射。可以将仅仅比芯片自身稍大的低Q标签放置在 根据本发明的任何解耦器上。在图22b中,标签116位于单岛解耦器的 缺失区域112(电介质层的部分,参考图19)上,所述单岛解耦器具有 第一导体层111(其他层未示出),所述第一导体层111优选与RF标 签读取系统的频率匹配。所述读取范围与在自由空间内使用的优化RF 标签(例如图4a所示)的读取范围相当,但是读取范围的任何小的损 减可以由解耦器和标签的非常小的面积补偿。所述解耦器和标签可以具 有只是刚好大于λ≈2nG/N的长度。其对于诸如衣物标签、小型消费品 的小型物品而言,或者对于更加隐蔽的加标签系统而言是一种理想的尺 寸。图22c示出了针对低Q RF标签的若干设计,低Q RF标签是指基本 去除了天线设计(如图4a所示),从而只保留如图22a所示的小的环部 分的RF标签。或者,可以采用朝向间隔体延伸或者部分包围所述间隔 体的端“臂”替代所述的小的环部分,因为,如果能够与准确设计的解 耦器结合,即使两个短的金属“截线”也足以将能量耦合到芯片内。在 图22d中,示出了低Q RF标签,其中,环部分沿两个相交狭缝的轴布 置,由此提高了RF标签的偏振无关性。
图23示出了三种不同的芯部材料在不同的厚度下对读取范围的影 响的曲线图,在下文中将参考例10对其做进一步说明。
图24a示出了具有至少一个狭缝125的二岛解耦器,所述狭缝125 并未显示出从解耦器的一个边缘开始的单一均匀距离(即,其并非相对 于所述的解耦器的边缘平行)。其提供了一种能够在一定波长范围内工 作的解耦器。因此,解耦器可以跨越其工作的波长可以根据狭缝相对于 所述的解耦器的边缘的角度以增量“δ”增大或降低“x”。也可以将 这一原理应用到具有四个或更多岛的解耦器上。
还可以将相同的原理应用于图24b所示的单岛解耦器,其中,所述 第一导体层上的缺失区域的边缘形成了不平行于解耦器的远边的线。这 一原理可以对处于提高的波长范围内的辐射解耦。所述波长范围仅受解 耦器的初始尺寸和狭缝相对于解耦器边缘的角度的限制。
还可以将这一原理与图16a和b以及图20中采用的宽带解耦器结 合使用。
图25示出了在布置在电介质芯部材料128的表面上的第一导体层 127中具有两个或更多岛的解耦器126的横截面。通过缺失区域隔离岛 127。标签129位于缺失区域的下面。利用间隔体材料131使标签的天 线130(如果存在的话)与第一导体层127隔离。解耦器的下部金属表 面132可以是分立的导体层,或者其可以形成向其施加解耦器的导电表 面的部分。必须使标签129及其天线130(如果存在的话)与第一127 或第二132导体层电隔离。因而通过解耦器结构和电介质层的材料对 RF标签提供了保护。
图26a示出了采用空隙138作为电介质层的解耦器。可以在支持层 上制备解耦器,或者所述解耦器可以利用容器或盒子的一部分实现支 撑。具有上面143的容器可以具有按照如上文定义的任何图案淀积在 143的内表面上的第一导体层137,所述第一导体层137可以具有单岛 或多岛设计。在缺失区域处,可以使作为低Q或普通标签的RF标签139a 借助任选的间隔体141位于缺失区域之上。或者,可以使RF标签139 位于容器的上表面143上,从而使容器或盒子的上表面143起着任选的 间隔体的作用。
容器的侧面144提供了在容器的上表面143和容器的下表面145之 间建立空隙138的支撑机构。可以在容器的下表面145的第一或第二表 面上根据文中定义的任何方法淀积第二导体层142。尤为方便的做法可 以是将第一137和第二142导体层以及RF标签139放置在空隙138内, 以提供保护。可以采用诸如空气隙、局部真空的电介质流体或者采用惰 性气体或惰性液体填充所述空隙。例如,还可以采用非导电的高孔隙率 泡沫或非导电的电介质填充材料填充所述空隙。在与RF标签结合使用 时,约为入射RF波长的波长的1/170的1到2mm的空气隙已经提供了 有用的读取范围。
在图26b中,存在与图26a中相同的特征,只是可以不存在容器的 侧面,所述侧面可以由非导电通孔或非导电支撑机构144a替代,以提 供电介质层138的正确厚度。
在图26c中,存在与图26a或26b中相同的特征,只是第一导体层 137形成了单岛解耦器。于是,可以将RF标签139或139a放置到上表 面143的任一面上。方便地,非导电支撑机构144a还可以是容器的侧 面144,如图26a所示。
方便地,图26a到c所示的解耦器可以分别结合文中定义的任何特 征,例如,利用一个或多个第一导体层建立宽带解耦器,或者利用图案 建立基本上与偏振无关的解耦器。
图27示出了针对例13的构造。
图28a和b示出了针对例16的构造。
图29示出了针对例17的构造。
图30示出了具有修改的第二导体层的宽带解耦器。提供了电介质 芯层99,在其上面具有对应于第一波长的第一导体层98,RF标签97 基本位于所述缺失区域内(处于具有高电场的区域内)。在电介质层99 的下表面上还有另一导体层98a,其可以和层98对应于相同或不同的波 长,其中,RF标签97a基本位于缺失区域内(处于具有高电场的区域内)。 所述设置基本上提供了具有安装在电介质层的任一面上的包括缺失区 域的第一调谐导体层,所述两个第一导体层任选在长度G上相同或不 同,这一点已经在前文中有所界定。可以优选将这一构造作为允许采用 低Q RF标签的具有降低的覆盖面积的加标签标牌使用。
本发明的例子
例1
采用非导电催化剂墨水(由Sun Chemical提供的,产品名为QS1、 QS2或DP1607,如申请GB 0422386.3所公开的)将解耦单元,即第一 和第二导体层丝网印刷(双面)到具有已知电特性的聚合物(形成电介 质芯)上。UHF解耦器的尺寸取决于所述聚合物的电特性和厚度。例如, 采用Quinn塑料,即厚度为1mm的Spectar级PETG薄板,相对介电常 数为3.2,由此得到95mm的解耦器周期和190mm的最小解耦器长度(采 用岛长度≈λ/(2√(介电常数)的近似式,其中,所述折射率近似等于介 电常数的根)。在聚合物的正面印刷解耦器图案,即,通过两条在解耦 器的中心相交的正交线分离的四个等尺寸的岛。将解耦器的反面印刷为 实面区。
通过将样本在大约80℃下加热10分钟(对于QS1和QS2系统)或 者通过UV固化工艺(对于DP1607)使所述墨水固化,在两种情况下 均使墨水凝固并附着至衬底。之后,将所印刷的样本放到市面上可得的 无电溶液(例如,处于46℃下的Enthone 2130或者处于52℃下的 Rohm and Haas 4750)中,并且仅在覆盖了催化剂墨水的区域上淀积 铜金属,淀积厚度为0.1-3.0微米。明确定义无电淀积的速率,由此可以 将淀积厚度作为暴露时间的函数予以监测。如果需要,可以任选对无电 淀积的材料进行电极淀积。
之后,将所得的产物与间隔体层压,所述间隔体放置在解耦器的正 面和UHF标签(在这一例子中,是由Alien technologies制造的866MHz 的15微米UHF标签)之间。典型的间隔体材料是聚合物膜,例如,Hifi films PMX 946 250微米PET膜。将UHF标签和间隔体按照其中心放在 作为所述正交线的交叉点的缺失区域之上。
例2
采用导电墨水,例如,Acheson Electrodag PR401B Carbon墨水或 Acheson Electrodag 503银墨水,将解耦单元(双面)丝网印刷到具有已 知电特性的聚合物上。UHF解耦器的尺寸取决于所述聚合物的电特性和 厚度。例如,采用Quinn塑料,即厚度为1mm的Spectar级PETG薄板, 其相对介电常数为3.2,由此得到95mm的解耦器周期和190mm的最小 解耦器长度。按照解耦器图案印刷所述聚合物的正面,将反面印刷为实 面区。
通过加热样本使墨水固化(对于Acheson Electrodag PR401B Carbon 墨水和Acheson Electrodag 503银墨水),其使得墨水凝固并附着至衬底。
之后,将所得的产物与功能性间隔体层压,并按照与例1中定义的 方式相同的方式将其安装到解耦器上。
例3
采用覆盖了金属的聚合物膜(例如,DuPont Mylar PET膜),将蚀 刻抗蚀剂(例如,Sun Chemical XV 750)丝网印刷到所述金属表面上。 一旦干燥,所述蚀刻抗蚀剂就会按照解耦器的图案附着至所述金属的表 面。之后,将所述膜放到腐蚀性溶液内(例如,放到来自Old Bridge Chemicals公司的MAX ETCHTM 20R内)。这一过程去除了未被覆盖的 金属区域,从而仅保留非导电衬底。之后,将金属化已构图膜层压到芯 部材料上,并借助作为背板使用的另一金属化非构图膜将其夹在中间。 之后,其需要例1和例2中定义的间隔体层压和加标签。
例4
解耦器测试方法
866MHz UHF标签读取系统(例如,Sensomatic agile 2读取单元) 设有作为866MHz UHF标签的探测单元的计算机接口。将读取器天线沿 固定矢量放置在台面(stand facing)上,并沿这一路径放置卷尺,以评 估每一标签的读取范围。将所有的金属物体从读取器场区域移开,从而 使反射性读取降至最低。采用866MHz UHF标签(例如,Alien Technologies标签),并将其放在纸板(cardboard)衬底上。将其从大 约5m的距离处径直朝向读取器天线移动,同时观察读取器显示,采取 标签能够在1分钟的时间段内给出恒定读取结果的最大位移作为读取范 围。采取这一值作为所采用的具体UHF标签的标准读取范围。
之后,将所述标签安装到所述解耦器上,而所述解耦器自身则附着 至金属衬底(在这一例子中,从滚笼一侧附着至标识板)。将所述标签、 解耦器和金属衬底放到EM场内,找到该系统在1分钟的范围内稳定地 读取标签的点。采取该值作为解耦标签系统的读取范围。
例5
用例4中简要描述的方法识别在将解耦器安装到金属衬底上时 UHF标签在解耦器上的最佳的2D位置。图5a、b、c示出了标签和解耦 器系统的相对位置。
图5a示意性地示出了放置在缺失区域或狭缝上的标签的可能的位 置。在应用于四岛解耦器时,获得了下述数据:
  实验参考   位置参考   读取范围(m)   如图5a中所示   1   2.1   2   3.5   3   2.4
表1:标签相对于解耦器的相对位置。
根据采用866MHz UHF标签的测试,可以发现,在标签的芯片位于 缺口上时读取范围显著提高。在使所述芯片(进而与其天线一起)按照 其中心放置在两个正交的缺口或狭缝的交叉点上时,将进一步提高其读 取范围。
例6
图5b示出了处于狭缝的交叉点处的精确位置对位于根据上述例子 制备的四岛解耦器上的UHF标签的读取范围的影响。
其作用在于表明在将标签放置到解耦器上的过程中制造公差可能 影响解耦器的有效性,因而影响标签的读取范围。
  实验参考   位置参考   读取范围(m)   如图5(b)中所示   -5mm,0mm   1.2   -2.5mm,0mm   1.2   -1mm,0mm   2.5   0mm,0mm   4-4.5   1mm,0mm   4-4.5   2.5mm,0mm   3.5   5mm,0mm   2.0   0mm,-5mm   0.5   0mm,-2.5mm   1.2   0mm,-1mm   3.0   0mm,0mm   4-4.5   0mm,1mm   3.0   0mm,2.5mm   1.5   0mm,5mm   0.5
表2:标签相对于四岛解耦器的精确位置
参考表2,位置0,0表示解耦器单元的绝对中心。将标签的中心看 作是芯片的位置(尽管,在这一实例中,芯片并非是RF标签的中心)。 已经发现,在标签的芯片按照其中心位于两个正交的缺失区域或狭缝的 交叉点处时,即处于点0,0时,读取范围显著增大。与直接放置在金属 表面上的RF标签的零读取相比,沿x或y轴的几mm的小偏差仍然能 够提供有用的读取范围。
例7
图5c示出了处于所述交叉点处的方位角位置对UHF标签的读取范 围的影响。
  实验参考   位置参考a°   读取范围(m)   如图5(c)中所示   -4°   4.0   0°   4-4.5   2°   4.0   6°   2.0   14°   1.2
表3:标签相对于解耦器上的狭缝的绝对旋转位置
参考表3,位置参考角a°表示距解耦器单元的狭缝的旋转角。采 取0°的读取作为这样一种情况,即,将所述标签对准为平行于y轴狭 缝(尽管在该实例中,芯片并非处于RF标签的中央)。已经发现,在 标签的芯片按照其中心位于两个正交的缺失区域或狭缝的交叉点处时, 即处于点0°时,读取范围显著增大。与直接放置在金属表面上的RF 标签的零读取相比,与狭缝的平行关系的小偏差,例如小于6°的旋转, 仍然能够提供有用的读取范围。超过10°的更为明显的偏差仍然能够实 现对标签的读取,但是读取范围显著降低。
例8
可以通过(例如)优化间隔体厚度实现向最大读取范围的改善(与 自由空间内的隔离标签相比)。如图14所示,与在自由空间内读取的 标签相比,解耦器和标签之间的电介质间隔体可以提高标签的读取范 围。由于引入了具有提高的厚度的PET间隔体,因此标签开始提高其读 取范围,直到间隔体厚度为300微米左右时,其响应将等同于隔离标签 的响应。有趣地,在400微米处,获得了4.5m的读取范围,比期望的 最大值增加了0.5m。间隔体厚度的进一步增大将略微降低这一值,尽管 其仍然在实质上等于隔离标签的值。在1000微米之后,读取范围下降 (在这一例子中未示出),但是标签可以仍然在RF反射表面上工作。 显然,这些值表明,与RF标签的未加修饰的自由空间的性能相比,解 耦器可以提高RF标签的读取范围。这些结果是针对Sensormatic套件特 定的,显然对于不同的RF标签或读取系统最佳隔离/间隔体厚度可以是 不同的。
可以看出,解耦器执行从天线陷获入射的866MHz的辐射,并将能 量导入到RFID内的功能。如图15所示,狭缝内的以及刚刚位于所述狭 缝上的电场强度强(通常增强150到200倍),如果将标签放置在金属 表面之上的合适高度上,那么所述电场可以与所述标签相互作用。
前面已经成功地展示了PET芯部器件(复电容率(3.20,0.0096)), 虽然诸如FR4(电容率(4.17,0.0700))的损耗较大的芯部材料可能 无法像PET那样有效地起作用,但是FR4仍然能够提供非常有用的读 取范围。
上述实验5到8中的读取范围是例5中定义的标准化的读取范围测 量值(稳定的1分钟读取)。与基本上中心放置的标签的偏差(角位移 和/或线位移)仍然提供了能够在金属表面上询问的标签。方便地,标签 在解耦器的狭缝上的准确的居中性并非是解耦器起作用的先决条件,但 是其确实能够提供改善的性能。但是,在实际情况下,只需要标准化(1 分钟)读取时间的一部分来获得询问和来自标签的响应,因而标签的实 际读取范围可以大于实验中给出的读取范围。
例9
可以通过例1中的方法形成四岛解耦器。所述解耦器是针对 866MHz标签制备的,并且是采用1000微米的聚酯芯制造的。Alien Technologies 866MHz标签按照其中心设置在缺失区域上,以提供最佳 响应。将不带解耦器的RF标签和处于解耦器上的RF标签安装到各种表 面和物品上,以评估所述表面对普通RF标签的影响和解耦器的有效性。 所述读取系统为Sensormatic套件。
  表面   不带解耦器的读取范   围(cm)   带有解耦器的读取   范围(cm)   自由空间   320   320   仅波纹形纸板(干)   310   320   纸板+处于背部的塑料   矿泉水瓶   125   310   纸板+处于背部的橙汁   纸板盒   110   310   纸板+处于背部的金属   焗豆罐   120   310   纸板+处于背部的玻璃   贮藏啤酒瓶   125   310   处于潮湿的纸板上   (12.5%的含湿量)   180   320   处于湿的纸板上(19.5%   的含湿量)   50   310   人手遮挡了1/2的标签   70   250
表4:不带解耦器的RF标签和具有1000μm的聚酯解耦器的RF 标签的读取范围。
不出所料,自由空间内的解耦器的读取范围与在自由空间内处于 320cm处的标签的读取范围匹配。可以看出,纸板盒内的消费品的存在 使不带解耦器的标签的读取范围降到在自由空间内获得的读取范围值 的三分之一到二分之一。采用解耦器的优点在于,读取范围实际上与自 由空间内的读取范围相同,并且与安装表面无关。
使纸板变湿乃至使其湿饱和几乎不会对解耦器能够承担的读取范 围带来差异,而在不采用解耦器的情况下,其将使读取范围急剧降低。 只有遮挡解耦器表面的50%才会使读取范围略微降低。显然,其能够克 服有的人企图将物品隐藏在他们的衣服或类似材料下的尝试。
例10
在各种不同的芯部厚度上测试了三种不同的芯部材料:聚酯、聚丙 烯和聚碳酸酯。第一和第二导体层图案都具有相同的几何形状和厚度, 并且针对866MHz RF标签和读取器受到了优化。将解耦器放在金属表 面上,从而使不带有解耦器的RF标签提供基本为零的读取范围。根据 图23中的曲线图,随着芯部厚度的增大,读取范围也增大。已经得到 了验证的模拟(如例11所示)表明,在使芯部厚度从1000微米增大到 2000微米时,读取范围只有几厘米的增加。
自由空间内866MHz上的波长为346mm。如果芯部材料为聚酯,那 么在866MHz上所述材料中的波长为193mm。因而,如果芯部厚度为 1mm(1000微米),那么所述材料的厚度是自由空间波长1/346或者材 料波长的1/193。因此,在所述材料内的波长是自由空间波长除以折射 率,就聚酯而言,折射率接近1.8。
  材料厚度(mm)   占材料内的波长的比值   1   11/193   0.5   1/387   0.25   1/774
表5示出了占图23中测试的波长的比值
例11
按照采用HFSS确定的将在866MHz处提供最大的场增强的尺寸制 造一系列解耦器。为了确保最佳性能并验证模型HFSS,执行了一系列 测试。这些测试需要采用解耦器开始,所述解耦器具有位于上层的金属 岛,所述金属岛比从HFSS获得的必要值要长。随着通过蚀刻其材料使 金属岛的长度逐渐缩短来测量读取范围,所述蚀刻从解耦器的末端开始 并朝向中心进行。下面示出了针对原型聚碳酸酯解耦器的结果。通过这 些测试确定的最佳金属岛长度与通过HFSS建模确定的非常吻合。
  电介质芯部材料   最佳岛长度-理论(cm)   最佳岛长度-实验(cm)   聚酯   9.65   9.5-9.9   聚碳酸酯   10.0   9.7-10   聚丙烯   11.2   11.1-11.3
表6:针对866MHz标签的优化岛长度。
例12
评估具有不同芯厚度和宽度的一系列单岛解耦器。根据例1的方法, 采用铜作为导体层,并且采用PETG芯制备解耦器。解耦器的图案是图 22b所示的图案。所采用的标签是具有图22a所示的类型的低Q天线(即, 未针对866MHz处的使用而优化)。自由空间内的标签的读取范围几乎 可以忽略,因为其不具有优化天线。类似地,在将低Q标签直接放置到 金属表面上时,也不存在读取范围。下述表格示出了位于解耦器上的 RF标签的结果,其中,将解耦器放在金属表面上。
  解耦器   长度   (mm)   宽度   (mm)   厚度   标签类型   金属上的   读取范围   I-F-200   110   20   0.25mm   Class1Gen1   0.2m   I-F-750   110   20   0.5mm   Class1Gen1   0.75m   I-R-1500   110   20   1.0mm   Class1Gen1   1.5m   I-R-2500   110   48   1.0mm   Class1Gen1   2.5m
表7单岛解耦器
显然可以看出,解耦器能够使低Q标签与金属表面解耦。随着芯部 厚度的增大,RF标签的读取范围也增大。类似地,对于固定芯部厚度 而言,随着标签宽度的增大,读取范围也增大。某些应用,例如,跟踪 运销容器将受益于面积较大、芯部较厚的解耦器,因为读取范围可能是 一项重要的指标。但是,在售货点或收银台处,消费品可能只需要几厘 米的读取范围,因而其可能受益于面积较小的、较薄的标签。
可以用作电介质芯的其他材料为泡沫材料,例如,PVC、聚苯乙烯 等。这一材料的电容率的实部非常小,虚部亦如此。这有助于制作非常 薄的解耦器,因为较小的电容率将以小厚度提供良好的读取范围。为了 使泡沫金属化,可能必须建立层压结构,其中,在非常薄(例如,10微 米)的聚合物膜上淀积金属,之后将其粘到泡沫芯上。或者,可以采用 高规格射频层压体。存在各种针对高度有效的射频电路的制造而特殊设 计的PCB层压材料。这些PCB层压材料由金属-电介质-金属夹层结 构构成,其中,可以有选择地蚀刻上部金属层,以制造解耦器。例子包 括:Rogers RO 4003或TR/Duroid 5880、Arlon DiClad 880、Neltec NY9220 或Taconic TLY。其他备选材料包括陶瓷材料;这些材料具有高实电容 率,因此能够得到更薄的、柔软性更低的解耦器:例子包括氧化铝、硅 石、玻璃等。甚至可以希望采用诸如硅橡胶的合成像胶,因为它们具有 柔软的特性。此外,将填充剂混合到合成像胶基质内能够实现对材料特 性的修整。
例13
通过将环形狭缝(x)刻到半径为4.65cm的圆形铜-PETG-铜层 压体上的第一导体层的铜层内制备具有图21f所示的类型的与偏振无关 的解耦器。将所述标签安装到间隔体上。使电感环位于狭缝上(图27, 位置x),并按照先前的详细说明采用读取系统测量读取范围。已经发 现,与天线和狭缝正交时相比(图27,位置b),在环天线基本上处于 与所述曲线相切的位置时(图27,位置a),提高了读取范围。
内圆的直径从30mm的直径增大到50mm的直径,并执行读取范围 的测量,以及对能够读取标签的旋转角范围的测量。
  内圆直径(mm)   位置A   读取范围(cm)   旋转(度)   30   20   360   34   120   360   36   40   45   40   90   360   42   20   10   43   40   360   45   25   40   50   8   20
表8:环形狭缝的直径对读取范围的影响
随着内圆直径的增大,读取范围大体上降低,针对所述读取范围可 以达到的旋转程度也大体上降低。
整个解耦器的形状的变化(例如,处于环形狭缝之外的圆形、方形、 矩形、四边形区域)对性能也存在一定的影响,因而读取范围并非与总 面积简单地成正比。在与圆形狭缝结合使用时,整个解耦器的形状优选 为具有非均匀的边的四边形。不对本发明的构成限制的一种可能的解释 是,规则的形状可能表现出次级谐振效应,该效应将对狭缝谐振造成有 害干扰。
例14
采用由纸板电介质层制备的单岛解耦器执行一系列实验。研究通过 去除或修改第二导体层和隔开(standoff)距离而改变谐振腔所带来的影 响。针对全尺寸天线(即,市面上可得的具有调谐天线的天线,通常长 度为95mm)和具有环天线的低Q RF标签(最长尺寸小于20mm)进行 实验。
  读取范围   只具有第一导   体层和电介质   的读取范围   具有调谐解耦   器的读取范围   全尺寸天线   7m   7m   8m   环天线(低Q)   30cm   1m   7m
表9:谐振腔对自由空间内的读取器的影响。
在这一实验中,使RF标签(Alien technologies)位于图28a所示的 最佳位置,其中,使RF标签在具有提高的电场强度的点处位于缺失区 域之上,该点与第一导体层相距0.5mm,并且还与解耦器相隔小于1000 微米的距离。在整个实验中所述固定点保持不变。
对于全尺寸RF标签而言,所测的空气中的读取范围为7m,这正是 制造者所预期的自由空间内的读取范围。在使标签位于只具有经调谐的 第一导体层和电介质层的结构(即,不完整的“无背板”解耦器)上时, 读取范围不变。这一点仍和预期一样,因为在这一设置中第一导体层起 着较差的天线的作用。应当注意,在将整个RF标签直接放置在第一导 体层的中央时,读取范围为0m。这一点也和预期一样,因为已知金属 将扰乱RF标签。在使全尺寸RF标签位于经调谐的解耦器上时,读取范 围略有增大,达到了8m。从上述详细的实验(实验1-13)已经表明, 位于解耦器上的RF标签所提供的读取范围几乎与在自由空间内和在金 属等表面上所提供的读取范围相同。如果将市面可得的经调谐的RF标 签专用于自由空间内,那么解耦器只是略有助益。但是,在将RF标签 放置在金属表面(或任何其他与RF辐射相互作用的表面)附近时,所 述解耦器能够提高超越现有技术的接线天线或平衡天线的显著优势。
对于具有低Q环天线的RF标签而言,在空气中的读取范围一般, 即30cm。在将低Q RF标签放置在只具有一个导体层和电介质层的结构 上时,读取范围进一步略微增大至大约1m。但是,在将低Q RF标签放 在调谐解耦器上的最佳位置时,读取范围大幅提高。现在,读取范围接 近市面可得的全尺寸天线在自由空间内的读取范围。此外,根据先前的 实验(1-13)已经表明,在安装到解耦器上时低Q RF标签所提供的读 取范围实质上与在自由空间内以及放置到金属表面上或者形成金属表 面的组成部分时所提供的读取范围相同。
例15
前面的实验已经表明,RF标签与解耦器的第一导体层之间的优化 隔离距离出现在优选小于1000微米的距离处,如图14所示。开展实验 以表明解耦器按照与在电介质层上承载天线的衬底不同的模式工作。
再次制备实验14中采用的导体层位于电介质层上的结构,并改变 市面可得的RF标签与第一导体层之间的距离。在250微米到4000微米 的范围内,RF标签的读取范围保持7m。因此,其表明,“无背板”解 耦器和标准UHF标签之间的相互作用不同于全解耦器(即,包围芯结 构)和该标签之间的相互作用。
例16
通过使第二导体层的重叠减少量“d”测试第二导体层的长度及其 对谐振腔的类似形成的影响,如图28b所示。在这一实验中,第二导体 层是大金属薄板。不具有解耦器的市面可得的RF标签提供了基本为0m 的读取范围。在这一设置中,改变第二导体层的重叠度。这一点是通过 相对于金属薄板移动电介质和第一导体层实现的。
  重叠偏移量d(cm)   读取范围   4.8cm   80cm   2.6cm   180cm   1.6cm   300cm   0cm   700-800cm
表10:随着第二导体层的偏移量的增大的标签的读取范围
随着重叠度的降低(即,“d”变大),在第一和第二导体层之间 建立的腔的长度缩短,因而其预期谐振波长将偏离RF标签谐振频率的 谐振波长。正如预期的一样,在使腔的长度短于最佳调谐腔长度时,读 取范围显著降低,即,从8m降低到不足3m。此外,其证明,正是腔结 构(即,金属/电介质/金属三层)支配着解耦器的特性,而不是简单地 受第一导体层表示的金属补片的存在的支配。
例17
这一实验确定了放置到单岛解耦器上的环天线的旋转度的影响,如 图29所示。
  角   读取范围   (作为90度值的百分比)   0   0   5   25   10   33   20   40   30   100   50   100   70   100   90   100   110   100   130   100   140   83   150   75   155   58   165   28   170   22
表11:角对读取范围的影响
在这一实验中,将读取范围作为所取得的90°最大读取范围的百分 比测量。从图29可以看出,90°取向是指,环天线的长轴平行于谐振 腔中生成的电场。在这一取向内,跨越天线的两个端子建立了电势差。 解耦器的旋转可以引起天线于较小百分比的电场相互作用。根据结果显 然可以看到,电场的幅度足以容许相对较大的旋转,所述旋转优选处于 30°到150°的范围内,更优选处于70°到110°的范围内,更优选基 本为90°。制造容差应当优选处于85°到95°的范围内。与采用四岛 解耦器和标准RF标签的较早的旋转实验相比,在解耦器的表面上旋转 标签对处于单岛解耦器上的低Q天线的影响程度更低。
上述实验与图6到图17(包括图6和图17)所示的模拟数据具有 良好的相关性。
相关专利内容
标题 发布/更新时间 阅读量
一种电磁辐射检测仪 2020-05-12 232
电磁辐射解耦器 2020-05-11 256
防电磁辐射双点衬布 2020-05-13 1029
一种电磁辐射屏蔽方法 2020-05-13 15
电磁辐射探测器 2020-05-11 116
电磁辐射检测笔 2020-05-11 307
一种电磁辐射源 2020-05-11 47
电磁辐射吸收器 2020-05-11 24
防电磁辐射台灯 2020-05-12 708
电磁辐射传输设备 2020-05-13 726
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈