机动车辆

阅读:431发布:2020-05-12

专利汇可以提供机动车辆专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种 机动车辆 ,其包括电连接以构成在 指定 的标准 太阳能 辐照度下具有最小 输出 电压 的太阳能面板阵列的多个 太阳能 电池 。该车辆还可包括输出电压至少等于阵列的最小输出电压并被配置成提供 能量 以驱动车辆的 电池组 。车辆还可包括被配置成选择性地电连接阵列和电池组以给电池组涓流充电的 控制器 。本发明能够以不对驾驶员收取直接成本的能量来为替代 能源 车辆的高电压电池充电而能量损失较小。,下面是机动车辆专利的具体信息内容。

1.一种机动车辆,包含:
电机,被配置成为所述车辆产生驱动
牵引电池,选择性地与所述电机电连接并在目标荷电状态下具有足以驱动所述电机的输出电压;以及
太阳能面板阵列,所述太阳能面板阵列选择性地与所述牵引电池电连接,并且如果暴
2
露于1000W/m 的标准太阳能辐照度下则所述太阳能面板阵列的输出电压至少等于所述牵引电池在目标荷电状态下的输出电压。
2.根据权利要求1所述的机动车辆,其特征在于,所述牵引电池包括多个电池单元,且其中所述太阳能面板阵列包括多个太阳能电池,所述太阳能电池的数目取决于所述电池单元的数目。
3.根据权利要求2所述的机动车辆,其特征在于,所述太阳能电池的数目还取决于所述电池单元中的一个的开路电压。
4.根据权利要求1所述的机动车辆,其特征在于,所述太阳能面板阵列包括多个太阳能电池,所述太阳能电池的数目取决于所述太阳能电池中的一个在选定的标准太阳能辐照度下的开路电压。
5.根据权利要求1所述的机动车辆,其特征在于,所述太阳能面板阵列包括多个太阳能电池,所述太阳能电池的数目取决于所述牵引电池在目标荷电状态下的开路电压。
6.根据权利要求1所述的机动车辆,其特征在于,所述太阳能面板阵列包括电串联的多个太阳能电池。
7.根据权利要求1所述的机动车辆,其特征在于,所述太阳能面板阵列包括多个太阳能电池,且其中所述多个太阳能电池中的每一个的面积取决于所述太阳能面板阵列的目标最大功率输出。
8.根据权利要求1所述的机动车辆,其特征在于,所述太阳能面板阵列包括多个太阳能电池,且其中所述多个太阳能电池中的每一个的面积与所述多个太阳能电池中的一个的短路电流成比例。

说明书全文

机动车辆

技术领域

[0001] 本发明涉及一种机动车辆。

背景技术

[0002] 替代能源车辆(例如混合动电动车辆、插电式混合动力电动车辆和电池电动车辆)可使用电机以将存储在高电压电池内的能量转换为驱动力。对于混合动力电动车辆,高电压电池可存储由内燃发动机转换的能量或从再生制动事件捕获的能量。插电式混合动力电动车辆的高电压电池可额外地存储从电网接收的能量。同样,电池电动车辆的高电压电池可存储从电网接收的能量。
[0003] 某些上述能量源可具有与它们相关的成本。例如,混合动力电动车辆的内燃发动机可燃烧汽油以转换能量用于高电压电池存储。当然,必须购买这种汽油。同样,电网公司对它们供应的电能收费。相反,从再生制动事件捕获的能量不需要这种直接成本。在某种意义上,这是免费能量。因此,需要以不对驾驶员收取直接成本的能量来为替代能源车辆的高电压电池充电。

发明内容

[0004] 根据本发明,提供了一种机动车辆,所述机动车辆可包括在目标荷电状态下具有输出电压的牵引电池、以及如果暴露于指定的标准太阳能辐照度下则输出电压至少等于牵引电池在目标荷电状态下的输出电压的太阳能面板阵列。本说明书中还描述了其它配置和构造。
[0005] 根据本发明的另一个方面,提供了一种机动车辆,包含:配置用于为车辆产生驱动力的电机;选择性地与电机电连接并在目标荷电状态下具有足以驱动电机的输出电压的牵引电池;以及太阳能面板阵列,太阳能面板阵列选择性地与牵引电池电连接,并且如果暴露2
于1000W/m 的标准太阳能辐照度下则太阳能面板阵列的输出电压至少等于牵引电池在目标荷电状态下的输出电压。
[0006] 根据本发明的另一个方面,公开了一种机动车辆,包含:包括多个电连接的蓄电池并配置用于提供能量以驱动车辆的电池组,每个蓄电池均具有处于目标蓄电池荷电状态的输出电压;串联电连接以形成太阳能面板阵列的多个太阳能电池,所述太阳能面板阵列的输出电压至少等于各个蓄电池在目标蓄电池荷电状态下的输出电压之和;以及配置用于选择性地电连接太阳能面板阵列和电池组以给电池组充电的控制器
[0007] 根据本发明的实施例,其中多个太阳能电池的数目取决于多个电连接的蓄电池的数目。
[0008] 根据本发明的实施例,其中多个太阳能电池的数目还取决于多个电连接的蓄电池中的一个的开路电压。
[0009] 根据本发明的另一个方面,公开了一种机动车辆,包含:电连接以构成在1000W/m2的标准太阳能辐照度下具有至少200V的输出电压的太阳能面板阵列的多个太阳能电池;具有至少200V的输出电压并被配置为提供能量以驱动车辆的电池组;以及配置用于选择性地电连接阵列和电池组以给电池组涓流充电的控制器。
[0010] 根据本发明的实施例,其中电池组包括多个电池单元,且其中太阳能电池的数目取决于电池单元的数目。
[0011] 根据本发明的实施例,其中太阳能电池的数目还取决于电池单元中的一个的开路电压。
[0012] 根据本发明的实施例,其中太阳能电池的数目取决于多个太阳能电池中的一个在选定的标准太阳能辐照度下的开路电压。
[0013] 根据本发明的实施例,其中太阳能电池的数目取决于电池组在目标荷电状态下的开路电压。
[0014] 根据本发明的实施例,其中多个太阳能电池电串联。
[0015] 根据本发明的实施例,其中多个太阳能电池中的每一个的面积取决于太阳能面板阵列的目标最大功率输出。
[0016] 根据本发明的实施例,其中多个太阳能电池中的每一个的面积与多个太阳能电池中的一个的短路电流成比例。
[0017] 本发明能够以不对驾驶员收取直接成本的能量来为替代能源车辆的高电压电池充电而能量损失较小。附图说明
[0018] 图1为替代能源车辆的电力系统的实施例的框图
[0019] 图2为图1的太阳能面板阵列的示意图。
[0020] 图3为图1的电力系统的示意图。

具体实施方式

[0021] 太阳能可经由太阳能电池捕获并且用于为替代能源车辆的高电压电池充电。通常,具有低电压输出的太阳能电池布置在车辆外表上的重要位置。太阳能电池与将由太阳能电池输出的电压升压至接近高电压电池充电的平的DC/DC升压变换器电连接。高电压总线电连接DC/DC升压变换器和高电压电池。
[0022] DC/DC升压变换器可能效率低下。因此,经由太阳能电池捕获的大部分能量会在升压过程中作为热量而损失。相对而言,太阳能电池仅可以捕获少量能量。在升压过程期间这种能量的损失会使得以太阳能为高电压电池充电变得不实用。
[0023] 替代能源车辆的高电压电池和电机的电连接可通过一组接触器(主接触器)来实现。即,这些接触器可闭合以建立该电连接。相对而言,主接触器通常具有操作大量的电流(例如100+A)的尺寸。
[0024] 通常,替代能源车辆的太阳能电池通过主接触器与车辆的高电压电池电连接。因为主接触器的尺寸,所以相对于经由太阳能电池捕获的能量,可能需要大量能量(例如12W吸持/稳态,240W峰值)来闭合主接触器。到这样的程度这会使得以太阳能为高电压电池充电不实用。
[0025] 本发明的某些实施例可提供可与高电压电池电连接的太阳能面板阵列。太阳能面板阵列的输出电压可使得不需要DC/DC升压变换器升压太阳能面板阵列的输出以便为高2
电压电池涓流充电。如一个示例,阵列可在1000W/m 的标准太阳辐照度下具有至少200V的输出电压。因此,相对于那些包括DC/DC升压变换器的例子,在这种配置下较少能量会作为热量而损失。
[0026] 本发明的某些实施例可提供电力结构(electrical infrastructure)以将太阳能面板阵列与高电压电池电连接。相较于主接触器闭合以建立连接的配置,该电力结构可需要较少的能量来在阵列和电池之间建立电连接。如一个示例,独立(更小)组的开关/接触器/继电器可闭合以电连接阵列和电池。结果,更多的能量可用于为电池充电。
[0027] 参考图1,替代能源车辆10可包括高电压牵引电池12(例如在70%荷电状态(SOC)下为200+V)、电机14(例如达、发电机、逆变器等)、接触器16(主接触器)、牵引电池控制模(TBCM)18和其它动力系组件20(例如发动机、变速器等)。牵引电池12和电机14通过接触器16电连接。当如下所述由TBCM 18合适地闭合时,接触器16允许能量在牵引电池12和电机14之间流动。
[0028] 电机14和动力系组件20机械连接。因此,电机14可将来自牵引电池12的电能转换为用于动力系组件20的机械能并且反之亦然。
[0029] 车辆10可进一步包括高电压太阳能面板阵列22、输出端子23(图3)、太阳能面板阵列激活系统24、最大功率追踪器(multiple power point tracker,MPPT)26、和太阳能电池控制器(SCC)28。太阳能面板阵列22、MPPT 26和SCC 28通过输出端子23电连接。SCC28可为独立的控制器或集成在车辆系统控制器、混合动力控制模块单元或动力控制模块等内。如在下面更详细地论述,激活系统24和MPPT 26在SCC 28的控制下允许来自太阳能面板阵列22的能量为牵引电池12充电而不需要闭合任一个接触器16。当然,其它配置也是可能的。
[0030] 在图1的实施例中,太阳能面板阵列22包括电串联的多个相对小(例如50mm×120mm)的太阳能电池30n(30a、30b等)。每个电池30n均具有有效Vcell(例如,在
2
1000W/m 的标准太阳辐照度下大约0.5V电压)输出和低电流(例如150mA,应注意电流取
2
决于电池面积)输出。电池30n的数目足够大,这样在1000W/m 的标准太阳辐照度下它们的累积输出(例如)至少等于牵引电池12在70%SOC下的电压(例如200V)。该配置允许太阳能面板阵列22直接地电连接至牵引电池12(无论是否使用MPPT)。
[0031] 图1中的MPPT 26可用于以任何合适的已知方式使太阳能面板阵列22在其峰值效率下运转。例如在图1中的实施例中,MPPT 26为高效率的DC/DC降压变换器,其可从太阳能面板阵列22汲取最大功率。然而,其它合适/已知的MPPT配置也是可能的。
[0032] 电池30n的数目n可基于下面的等式确定:
[0033]
[0034] 其中,NHVBatCells为牵引电池12内的电池单元的数目,VHVBatCellOCV@HiSOC为在高(或目标)SOC下的牵引电池单个电池单元开路电压(例如SOC大约为70%,在该SOC下的开路电压大约为1.7V),ΔVHVBatCellOCV@HiSOC为当少量的充电电流通过单个电池单元时的牵引电池单2
个电池单元额外电压上升,Vi为在1000W/m 的标准太阳辐照度下的单个太阳能电池开路电压,并且i能够表达为如下:
[0035] i=1,2,...,k-1,k,k+1,...,m-1,m,m+1,...,n-1,n (2)[0036] (1)可改写为:
[0037]
[0038] 其中,VHVBatOCV@HiSOC为在高(或目标)SOC下的牵引电池开路电压(例如SOC大约为70%,而该SOC下开路电压大约为270V,假定牵引电池12内的所有的单个电池单元是平衡的并且处于相同的SOC下),并且ΔVHVBatOCV@HiSOC为当少量的充电电流通过牵引电池12时的牵引电池额外电压上升。然而,任何合适的关系和/或技术均可用于确定电池30n的数目n(或这里的任何其它参数)。
[0039] 参考图2,太阳能面板阵列22包括串联以实现高电压输出的n个单个太阳能电池30n。太阳能面板阵列22的输出开路电压由下式给出:
[0040]
[0041] 假定每个太阳能电池30n的特性相似,则(4)能够改写为:
[0042]
[0043] 将(3)代入至(5)中得出:
[0044]
[0045] 在图2的实施例中,太阳能面板阵列22还包括Schottky旁路二极管D1,D2,...,Dp,每k个太阳能电池可配置一个Schottky旁路二极管以确保在例如电池被遮光的状况下产生最佳功率。因此,由于遮光而导致电流下降的电池可被旁通。
[0046] 为了实现太阳能面板阵列22的期望的最大功率输出Ps,可基于Ps选择单个太阳能电池30n的面积。即,太阳能面板阵列22的Ps可用于确定太阳能面板阵列的短路电流ISC和单个电池的短路电流Ii。随后Ii可用于确定单个太阳能电池30n的面积,如下给出:
[0047]
[0048] 其中,ΔVS_OCV为在低于其时太阳能面板阵列22的电流输出近似为常数或接近于ISC的电压。
[0049] 因为单个太阳能电池30n为串联的,所以ISC与Ii相同。因此,对于单个太阳能电池30n,(7)能够改写为:
[0050]
[0051] 通过从(6)中求解Vi并将其代入至(8)中,我们发现:
[0052]
[0053] (9)为期望的单个太阳能电池的短路电流,其基本上与单个太阳能电池30n的面积成比例。因此,(9)能够用于确定单个太阳能电池30n的面积。
[0054] 参考图3,接触器16可包括负极端子主接触器32(与牵引电池12的负极端子电连接)、正极端子主接触器34(与牵引电池12的正极端子电连接)、预充电接触器36(电连接在牵引电池12的正极端子和逆变器之间)、主电容器38(电连接在牵引电池12的正极端子和负极端子两端)和预充电电阻器40(电连接在牵引电池12的正极端子和逆变器之间)。接触器32、34、36还与TBCM 18电连接或由TBCM 18控制。当然,其它配置也是可能的。例如,预充电接触器36可替代地电连接在牵引电池12的负极端子和逆变器之间等。
[0055] 为了将牵引电池12与电机14电连接,TBCM 18首先闭合负极端子主接触器32和预充电接触器36,以便通过预充电电阻器40为主电容器38充电。一旦主电容器38被充电,TBCM 18闭合正极端子主接触器34并且断开预充电接触器36。如上文(和下文)所述,可能需要大量的能量来闭合接触器32、34、36。
[0056] 在图3的实施例中,太阳能面板阵列激活系统24可包括正极端子开关/接触器/继电器42(与牵引电池12的正极端子电连接)、负极端子开关/接触器/继电器44(与牵引电池12的负极端子电连接)、预充电开关/接触器/继电器46(电连接牵引电池12的正极端子和MPPT 26)、电容器48、二极管50和电阻器52(电连接在牵引电池12的正极端子和预充电开关/接触器/继电器46之间)。开关/接触器/继电器42、44、46还与SCC 28电连接或由SCC 28控制。电容器48电连接在开关/接触器/继电器42、44之间并且因此可用于过滤噪声尖峰。还电连接有二极管50,这样电流仅从太阳能面板阵列22流至牵引电池12。
[0057] 在其它实施例中,太阳能面板阵列激活系统24可包含单个开关。例如,牵引电池12的负极端子和正极端子中的一个可总是与太阳能面板阵列22连接。牵引电池12的负极端子和正极端子中的另一个可经由开关与太阳能面板阵列22连接。包括额外的开关、电容器和/或二极管、和/或缺少电容器和/或二极管的其它配置和构造也是可能的。
[0058] 开关/接触器/继电器42、44、46的尺寸可比接触器32、34、36的尺寸小,因为它们处理较小的电流。例如,开关/接触器/继电器42、44、46可处理大约0.035A至1A(例如高达5A)的电流,而接触器32、34、36可处理大约150A的电流。结果,会需要大约10mA至25mA的电流(或0.12W至0.3W的功率(例如高达1W的吸持功率))来闭合开关/接触器/继电器42、44、46,而会需要250mA至1A(峰值10A至20A)的电流(或3W至12W(120W至240W峰值功率))来闭合接触器32、34、36。考虑到太阳能面板阵列22可仅收集在5W至200W的范围内的能量,这种能量消耗上的差别会是非常显著的。
[0059] 为了将牵引电池12与太阳能面板阵列22电连接(基于驾驶员和/或车辆输入),SCC 28可首先闭合开关/接触器/继电器44、46以便通过电阻器52为电容器48软充电。一旦电容器48被充电,SCC 28可随后闭合正极端子开关/接触器/继电器42并且断开负极端子开关/接触器/继电器44。为了将牵引电池12与太阳能面板阵列22断开,SCC 28可断开开关/接触器/继电器42、44。当然,太阳能面板阵列激活系统24的其它配置可导致用于将牵引电池12与太阳能面板阵列22电连接的不同的策略。
[0060] 尽管已经说明并描述了本发明的实施例,但是并不意味着这些实施例说明并描述了本发明的所有可能形式。说明书中使用的词汇为描述性词汇而非限制,并且应该明白的是,在不脱离本发明的精神和范围的情况下可进行各种改变。
相关专利内容
标题 发布/更新时间 阅读量
机动车辆 2020-05-11 786
机动车辆 2020-05-12 617
机动车辆 2020-05-12 489
机动车辆 2020-05-12 842
机动车辆 2020-05-12 850
机动车辆 2020-05-13 329
一种机动车辆安全维护检测结构 2020-05-11 994
机动车辆 2020-05-11 745
机动车辆 2020-05-12 142
机动车辆 2020-05-12 805
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈