首页 / 专利库 / 电气和电子设备 / 启动电路 / 电源启动检测电路

电源启动检测电路

阅读:1026发布:2020-05-25

专利汇可以提供电源启动检测电路专利检索,专利查询,专利分析的服务。并且一种电源启动检测 电路 ,包括第一与第二比较器电路、 分压器 电路、检测电路以及 逻辑电路 。第一与第二比较器电路各包括第一与第二输入,所述第一输入自参考 电压 源端点接收参考电压。分压器电路包括第一端点耦接至第一比较器电路的第二输入,以及第二端点耦接至第二比较器电路的第二输入。当第一电压源端点具有一电位高于接地电位时,检测电路产生控制 信号 控制第一与第二比较器电路的开启与关闭。逻辑电路耦接至第一与第二比较器电路的一输出,根据该第一与第二比较器电路的输出产生一电源识别信号。本 发明 可避免错误检测信号。,下面是电源启动检测电路专利的具体信息内容。

1.一种电源启动检测电路,包括:
一第一与一第二比较器电路,各包括一第一输入与一第二输入,该第一与第二比较器电路的所述第一输入自一参考电压源端点接收一参考电压;
分压器电路,包括一第一、一第二与一第三电阻,该第一与第二电阻耦接于一第一端点,该第二与第三电阻耦接于一第二端点,该分压器的该第一端点耦接至该第一比较器电路的该第二输入,并且该分压器的该第二端点耦接至该第二比较器电路的该第二输入;
一检测电路,耦接于一第一电压源端点与该分压器电路的该第一电阻之间,当该第一电压源端点具有一电位高于一接地电位时,该检测电路产生一控制信号,该控制信号控制该第一与第二比较器电路的开启与关闭;
逻辑电路,耦接至该第一与第二比较器电路的一输出,该逻辑电路根据该第一与第二比较器电路的所述输出产生一信号;以及
一逻辑栅,耦接至该检测电路与该逻辑电路,并且根据该检测电路所产生的该控制信号与该逻辑电路所产生的该信号执行逻辑运算,以产生一电源识别信号。
2.如权利要求1所述的电源启动检测电路,其中该检测电路包括:
一第一金属化物半导体MOS晶体管,包括一源极耦接至该第一电压源端点;
一第二金属氧化物半导体MOS晶体管,包括一源极与一漏极,该第二金属氧化物半导体MOS晶体管的该漏极耦接至该第一金属氧化物半导体MOS晶体管的一漏极;
一第三金属氧化物半导体MOS晶体管,包括一漏极耦接至该分压器的该第一电阻、一源极耦接至该第一电压源端点,以及一栅极耦接该第一与第二金属氧化物半导体MOS晶体管的所述漏极于一第三端点;
一电容,耦接于该第一电压源端点以及该第三端点之间;以及
反相器,耦接至该第三端点与该第一与第二比较器电路,
其中该第一与第二金属氧化物半导体MOS晶体管的一栅极耦接至该参考电压源端点。
3.如权利要求1所述的电源启动检测电路,其中该第一比较器电路包括一差动放大器,用以产生一输出信号,以识别该分压器的该第一端点的一电位是否高于该参考电压的一电位,并且其中该第一比较器电路包括一第一与一第二金属氧化物半导体MOS晶体管,各具有一栅极分别用以收该控制信号。
4.如权利要求1所述的电源启动检测电路,其中该第二比较器电路包括一差动放大器,用以产生一输出信号,以识别该分压器的该第二端点的一电位是否高于该参考电压的一电位,并且其中该第二比较器电路包括一第一与一第二金属氧化物半导体MOS晶体管,各具有一栅极分别用以收该控制信号,并且该第一与第二金属氧化物半导体MOS晶体管各包括一去耦电容,分别跨接于一源极与一漏极之间。
5.如权利要求1所述的电源启动检测电路,其中该逻辑栅为一与逻辑栅。
6.一种电源启动检测电路,包括:
一第一与一第二比较器电路,各包括一第一输入与一第二输入,该第一与第二比较器电路的所述第一输入耦接至具有一参考电压电平的一参考电压端点;
一分压器电路,包括一第一与一第二端点,该第一端点耦接至该第一比较器电路的该第二输入,并且该第二端点耦接至该第二比较器电路的该第二输入;
一检测电路,耦接于一第一电压源端点与该分压器之间,当该第一电压源端点具有一电位高于一接地电位时,该检测电路产生一控制信号,该控制信号控制该第一与第二比较器电路的开启与关闭;以及
一逻辑电路,耦接至该第一与第二比较器电路的一输出,该逻辑电路根据接收自该第一与第二比较器电路的所述输出产生一电源识别信号,
其中该第一比较器电路还包括一差动放大器,用以产生一输出信号,以识别该第一端点的一电位是否高于该参考电压的一电位,以及一第一与一第二金属氧化物半导体MOS晶体管,各具有一栅极分别用以收该控制信号。
7.如权利要求6所述的电源启动检测电路,其中该第二比较器电路包括一差动放大器,用以产生一输出信号,以识别该第二端点的一电位是否高于该参考电压的一电位,并且其中该第二比较器电路包括一第一与一第二金属氧化物半导体MOS晶体管,各具有一栅极分别用以收该控制信号,并且该第一与第二金属氧化物半导体MOS晶体管各包括一去耦电容,分别跨接于一源极与一漏极之间。
8.如权利要求6所述的电源启动检测电路,其中该逻辑电路包括一与逻辑栅用以接收该控制信号作为一输入,并且输出该电源识别信号。
9.如权利要求6所述的电源启动检测电路,其中该分压器电路包括一第一、一第二与一第三电阻,该第一与第二电阻耦接于该第一端点,并且该第二与第三电阻耦接于该第二端点。
10.如权利要求6所述的电源启动检测电路,其中该检测电路包括:
一第一金属氧化物半导体MOS晶体管,包括一源极耦接至该第一电压源端点;
一第二金属氧化物半导体MOS晶体管,包括一源极与一漏极,该第二金属氧化物半导体MOS晶体管的该漏极耦接至该第一金属氧化物半导体MOS晶体管的一漏极;
一第三金属氧化物半导体MOS晶体管,包括一漏极耦接至该分压器的一第一电阻、一源极耦接至该第一电压源端点,以及一栅极耦接该第一与第二金属氧化物半导体MOS晶体管的所述漏极于一第三端点;
一电容,耦接于该第一电压源端点以及该第三端点之间;以及
一反相器,耦接于该第三端点与该第一与第二比较器电路之间。

说明书全文

电源启动检测电路

技术领域

[0001] 本发明涉及一种集成电路系统与方法,尤其涉及一种关于集成电路的电源启动检测(power on detection,简称POD)电路的系统与方法。

背景技术

[0002] 电源启动检测(POD)电路,通常也称为电源检测(power detect)、电源启动重置(power on reset)、电源使能(power enable)或电压检测(voltage detect)电路,其通常用于当供应电压源的电压电平达到一既定可接受的电平时,提供一电源启动信号。这样的电路通常实施于半导体装置,以避免当供应电压施加于半导体装置时发生故障。当半导体装置在供应电压到达适当的操作电平之前开始运作时,可能会因为发生不正常的操作而造成装置失败。因此,当供应电压被提供,但未达到既定电压电平时,使用一重置信号重置半导体装置。当供应电源达到既定的电压电平范围时,重置信号会被释放。
[0003] 图1显示传统电源启动检测电路的一范例。如图1所示,电源启动检测100包括一电阻阵列104、开关112与114、反相器118以及比较器102。电阻阵列104包含串联耦接于电压源VDD与接地点之间的电阻106、108与110。开关112耦接至端点124,其位于电阻106与108之间,开关112也耦接至端点122,端点122耦接至比较器102的一输入端。开关
114也耦接至端点122与120,其中端点120耦接于电阻108与110之间。开关112与114
的开与关通过比较器102的输出反馈控制。如图1所示,开关112直接从比较器102的输出接收反馈信号,而开关114通过反相器118从比较器102的输出接收反馈信号,其中反相器118耦接至比较器102输出的端点116。
[0004] 比较器102将端点122的电压与一参考电压VREF作比较,其中端点122的电压来自端点124或120。比较器根据端点122所接收到的电压是否大于或小于参考电压VREF,进而输出逻辑“1”或逻辑“0”。例如,当参考电压VREF大于端点122所接收到的电压时,比较器输出逻辑“0”,而当参考电压VREF小于端点122所接收到的电压时,比较器输出逻辑“1”。比较器102的输出RSN用以作为电源启动重置(power-on-reset)信号。
[0005] 图2显示传统电源启动检测电路的另一范例。如图2所示,电源启动检测电路200包括第一与第二比较器202A与202B(两者统称为比较器202)、电阻阵列204与逻辑电路212。电阻阵列204包括串联耦接于电压源VDD与接地点之间电阻206、208与210。比较器
202A接收一带隙参考电压(bandgap voltage)VREF作为第一输入,以及于端点214的电压作为第二电压。同样地,比较器202B接收参考电压VREF作为第一输入,以及于端点216的电压作为第二电压。比较器202将端点214与216的电压与参考电压VREF比较,并且根据比较结果输出逻辑“1”或逻辑“0”。例如,若自端点214接收到的电压大于参考电压VREF,比较器
202A可输出逻辑“1”,反之亦然。逻辑电路214通常包含多个逻辑栅,并且接收来自比较器
202的输出作为输入信号。逻辑电路214根据自比较器202接收到的信号输出电源启动重置信号RSN。然而,各电源启动检测电路100与200容易产生错误的电源启动或重置信号。

发明内容

[0006] 为了解决现有技术的问题,根据本发明的一实施例,一种电源启动检测电路,包括一第一与一第二比较器电路、一分压器电路、一检测电路以及一逻辑电路。第一与第二比较器电路各包括一第一输入与一第二输入,该第一与第二比较器电路的所述第一输入自一参考电压源端点接收一参考电压。分压器电路包括一第一、一第二与一第三电阻,该第一与第二电阻耦接于一第一端点,该第二与第三电阻耦接于一第二端点,该分压器的该第一端点耦接至该第一比较器电路的该第二输入,并且该分压器的该第二端点耦接至该第二比较器电路的该第二输入。检测电路耦接于一第一电压源端点与该分压器电路的该第一电阻之间,当该第一电压源端点具有一电位高于一接地电位时,该检测电路产生一控制信号,该控制信号控制该第一与第二比较器电路的开启与关闭。逻辑电路耦接至该第一与第二比较器电路的一输出,该逻辑电路根据该第一与第二比较器电路的所述输出产生一电源识别信号。
[0007] 根据本发明的另一实施例,一种电源启动检测电路,包括一第一与一第二比较器电路、一分压器电路、一检测电路以及一逻辑电路。第一与一第二比较器电路各包括一第一输入与一第二输入,该第一与第二比较器电路的所述第一输入耦接至具有一参考电压电平的一参考电压端点。分压器电路包括一第一与一第二端点,该第一端点耦接至该第一比较器电路的该第二输入,并且该第二端点耦接至该第二比较器电路的该第二输入。检测电路耦接于一第一电压源端点与该分压器之间,当该第一电压源端点具有一电位高于一接地电位时,该检测电路产生一控制信号,该控制信号控制该第一与第二比较器电路的开启与关闭。逻辑电路耦接至该第一与第二比较器电路的一输出,该逻辑电路根据接收自该第一与第二比较器电路的所述输出产生一电源识别信号。
[0008] 本发明可避免错误检测信号。附图说明
[0009] 图1显示传统电源启动检测电路的一范例。
[0010] 图2显示传统电源启动检测电路的另一范例。
[0011] 图3A显示根据本发明的一实施例所述的改良过的电源启动检测电路范例。
[0012] 图3B显示根据本发明的另一实施例所述的改良过的电源启动检测电路范例。
[0013] 图3C显示根据本发明的另一实施例所述的改良过的电源启动检测电路范例。
[0014] 图4A显示如图3A-图3C所示的比较器400A的电路。
[0015] 图4B显示如图3A-图3C所示的比较器400B的电路。
[0016] 图5A显示例如图1、图2所示的传统电源启动检测电路的电压与时间关系图。
[0017] 图5B显示例如图3A-图3C所示的改良过的电源启动检测电路的电压与时间关系图。
[0018] 其中,附图标记说明如下:
[0019] 100、200、300A、300B、300C~电源启动检测电路;
[0020] 102、202A、202B、400A、400B~比较器;
[0021] 104、204~电阻阵列;
[0022] 106、108、110、206、208、210、318、320、322~电阻;
[0023] 112、114~开关;
[0024] 116、120、122、124、214、216、314、324、326、332、334、432、434、436、438、440、442、444、SW~端点;
[0025] 118、312、402、404、426、428~反相器;
[0026] 212、328~逻辑电路;
[0027] 302、302’、302”~检测电路;
[0028] 304、306、308、336、406、408、410、412、414、416、418、420、422、424~晶体管;
[0029] 310、446、448~电容;
[0030] 316~分压器;
[0031] 330~与逻辑栅;
[0032] 430~电流源;
[0033] RSN~信号;
[0034] t1、t2、t3、t4、t5、t6、t7、t8、t9、t10、t11~时间;
[0035] VDD~电压源;
[0036] VREF~电压。

具体实施方式

[0037] 为使本发明的制造、操作方法、目标和优点能更明显易懂,下文特举几个优选实施例,并配合所附附图,作详细说明如下:
[0038] 实施例:
[0039] 图3A是显示根据本发明的一实施例所述的改良过的电源启动检测电路范例。如图3A所示,电源启动检测电路300A包括检测电路302、具有与检测电路302串联耦接的电阻318、320与322的分压器316、第一与第二比较器400A与400B、逻辑电路328以及与逻辑栅(AND gate)330。检测电路302包括晶体管304、306与308、电容310与反相器312。
[0040] P沟道金属化物半导体场效应晶体管(metal oxide semiconductor field effect transistor,简称MOSFET)304与N沟道MOSFET 306于栅极接收带隙参考电压VREF,并且将其漏极于端点314互相耦接。值得注意的是,在一些实施例中,例如图3B所示,检测电路302’内的晶体管304的栅极也可不耦接至参考电压VREF,而改为耦接至地。参考回图3A,晶体管304的源极耦接至电压源VDD,并且晶体管306的源极耦接至地。P沟道MOSFET
308的源极耦接至电压源VDD,栅极于端点314耦接至晶体管304与306的漏极。于端点
332,晶体管308的栅极也耦接至电容310,其中电容310也耦接至电压源VDD。晶体管308的漏极耦接至电阻318。反相器312的输入端与电容310耦接于端点332,并且其输出耦接至与逻辑栅330的一输入端。
[0041] 比较器400A接收参考电压VREF作为其第一输入,以及接收电阻318与320之间的端点324的电压作为第二输入。比较器400B接收参考电压VREF作为其第一输入,以及接收电阻320与322之间的端点326的电压作为第二输入。比较器400A与400B的输出会输入至逻辑电路328,与逻辑电路328输出一信号至与逻辑栅330。
[0042] 图4A显示如图3A-图3C所示的比较器400A的电路。如图4A所示,比较器400A包括串接的第一与第二反相器402与404。第一反相器402接收反相器312(如图3A-图3C所示)的输出作为其输入信号。P沟道MOSFET418的源极耦接至晶体管408、410与420的源极,并且其栅极耦接至反相器404的输出。P沟道MOSFET 408与410的栅极互相耦接,并且于端点432耦接至晶体管412的漏极。N沟道MOSFET 412于栅极接收参考电压VREF,并且其源极于端点438耦接至晶体管414的源极以及晶体管416的漏极。晶体管416的栅极耦接至晶体管406的栅极与漏极,并且晶体管406的栅极与漏极还于端点440耦接至电流源430。晶体管406、416、422与424的源极耦接至地。
[0043] 如图3A所示,晶体管414的栅极自端点324接收一电压。晶体管414的漏极于端点436耦接至晶体管410与418的漏极,并且耦接至晶体管420的栅极。晶体管420的漏极于端点442耦接至晶体管422与424的漏极,以及耦接至反相器426的输入。晶体管424的栅极于端点444耦接至反相器402的输出,以及耦接至反相器404的输入。反相器426的输出耦接至反相器428的输入,并且反相器428的输出如图3A所示接着输入至逻辑电路328。
[0044] 图4B显示如图3A-图3C所示的比较器400B的电路。比较器400B与400A具有相似的架构,因此相似的元件标号代表相似的元件,重复的介绍于此不再赘述。如图4B所示,晶体管414的栅极耦接至图3A-3C所示的端点326。此外,去耦电容446与448可分别平行耦接于例如晶体管418与424的源极与漏极之间。
[0045] 图3C显示根据本发明的另一实施例所述的改良过的电源启动检测电路范例。如图3C所示,电源启动检测电路300C与图3A-图3B所示的电源启动检测电路300A与300B具有相似的架构,因此相似的元件标号代表相似的元件,重复的介绍于此不再赘述。检测电路302”包括晶体管336,其漏极于端点334耦接至晶体管308的漏极,以及耦接至分压器316的电阻318。晶体管336的源极耦接至地,并且晶体管336的栅极于端点332耦接至晶体管304与306的漏极、晶体管308的栅极以及耦接至反相器312的输入端。
[0046] 电源启动检测电路300A的操作的介绍可参考至图3A与图4A。当整合于电源启动检测电路的装置的电源关闭时,电压源VDD与参考电压VREF会接近零伏特。当装置的电源开启时,VDD会上升至其正常的操作电压电平。在一时间周期后,检测电路302的电容310通过晶体管308提供VDD至分压器316的电阻318,此时间周期关系于电容310的充电时间。本领域普通技术人员可理解的是,电容310的尺寸与充电时间可被改变。由电容310所提供的延迟在参考电压VREF达到其稳定状态的电压之前,可有效预防检测电路302通过晶体管308输出VDD至分压器316。
[0047] 一旦检测电路302检测到电源启动时,电压源VDD的电位供应至分压器316。当检测电路302通过反相器312于端点SW输出被反相的状态信号时,检测电路302也同时控制比较器400A与400B的导通状态。例如,当检测电路302检测到电源开启,例如,电压VDD在高于接地电位的正常操作电压电平时,检测电路302会通过反相器312于端点SW输出逻辑“1”。
[0048] 如图4A所示,反相器402自端点SW接收信号,并输出反相过的信号至端点444。晶体管424的栅极耦接至端点444,并于栅极接收反相过的信号。反相器404将端点444的信号,并将反相过的信号输出至晶体管418的栅极。因此,晶体管418与424以及比较器
400A的导通与否由检测电路302于端点SW的输出信号所控制。当晶体管418与424不导通时,包含晶体管408、410、412、414与416的差动放大器根据由端点324所接收的电压与参考电压VREF的电压差输出一信号。例如,若端点324所接收到的电压大于参考电压VREF,比较器400A会通过反相器428输出逻辑“1”至逻辑电路328。另一方面,若端点324所接收到的电压等于或小于参考电压VREF,比较器400A会通过反相器428输出逻辑“0”至逻辑电路328。本领域普通技术人员可以明白的是,当参考电压VREF大于端点324所接收到的电压时,比较器400A也可设计为输出逻辑“1”,而当参考电压VREF小于端点324所接收到的电压时,比较器400A也可设计为输出逻辑“0”。
[0049] 比较器400B的操作类似于比较器400A的操作。例如,如图4B所示,比较器400B的反相器402于端点SW自检测电路302’接收状态信号。反相器402的输出由晶体管424的栅极接收,用以控制晶体管424的导通状态。反相器402的输出会进一步被反相器404反相,经反相器404反相的信号会被晶体管418的栅极接收,用以控制晶体管418的导通状态。电容446与448分别跨接于晶体管418与426的源极与漏极之间,用以作为去耦电容,用以去耦比较器400A与400B,以避免检测错误。如图4B所示,比较器400B于晶体管414的栅极自端点326接收电压,以及于晶体管412的栅极接收带隙参考电压VREF。如同上述的比较器400A,当比较器400B的晶体管418与424关闭时,包含晶体管408、410、412、414与416的差动放大器根据由端点326所接收的电压与参考电压VREF的电压差输出一信号。
[0050] 逻辑电路328接收比较器400A与400B的输出作为其输入信号,并且输出一信号至与逻辑栅330。与逻辑栅330接收逻辑电路328的输出以及自端点SW接收检测电路302输出的状态信号作为其输入信号。与逻辑栅330根据其输入输出一信号用以识别电源状态,例如,电源开启或关闭。
[0051] 图5A显示例如图1、图2所示的传统电源启动检测电路的电压与时间关系图。图5B显示例如图3A-图3C所示的改良过的电源启动检测电路300的电压与时间关系图。如图5A所示,于时间t1到t2之间,VDD与参考电压VREF从0伏特上升至其正常操作电压。电源启动信号RSN的电压也于时间t1与t2之间上升。于时间t2,电源启动信号RSN的电压可指示耦接于电源启动检测电路300的装置的电源开启状态。然而,由于该装置在时间t4之前都尚未被完全开启,因此,此电源启动信号RSN为一错误的信号。
[0052] 同样的错误信号也发生于时间t8与t9之间,如图5A所示,电压源VDD于时间t5至t7之间关闭,接着在一重置操作中,于时间t7至t11之间上升。电压源VDD于时间t5至t7之间的转变造成电源启动信号RSN于时间t6转换成逻辑低电平,并且参考电压VREF于时间t6与t9之间处于不稳定状态。电源启动信号RSN于时间t7至t8之间的检测错误为参考电压VREF的不稳定状态而造成的结果。
[0053] 图5B显示例如图3A-图3C图所示的改良过的电源启动检测电路300的电压与时间关系图。如图5B所示,在相同的时间区间,例如在时间t1与t2之间,电源启动信号RSN并不会增加至如传统电源启动检测电路中一样高的电压电平。同样地,错误驱动的电源启动信号RSN也不会在时间t6到t7之间的电源开启期间产生。上述的改良过的电源启动检测电路300可避免于电源开启或重置的期间,由于参考电压VREF的电压电平尚未到达其稳定状态的电压电平时所造成的错误检测信号。
[0054] 本发明虽以优选实施例揭示如上,然其并非用以限定本发明的范围,任何本领域普通技术人员,在不脱离本发明的精神和范围内,当可做些许的更动与润饰,因此本发明的保护范围当视所附的权利要求所界定的范围为准。
相关专利内容
标题 发布/更新时间 阅读量
启动电路 2020-05-11 832
高压启动电路 2020-05-13 860
启动电路 2020-05-11 419
启动电路 2020-05-12 550
软启动电路 2020-05-12 517
启动电路 2020-05-11 799
启动电路及其启动方法 2020-05-12 90
缓启动电路 2020-05-12 548
启动电路 2020-05-12 331
启动电路 2020-05-12 273
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈