首页 / 专利库 / 采煤 / 焦炭 / 焦炉 / 制备烃的方法

制备的方法

阅读:200发布:2023-02-27

专利汇可以提供制备的方法专利检索,专利查询,专利分析的服务。并且从含甲烷原料气体制备沸点在 汽油 范围内的高级 烃 的方法,包括以下步骤:a)使原料气体与经氢化的尾气混合,并将该经混合的原料气体自热重整成含氢、一 氧 化 碳 和二氧化碳的甲醇 合成气 体;b)在一种或多种对氢和碳氧化物至甲醇的转化以及甲醇脱 水 成二甲醚呈活性的催化剂的存在下,将甲醇合成气体转 化成 含甲醇和二甲醚的流出物;c)将在步骤b)中制备的含甲醇和二甲醚的流出物转化成粗产物,该粗产物含有沸点在汽油范围内的烃类、水、未转化的甲醇合成气体以及在甲醇合成气体的转化期间形成的二氧化碳;d)将该粗产物冷却并分离成水馏分、沸点在汽油范围内的高级烃馏分以及含有未转化的甲醇合成气体和二氧化碳的尾气;e)使在步骤d)中获得的部分尾气氢化,以提供经氢化的尾气;和f)将该经氢化的尾气再循环至步骤a)。,下面是制备的方法专利的具体信息内容。

1.从含甲烷原料气体制备沸点在汽油范围内的高级的方法,包括以下步骤:
a)使原料气体与经氢化的尾气混合,并将该经混合的原料气体自热重整成含氢、一和二氧化碳的甲醇合成气体;
b)在一种或多种对氢和碳氧化物至甲醇的转化以及甲醇脱成二甲醚呈活性的催化剂的存在下,将所述甲醇合成气体转化成含甲醇和二甲醚的流出物;
c)将在步骤b)中制备的所述含甲醇和二甲醚的流出物转化成粗产物,该粗产物含有沸点在汽油范围内的烃类、水、未转化的甲醇合成气体以及在甲醇合成气体的转化期间形成的二氧化碳;
d)将该粗产物冷却并分离成水馏分、含沸点在汽油范围内的高级烃类的烃馏分以及含有未转化的甲醇合成气体和二氧化碳的尾气;
e)使在步骤d)中获得的部分尾气氢化,以提供经氢化的尾气;和
f)将该经氢化的尾气再循环至步骤a)。
2.根据权利要求1所述的方法,其中所述原料气体包括高级烃,且其中在步骤a)之前将所述原料气体进行预重整。
3.根据权利要求1或2所述的方法,其中所述原料气体包含天然气焦炉气和高炉气或其组合物。
4.根据权利要求1至3中任一项所述的方法,其中在步骤b)中在催化剂存在下进行所述的甲醇合成气体的催化转化,所述催化剂选自Cu、Zn、Al的氧化物和它们的混合物,并与固体酸结合。
5.根据权利要求1至4中任一项所述的方法,其中在步骤c)中在沸石催化剂的存在下进行含甲醇和二甲醚的流出物至粗产物的催化转化。
6.根据权利要求1至5中任一项所述的方法,其中所述甲醇合成气体中氢和一氧化碳的摩尔比约为1,且一氧化碳和二氧化碳的摩尔比约为1至4。
7.根据权利要求1至6中任一项所述的方法,其中部分尾气被再循环至步骤c)中的二甲醚至汽油的转化中。

说明书全文

制备的方法

技术领域

[0001] 本发明涉及从气体燃料制备烃的方法。特别地,本发明涉及由获取自天然气和/或焦炉气的自热重整的合成气体制备有效作为汽油化合物的烃的方法。

背景技术

[0002] 合成气体能够以多种方式获得,例如,通过重整天然气或者其它甲烷富集气体,如焦炉气(coke oven gas)或焦炉气和高炉气(blast furnace gas)的混合物。
[0003] 作为例子,在EP 0 200 880中提及通过蒸汽重整焦炉气和高炉气的混合物来制备化学原材料的方法。在此方法中,调整焦炉气和高炉气的量,并进行甲烷化,以获得化学计量的合成气体用于制备甲醇(MeOH)。
[0004] 已知合成汽油方法分两步进行:合成气体转化成化合物(oxygenates),以及含氧化合物转化为成汽油烃产物。这些工序步骤可以整合在一起,产生含氧化合物中间体(例如甲醇或甲醇二甲醚混合物),该含氧化合物中间体连同未转化的合成气体一起被传送至随后的步骤以转化成汽油,或者该方法可以在两个单独的步骤中进行,其中将含氧化合物(如甲醇或粗甲醇)的中间体分离。
[0005] 有用的含氧化合物包括甲醇、二甲醚(DME)和高级醇及其醚,并且含氧化合物如和其它含氧化合物也适用。
[0006] 在美国专利第4481305号中讨论了通过整合方法方案生产汽油。烃类尤其是汽油是通过催化转化在合成气体的两个连串反应器中制备的,所述合成气体含有氢和氧化物并具有低于1的CO/H2摩尔比,且当转化开始时,CO/CO2摩尔比为5至20。在第一步骤中合成气体高效地转化成主要含二甲醚(DME)的含氧化合物中间体,在第二步骤中,所述混合物被转化成汽油,上述转化基本上根据以下净反应方案进行。
[0007] 3H2+3CO->CH3OCH3+CO2+热量 (1)
[0008] CH3OCH3->2/n(CH2)n+H2O+热量 (2)
[0009] (CH2)n表示在汽油合成步骤中产生的宽范围的烃类。在分离烃产品后,在将至少部分CO2除去之后,例如在CO2洗涤之后,包括氢和碳氧化物的未转化合成气体被再循环至含氧化合物合成步骤。
[0010] 美国专利第4520216A号公开了另一种通过两步催化转化从合成气体合成烃类(尤其是高辛烷汽油)的方法。在第一步骤中,将合成气体转化为MeOH和/或二甲醚。在第二步骤中,将来自第一步骤的整个中间体转化为合成烃类。将来自第二步骤的粗产物流冷却并由此分离成冷凝烃产物流和含未转化的合成气体的尾气流,后者不经过进一步分离被再循环至MeOH/DME合成步骤的入口,并在此与新鲜的合成气体原料合并。
[0011] 从粗产物流分离的尾气流不但含有在未反应的合成气体中的二氧化碳的量,还含有在通过上述反应(1)的二甲醚合成期间形成的二氧化碳。
[0012] 在已知的带有尾气至MeOH/DME合成的再循环的汽油工艺中,CO2在尾气中富集,因其在MeOH/DME合成和汽油合成中是惰性的。高CO2浓度甚至降低催化活性和抑制MeOH合成。除去气体中CO2的典型方式是通过酸性气体除去方法,其中将酸性气体如CO2从气体流中除去。有两种酸性气体除去方法:使用物理溶剂的方法(如低温甲醇洗法使用MeOH作为溶剂,或聚乙二醇二甲醚法使用二醇类的混合物作为溶剂),和使用化学溶剂的方法,如在MDEA方法中的胺系溶剂。CO2除去方法的选择取决于气体组成、压和其它参数。
[0013] 总体上,CO2除去方法是昂贵的,不管是资本还是运行的支出上,因此避免除去CO2也能够节约成本。

发明内容

[0014] 本发明的总体目标是提供改进的工艺方案,用于从富集一氧化碳合成气体,借助中间体含氧化合物合成和汽油合成,制备沸点在汽油范围内的有价值的烃类,由此不需要从分离自汽油合成的尾气除去二氧化碳。代替高成本的CO2除去方法,将来自汽油合成的部分尾气再循环至在合成气体制备部分的自热重整步骤,以便通过重整反应降低再循环尾气中二氧化碳的含量。
[0015] 本发明的这个和其它目的通过从含甲烷原料气体制备沸点在汽油范围内的高级烃的方法而实现,所述方法包括以下步骤:
[0016] a)使原料气体与经氢化的尾气混合,并将该经混合的原料气自热重整成含氢、一氧化碳和二氧化碳的甲醇合成气体;
[0017] b)在一种或多种对氢和碳氧化物转化至甲醇以及甲醇脱成二甲醚呈活性的催化剂的存在下,将所述甲醇合成气体转化成含甲醇和二甲醚的流出物;
[0018] c)将在步骤b)中制备的所述含甲醇和二甲醚的流出物转化成粗产物,该粗产物含有沸点在汽油范围内的烃类、水、未转化的甲醇合成气体以及在甲醇合成气体的转化期间形成的二氧化碳;
[0019] d)将该粗产物冷却并分离成水馏分、沸点在汽油范围内的高级烃馏分以及含有未转化的甲醇合成气体和二氧化碳的尾气;
[0020] e)使在步骤d)中获得的部分尾气氢化,以提供经氢化的的尾气;
[0021] f)将经氢化的的尾气再循环至步骤a)。
[0022] 以下实施方案能够以任意顺序彼此合并:
[0023] 合适的原料气体包括天然气、焦炉气或高炉气或它们的组合。
[0024] 在本发明的实施方案中,所述合成气体从含高级烃类(如焦炉气)的原料气体制造。在步骤a)中将原料气体与经氢化的尾气混合之前,必须通过预重整步骤将此类原料气体中含有的高级烃类转化成甲烷。
[0025] 在本发明的实施方案中,在步骤b)中在催化剂的存在下进行甲醇合成气体粗产物的催化转化,所述催化剂选自Cu、Zn、Al的氧化物和它们的混合物,并与固体酸结合。
[0026] 在本发明的实施方案中,在步骤c)中在沸石催化剂存在下进行含甲醇和二甲醚的流出物至粗产物的催化转化。
[0027] 在本发明的实施方案中,甲醇合成气体中氢和一氧化碳的摩尔比小于1.5,且一氧化碳和二氧化碳的摩尔比小于10。
[0028] 在本发明的优选实施方案中,合成气体中氢和一氧化碳的摩尔比约为1,且一氧化碳和二氧化碳的摩尔比约为1至4,由此为汽油合成提供最适宜的条件。
[0029] 优选将对本发明有用的合成气体的H2/CO比例调整至约为1,并在含氧化合物催化剂存在下根据反应式(3)、(4)和(5)反应,所述含氧化合物催化剂包括已知的甲醇催化剂,例如其中、锌和/或氧化物或其混合物与包括固体酸如沸石、氧化铝或二氧化-氧化铝的脱水催化剂结合的催化剂。所述脱水催化剂有效催化根据反应式(5)进行的甲醇至二甲醚(DME)的脱水反应。
[0030]
[0031] 汽油合成在与催化剂存在下含氧化合物合成中所采用的压力基本上相同的压力下进行,所述催化剂在含氧化合物至高级烃(优选C5+烃)的反应中呈活性。对于该反应,优选的催化剂是已知的沸石H-ZSM-5。
[0032] 本发明的方法的一个特别的优点是其能够接受其中惰性气体含量相对高的合成气体,且即使在中等压力下,经由含氧化合物合成也能提供合成气体至汽油的显著转化。包括二氧化碳和甲烷的惰性物质在整个汽油合成步骤中被携带,并最终,终止于来自产物分离后的汽油合成步骤的尾气流。
[0033] 已知DME至高级烃的反应是强烈地放热的,需要非直接冷却(例如沸水或流化床反应器)或者稀释反应的甲醇合成气体。
[0034] 在本发明的实施方案中,部分尾气被再循环至步骤c)中的二甲醚至汽油的转化中,以便通过稀释含甲醇和二甲醚的流出物来控制反应温度
[0035] 含氧化合物的合成能够在200-300℃的温度范围内进行。
[0036] MeOH/DME合成能在约4MPa的中等压力下进行,但能够采用更高的压力例如8至12MPa,以提高合成气体转化,最终,提高汽油产率。
[0037] 适当的操作压力在2-20MPa范围内,优选4-8MPa。优选,可以使用沸水反应器或气体冷却反应器,以提供放热甲醇/DME合成反应的冷却。
[0038] 来自汽油反应器的粗产物含有C1至C10范围内的烃、水和二氧化碳,残余量的未转化的H2、CO,以及在甲醇合成气体中的惰性物质。
[0039] 通过冷却和冷凝水的液相,获得混合的汽油和轻质石油气(LPG)的液相,称为粗汽油(raw gasoline),并从尾气中分离,所述尾气含惰性物质,轻烃类如甲烷、乙烷等,和源自合成气体并如上所述在上游工艺中额外形成的二氧化碳。该粗汽油可以被进一步通过传统方式加工,以获得低沸点汽油馏分和LPG馏分。
[0040] 部分含二氧化碳的尾气能够被再循环至汽油合成步骤用于温度控制
[0041] 根据本发明的方法有利地不需要任何独立的上游或中间二氧化碳除去。
[0042] 本发明的另一优点是:在合成气体中存在的CO2的量和在合成步骤中产生的CO2的量,能够在汽油合成下游以实际上有利于含氧化合物合成步骤的合成压力来回收。
[0043] 如果部分尾气被回收至汽油反应器,则调整回收的尾气的量,从而使汽油反应器入口的MeOH/DME浓度在2至10体积%之间。附图说明
[0044] 根据本发明的一个实施方案示于图1中,其显示从焦炉气制备汽油的工艺的简化的流程图

具体实施方式

[0045] 合成气体如下生产:使含氢和碳氧化物、甲烷和高级烃类的焦炉原料气体2进料并通过氢化器4,以使在原料气体中的含硫化合物氢化成硫化氢,并随后通过硫吸收器6以降低原料气体中的硫化氢含量。将如此脱硫化的原料气体在甲烷转化器8中进行预重整。在该甲烷转化器中,原料气体中的高级烃裂解成甲烷。将如此处理的原料气体10与从汽油合成单元回收的经氢化的尾气12混合。将混合的气体流14在自热重整器16中通过与氧气部分氧化和蒸汽重整反应转化成甲醇合成气体18。将由此制备的甲醇合成气体18在冷却和除去工艺冷凝物后(未示出)引入MeOH/DME反应器20,优选为沸水型并装配有在合成气体根据以下反应式转化成MeOH和DME中呈活性的催化系统:
[0046]
[0047] 以产生含MeOH和DME的流出物22。来自反应器20的流出物22除MeOH和DME外,还含有未转化的合成气体以及包含在合成气体中以及在气体至MeOH和DME的反应中形成的二氧化碳。将流出物22引入汽油反应器24。在引入至反应器24之前,流出物22与部分来自下游工艺经处理的反应器24的流出物的尾气30通过管线25混合,以控制在汽油反应器24中的温度。在反应器24中,在上面描述的催化剂的存在下,将MeOH和DME转化成主要为C3-C10的烃类和水,并通过管线26回收。
[0048] 通过在冷却器(未示出)中冷却和在冷凝器和分离器28中冷凝,获得粗汽油馏分29,水流分1和尾气30。尾气30含CO2、惰性物质和氢,以及一氧化碳和附加量的烯烃。
[0049] 如上所述,部分尾气30被再循环至汽油反应器24。还有一部分气体通过管线27被净化以防止在合成池中惰性物质的积累。剩余的尾气30被再循环至甲醇合成气体制备部分,并与甲烷化的原料气体10混合。在混合之前,将尾气在氢化反应器32中在Cu/ZnO催化剂的存在下氢化,以降低尾气中烯烃的含量。
[0050] 实施例
[0051] 通过上述工艺参照图1制备粗汽油。
[0052] 示于图中的工艺条件和组成总结于下表1中。表中流的编号参考图中所示的流的编号。
[0053] 表1
[0054]
[0055]
[0056] 不再循环尾气至ATR的情况中流27中净化气体的量是再循环情况中的量的约两倍。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈