首页 / 专利库 / 炉窑 / 工业窑炉 / 粗陶瓷耐火制品及其制备方法以及应用

粗陶瓷耐火制品及其制备方法以及应用

阅读:70发布:2021-09-22

专利汇可以提供粗陶瓷耐火制品及其制备方法以及应用专利检索,专利查询,专利分析的服务。并且本 发明 涉及包括至少一种粒状耐火材料的粗陶瓷耐火制品,其显气孔率在22体积%至45体积%之间,尤其是在23体积%至29体积%之间,并且该耐火材料的颗粒级配中粒径为0.1~0.5mm的中等颗粒份额在10重量%至55重量%之间,尤其在35重量%至50重量%之间,其中,所述颗粒级配的剩余部分是粒径小于0.1mm的粉状颗粒成分和/或者粒径大于0.5mm的粗颗粒成分。,下面是粗陶瓷耐火制品及其制备方法以及应用专利的具体信息内容。

1.包括至少一种粒状耐火材料的粗陶瓷耐火制品作为大型工业炉中的朝向火侧的工作衬的用途,
所述制品是陶瓷烧成或者不烧成的、成型的、 在陶瓷工厂中生产的或者是使用者制作的整体产品,其显气孔率在23体积%至45体积%之间,并且该耐火材料的颗粒级配中粒径为0.1~0.5mm的中等颗粒份额在10重量%至55重量%之间,其中,所述颗粒级配的剩余部分是粒径小于0.1mm的粉状颗粒成分和粒径大于0.5mm的粗颗粒成分。
2.根据权利要求1所述的用途,其特征在于,所述制品用于泥窑炉系统、石灰竖窑或石灰回转窑或加热炉或能源生产炉中。
3.根据权利要求1所述的用途,其特征在于,所述制品的显气孔率在23体积%至29体积%之间。
4.根据权利要求1所述的用途,其特征在于,所述制品是压制的。
5.根据权利要求1所述的用途,其特征在于,中等颗粒份额在35重量%至50重量%之间。
6.根据权利要求1所述的用途,其中所述制品的特征在于以下颗粒级配:
小于0.1mm的粉状颗粒:20~61重量%,
0.1~0.5mm的中等颗粒:30~55重量%,
大于0.5mm的粗颗粒:9~25重量%。
7.根据权利要求6所述的用途,其中所述制品的特征在于以下颗粒级配:
小于0.1mm的粉状颗粒:25~55重量%,
0.1~0.5mm的中等颗粒:35~50重量%,
大于0.5mm的粗颗粒:10~25重量%。
8.根据权利要求6所述的用途,其中所述粗颗粒的粒径为8mm以下。
9.根据权利要求8所述的用途,其中所述粗颗粒的粒径为6mm以下。
10.根据权利要求1所述的用途,其特征在于,所述制品包含至少一种众所周知的用于耐火制品的粘结剂,并且/或者包含至少一种众所周知的用于耐火制品的添加剂,并且/或者包含至少一种众所周知的用于耐火制品的掺和料。
11.根据权利要求10所述的用途,其特征在于,所述制品包含至少一种用量最多为9重量%的粘结剂。
12.根据权利要求11所述的用途,其特征在于,所述制品包含至少一种用量最多为6重量%的粘结剂。
13.根据权利要求10所述的用途,其特征在于,所述制品包含至少一种用量最多为10重量%的添加剂。
14.根据权利要求13所述的用途,其特征在于,所述制品包含至少一种用量最多为6重量%的添加剂。
15.根据权利要求10所述的用途,其特征在于,所述制品包含至少一种用量最多为10重量%的掺和料。
16.根据权利要求15所述的用途,其特征在于,所述制品包含至少一种用量最多为6重量%的掺和料。
17.根据权利要求10所述的用途,其特征在于,所述制品包含水和/或者柏油和/或者沥青和/或者至少一种通常用于耐火制品的合成树脂粘结剂和/或者木质素磺酸盐作为粘结剂。
18.根据权利要求17所述的用途,其特征在于,所述制品包含树脂、呋喃树脂或者线型酚醛清漆树脂作为合成树脂粘结剂。
19.根据权利要求1~18中任一项所述的用途,其特征在于,所述制品经过加热且不烧成。
20.根据权利要求19所述的用途,其中所述制品以不烧成生坯压制成型体的形式,其特
3 3
征在于,生坯密度在1.80g/cm至2.80g/cm之间,以及抗压强度在1.5MPa至7MPa之间。
21.根据权利要求20所述的用途,其中所述制品的生坯密度在2.00g/cm3至2.70g/cm3之间。
22.根据权利要求20所述的用途,其中所述制品的抗压强度在2MPa至4MPa之间。
23.根据权利要求20所述的用途,其特征在于,所述制品的残余水分在0.1重量%至0.6重量%之间。
24.根据权利要求23所述的用途,其中所述制品的残余水分在0.2重量%至0.5重量%之间。
25.根据权利要求1~18中任一项所述的用途,其特征在于,所述制品经过陶瓷烧成,并且具有在30MPa至100MPa之间的冷态耐压强度。
26.根据权利要求25所述的用途,其特征在于,所述制品具有是在45MPa至80MPa之间的冷态耐压强度。
27.根据权利要求1~18中任一项所述的用途,其特征在于,所述材料是选自以下组中的至少一种材料:化镁、白石、酸镁尖晶石铝尖晶石、镁橄榄石、镁铁尖晶石、铬矿、氧化锆、铝酸、六铝酸钙、氧化铝和/或者酸铝原料、SiC、结合粘土。
28.根据权利要求1~18中任一项所述的用途,其特征在于,所述材料是选自以下组中的至少一种材料:氧化镁、白云石、耐火粘土、红柱石、镁橄榄石、铝土矿。
29.根据权利要求27所述的用途,其特征在于,所述材料是选自以下组中的至少一种材料:
氧化镁与铝酸镁尖晶石
氧化镁与铁铝尖晶石
氧化镁与镁橄榄石
氧化镁与镁铁尖晶石
氧化镁与铬矿。

说明书全文

粗陶瓷耐火制品及其制备方法以及应用

技术领域

[0001] 本发明涉及包括至少一种耐火材料的粗陶瓷耐火制品。此外本发明还涉及所述制品的制备及其应用。

背景技术

[0002] 根据本发明的粗陶瓷耐火制品是陶瓷烧成或者不烧成的成型尤其是压制的、在陶瓷工厂中生产的或者使用者制作的整体产品,其可以在工业烧成或熔炼设备中使用,或者在其它工业燃烧设备中使用,例如可以在大型工业炉中用作耐火内衬
[0003] 本发明范围内的“耐火”这一概念并不局限于ISO 836或DIN 51060的定义,其限定了测温锥等值>1500℃。此概念也涉及用于保护内部温度介于600~2000℃、尤其介于1000~1800℃之间的设备中的设备结构的制品。
[0004] 本领域技术人员都知道耐火材料基于例如在“Gerald Routschka/Hartmut Wuthnow,实践手册“耐火材料”,第5次出版,Vulkan出版社(以下仅称作“实践手册”,第1~7页”中提及和分类的六种耐火基本化物以及和耐火碳化合物,此外这本书还说明了耐火材料制品的主要应用。
[0005] 本发明涉及按照实践手册第15~20页的本身已知的粗陶瓷耐火制品的制备。特别是,根据本发明的成型的、尤其是压制的耐火制品具有与用途相配的冷态耐压强度,尤其在其制备时和制备之后以及甚至在温度变化之后也有足够高的冷态耐压强度以适于其操作性。此外它们还可保证应用温度下的热稳定性、耐腐蚀性、抗热冲击能、良好的结构弹性、合适的荷重软化温度、低透气度和很高的热弯曲强度。
[0006] 除此之外,根据本发明的制品还适合作为工作衬,也就是适合作为朝向火侧或设备内侧的衬里,并且符合相应的要求,但是与迄今为止为此目的所使用的制品相比具有更小的热导率。
[0007] DE 10 2006 040 269 B4公开了由不同耐火材料构成的粗陶瓷耐火制品,可以作为工作衬使用,并且因为显气孔率高而具有比较小的热导率。这些已知的制品以及大多数市场上有售的其它具有很小气孔率的耐火工作衬制品均有在温度升高时体积膨胀并且在随后温度降低时通常可逆收缩的特性,通常要在其制备之后以及在使用之前例如根据DIN-EN 993-19进行检验。该特性也被称作“可逆热膨胀”。在耐火砌体或者耐火的整体衬里中加上相应的所谓的伸缩缝,就可以抵消该行为。(本发明范围内的整体表示衬里由一种可以加工的无定形现拌料、例如由耐火混凝土现拌料现场制作而成)
[0008] 但是当温度波动的时候,大多数已知的粗陶瓷耐火制品原位、也就是在燃烧设备中于使用的过程中不只是可逆改变其体积,而且也会不可逆改变其体积,因为会发生所谓的不可逆后收缩。发生这种后收缩的原因例如有不完全烧结、相转变、或者是在成型或未成型的制品中的化学反应。
[0009] 后收缩是产生迄今为止无法避免的不可逆体积变化的原因,会使得设备衬里的耐火制品之间的接缝打开。这会导致工作衬砌体或者耐火的整体工作衬体或衬里松动和不稳定。通过测定不可逆的长度变化,可根据DIN-EN 993-10检测耐火制品的后收缩。

发明内容

[0010] 本发明的任务在于,至少明显地减小适用于工作衬的、有后收缩倾向的粗陶瓷耐火制品的后收缩,并且对其例如规定的冷态耐压强度(机械)、原位热负荷和机械负荷过程中的规定强度(热机械)、原位对化学侵蚀的耐抗性(热化学)之类的应用特性没有无法容忍的影响。此外与迄今为止常用的具有较高热导率的工作衬里相比,尤其还保证比较小的热导率。
[0011] 迄今为止多数通过工作层和绝热层构成的多层炉衬布置来减小耐火衬里的热导率。尤其在例如回转窑之类的运动设备中,多层炉衬有很大的机械敏感性或者易于破裂。此外安装也很麻烦。为了在运行过程中避免由所谓的夹层炉衬引起的不确定性,安装没有绝热层的工作衬并不罕见。但是因此就会带来使得设备外壳材料承受负荷的较高温度和较高的热损失
[0012] 因此本发明的目标还在于提供尤其是通过压制成型的、通过较高气孔率减小了热导率的粗陶瓷耐火制品,所述耐火制品与以上所述的一样机械、热机械和热化学适合作为工作衬,并且可保证至少可以与具有较低气孔率的粗陶瓷耐火制品媲美的所需特性,同时还至少也减小了后收缩。
[0013] 可通过权利要求1、10和19的特征解决本发明的任务。本发明的有益实施方式在这些权利要求的从属权利要求中示出。
[0014] 本发明所提供的耐火制品虽然气孔率很高,但是就烧成收缩率和后收缩率来看体积稳定性好于工作衬的现有技术,适合作为工作衬。根据本发明的耐火制品与现有技术相比,例如与DE 10 2006 040 269 B4所述的耐火制品相比,明显减少了大于0.5mm的粗颗粒的份额,但是提高了粒度为0.1~0.5mm的中等颗粒的份额,也优选提高了小于0.1mm的所谓的粉状颗粒的份额。在本发明范围内,所述的“粗颗粒”指的是大于0.5且例如8mm以下尤其是例如6mm以下的粒径范围,所述“中等颗粒”指的是0.1~0.5mm的粒径范围,小于0.1mm的部分是粉状颗粒或细颗粒部分。利用该颗粒级配除了改善了所述的新型的烧成收缩、后收缩和气孔率特性之外,也改善了以.此制备的可以压制或可以成型的、含有至少一种粘结剂和/或者至少一种添加剂和/或者一种掺和料和/或者水的物料的加工特性,所述物料用以制作不烧成和/或者烧成的根据本发明的耐火制品。
[0015] 根据本发明的成型的、尤其是压制的粗陶瓷耐火制品不论材料组成如何,其特征在于,显气孔率为22~45体积%,尤其为23~29体积%,以及例如通过适当筛分完成的耐火材料的颗粒级配,或者若为多种混合使用的耐火材料,则为材料混合物的颗粒级配,其中粒度为0.1~0.5mm的中等颗粒的份额为30~55重量%,尤其为35~50重量%,制品的颗粒级配的其余部分是粉状颗粒和/或者粗颗粒。在使用相应的筛网进行筛分之后,优选地,根据本发明的颗粒级配具有材料的正常粒径分布,或者如果使用了多种耐火材料,则具有材料混合物的正常粒径分布,其特征如下:
[0016] 小于0.1mm:20~61重量%,尤其为25~55重量%
[0017] 0.1~0.5mm:30~55重量%,尤其为35~50重量%
[0018] 大于0.5mm小于例如8mm,
[0019] 尤其小于6mm:9~25重量%,尤其为10~25重量%
[0020] 在陶瓷耐火制品中,所找到的颗粒级配极限值通常是最佳极限值,正如本领域技术人员所了解的一样,有一些耐火材料或者材料混合物的极限值与按照本发明所述解决本发明所述任务的等效和等值制品相比可以向下和/或者向上偏差±10%。
[0021] 所注明的重量百分比“重量%”(以下也称作质量百分比“质量%”)仅仅涉及耐火材料或耐火材料混合物的颗粒级配,不涉及通常少量加入的本发明所述耐火制品的其它成分的粒度,例如粘结剂和/或者化学添加剂或者矿物性掺合料,例如抗氧化剂,其总用量最多为10重量%。
[0022] 根据本发明的成型的尤其是压制的粗陶瓷耐火制品尽管气孔率很高,但是仍然可以作为燃烧工业炉设备中的工作衬用来替换迄今为止通常使用的所谓的致密压制耐火制品,因为其具有所需的机械、热机械和热化学工作衬特性。
[0023] 之所以令人惊奇,是因为一般均知道,如果要保证所需的应用特性,本发明所研究的大多数常见的成型的和压制的粗陶瓷耐火制品只有大约21体积%以下的显气孔率(关于气孔率,可参见实践手册第127页,图表4.43,氧化镁-尖晶石砖、尖晶石砖、氧化镁-氧化锆砖和氧化镁-锆石砖的气孔率)。因此这些常见的成型的粗陶瓷压制耐火制品也称作致密耐火制品,与此相对的是气孔率较高的隔热耐火制品,其称作隔热砖或轻质耐火砖并且具有至少45体积%的较高的总气孔率(实践手册第211~214页)。众所周知,气孔率对成型的粗陶瓷制品的机械、热机械和热化学特性有很大的影响,这些特性通常随着气孔率上升而急剧变化(实践手册第307页,图A17)。
[0024] 令人惊奇的是,在根据本发明的成型的粗陶瓷耐火制品中不是这种情况或者没有这种急剧的程度,这将根据以下所述的示例进行证实。
[0025] 本发明所述的根据本发明的颗粒级配能够使得在使用一种耐火混合料通过压制成形制成的根据本发明所述的定形成型的粗陶瓷耐火制品中形成很较高的显气孔率,令人惊奇的是也能保证减少所谓的烧成收缩,在定形成型的耐火制品生坯的陶瓷烧成过程中,或者在本发明所述定形成型的耐火制品生坯的陶瓷烧成条件下,或者在未成型的本发明所述的整体制品生材中,通常都会不可避免地出现烧成收缩,其仅会在工业炉设备中朝向火的一侧原位发生温度负荷或者陶瓷烧成。该烧成收缩不是温度波动时出现的可逆体积变化或者不可逆后收缩。
[0026] 常见的耐火工作衬制品通常具有典型的连续粒径级配,其中0.1~1mm的粒径份额占20~40重量%(实践手册第16页,表2.1),其中,根据本发明的相关的粒径份额0.1~0.5mm在现有技术中低于30重量%的极限,因为0.5~1mm的份额大于10重量%。
[0027] 为了制备根据本发明的成型的尤其是压制的耐火制品,可将在本发明发现的颗粒级配范围内的由至少一种耐火材料组成的混合物优选与至少一种适合用来制备耐火制品的粘结剂和/或者至少一种常见的添加剂和/或者至少一种常见的掺合料和/或者水混合,将物料放在模具中,并且压制成为成型体。按照本发明所述适当选择压制力,使得备好可用的不烧成或者烧成制品中的气孔率至少为22体积%,优选大于22体积%,并且尤其最多为45体积%。已发现压制力最好为10~60、尤其为10~40MPa,也就是低于通常使用的60~
150MPa的压制力。显而易见,如果材料混合物的粒径分布在0.1~0.5mm的中等粒径范围内,例如其粒径分布可以稳定在该范围内,或者例如可以具有高斯粒径分布,与该粒径范围在全部颗粒级配混合物中的含量相结合,则尤其能够在压制时形成根据本发明的气孔容积,并且该粒径范围的颗粒可保证在根据本发明的成型的粗陶瓷制品的组织结构中形成支撑框架,其通过颗粒的相互支撑减小烧成收缩和/或者后收缩,或者至少有助于显著减小后收缩。
[0028] 对于根据本发明的耐火制品,例如可以将氧化镁、白石、酸镁尖晶石、铝尖晶石、镁橄榄石、镁铁尖晶石、铬矿、氧化锆、铝酸、六铝酸钙、氧化铝和酸铝原料、SiC、结合粘土之类的耐火材料各自单独使用或者适当组合至少两种材料使用。特别地,本发明使用基于至少一种以下材料的耐火材料有效达到预定目的:氧化镁、白云石、耐火粘土、红柱石、镁橄榄石、铝土矿。本发明使用至少一种以下材料尤其特别有效地达到预定目的:
[0029] 氧化镁与铝酸镁尖晶石
[0030] 氧化镁与铁铝尖晶石
[0031] 氧化镁与镁橄榄石
[0032] 氧化镁与镁铁尖晶石
[0033] 氧化镁与铬矿。
[0034] 通常使用合适的粘结剂制备成型的粗陶瓷耐火制品,对此,实践手册第28、29页的表格3.2就包含相关示例,且注明了常用的添加量。本发明已证明,如果相对于定形压制制品的待压制的原材料混合物干物质以3~9重量%尤其以4~6重量%的用量使用水和/或者至少一种通常用于耐火制品的、尤其是热固性合成树脂粘结剂如树脂或者木质素磺酸盐作为粘结剂,则尤其能在优选使用的材料中形成本发明争取实现的组织结构,因为改善了可压制性,有利于形成具有所需要的气孔容积以及源自于粒径级分0.1~0.5的尤其可避免或者大幅度减小后收缩的支撑颗粒骨架的本发明所期望的组织结构。将这些粘结剂用于根据本发明的整体制品同样有很好的效果。
[0035] 特别适合于制备根据本发明所述的适合作为工作衬、大幅度减小了后收缩、与传统的致密工作衬制品相比具有较小热导率和较高气孔率的粗陶瓷耐火制品的方法提供了,使用至少一种尤其具有以下颗粒级配的粒状材料:
[0036] 小于0.1mm:20~61重量%,尤其为25~55重量%
[0037] 0.1~0.5mm:30~55重量%,尤其为35~50重量%
[0038] 大于0.5mm小于例如6mm
[0039] 或者小于8mm:9~25重量%,尤其为10~25重量%
[0040] 在本发明范围内的术语“颗粒”、“粒状”、“粒度”或者“颗粒级配”表示产品是以常见的粉碎方法,例如通过研磨或者破碎粗颗粒料的方式产生的,并且与那些在造粒设备中由至少一种耐火材料的颗粒通过团聚形成的、并且因此而具有圆的例如球形空间形状的颗粒相比,产品的颗粒具有不规则的碎片状的颗粒空间形状。
[0041] 如果使用多种不同颗粒级配的材料,则将其例如干混合2~4分钟,然后混合物就会符合以上根据本发明的颗粒级配。
[0042] 在本发明范围内,使用同样也可用于制备常见的用于相同目的的致密耐火工作衬制品的材料或材料混合物。
[0043] 适宜给材料或者材料混合物掺入至少一种粘结剂,例如水和/或者柏油和/或者沥青和/或者优选至少一种通常用于耐火制品的合成树脂粘结剂,例如酚醛树脂或者呋喃树脂或线型酚醛清漆树脂,和/或者木质素磺酸盐,相对于成型的压制制品的待压制原材料混合物干物质的用量各自为例如3~9重量%,尤其为4~6重量%。然后例如混合3~10分钟,实现最佳的粘结剂分布。可以适当选择粘结剂用量和混合方式或者混合器,使得由颗粒直径例如为0.1~5mm,尤其是在0.5~4mm的颗粒产生所谓的混合粒子。适宜在造粒过程中向混合物之中加入,例如通过喷嘴加入另外的水和/或者粘结剂。
[0044] 优选地,在混合造粒之后,或者省略混合造粒并且仅仅在与加入到混合器中的造粒材料简单混合之后,例如在造粒混合器或者造粒转鼓中或者在造粒圆盘上进行例如3~6分钟所谓的团聚造粒,产生粒径为2~15mm,尤其是3~6mm的团聚颗粒。
[0045] 将混合造粒或者团聚造粒的颗粒放入压机的压模之中,使用10~60Mpa,尤其是20~40MPa的压力将其压制成为成型体,从而产生生坯密度为1.80~2.80g/cm3,尤其是2.00~2.70g/cm3、抗压强度为1.5~7MPa,尤其是2~4MPa的生坯成型体。优选地,在60~200℃,尤其是90~140℃的温度下进行干燥,直至残余水分达到0.1~0.6重量%,尤其是0.2~0.5重量%,也只有在干燥之后才会形成所述的抗压强度。可以不需进一步的处理即可操作这些初始的,尤其是干燥后的生坯砖,例如码放,并且可以无破损砌筑到工业燃烧设备、例如大型工业炉之中。可以通过压制力控制调整的气孔率为22~45体积%,尤其是23~29体积%。
[0046] 在燃烧设备中完成砌筑之后,首先在朝向火的一侧表面区域中,然后逐渐向内部延来而原位进行砖的陶瓷烧成,尔后就会在烧成区中形成本发明所期望的特性,尤其是收缩和热导率特性。
[0047] 优选地,将压制的生坯砖放在陶瓷烧成窑(例如隧道窑)中,在1200~1800℃,尤其是在1400~1700℃的温度下进行陶瓷烧制。气孔率没有变化,或者只有微不足道的变化,因此可以保证本发明所期望的很小的热导率。例如所述热导率比通常所使用的材料组成相同且最多有21体积%显气孔率的致密工作衬砖的热导率低10~50%,尤其是15~35%。冷态耐压强度为30~100Mpa,尤其是45~80MPa。

具体实施方式

[0048] 根据以下实施例说明尤其是根据本发明的粗陶瓷制品相对于最新现有技术DE 10 2006 040 269 B4所述的制品和已知致密制品的优点。
[0049] 实施例1
[0050] 以相同的材料和矿物成分为基础(84重量%氧化镁,16重量%电熔尖晶石)制备砖块,各自使用相同的粘结剂,即酚醛树脂和水,相对于干混合料的粘结剂用量均为6重量%,并且各自使用相同的制备参数,
[0051] a)根据DE 10 2006 040 269 B4,砖块具有11重量%的少量粒度大于0.5mm的成分、4重量%的很少粒度在0.1~0.5mm范围内的颗粒成分、以及85重量%的粒度小于0.1mm的成分,并且使用40MPa的压制力对其进行压缩
[0052] b)对应本发明,砖块具有11重量%的少量粒度大于0.5mm的成分、37重量%的更多粒度在0.1~0.5mm范围内的颗粒成分、以及52重量%的粒度小于0.1mm的成分,并且使用40MPa的压制力对其进行压缩
[0053] c)根据通常应用的现有技术的致密耐火砖块,砖块具有54重量%的很多粒度大于0.5mm的成分、9重量%的粒度在0.1~0.5mm范围内的颗粒成分、以及37重量%粒度小于
0.1mm的成分,并且使用100MPa的压制力对其进行压缩。
[0054] 将所有砖块放在隧道窑中1600℃温度下进行50小时氧化烧制。根据DIN 66165-1测定混合物的粒径分布,通过测量确定烧成收缩率,通过测量和称重确定成品生坯密度,根据DIN EN 993-1测定显气孔率,根据DIN EN 993-5测定冷态耐压强度,根据DIN EN 993-6测定冷态抗折强度,根据DIN EN 993-4测定透气度,根据DIN EN 993-10在12小时内于1400℃、1500℃和1600℃的温度下测定不可逆长度变化。透气度除以显气孔率之商的平方根是衡量渗透敏感度的尺度。根据DIN EN 993-11规定,在1100℃的升高试验温度下在空气中测定抗热震性。此外还对砖块进行了多次烧成,以便评估高温使用温度下的体积稳定性,方法是在制备烧成之后将产品在制备烧成温度下多次进行烧成,并且在每次烧成之后通过测量测定体积。
[0055] 附图1所示为实施例1中a)、b)和c)的粒径分布累积曲线。
[0056] 下面的表1所示为实施例1的结果。
[0057] 表1:a)、b)和c)所述砖块的特性值
[0058]
[0059]
[0060] 与c)所述传统致密砖对比,在a)的情况中砖特性有变化,在该情况中减少了混合物中有利于粉状成分的所有粒度成分,并且明显降低了成型压制力,使得压制之后的成品生坯密度显著减小,并且显气孔率大幅度提高。这些砖的冷态耐压强度与致密砖相比略有提高,冷态抗折强度比较高。透气度和渗透敏感度减小了。除了这些有利的变化之外,还显著提高了烧成收缩,砖块的后收缩试验结果也表明后收缩增加了一倍以上,并且在1400℃就已开始。这些变化表明a)所述的产品在制备烧成和使用过程中的体积稳定性有问题或者有缺陷。抗热震性与c)所述的砖块相比明显降低。试样经过17次急冷循环之后破裂。
[0061] 在b)的本发明所述情况中,减少的粗颗粒和中等颗粒成分大部分被移到0.1~0.5mm范围之中,与a)相比,成品生坯密度减小了而显气孔率提高了。与a)相比,透气度和渗透敏感度提高了,后者保持在c)所述致密产品的范围内。
[0062] 烧成收缩与a)相比则减少了一半多,并且后收缩的减小幅度高得惊人。此外,与c)相比,冷态耐压强度和冷态抗折强度可靠保持在致密砖的典型范围内。抗热震性大于30次急冷循环,无破裂,与c)所述的致密产品处于相同的水平。
[0063] 证明耐火产品体积稳定性的一种试验方法是在1600℃温度下测定多次烧成特性。在制备烧成之后将产品放在烧成设备中进行多次反复烧成,并且每次测定体积。
[0064] 附图2所示为砖块a)、b)和c)在多次烧成过程中的体积变化。
[0065] 在根据c)的致密砖的情况,经过七次附加烧成循环之后,相对于砖块初始体积的体积变化接近于0%。对于a)所述的砖块,经过七次附加烧成循环之后,体积变化已经超过4%。除了a)砖块中的高气孔率丧失并且重新出现较高的热导率之外,无法用这些耐火砖实现耐火衬的长期配合精度。在对应b)的砖的情况下,所述砖块相对于砖块初始体积的体积变化为1.5%,明显小于a)所述的砖块,使得热导率低的优点保持不变。
[0066] 测定b)和c)所述砖块的热导率
[0067] 为了证实达到了减小热导率的目的,根据DIN 993-15规定的热线法在b)所述具有本发明所述颗粒级配的多孔砖块上和c)所述相当于现有技术常见的致密回转窑砖的砖块上测定了热导率,结果如表2所示:
[0068] 表2:根据热线法测定b)和c)所述砖块热导率的结果
[0069]
[0070] 在300℃、700℃和1000℃温度下进行测量,表2。结果表明b)所述的本发明所述砖块明显减小了热导率值。相对于c)的热导率,b)的热导率在300℃温度下减小了16%,在700℃温度下减小了27%,在1000℃温度下减小了25%。
[0071] 实施例2
[0072] 实施例2显示颗粒级配相对于较高粗颗粒成分的极限值
[0073] 与第一个实施例中一样,制备基于84%氧化镁和16%电熔尖晶石的砖块[0074] b)对应本发明,砖块具有11重量%的较少粒度大于0.5mm的成分、37重量%的更多粒度在0.1~0.5mm范围内的颗粒成分、以及52重量%的粒度小于0.1mm的成分,并且使用40MPa的压制力对其进行压缩(源自实施例1)
[0075] d)通过改变颗粒级配的粒径分布,此外制备参数相同,这些砖块均在要求保护的范围之外。粒径分布差异的特征在于将颗粒成分从0.1~0.5mm移到更粗的0.5~1mm的颗粒范围,使得0.1~0.5mm成分(含量约为28重量%)略微低于本发明发现的该粒度的最小值,较粗成分(含量大约为30%)略微高于最大含量。
[0076] 所有砖块均在1600℃温度下烧成,并且相应地根据第一个实施例对砖块进行试验。
[0077] 附图3所示为b)和d)的粒径分布累积曲线。
[0078] 下面的表3所示为实施例2的结果。
[0079] 表3:b)和d)所述砖块的特性值
[0080]
[0081] d)的成品生坯密度因为粒径分布差异相对于b)明显提高。显气孔率下降到20.5体积%,因此在现有技术所述致密产品的范围内,并且低于要求保护的显气孔率范围,表3。渗透敏感度尽管略有提高,仍然与实施例1中情况c)中的致密产品类似。强度与常见致密耐火产品的强度相同,烧成收缩与实施例1中c)所述的致密砖相比有所提高,并且与b)所述的本发明所述砖块相比略有提高。d)的后收缩只有在较高温度下才会与其它致密产品一样出现,但是显气孔率明显更小,在1600℃温度下类似于b)的后收缩。抗热震性良好。
[0082] b)所述的本发明所述具有较高气孔率并且优化了体积稳定性的砖块在多次烧成试验过程中的特性类似于d)所述较为致密的产品,附图4。
[0083] 实施例3
[0084] 实施例3说明进一步提高气孔率并且改变在中等颗粒成分的0.1mm颗粒直径下限以及0.5mm颗粒直径上限之间的颗粒级配时的结果。
[0085] 以相同原料和具有84%氧化镁和16%电熔尖晶石的相同矿物成分为基础制备砖块,
[0086] a1)根据DE 10 2006 040 269 B4所述,砖块具有11重量%的粒度大于0.5mm的少量份额、4重量%的粒度在0.1~0.5mm范围内的很少颗粒成分、以及85重量%的粒度小于0.1mm的成分,并且仅使用10MPa的压制力对其进行压缩,以便在成品产品中形成更高的气孔率,以及
[0087] e)对应本发明,砖块具有11重量%的少量粒度大于0.5mm的成分,48重量%的更多粒度在0.1~0.5mm范围内的颗粒成分,这里主要在0.1~0.2mm。小于0.1mm的含量为35重量%。此外,使用40MPa的压制力压缩这些砖块,以及
[0088] f)对应本发明,砖块具有11重量%的少量粒度大于0.5mm的成分,50重量%的更多粒度在0.1~0.5mm范围内的颗粒成分,这里主要在0.3~0.5mm。小于0.1mm的含量为34重量%。也使用40MPa的压制力压缩这些砖块。
[0089] 所有砖块均在1600℃温度下烧成,并且根据第一个实施例中的砖块对其进行试验。
[0090] 附图5所示为a1)、e)和f)的粒径分布累积曲线。
[0091] 与a)所述砖块对比的砖特性在a1)的情况中有变化,在该情况中将压制力降低到3
10MPa,使得成品生坯密度减小到2.45g/cm ,并且使得显气孔率上升到29.2体积%,表3。
a1)的渗透敏感度与实施例1中a)所述的砖块相比有所提高。砖块在制备烧成过程中大约收缩了1.9%。这些砖的冷态耐压强度有所减小,大约为45MPa,冷态抗折强度仅仅略微减小到
5.2MPa。在1400℃、1500℃和1600℃温度下进行后膨胀/后收缩试验,出现-0.12lin.-%、-
0.36lin.-%和-0.67lin.-%的不可逆长度变化,并且相对于a)进一步降低的产品的体积稳定性。抗热震性也显著减小到8次急冷循环直至破裂。
[0092] 在根据本发明的e)的情况中,减少的粗颗粒成分大部分被移到0.1~0.5mm范围内,并且大部分通过0.1~0.2mm的颗粒予以表示,当压制力为40MPa不变的时候,成品毛坯密度减小到2.50g/cm3,并且显气孔率有所提高为28.5%,类似于a1)的显气孔率。渗透敏感度开始提高。烧成收缩率为0.56%,不同于a1),没有提高。体积稳定性与a1)相比明显提高,显示出仅当温度较高的时候才会出现后收缩,并且当不可逆长度变化时后收缩值比较低。当测定抗热震性的时候,这里直至30次以上急冷循环没有出现破裂。
[0093] 表4:a1)、e)和f)所述砖块的特性值。
[0094]
[0095] 在另一种根据本发明所述的情况f)中,减少的粗颗粒和中等颗粒成分大部分被移到0.1~0.5mm范围内,并且这里大部分通过0.3~0.5mm的颗粒予以表示,当压制力为40MPa不变的时候,成品生坯密度减小到2.64g/cm3,并且显气孔率提高到23.8%小于a1)和e)的情况,但是明显高于致密产品,因此在根据本发明的范围内。f)所述砖块的渗透敏感度有所提高。烧成收缩率降低到0.29lin.-%。该多孔产品的不可逆长度变化再次减小,并且类似于实施例1中c)所述的致密产品,抗热震性同样如此。
[0096] 附图6所示为a1)、e)和f)所述砖块在多次烧成过程中的体积变化。
[0097] a1)所述的非根据本发明的多孔砖块在多次烧成过程中的体积变化有强烈收缩的特征。以成品产品的初始体积为参考,经过7次附加烧成循环之后大约丧失了5体积%,附图6。e)的成品产品状态中有类似的显气孔率,该产品仅仅丧失很少的体积比,并且在7次附加烧成循环之后仅仅收缩大约1.6体积%。f)所述的本发明所述多孔砖也明显显示出有益的体积稳定性,并且在7次附加烧成循环之后甚至仅仅丧失大约0.6体积%。
[0098] 实施例4
[0099] 在实施例1~3中解释了本发明所述氧化镁尖晶石砖颗粒级配的优点。为了证明本发明对其它耐火材料构成的产品的有效性,例如制备了基于84质量%富铁烧结氧化镁结合16质量%电熔镁铁尖晶石的砖块,以及基于耐火粘土和基于红柱石的砖块。在制备后两种砖的时候,与这些砖中常见的一样向混合物中加入了结合粘土(5%)。
[0100] 由不同耐火材料构成的砖块均与实施例1中一样各自采用粒径分布a)、b)和c),实施例1中的附图1。其中
[0101] a)根据DE 10 2006 040 269 B4采用了11重量%的少量粒度大于0.5mm的成分、4重量%的很少的粒度在0.1~0.5mm范围内的颗粒成分以及85重量%的小于0.1mm的成分,并且使用40MPa的压制力进行压缩,
[0102] b)根据本发明所述采用了11重量%的少量粒度大于0.5mm的成分、37重量%的更多的粒度在0.1~0.5mm的成分以及52重量%的粒度小于0.1mm的成分,并且使用40MPa的压制力进行压缩,
[0103] c)根据通常应用的现有技术所述的致密耐火砖,采用了54重量%的很多粒度大于0.5mm的成分、9重量%的粒度在0.1~0.5mm范围内的颗粒成分以及37重量%的粒度小于
0.1mm的成分,并且各自使用产品典型的压制力进行压缩。
[0104] 在表5中注明了产品典型的压制力和烧成温度,以及通过测量和称重测定成品生坯密度、根据DIN EN 993-1测定显气孔率、根据DIN EN 993-5测定冷态耐压强度、根据DIN EN 993-6测定冷态抗折强度、根据DIN EN 993-4测定透气度、根据DIN EN 993-10在12小时内在1300℃、1400℃和1500℃温度下测定不可逆长度变化、根据DIN EN 993-11在1200℃升高的试验温度下测定空气急冷抗热震性的结果,以及透气度与显气孔率之商的平方根作为衡量渗透敏感度的尺度。
[0105] 表5:基于富铁烧结氧化镁、耐火粘土和红柱石的氧化镁镁铁尖晶石砖的特性值,各自根据a)、b)和c)
[0106]
[0107]
[0108] 基于富铁烧结氧化镁的氧化镁镁铁尖晶石砖:
[0109] 对应DE 10 2006 040 269 B4根据a)所述的砖与c)所述致密砖的区别在于2.23g/cm3较低的成品生坯密度和提高到32.1体积%的显气孔率。冷态耐压强度降低到38.9MPa,冷态抗折强度降低到4.2MPa。渗透敏感度减小到3.6μm。随着显气孔率提高,烧成收缩率增加三倍达到0.62lin.-%。不可逆长度变化特征在于在1500℃的试验温度的烧成收缩比c)高6倍。抗热震性大幅度减小到5次急冷循环直至试样破裂。这些砖没有抗热震性。
[0110] 根据b)具有本发明所述颗粒级配的砖块拥有2.40g/cm3的成品生坯密度,其显气孔率与c)相比增加了一倍。冷态耐压强度为39.9MPa,冷态抗折强度为3.5MPa。渗透敏感度在这里减小到3.8μm。正因为根据本发明的颗粒级配,烧成收缩率仅仅略微提高到0.3lin.-%,不可逆长度变化为-0.16lin.-%,表明后收缩率的增大明显弱于a)所述的砖块。当测定抗热震性的时候,直至30次急冷循环没有出现破裂。
[0111] 耐火粘土砖:
[0112] 与c)的特性值对比,a)所述耐火粘土砖具有1.95g/cm3减小的成品生坯密度,显气孔率提高到29.3体积%。冷态耐压强度降低到33.3MPa,冷态抗折强度降低到4.5MPa。渗透敏感度减小到2.6μm。随着显气孔率提高,烧成收缩率提高到1.8lin.-%。不可逆长度变化的特征在于在1400℃试验温度有-1.47lin.-%显著的后收缩,在更高的1500℃试验温度下后收缩大幅度提高到-3.6lin.-%。当测定抗热震性的时候,直至30次急冷循环没有出现破裂。
[0113] 根据b)具有本发明所述颗粒级配的耐火粘土砖拥有2.04g/cm3的成品生坯密度,其显气孔率与c)相比有所提高并且为26.6体积%。冷态耐压强度为39.7MPa,冷态抗折强度为5.5MPa。渗透敏感度在这里减小到2.9μm。正因为根据本发明的颗粒级配,烧成收缩率仅为1.1lin.-%,不可逆长度变化为-0.62lin.-%,表明后收缩率优于a)所述的砖块。在1500℃温度下,不可逆长度变化提高到-1.88%,因此明显小于a)所述的砖块。当测定抗热震性的时候,直至30次急冷循环没有出现破裂。
[0114] 红柱石砖:
[0115] 红柱石砖的特性反映出主要原料的矿物相转变。由于红柱石的莫来石化,c)所述的致密砖的烧成收缩是负值,致密砖会膨张0.8lin.-%。若为a)所述的砖块,更强烧结含有极细颗粒的材料会过度补偿相转变而产生的膨胀,砖块会收缩0.2lin.-%。成品生坯密度减小到2.13g/cm3,并且显气孔率上升到26.6体积%。冷态耐压强度为100.4MPa,冷态抗折强度为14.4MPa。渗透敏感度减小到2.5μm。在1500℃温度出现显著的后收缩,不可逆长度变化值为-0.85lin.-%。直至破裂共有4次急冷循环,抗热震性很差
[0116] b)所述的本发明所述红柱石砖保持在烧成膨胀范围内,其成品生坯密度减小到2.21g/cm3,并且显气孔率上升到24.5体积%,冷态耐压强度为90.2MPa,冷态抗折强度为
12.8MPa。在1500℃温度出现后收缩,不可逆长度变化值为-0.31lin.-%,与a)相比明显减小。渗透敏感度减小到2.9μm。当测定抗热震性的时候,直至30次急冷循环没有出现破裂。
[0117] b)所述的所有根据本发明的砖块显示出与c)所述的致密产品相比显气孔率明显更高并且不改变或减小了渗透敏感度的特征,与材料选择无关,所出现的烧成收缩率和不可逆长度变化明显小于a)所述的多孔砖块。b)所述的根据本发明的砖块没有与a)所述砖块一样急剧丧失抗热震性。氧化镁电熔镁铁尖晶石砖、耐火粘土砖和红柱石砖以及实施例1~3中所述氧化镁尖晶石砖的强度均保持在产品典型值的范围内。
[0118] 实施例4并不将本发明局限于所述的材料,而是阐明本发明的成功与耐火材料无关。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈