首页 / 专利库 / 疗法 / 治疗 / 光照治疗 / 用于活性试剂稳定化的方法和组合物

用于活性试剂稳定化的方法和组合物

阅读:574发布:2021-02-26

专利汇可以提供用于活性试剂稳定化的方法和组合物专利检索,专利查询,专利分析的服务。并且本文提供了用于活性 试剂 稳定化的方法和组合物。所述活性试剂分布、混合或包埋于丝素蛋白基质中,从而在储存和/或运输时维持所述活性试剂的 生物 活性。在一些实施方式中,本文还提供了稳定储存的 疫苗 -丝组合物。,下面是用于活性试剂稳定化的方法和组合物专利的具体信息内容。

1.一种包括保存组合物的步骤的方法,其中,所述组合物包含丝素蛋白基质和分布于其中的至少一种活性试剂
其中,当所述组合物(a)经受至少一个冷冻-解冻循环;或者(b)在0℃以上的温度下保存至少约24小时;或者(c)所述(a)和(b)两者均有时,所述活性试剂维持其至少约30%的初始生物活性。
2.如权利要求1所述的方法,其中,所述活性试剂维持其至少约50%的初始生物活性。
3.如权利要求1或2所述的方法,其中,所述活性试剂维持其至少约80%的初始生物活性。
4.如权利要求1-3中任一项所述的方法,其中,将所述组合物保存至少约1个月。
5.如权利要求1-4中任一项所述的方法,其中,将所述组合物保存至少约6个月。
6.如权利要求1-5中任一项所述的方法,其中,所述组合物为膜、纤维、粒子、凝胶或凝胶。
7.如权利要求1-6中任一项所述的方法,其中,所述组合物为冻干的。
8.如权利要求1-7中任一项所述的方法,其中,所述组合物为微粒化的。
9.如权利要求8所述的方法,其中,所述微粒化的组合物为纳米粒子或微米粒子。
10.如权利要求9所述的方法,其中,所述纳米粒子或微米粒子的大小为约10nm-约
1000μm。
11.如权利要求1-10中任一项所述的方法,其中,所述组合物进一步包含添加剂。
12.如权利要求11所述的方法,其中,所述添加剂选自于:稳定剂、药学上可接受的载体,或上述添加剂的任意组合。
13.如权利要求1-12中任一项所述的方法,其中,在约0℃-室温以上的温度下保存所述组合物。
14.如权利要求13所述的方法,其中,在约室温-约37℃的温度下保存所述组合物。
15.如权利要求1-14中任一项所述的方法,其中,在高于37℃的温度下保存所述组合物。
16.如权利要求1-15中任一项所述的方法,其中,在光照下保存所述组合物。
17.如权利要求1-16中任一项所述的方法,其中,在至少约10%的相对湿度下保存所述组合物。
18.如权利要求1-17中任一项所述的方法,其中,所述活性试剂选自于由下列活性试剂所组成的组:蛋白质、肽、抗原、免疫原、疫苗抗体或抗体的部分、抗体样分子、酶、核酸、siRNA、shRNA、适配子、病毒、细菌、小分子、细胞、光合与能量收集化合物、增味剂、抗生素、治疗剂、诊断剂、病毒载体、以及抗毒剂。
19.如权利要求1-18中任一项所述的方法,其中,所述活性试剂为免疫原。
20.如权利要求19所述的方法,其中,所述免疫原选自于由下列免疫原所组成的组:杀灭的病原体、活的减毒病原体、蛋白质亚单位及其缀合物、灭活的毒素、以及合成肽、水化合物、以及抗原。
21.如权利要求19或20所述的方法,其中,所述免疫原源自于:乙型肝炎病毒、B型流感嗜血杆菌、脊髓灰质炎病毒、C型脑膜炎奈瑟菌、流感、水痘、或者结核分枝杆菌卡介苗、破伤类毒素、白喉类毒素、以及百日咳博德特氏菌。
22.如权利要求19或20所述的方法,其中,所述免疫原为联合免疫原,所述联合免疫原选自于由下列联合免疫原所组成的组:DTaP、DTwP、DTwP hepB、DTP hep B Hib、DTaP hep B Hib IPV,以及上述联合免疫原的任意组合。
23.如权利要求19或20所述的方法,其中,所述免疫原为活的减毒病毒。
24.如权利要求23所述的方法,其中,所述活的减毒病毒为包膜病毒。
25.如权利要求24所述的方法,其中,所述包膜病毒选自于由下列包膜病毒所组成的组:副粘液病毒科、披膜病毒科、正粘液病毒科、黄病毒科、疱疹病毒科、弹状病毒、逆转录病毒科,以及上述包膜病毒的任意组合。
26.如权利要求23-25中任一项所述的方法,其中,所述病毒为水痘。
27.如权利要求23-25中任一项所述的方法,其中,所述病毒为流感病毒。
28.如权利要求23所述的方法,其中,所述活的减毒病毒导致麻疹、腮腺炎、或风疹。
29.如权利要求19或20所述的方法,其中,所述免疫原为活的减毒非包膜病毒。
30.如权利要求29所述的方法,其中,所述非包膜病毒为轮状病毒、呼肠孤病毒、肝炎病毒、狂犬病毒或脊髓灰质炎病毒。
31.如权利要求19所述的方法,其中,所述免疫原为细菌。
32.如权利要求31所述的方法,其中,所述细菌为结核分枝杆菌卡介苗或百日咳博德特氏菌。
33.如权利要求19所述的方法,其中,所述免疫原为细菌亚单位。
34.如权利要求33所述的方法,其中,所述细菌亚单位源自于:C型脑膜炎奈瑟菌、B型流感嗜血杆菌、炎链球菌、或B族链球菌。
35.如权利要求33所述的方法,其中,所述细菌亚单位为多糖。
36.如权利要求19所述的方法,其中,所述免疫原为病毒亚单位。
37.如权利要求36所述的方法,其中,所述病毒亚单位源自于乙型肝炎病毒或人乳头瘤病毒。
38.如权利要求19所述的方法,其中,所述免疫原为重组体。
39.如权利要求19所述的方法,其中,所述免疫原为疫苗产品,所述疫苗产品选自于由下列疫苗产品所组成的组:炭疽疫苗(BioThrax);BCG(卡介苗)(Tice、Mycobax);
DTaP(Daptacel);DTaP(Infanrix);DTaP(Tripedia);DTaP/Hib(TriHIBit);DTaP-IPV(Kinrix);DTaP-HepB-IPV(Pediarix);DTaP-IPV/Hib(Pentacel);DT(白喉疫苗加破伤风疫苗)(Sanofi);Hib疫苗(ACTHib);DT(Massachusetts);Hib(PedvaxHib);Hib/Hep B(Comvax);Hep A(Havrix),甲型肝炎疫苗;Hep A(Vaqta),甲型肝炎疫苗;Hep B(Engerix-B),乙型肝炎疫苗;Hep B(Recombivax),乙型肝炎疫苗;HepA/HepB疫苗(Twinrix);人乳头瘤病毒(HPV)(Gardasil);流感疫苗(Afluria);流感疫苗(Fluarix);
流感疫苗(Flulaval);流感疫苗(Fluvirin);流感疫苗(FLuzone);流感疫苗(FluMist);
IPV(Ipol),脊髓灰质炎疫苗;日本脑炎疫苗(JE-Vax);日本脑炎疫苗(Ixiaro);脑膜炎球菌疫苗(Menactra);MMR疫苗(MMR-II);MMRV疫苗(ProQuad);肺炎球菌疫苗(Pneumovax);
肺炎球菌疫苗(Prevnar);灭活脊髓灰质炎病毒(Poliovax),脊髓灰质炎疫苗;狂犬疫苗(Imovax);狂犬疫苗(RabAvert);轮状病毒疫苗(RotaTeq);轮状病毒疫苗(Rotarix);Td疫苗(Decavac);Td疫苗(Massachusetts);Tdap疫苗(Adacel);Tdap疫苗(Boostrix);伤寒(灭活Typhim Vi),斑疹伤寒疫苗;伤寒(口服-Ty21a),斑疹伤寒疫苗;痘苗(ACAM2000);
水痘疫苗(Varivax);黄热病疫苗(YF-Vax);带状疱疹疫苗(Zostavax);以及上述疫苗产品的任意组合。
40.如权利要求1-39中任一项所述的方法,其中,所述丝素蛋白基质与所述活性试剂的比例为约1:1000-约1000:1。
41.一种稳定储存的组合物,所述组合物包含丝素蛋白基质和分布于其中的活性试剂,其中,当所述组合物(a)经受至少一个冷冻-解冻循环;或者(b)在0℃以上的温度下保存至少约24小时;或者(c)所述(a)和(b)两者均有时,所述活性试剂维持其至少约30%的初始生物活性。
42.如权利要求41所述的组合物,其中,所述活性试剂维持其至少约50%的初始生物活性。
43.如权利要求41或42所述的组合物,其中,所述活性试剂维持其至少约80%的初始生物活性。
44.如权利要求41-43中任一项所述的组合物,其中,将所述组合物保存至少约1个月。
45.如权利要求41-44中任一项所述的组合物,其中,将所述组合物保存至少约6个月。
46.如权利要求41-45中任一项所述的组合物,其中,所述组合物为膜、纤维、粒子、凝胶或水凝胶。
47.如权利要求41-46中任一项所述的组合物,其中,所述组合物为冻干的。
48.如权利要求41-47中任一项所述的组合物,其中,所述组合物为微粒化的。
49.如权利要求48所述的组合物,其中,所述微粒化的组合物为纳米粒子或微米粒子。
50.如权利要求49所述的组合物,其中,所述纳米粒子或微米粒子的大小为约10nm-约
1000μm。
51.如权利要求41-50中任一项所述的组合物,其进一步包含分布遍及所述丝素蛋白基质的添加剂。
52.如权利要求51所述的组合物,其中,所述添加剂选自于:稳定剂、药学上可接受的载体,或上述添加剂的任意组合。
53.如权利要求41-52中任一项所述的组合物,其中,在约0℃-室温以上的温度下保存所述组合物。
54.如权利要求41-53中任一项所述的组合物,其中,在约室温-约37℃的温度下保存所述组合物。
55.如权利要求41-54中任一项所述的组合物,其中,在高于37℃的温度下保存所述组合物。
56.如权利要求41-55中任一项所述的组合物,其中,在光照下保存所述组合物。
57.如权利要求41-56中任一项所述的组合物,其中,在至少约10%的相对湿度下保存所述组合物。
58.如权利要求41-57中任一项所述的组合物,其中,所述活性试剂选自于由下列活性试剂所组成的组:蛋白质、肽、抗原、免疫原、疫苗、抗体或抗体的部分、抗体样分子、酶、核酸、siRNA、shRNA、适配子、病毒、细菌、小分子、细胞、光合与能量收集化合物、增味剂、抗生素、治疗剂、诊断剂、病毒载体、抗毒剂,以及上述活性试剂的任意组合。
59.如权利要求41-58中任一项所述的组合物,其中,所述活性试剂为免疫原。
60.如权利要求59所述的组合物,其中,所述免疫原选自于由下列免疫原所组成的组:
杀灭的病原体、活的减毒病原体、蛋白质亚单位及其缀合物、灭活的毒素、以及合成肽、碳水化合物、以及抗原。
61.如权利要求59或60所述的组合物,其中,所述免疫原源自于:乙型肝炎病毒、B型流感嗜血杆菌、脊髓灰质炎病毒、C型脑膜炎奈瑟菌、流感、水痘、或者结核分枝杆菌卡介苗、破伤风类毒素、白喉类毒素、以及百日咳博德特氏菌。
62.如权利要求59或60所述的组合物,其中,所述免疫原为联合免疫原,所述联合免疫原选自于由下列联合免疫原所组成的组:DTaP、DTwP、DTwP hepB、DTP hep B Hib、DTaP hep B Hib IPV,以及上述联合免疫原的任意组合。
63.如权利要求59或60所述的组合物,其中,所述免疫原为活的减毒病毒。
64.如权利要求63所述的组合物,其中,所述活的减毒病毒为包膜病毒。
65.如权利要求64所述的组合物,其中,所述包膜病毒选自于由下列包膜病毒所组成的组:副粘液病毒科、披膜病毒科、正粘液病毒科、黄病毒科、疱疹病毒科、弹状病毒、逆转录病毒科,以及上述包膜病毒的任意组合。
66.如权利要求63-65中任一项所述的组合物,其中,所述病毒为水痘。
67.如权利要求63-65中任一项所述的组合物,其中,所述病毒为流感病毒。
68.如权利要求63所述的组合物,其中,所述活的减毒病毒导致麻疹、腮腺炎、或风疹。
69.如权利要求59或60所述的组合物,其中,所述免疫原为活的减毒非包膜病毒。
70.如权利要求69所述的组合物,其中,所述非包膜病毒为轮状病毒、呼肠孤病毒、肝炎病毒、狂犬病毒或脊髓灰质炎病毒。
71.如权利要求59所述的组合物,其中,所述免疫原为细菌。
72.如权利要求71所述的组合物,其中,所述细菌为结核分枝杆菌卡介苗或百日咳博德特氏菌。
73.如权利要求59所述的组合物,其中,所述免疫原为细菌亚单位。
74.如权利要求73所述的组合物,其中,所述细菌亚单位源自于:C型脑膜炎奈瑟菌、B型流感嗜血杆菌、肺炎链球菌、或B族链球菌。
75.如权利要求73所述的组合物,其中,所述细菌亚单位为多糖。
76.如权利要求59所述的组合物,其中,所述免疫原为病毒亚单位。
77.如权利要求76所述的组合物,其中,所述病毒亚单位源自于乙型肝炎病毒或人乳头瘤病毒。
78.如权利要求59所述的组合物,其中,所述免疫原为重组体。
79.如权利要求59所述的组合物,其中,所述免疫原为疫苗产品,所述疫苗产品选自于由下列疫苗产品所组成的组:炭疽疫苗(BioThrax);BCG(卡介苗)(Tice、Mycobax);
DTaP(Daptacel);DTaP(Infanrix);DTaP(Tripedia);DTaP/Hib(TriHIBit);DTaP-IPV(Kinrix);DTaP-HepB-IPV(Pediarix);DTaP-IPV/Hib(Pentacel);DT(白喉疫苗加破伤风疫苗)(Sanofi);Hib疫苗(ACTHib);DT(Massachusetts);Hib(PedvaxHib);Hib/Hep B(Comvax);Hep A(Havrix),甲型肝炎疫苗;Hep A(Vaqta),甲型肝炎疫苗;Hep B(Engerix-B),乙型肝炎疫苗;Hep B(Recombivax),乙型肝炎疫苗;HepA/HepB疫苗(Twinrix);人乳头瘤病毒(HPV)(Gardasil);流感疫苗(Afluria);流感疫苗(Fluarix);
流感疫苗(Flulaval);流感疫苗(Fluvirin);流感疫苗(FLuzone);流感疫苗(FluMist);
IPV(Ipol),脊髓灰质炎疫苗;日本脑炎疫苗(JE-Vax);日本脑炎疫苗(Ixiaro);脑膜炎球菌疫苗(Menactra);MMR疫苗(MMR-II);MMRV疫苗(ProQuad);肺炎球菌疫苗(Pneumovax);
肺炎球菌疫苗(Prevnar);灭活脊髓灰质炎病毒(Poliovax),脊髓灰质炎疫苗;狂犬疫苗(Imovax);狂犬疫苗(RabAvert);轮状病毒疫苗(RotaTeq);轮状病毒疫苗(Rotarix);Td疫苗(Decavac);Td疫苗(Massachusetts);Tdap疫苗(Adacel);Tdap疫苗(Boostrix);伤寒(灭活Typhim Vi),斑疹伤寒疫苗;伤寒(口服-Ty21a),斑疹伤寒疫苗;牛痘苗(ACAM2000);
水痘疫苗(Varivax);黄热病疫苗(YF-Vax);带状疱疹疫苗(Zostavax);以及上述疫苗产品的任意组合。
80.如权利要求41-79中任一项所述的组合物,其中,所述丝素蛋白基质与所述活性试剂的比例为约1:1000-约1000:1。
81.一种制备如权利要求41-80中任一项所述的稳定储存的组合物的方法,所述方法包括下列步骤:
a.提供包含至少一种活性试剂的丝素蛋白溶液;以及
b.对步骤(a)的丝素蛋白溶液进行干燥,形成固态丝素蛋白,从而获得所述组合物,所述组合物中的所述至少一种活性试剂在储存时维持其至少约30%的初始生物活性。
82.如权利要求81所述的方法,其中,所述干燥为冻干。
83.如权利要求81所述的方法,其中,所述干燥为空气干燥。
84.如权利要求81-83中任一项所述的方法,其进一步包括将来自步骤(b)的所述固态丝素蛋白进行冻干。
85.如权利要求81-84中任一项所述的方法,其进一步包括对所述组合物进行后处理。
86.如权利要求85所述的方法,其中,所述后处理改变所述组合物的结晶性。
87.如权利要求85或86所述的方法,其中,所述后处理为使所述组合物与甲醇或乙醇接触
88.如权利要求85-87中任一项所述的方法,其中,所述后处理为使所述组合物经受切应
89.如权利要求85-88中任一项所述的方法,其中,所述后处理为使所述组合物经受电场
90.如权利要求85-89中任一项所述的方法,其中,所述后处理为使所述组合物经受压力。
91.如权利要求85-90中任一项所述的方法,其中,所述后处理为使所述组合物与盐接触。
92.如权利要求81-91中任一项所述的方法,其进一步包括通过机械手段缩小步骤(b)的所述固态丝素蛋白,从而获得微粒化的粒子。
93.如权利要求92所述的方法,其中,所述机械手段选自于:微粒化、粉碎、压碎、研磨、冻干,或上述机械手段的任意组合。
94.如权利要求92或93所述的方法,其中,所述微粒化的粒子的大小为约10nm-约
1000μm。
95.如权利要求81-94中任一项所述的方法,其中,所述至少一种活性试剂在储存时维持其至少约80%的初始生物活性。
96.如权利要求81-95中任一项所述的方法,其中,在至少约6个月的时期内进行所述储存。
97.如权利要求81-96中任一项所述的方法,其中,在约室温-约37℃的温度下进行所述储存。
98.如权利要求81-97中任一项所述的方法,其中,在高于37℃的温度下进行所述储存。
99.一种包括保存免疫原性组合物的步骤的方法,其中,所述组合物包含丝素蛋白基质和分布于其中的至少一种免疫原,
其中,当所述组合物(a)经受至少一个冷冻-解冻循环;或者(b)在0℃以上的温度下保存至少约24小时;或者(c)所述(a)和(b)两者均有时,所述免疫原维持其至少约30%的初始免疫原性。
100.如权利要求99所述的方法,其中,所述免疫原维持其至少约50%的初始免疫原性。
101.如权利要求99或100所述的方法,其中,所述免疫原维持其至少约80%的初始免疫原性。
102.如权利要求99-101中任一项所述的方法,其中,将所述组合物保存至少约1个月。
103.如权利要求99-102中任一项所述的方法,其中,将所述组合物保存至少约6个月。
104.如权利要求99-103中任一项所述的方法,其中,所述组合物为膜、纤维、粒子、凝胶或水凝胶。
105.如权利要求99-104中任一项所述的方法,其中,所述组合物为冻干的。
106.如权利要求99-105中任一项所述的方法,其中,所述组合物为微粒化的。
107.如权利要求106所述的方法,其中,所述微粒化的组合物为纳米粒子或微米粒子。
108.如权利要求107所述的方法,其中,所述纳米粒子或微米粒子的大小为约10nm-约
1000μm。
109.如权利要求99-108中任一项所述的方法,其中,所述组合物进一步包含分布遍及所述丝素蛋白基质的添加剂。
110.如权利要求109所述的方法,其中,所述添加剂选自于由如下添加剂所组成的组:
稳定剂、药学上可接受的载体,以及上述添加剂的任意组合。
111.如权利要求110所述的方法,其中,所述稳定剂选自于由如下稳定剂所组成的组:
糖、糖醇、离子、表面活性剂,以及上述稳定剂的任意组合。
112.如权利要求111所述的方法,其中,所述糖为蔗糖
113.如权利要求99-112中任一项所述的方法,其中,在约0℃-室温以上的温度下保存所述组合物。
114.如权利要求99-113中任一项所述的方法,其中,在约室温-约37℃的温度下保存所述组合物。
115.如权利要求99-114中任一项所述的方法,其中,在高于37℃的温度下保存所述组合物。
116.如权利要求99-115中任一项所述的方法,其中,在光照下保存所述组合物。
117.如权利要求99-116中任一项所述的方法,其中,在至少约10%的相对湿度下保存所述组合物。
118.如权利要求99-117中任一项所述的方法,其中,所述免疫原选自于由下列免疫原所组成的组:杀灭的病原体、活的减毒病原体、蛋白质亚单位及其缀合物、灭活的毒素、合成肽、碳水化合物、抗原,以及上述免疫原的任意组合。
119.如权利要求99-118中任一项所述的方法,其中,所述免疫原源自于:乙型肝炎病毒、B型流感嗜血杆菌、脊髓灰质炎病毒、C型脑膜炎奈瑟菌、流感、水痘、或者结核分枝杆菌卡介苗、破伤风类毒素、白喉类毒素、以及百日咳博德特氏菌。
120.如权利要求99-118中任一项所述的方法,其中,所述免疫原为联合免疫原,所述联合免疫原选自于由下列联合免疫原所组成的组:DTaP、DTwP、DTwP hepB、DTP hep B Hib、DTaP hep B Hib IPV,以及上述联合免疫原的任意组合。
121.如权利要求99-118中任一项所述的方法,其中,所述免疫原为活的减毒病毒。
122.如权利要求121所述的方法,其中,所述活的减毒病毒为包膜病毒。
123.如权利要求122所述的方法,其中,所述包膜病毒选自于由下列包膜病毒所组成的组:副粘液病毒科、披膜病毒科、正粘液病毒科、黄病毒科、疱疹病毒科、弹状病毒、逆转录病毒科,以及上述包膜病毒的任意组合。
124.如权利要求121-123中任一项所述的方法,其中,所述病毒为水痘。
125.如权利要求121-123中任一项所述的方法,其中,所述病毒为流感病毒。
126.如权利要求121所述的方法,其中,所述活的减毒病毒导致麻疹、腮腺炎、或风疹。
127.如权利要求99-118中任一项所述的方法,其中,所述免疫原为活的减毒非包膜病毒。
128.如权利要求127所述的方法,其中,所述非包膜病毒为轮状病毒、呼肠孤病毒、肝炎病毒、狂犬病毒或脊髓灰质炎病毒。
129.如权利要求99-118中任一项所述的方法,其中,所述免疫原为细菌。
130.如权利要求129所述的方法,其中,所述细菌为结核分枝杆菌卡介苗或百日咳博德特氏菌。
131.如权利要求99-118中任一项所述的方法,其中,所述免疫原为细菌亚单位。
132.如权利要求131所述的方法,其中,所述细菌亚单位源自于:C型脑膜炎奈瑟菌、B型流感嗜血杆菌、肺炎链球菌、或B族链球菌。
133.如权利要求131所述的方法,其中,所述细菌亚单位为多糖。
134.如权利要求99-118中任一项所述的方法,其中,所述免疫原为病毒亚单位。
135.如权利要求134所述的方法,其中,所述病毒亚单位源自于乙型肝炎病毒或人乳头瘤病毒。
136.如权利要求99-118中任一项所述的方法,其中,所述免疫原为重组体。
137.如权利要求99-118中任一项所述的方法,其中,所述免疫原为疫苗产品,所述疫苗产品选自于由下列疫苗产品所组成的组:炭疽疫苗(BioThrax);BCG(卡介苗)(Tice、Mycobax);DTaP(Daptacel);DTaP(Infanrix);DTaP(Tripedia);DTaP/Hib(TriHIBit);
DTaP-IPV(Kinrix);DTaP-HepB-IPV(Pediarix);DTaP-IPV/Hib(Pentacel);DT(白喉疫苗加破伤风疫苗)(Sanofi);Hib疫苗(ACTHib);DT(Massachusetts);Hib(PedvaxHib);
Hib/Hep B(Comvax);Hep A(Havrix),甲型肝炎疫苗;Hep A(Vaqta),甲型肝炎疫苗;
Hep B(Engerix-B),乙型肝炎疫苗;Hep B(Recombivax),乙型肝炎疫苗;HepA/HepB疫苗(Twinrix);人乳头瘤病毒(HPV)(Gardasil);流感疫苗(Afluria);流感疫苗(Fluarix);
流感疫苗(Flulaval);流感疫苗(Fluvirin);流感疫苗(FLuzone);流感疫苗(FluMist);
IPV(Ipol),脊髓灰质炎疫苗;日本脑炎疫苗(JE-Vax);日本脑炎疫苗(Ixiaro);脑膜炎球菌疫苗(Menactra);MMR疫苗(MMR-II);MMRV疫苗(ProQuad);肺炎球菌疫苗(Pneumovax);
肺炎球菌疫苗(Prevnar);灭活脊髓灰质炎病毒(Poliovax),脊髓灰质炎疫苗;狂犬疫苗(Imovax);狂犬疫苗(RabAvert);轮状病毒疫苗(RotaTeq);轮状病毒疫苗(Rotarix);Td疫苗(Decavac);Td疫苗(Massachusetts);Tdap疫苗(Adacel);Tdap疫苗(Boostrix);伤寒(灭活Typhim Vi),斑疹伤寒疫苗;伤寒(口服-Ty21a),斑疹伤寒疫苗;牛痘苗(ACAM2000);
水痘疫苗(Varivax);黄热病疫苗(YF-Vax);带状疱疹疫苗(Zostavax);以及上述疫苗产品的任意组合。
138.如权利要求99-137中任一项所述的方法,其中,所述丝素蛋白基质与所述免疫原的比例为约1:1000-约1000:1。
139.一种稳定储存的免疫原性组合物,所述组合物包含丝素蛋白基质和分布于其中的免疫原,
其中,当所述组合物(a)经受至少一个冷冻-解冻循环;或者(b)在0℃以上的温度下保存至少约24小时;或者(c)所述(a)和(b)两者均有时,所述免疫原维持其至少约30%的初始免疫原性。
140.如权利要求139所述的组合物,其中,所述免疫原维持其至少约50%的初始免疫原性。
141.如权利要求139或140所述的组合物,其中,所述免疫原维持其至少约80%的初始免疫原性。
142.如权利要求139-141中任一项所述的组合物,其中,将所述组合物保存至少约1个月。
143.如权利要求139-142中任一项所述的组合物,其中,将所述组合物保存至少约6个月。
144.如权利要求139-143中任一项所述的组合物,其中,所述组合物为膜、纤维、粒子、凝胶或水凝胶。
145.如权利要求139-144中任一项所述的组合物,其中,所述组合物为冻干的。
146.如权利要求139-145中任一项所述的组合物,其中,所述组合物为微粒化的。
147.如权利要求146所述的组合物,其中,所述微粒化的组合物为纳米粒子或微米粒子。
148.如权利要求147所述的组合物,其中,所述纳米粒子或微米粒子的大小为约
10nm-约1000μm。
149.如权利要求139-148中任一项所述的组合物,其进一步包含分布遍及所述丝素蛋白基质的添加剂。
150.如权利要求149所述的组合物,其中,所述添加剂选自于由如下添加剂所组成的组:稳定剂、药学上可接受的载体,以及上述添加剂的任意组合。
151.如权利要求150所述的组合物,其中,所述稳定剂选自于由如下稳定剂所组成的组:糖、糖醇、离子、表面活性剂,以及上述稳定剂的任意组合。
152.如权利要求151所述的组合物,其中,所述糖为蔗糖。
153.如权利要求139-152中任一项所述的组合物,其中,在约0℃-室温以上的温度下保存所述组合物。
154.如权利要求139-153中任一项所述的组合物,其中,在约室温-约37℃的温度下保存所述组合物。
155.如权利要求139-154中任一项所述的组合物,其中,在高于37℃的温度下保存所述组合物。
156.如权利要求139-155中任一项所述的组合物,其中,在光照下保存所述组合物。
157.如权利要求139-156中任一项所述的组合物,其中,在至少约10%的相对湿度下保存所述组合物。
158.如权利要求139-157中任一项所述的组合物,其中,所述免疫原选自于由下列免疫原所组成的组:杀灭的病原体、活的减毒病原体、蛋白质亚单位及其缀合物、灭活的毒素、合成肽、碳水化合物、抗原,以及上述免疫原的任意组合。
159.如权利要求139-158中任一项所述的组合物,其中,所述免疫原源自于:乙型肝炎病毒、B型流感嗜血杆菌、脊髓灰质炎病毒、C型脑膜炎奈瑟菌、流感、水痘、或者结核分枝杆菌卡介苗、破伤风类毒素、白喉类毒素、以及百日咳博德特氏菌。
160.如权利要求139-158中任一项所述的组合物,其中,所述免疫原为联合免疫原,所述联合免疫原选自于由下列联合免疫原所组成的组:DTaP、DTwP、DTwP hepB、DTP hep B Hib、DTaP hep B Hib IPV,以及上述联合免疫原的任意组合。
161.如权利要求139-158中任一项所述的组合物,其中,所述免疫原为活的减毒病毒。
162.如权利要求161所述的组合物,其中,所述活的减毒病毒为包膜病毒。
163.如权利要求162所述的组合物,其中,所述包膜病毒选自于由下列包膜病毒所组成的组:副粘液病毒科、披膜病毒科、正粘液病毒科、黄病毒科、疱疹病毒科、弹状病毒、逆转录病毒科,以及上述包膜病毒的任意组合。
164.如权利要求161-163中任一项所述的组合物,其中,所述病毒为水痘。
165.如权利要求161-163中任一项所述的组合物,其中,所述病毒为流感病毒。
166.如权利要求161所述的组合物,其中,所述活的减毒病毒导致麻疹、腮腺炎、或风疹。
167.如权利要求139-158中任一项所述的组合物,其中,所述免疫原为活的减毒非包膜病毒。
168.如权利要求167所述的组合物,其中,所述非包膜病毒为轮状病毒、呼肠孤病毒、肝炎病毒、狂犬病毒或脊髓灰质炎病毒。
169.如权利要求139-158中任一项所述的组合物,其中,所述免疫原为细菌。
170.如权利要求169所述的组合物,其中,所述细菌为结核分枝杆菌卡介苗或百日咳博德特氏菌。
171.如权利要求139-158中任一项所述的组合物,其中,所述免疫原为细菌亚单位。
172.如权利要求171所述的组合物,其中,所述细菌亚单位源自于:C型脑膜炎奈瑟菌、B型流感嗜血杆菌、肺炎链球菌、或B族链球菌。
173.如权利要求171所述的组合物,其中,所述细菌亚单位为多糖。
174.如权利要求139-158中任一项所述的组合物,其中,所述免疫原为病毒亚单位。
175.如权利要求174所述的组合物,其中,所述病毒亚单位源自于乙型肝炎病毒或人乳头瘤病毒。
176.如权利要求139-158中任一项所述的组合物,其中,所述免疫原为重组体。
177.如权利要求139-158中任一项所述的组合物,其中,所述免疫原为疫苗产品,所述疫苗产品选自于由下列疫苗产品所组成的组:炭疽疫苗(BioThrax);BCG(卡介苗)(Tice、Mycobax);DTaP(Daptacel);DTaP(Infanrix);DTaP(Tripedia);DTaP/Hib(TriHIBit);
DTaP-IPV(Kinrix);DTaP-HepB-IPV(Pediarix);DTaP-IPV/Hib(Pentacel);DT(白喉疫苗加破伤风疫苗)(Sanofi);Hib疫苗(ACTHib);DT(Massachusetts);Hib(PedvaxHib);
Hib/Hep B(Comvax);Hep A(Havrix),甲型肝炎疫苗;Hep A(Vaqta),甲型肝炎疫苗;
Hep B(Engerix-B),乙型肝炎疫苗;Hep B(Recombivax),乙型肝炎疫苗;HepA/HepB疫苗(Twinrix);人乳头瘤病毒(HPV)(Gardasil);流感疫苗(Afluria);流感疫苗(Fluarix);
流感疫苗(Flulaval);流感疫苗(Fluvirin);流感疫苗(FLuzone);流感疫苗(FluMist);
IPV(Ipol),脊髓灰质炎疫苗;日本脑炎疫苗(JE-Vax);日本脑炎疫苗(Ixiaro);脑膜炎球菌疫苗(Menactra);MMR疫苗(MMR-II);MMRV疫苗(ProQuad);肺炎球菌疫苗(Pneumovax);
肺炎球菌疫苗(Prevnar);灭活脊髓灰质炎病毒(Poliovax),脊髓灰质炎疫苗;狂犬疫苗(Imovax);狂犬疫苗(RabAvert);轮状病毒疫苗(RotaTeq);轮状病毒疫苗(Rotarix);Td疫苗(Decavac);Td疫苗(Massachusetts);Tdap疫苗(Adacel);Tdap疫苗(Boostrix);伤寒(灭活Typhim Vi),斑疹伤寒疫苗;伤寒(口服-Ty21a),斑疹伤寒疫苗;牛痘苗(ACAM2000);
水痘疫苗(Varivax);黄热病疫苗(YF-Vax);带状疱疹疫苗(Zostavax);以及上述疫苗产品的任意组合。
178.如权利要求139-177中任一项所述的组合物,其中,所述丝素蛋白基质与所述免疫原的比例为约1:1000-约1000:1。
179.一种制备如权利要求139-178中任一项所述的稳定储存的免疫原性组合物的方法,所述方法包括下列步骤:
a.提供包含至少一种免疫原的丝素蛋白溶液;以及
b.对步骤(a)的丝素蛋白溶液进行干燥,形成固态丝素蛋白,从而获得所述免疫原性组合物,所述组合物中的所述至少一种免疫原在储存时维持其至少约30%的初始免疫原性。
180.如权利要求179所述的方法,其中,所述干燥为冻干。
181.如权利要求179所述的方法,其中,所述干燥为空气干燥。
182.如权利要求179-181中任一项所述的方法,其进一步包括将来自步骤(b)的所述固态丝素蛋白进行冻干。
183.如权利要求179-182中任一项所述的方法,其进一步包括对所述组合物进行后处理。
184.如权利要求183所述的方法,其中,所述后处理改变所述组合物的结晶性。
185.如权利要求183或184所述的方法,其中,所述后处理为使所述组合物与甲醇或乙醇接触。
186.如权利要求183-185中任一项所述的方法,其中,所述后处理为使所述组合物经受切应力
187.如权利要求183-186中任一项所述的方法,其中,所述后处理为使所述组合物经受电场。
188.如权利要求183-187中任一项所述的方法,其中,所述后处理为使所述组合物经受压力。
189.如权利要求183-188中任一项所述的方法,其中,所述后处理为使所述组合物与盐接触。
190.如权利要求179-189中任一项所述的方法,其进一步包括通过机械手段缩小步骤(b)的所述固态丝素蛋白,从而获得微粒化的粒子。
191.如权利要求190所述的方法,其中,所述机械手段选自于:微粒化、粉碎、压碎、研磨、冻干,或上述机械手段的任意组合。
192.如权利要求190或191所述的方法,其中,所述微粒化的粒子的大小为约10nm-约
1000μm。
193.如权利要求179-192中任一项所述的方法,其中,所述至少一种免疫原在储存时维持其至少约80%的初始免疫原性。
194.如权利要求179-193中任一项所述的方法,其中,在至少6个月的时期内进行所述储存。
195.如权利要求179-194中任一项所述的方法,其中,在约室温-约37℃的温度下进行所述储存。
196.如权利要求179-195中任一项所述的方法,其中,在高于37℃的温度下进行所述储存。
197.一种免疫原性组合物,所述免疫原性组合物包含丝素蛋白基质和分布于其中的至少一种活的减毒病毒,
其中,当所述组合物(a)经受至少一个冷冻-解冻循环;或者(b)在0℃以上的温度下保存至少约24小时时,所述活的减毒病毒维持其至少约30%的初始感染性。
198.如权利要求197所述的组合物,其中,所述病毒维持其至少约50%的初始感染稳定性
199.如权利要求197或198所述的组合物,其中,所述病毒维持其至少约80%的初始感染稳定性。
200.如权利要求197-199中任一项所述的组合物,其中,将所述组合物保存至少约6个月。
201.如权利要求197-200中任一项所述的组合物,其中,在约室温-约37℃的温度下保存所述组合物。
202.如权利要求197-201中任一项所述的组合物,其中,在高于37℃的温度下保存所述组合物。
203.如权利要求197-202中任一项所述的组合物,其中,所述组合物为冻干的。
204.如权利要求197-203中任一项所述的组合物,其中,所述活的减毒病毒为包膜病毒。
205.如权利要求204所述的组合物,其中,所述包膜病毒选自于由下列包膜病毒所组成的组:副粘液病毒科、披膜病毒科、正粘液病毒科、黄病毒科、逆转录病毒科、疱疹病毒科、弹状病毒,以及上述包膜病毒的任意组合。
206.如权利要求204或205所述的组合物,其中,所述包膜病毒为水痘、麻疹病毒、腮腺炎病毒、德国麻疹病毒、呼吸道合胞病毒、黄热病病毒、或流感病毒。
207.如权利要求197-203中任一项所述的组合物,其中,所述活的减毒病毒为非包膜病毒。
208.如权利要求207所述的组合物,其中,所述非包膜病毒为轮状病毒。
209.如权利要求197-208中任一项所述的组合物,其进一步包含添加剂。
210.如权利要求209所述的组合物,其中,所述添加剂选自于由如下添加剂所组成的组:稳定剂、药学上可接受的载体,以及上述添加剂的任意组合。
211.如权利要求210所述的组合物,其中,所述稳定剂选自于由如下稳定剂所组成的组:糖、糖醇、离子、表面活性剂,以及上述稳定剂的任意组合。
212.如权利要求211所述的组合物,其中,所述糖为蔗糖。
213.一种无细胞的稳定化病毒制剂,所述制剂包含丝素蛋白基质和分布于其中的感染性病毒,
其中,当所述制剂(a)经受至少一个冷冻-解冻循环;或者(b)在0℃以上的温度下保存至少约24小时;或者(c)所述(a)和(b)两者均有时,所述病毒维持其至少约30%的初始感染性。
214.如权利要求213所述的制剂,其中,所述病毒和所述丝素蛋白基质为冻干的。
215.如权利要求213或214所述的制剂,其中,所述病毒维持其至少约80%的初始感染性。
216.如权利要求213-215中任一项所述的制剂,其中,将所述制剂保存至少约6个月。
217.如权利要求213-216中任一项所述的制剂,其中,在约室温-约37℃的温度下保存所述制剂。
218.如权利要求213-217中任一项所述的制剂,其中,在高于37℃的温度下保存所述制剂。
219.如权利要求213-218中任一项所述的制剂,其中,所述病毒为包膜病毒。
220.如权利要求213-218中任一项所述的制剂,其中,所述病毒为呼吸道合胞病毒。
221.如权利要求213-218中任一项所述的制剂,其中,所述病毒为非包膜病毒。
222.如权利要求213-218中任一项所述的制剂,其中,所述病毒为噬菌体
223.如权利要求213-218中任一项所述的制剂,其中,所述病毒为重组体病毒。
224.如权利要求213-218中任一项所述的制剂,其中,所述病毒为病毒载体。
225.如权利要求224所述的制剂,其中,所述病毒载体选自于由下列病毒载体所组成的组:逆转录载体、慢病毒载体、腺病毒载体、腺病毒相关病毒载体,以及上述病毒载体的任意组合。
226.一种制剂,所述制剂包含如权利要求41-80、139-178或197-212中任一项所述的至少一种组合物。
227.如权利要求226所述的制剂,其中,所述制剂选自于由下列剂型所组成的组:片剂、锭剂、悬浮液剂、自由流动的粉末剂、气雾剂、胶囊剂,以及上述剂型的任意组合。
228.如权利要求226-227中任一项所述的制剂,其进一步包含药学上可接受的载体。
229.一种包装,所述包装包含如权利要求41-80、139-178或197-212中任一项所述的至少一种组合物;或者如权利要求213-225或226-228中任一项所述的制剂。
230.如权利要求229所述的包装,其中,所述容器选自于由下列容器所组成的组:小瓶、安瓿、胶囊、管、注射器、瓶、小包,以及上述容器的任意组合。
231.如权利要求230所述的包装,其中,所述注射器是无针注射器
232.一种试剂盒,所述试剂盒包含如权利要求229-231中任一项所述的包装;以及药学上可接受的溶液。
233.如权利要求232所述的试剂盒,其进一步包含至少一个注射器。
234.如权利要求232或233所述的试剂盒,其进一步包含消毒剂。
235.一种递送装置,所述递送装置包含至少一个具有出料口的腔体,
其中,所述至少一个腔体包含预先确定量的如权利要求41-80、139-178或191-212中任一项所述的组合物;以及
所述出料口向所述组合物提供出口。
236.如权利要求235所述的装置,其中,所述递送装置选自于由下列递送装置所组成的组:注射器、干粉注射器、鼻喷雾器雾化器植入物,以及上述递送装置的任意组合。
237.如权利要求235所述的装置,其中,所述植入物为微芯片。
238.如权利要求235-237中任一项所述的装置,其进一步包含促动器,以对所述组合物经由所述出料口的释放进行控制。

说明书全文

用于活性试剂稳定化的方法和组合物

[0001] 相关申请的交叉引用
[0002] 根据35U.S.C§119(e),本申请要求2011年4月21日提交的美国临时申请NO.61/477,737的优先权,以引用的方式将其内容整体并入本文。
[0003] 政府支持
[0004] 本发明是在由美国国立卫生研究院授予的基金EB002520、以及由美国空军授予的基金FA9550-07-1-0079的政府支持下完成的。美国政府对本发明享有一定的权利。

技术领域

[0005] 本发明一般而言涉及用于活性试剂稳定化的方法和组合物。

背景技术

[0006] 由于活性试剂通常是不稳定的、并对周围条件(例如温度、湿度和/或光)的变化敏感,因此活性试剂的稳定化是许多应用中的重要特征。即使活性试剂被确定为对于给定反应是有用的,其应用也往往受到加工条件下缺乏长期稳定性的束缚。
[0007] 已对用于不同应用的稳定活性试剂(例如酶和治疗性蛋白)的多种模式(由冻干至共价固定)进行了研究。通常而言,许多固定化活性试剂显出改善的稳定性,这可能是由于降低了移动性(mobility),从而防止疏水合作用(hydrophobic hydration)产生变化及因此聚集并失去活性。用于固定活性试剂(例如酶)的技术通常分为四类:(1)将酶非共价吸附至载体材料表面;(2)共价附着至材料表面;(3)物理包埋(entrapment)入材料基质内;以及(4)酶交联以“定(lock)”结构。全部这些方法都是在维持高催化活性与实现上述优点之间的折中。提供特异性表面结合位点或相对亲水性/疏水性的微环境来保持高负载和活性试剂的活性的材料的缺乏,限制了上述基于载体的固定方法的应用。另外,对于许多应用而言,载体材料需要为生物可降解的和生物相容的,以用于生物医学应用,这一点将多数合成聚合材料的使用排除在外。
[0008] 近来,已经开发了新型固定方法来对活性试剂(例如酶)的稳定性和活性进行改善。例如,所述载体材料的微环境可通过使用阻断剂进行工程化来减少非特异性结合位点。或者,可将亲水性高分子引入至所述活性试剂附近、或在所述活性试剂和材料表面间使用亲水性间隔物(spacer)。此外,已使用了溶胶-凝胶(sol-gel)材料来用于固定,并发现其由于微环境限制(microenvironmental confinement)效应而使酶(例如脂肪酶)的活性提高至多达100倍。
[0009] 另外,已将酶交联法与蛋白质结晶联合,从而产生交联的酶晶体(CLEC),与天然酶相比,所述交联的酶晶体具有提高的酶稳定性和选择性。尽管这一方法已被医药公司用于制备治疗性蛋白质药物,然而蛋白质结晶很复杂,并通常不可预测。交联酶聚集体(CLEA)可通过沉淀蛋白质、继以使用戊二交联获得。来自青霉素酰基转移酶的CLEA在合成苄青霉素方面与CLEC具有相同的活性。磁性纳米粒子也被用于酶的共价固定,并因此用于增强酶的稳定性。然而,在环境储存条件(ambient storage conditions)(例如室温)下提供长期稳定性时,这些固定方法均不是生物相容的/生物可降解的、或者易于使用的。
[0010] 特别而言,疫苗稳定化已经成为长期持续的挑战,并且大量疫苗已经由于不当储存而被损耗。尽管全球免疫(global immunization)目前每年挽救2百万-3百万儿童的生命,然而对于每年发生的1050万例儿童死亡而言,250万例是由于可通过疫苗预防疾病导致的。麻疹(measles)、腮腺炎(mumps)和疹(rubella)是三种常见的儿童疾病,分别由麻疹病毒、腮腺炎病毒(副粘液病毒(paramyxoviruses))和风疹病毒(披膜病毒(togavirus))引起,这些疾病可能涉及严重的并发症和/或死亡。例如,炎和脑炎是由麻疹引起的。腮腺炎与无菌性脑膜炎、聋和睾丸炎相关;并且怀孕期间的风疹可能会导致受感染母亲的婴儿患有先天性风疹综合征。通过将使用疫苗前的给定年份中报道的麻疹、腮腺炎和风疹病例的最大数量与1995年报道的各疾病的病例数进行比较,可以对麻疹、腮腺炎和风疹疫苗对于美国自然历史上各疾病的影响进行量化。对于麻疹,相比于1941年报道的894,134例病例,1995年报道了288例,报道的病例数下降了99.97%;对于腮腺炎,相比于1968年报道的152,209例病例,1995年报道了840例,报道的病例数下降了99.45%;以及对于风疹,相比于1969年报道的57,686例病例,1995年报道了200例,下降了99.65%(Monthly Immunization Table,45MMWR24(1996))。
[0011] 疫苗是一种若变得过热过冷时可能很快失去其效的生物物质,尤其是在运输和储存期间。不慎冷冻(inadvertent freezing)、加热至超过8℃或冷链(cold chain)的其它断链可能导致失效或疫苗损耗。根据WHO,2006-2015年间,仅美国就将贡献350亿美元用于全球免疫接种计划。约三分之一将花费在疫苗上,其余的将花费在疫苗递送系统上。明了的是即使由于冷链失效而导致1%的疫苗损耗,其总量也是可观的。事实上,对于五个美国的州而言,平均损耗1%-5%将花费约600万-3100万美元。在世界的其它部分,疫苗损耗可达到10%。两种最普遍的损耗形式涉及热稳定性和贮藏寿命(shelf life),不慎冷冻也是另一个关键问题。因此,对于稳定储存的活性试剂(例如稳定储存的疫苗)存在强烈需求,所述稳定储存的活性试剂具有可在多种稳健(robust)的环境条件下(例如,不需要冷链合规(cold chain compliance))维持效力的更长的贮藏寿命。

发明内容

[0012] 本文所述的多个实施方式提供了稳定储存的组合物,所述组合物包含丝素蛋白(silk fibroin)基质和分布于其中的活性试剂,其中,当所述组合物经受至少一个状态变化循环(state-changing cycle)、和/或在规定条件下保存一段时间时,所述活性试剂维持其至少约30%的初始生物活性。在一个实施方式中,所述状态变化循环为冷冻-解冻循环。在一个实施方式中,所述活性试剂保存的时间段为至少约24小时。在一些实施方式中,所述规定条件可以为活性试剂被储存和/或运输的环境条件(environmental condition)。环境条件的非限制性实例包括温度、气压、湿度、以及光照(light exposure)。在一些实施方式中,所述活性试剂为免疫原。在一些实施方式中,所述活性试剂为疫苗。
[0013] 本文还提供了例如在生物医学领域中有用的试剂盒和递送装置。示例性的递送装置包括但不限于:注射器(syringe)、干粉注射器(dry powder injector)、鼻喷雾器(nasal spray)、雾化器(nebulizer)、以及植入物(implant)。此类试剂盒和装置包含本文所述的稳定储存的组合物,并任选地包含药学上可接受的溶液。在一个实施方式中,所述试剂盒进一步包含用于将本文所述的稳定储存的组合物给予受试者的至少一种递送装置,和/或消毒剂(disinfectant)。附图说明
[0014] 图1示出了对于麻疹、腮腺炎和风疹,疫苗样品的log10稀释与Ct值之间的线性关系。N=3,误差棒表示标准差。
[0015] 图2示出了在细胞接种前24小时、18小时、12小时和6小时在水中复溶(reconstituted)的MMR疫苗在25℃避光储存的结果。N=3,误差棒表示标准差。
[0016] 图3示出了储存于9%(w/v)丝膜(silk film)中超过3个月的麻疹、腮腺炎和风疹病毒的稳定性。N=3,误差棒表示标准差。
[0017] 图4为对添加了稳定化添加剂MgCl2、MgSO4和蔗糖时丝膜中的麻疹、腮腺炎和风疹病毒的初始回复效价(initial recovered potency)进行比较的柱状图。N=3,误差棒表示标准差。
[0018] 图5示出了在细胞接种前24小时、18小时、12小时和6小时在70%蔗糖中复溶的MMR疫苗在25℃避光储存的结果。N=3,误差棒表示标准差。
[0019] 图6A-图6D表示对在水中于4℃(图6A)或37℃(图6C)、或在70%蔗糖中于4℃(图6B)或37℃(图6D)的复溶MMR疫苗的残余效价(residual potency)进行的比较。在细胞接种前24小时、18小时、12小时和6小时,将疫苗在水中或70%蔗糖中复溶,在25℃避光储存。N=3,误差棒表示标准差。
[0020] 图7示出了包封疫苗的丝膜的制造和感染性分析(infectivity assay)的示意图。(1)冻干疫苗粉末在无菌水性丝溶液(silk solution)中复溶。(2a)通过将小份(aliquot)疫苗-丝混合物浇注至涂覆有聚四氟乙烯(Teflon)的表面、并在室温下使其在无菌罩中避光干燥12小时,从而制备包封疫苗的丝膜。(3a)在适当温度下将单独的干燥的膜储存于Eppendorf管中,用于稳定性研究。(2b)在冻干疫苗粉末在无菌水性丝溶液中复溶后,通过将小份疫苗-丝混合物浇注至96孔板中并冻干,从而制备冻干的包封疫苗的丝膜。(3b)从有孔板中移出单独的冻干的膜,并将其转移至玻璃血清瓶(serum vials)中,以冻干瓶塞(lyophilization stopper)盖住并在氮气和真空条件下密封(alum seal)。(4)为了进行感染性研究,将所述膜再溶解于不含核酸酶的无菌水中,并将该溶液直接加入至在24孔板中培养的于M199培养基中生长的Vero细胞。所述细胞孵育3天以使病毒复制,随后分离RNA,转化为cDNA,并使用实时PCR进行定量。(5)使用TRIzol/氯仿自所述Vero细胞分离RNA,纯化所述RNA并进行逆转录以合成cDNA,用于实时RT-PCR。
[0021] 图8A-图8C示出了冻干疫苗的麻疹、腮腺炎和风疹组分的残余效价的图,所述冻干疫苗在水中复溶不同时间,在4℃(图8A)、25℃(图8B)以及37℃(图8C)储存。(◆)麻疹、(○)腮腺炎、(■)风疹。N=3,误差棒表示标准差。
[0022] 图9A-图9D示出了MMR疫苗的麻疹病毒组分的稳定性的图,所述MMR疫苗在9%(w/v)丝膜中在4℃(图9A)、25℃(图9B)、37℃(图9C)和45℃(图9D)储存超过6个月。(◆)MMR-丝膜、(□)MMR粉末。N=3,误差棒表示标准差。
[0023] 图10A-图10D示出了MMR疫苗的腮腺炎病毒组分的稳定性的图,所述MMR疫苗在9%(w/v)丝膜中在4℃(图10A)、25℃(图10B)、37℃(图10C)和45℃(图10D)储存超过
6个月。(◆)MMR-丝膜、(□)MMR粉末。N=3,误差棒表示标准差。
[0024] 图11A-图11D示出了MMR疫苗的风疹病毒组分的稳定性的图,所述MMR疫苗在9%(w/v)丝膜中在4℃(图11A)、25℃(图11B)、37℃(图11C)和45℃(图11D)储存超过6个月。(◆)MMR-丝膜、(□)MMR粉末。N=3,误差棒表示标准差。
[0025] 图12A-图12D示出了MMR疫苗的麻疹病毒组分的稳定性的图,所述MMR疫苗在9%(w/v)冻干丝膜中在4℃(图12A)、25℃(图12B)、37℃(图12C)和45℃(图12D)储存超过6个月。(◆)MMR-冻干丝膜、(□)MMR粉末。N=3,误差棒表示标准差。
[0026] 图13A-图13D示出了MMR疫苗的腮腺炎病毒组分的稳定性的图,所述MMR疫苗在9%(w/v)冻干丝膜中在4℃(图13A)、25℃(图13B)、37℃(图13C)和45℃(图13D)储存超过6个月。(◆)MMR-冻干丝膜、(□)MMR粉末。N=3,误差棒表示标准差。
[0027] 图14A-图14D示出了MMR疫苗的风疹病毒组分的稳定性的图,所述MMR疫苗在9%(w/v)冻干丝膜中在4℃(图14A)、25℃(图14B)、37℃(图14C)和45℃(图14D)储存超过6个月。(◆)MMR-冻干丝膜、(□)MMR粉末。N=3,误差棒表示标准差。
[0028] 图15A-图15C示出了疫苗的麻疹(图15A)、腮腺炎(图15B)和风疹(图15C)组分的降解速率作为绝对温度倒数的函数的Arrhenius图。(◆)冻干丝膜、(○)丝膜、(■)粉末。
[0029] 图16A-图16C示出了作为温度的函数的麻疹(图16A)、腮腺炎(图16B)和风疹(图16C)病毒组分的预测半衰期,以及所述半衰期相应的上下限的图。所述预测半衰期表示预计所述病毒组分降解至初始值的50%所需的时间。(◆)冻干丝膜、(○)丝膜、(■)粉末。
[0030] 图17示出了差示扫描量热法,固态DSC的图。冻干丝膜的固态DSC显示178℃处产生玻璃化转变(Tg)。制造商提供的MMR疫苗粉末(含有各种各样的赋形剂和稳定剂)的Tg为68.9℃。冻干的MMR-丝膜示出了89.2℃处的Tg,表明将丝添加至MMR粉末增强了疫苗稳定性,这由Tg升高得以反映。然而,MMR-冻干丝膜曲线在116.6℃和164.8℃处显示出两个峰,可能表示Tm和Td,描述了疫苗组分的解折叠(unfolding)或降解。
[0031] 图18示出了nano差示扫描量热法,nano-DSC的图。纯化病毒粒子的Tm显示为约16.8℃。丝的存在将病毒粒子的Tm提高至68.3℃。Tm后的迅速下降是放热事件,该事件很可能源自Tm处的蛋白质解折叠导致的聚集作用。丝的Tg为约178℃,因此升高的Tg值归结于丝对所包封的病毒蛋白产生的影响。
[0032] 图19示出了对在水中的纯化病毒粒子和在丝溶液中的纯化病毒粒子的动态光散射进行比较的图。MMR病毒粒子的平均有效直径的平均数(average mean effective diameter)为约250nm。纯化的MMR溶液的平均有效直径在16℃附近开始增加,表明病毒粒子由于热输入增加而产生的聚集。MMR-丝溶液直至70℃都未显示出聚集的迹象,表明丝提供了结构稳定性,从而阻止了病毒蛋白质的聚集。
[0033] 图20A-图20B示出了MMR由丝膜(图20A)和冻干丝膜(图20B)释放的图。N=3,误差棒表示标准差。
[0034] 图21A-图21B示出了MMR由丝水凝胶(图21A)和丝微球(图21B)释放的图。N=3,误差棒表示标准差。
[0035] 图22A-图22D示出了示意图。图22A,麻疹和腮腺炎属于副粘液病毒科(Paramyxoviridae family),并且它们的结构由封入脂质双分子层中的核壳体内的单链反义RNA构成。病毒包膜由基质蛋白(M)、血凝素(haemaglutinin)蛋白(H)和融合蛋白(F)形成。结构完整的H和F蛋白负责将病毒粒子结合并融合至动物细胞。图22B,通过联合疏水相互作用和受限的链移动性,丝包埋的病毒粒子在升高的温度下维持其结构活性。图22C,F和H蛋白结合至受体CD46和CD150(统称为SLAM),从而得以进入细胞,以开始病毒复制。
图22D,表面蛋白的变性可导致所述病毒粒子产生聚集。蛋白质的变动(perturbation)可使得其不能被细胞所识别并被拒绝进入。

具体实施方式

[0036] 应当理解的是,本发明并不限于本文所描述的特定的方法学、方案和试剂等,并且上述这些都可以改变。本文所使用的术语其目的仅在于描述特定的实施方式,并非用来限定本发明的范围,而本发明的范围仅由权利要求进行限定。
[0037] 除非上下文另有明确指示,在本文及权利要求中使用的单数形式也包含复数含义,反之亦然。除了在操作实施例中或另有指示的情况外,本文所用的表示成分的量或反应条件的全部数值在所有情况下都应该被理解为由术语“约”修饰。
[0038] 出于描述和公开的目的,在此以引用的方式清楚地将本发明指明的所有专利和其它出版物并入,例如,在此类出版物中描述的可用于本发明的方法学。提供此类出版物仅仅是因为它们的公开早于本申请的申请日。在这点上,不应将任何事物视为发明人无权根据在先发明或因任何其它原因使本发明的内容早于这些公开内容的认定。所有关于日期的陈述或关于此类文件内容的表达都是基于申请人可得的信息,并不构成对此类文件的日期或内容的正确性的任何认定。
[0039] 除非另有定义,本文使用的所有技术术语和科学术语与本发明所属领域的普通技术人员通常理解的含义相同。虽然本发明的实施操作或测试中可使用任何已知的方法、装置和材料,在这方面,本文仍对所述方法、装置和材料进行了描述。
[0040] 本文提供的一个方面涉及维持或稳定活性试剂的生物活性的方法和组合物。所述方法包括保存组合物,其中所述组合物包含丝素蛋白基质和分布、混合或包埋(embedded)于其中的至少一种活性试剂,其中,当所述组合物经受规定条件一段时间时,所述至少一种活性试剂维持或稳定其至少约30%的初始生物活性,所述规定条件抑制或降低所述活性试剂的生物活性。此类条件可包括但不限于:状态变化循环、温度、气压、湿度、以及光照。在一个实施方式中,所述状态变化循环为冷冻-解冻循环。
[0041] 本文所述的多个方面的实施方式提供稳定化的活性试剂,其中活性试剂的稳定化通过将活性试剂分布、混合或包埋于丝素蛋白基质中而实现。所述丝素蛋白基质可以为丝素蛋白溶液或固态丝素蛋白基质。这一方法使得所述活性试剂得以维持生物活性,而不必考虑储存和/或运输所述活性试剂的环境条件和/或冷链。示例性的环境条件包括但不限于:温度、气压、湿度、以及光照。例如,所述冷链为药物工业上用于稳定活性试剂的标准实践:维持所述冷链确保直至使用之时,均根据制造商推荐的温度范围(例如,2℃-8℃或者零下的温度)运输和储存活性试剂。
[0042] 在某些实施方式中,本文所述的活性试剂为免疫原。在一个实施方式中,所述免疫原为疫苗。多数疫苗对于其储存和/或运输的环境条件是敏感的。例如,冷冻可提高反应原性(reactogenicity)(例如,引发免疫反应的能力)和/或一些疫苗(例如,HepB以及DTaP/IPV/HIB)的效价损失,或者致使容器产生毛细裂纹,从而导致污染(contamination)。另外,一些疫苗(例如,BCG、水痘(Varicella)、以及MMR)对热敏感。许多疫苗(例如,BCG、MMR、水痘、脑膜炎球菌C缀合物、以及多数含有DTaP的疫苗)对光敏感。参见,例如,Galazka等,Thermostability of vaccines,Global Programme for Vaccines&Immunization(世界卫生组织,日内瓦,1998);Peetermans等,Stability of freeze-dried rubella virus vaccine(Cendehill strain)at various temperatures,1J.Biological
Standardization179(1973)。因此,本文所述的组合物和方法还提供疫苗的稳定化,而不必考虑冷链和/或其它环境条件。
[0043] 活性试剂的稳定化
[0044] 本文所使用的术语“稳定/稳定化/稳定性(stabilizing/stabilize/stability/stabilization)”涉及保存或维持丝素蛋白基质中的至少一种活性试剂的生物活性。本文所使用的短语“活性试剂的稳定化”是指分布、混合或包埋于丝素蛋白基质中的一种或多种活性试剂维持其至少约30%的初始生物活性,包括至少约40%、至少约50%、至少约60%、至少约70%、至少约80%、至少约90%的初始生物活性或更高的初始生物活性。关于活性试剂的生物活性的术语“稳定”和“维持”在本文中可互换使用。
[0045] 当涉及组合物或活性试剂时,本文所使用的术语“保存/维持(maintaining/maintain/maintenance)”是指当活性试剂经受某些条件时,保留、保持或维持丝素蛋白基质中至少一种活性试剂的生物活性。在一些实施方式中,分布于丝素蛋白基质中的一种或多种活性试剂维持其至少约30%的初始生物活性,包括至少约40%、至少约50%、至少约60%、至少约70%、至少约80%、至少约90%的初始生物活性或更高的初始生物活性。
[0046] 本文所使用的关于活性试剂的术语“生物活性”通常是指活性试剂与生物靶标相互作用的能力和/或对生物靶标产生影响的能力。例如,生物活性可不受限制地包括在生物靶标中诱发刺激、抑制、调节、毒性或致死响应。所述生物靶标可以是分子或细胞。例如,生物活性可以指活性试剂的以下能力:调节酶的作用/活性、阻断受体、刺激受体、调节一种或多种基因的表达水平、调节细胞增殖、调节细胞分裂、调节细胞形态,或上述能力的任意组合。在某些情况下,生物活性可以指化合物在细胞中产生毒性效应的能力。
[0047] 生物活性可以通过分析细胞响应而测定。示例性的细胞响应包括但不限于:裂解、细胞凋亡、生长抑制和生长促进;细胞对蛋白质或其它感兴趣的分子的制造、分泌和表面暴露;膜表面分子活化,包括受体活化;跨膜离子转运;转录调控;细胞存活力的变化;细胞形态的变化;细胞内部组分的存在或表达的变化;细胞内生产的核酸的存在或表达的变化;细胞内生产的酶的活性的变化;以及受体的存在或表达的变化。用于分析不同细胞响应的方法对于本领域技术人员来说是周知的,例如,用于对细胞内源性蛋白质的存在或表达的变化进行测定的蛋白质印迹法、或用于监测细胞形态对活性试剂的响应的显微镜检查。
[0048] 对于抗体,术语“生物活性”包括但不限于:表位或抗原结合亲和力、抗体的体内和/或体外稳定性、抗体的免疫原性(例如当给予人类受试者时)、和/或在体内或体外中和或拮抗目标分子生物活性的能力。可使用本领域认可的技术观测或测量上述特性或特征,所述技术包括但不限于:邻近闪烁分析法(scintillation proximity assays)、ELISA、ORIGEN免疫分析(IGEN)、荧光猝灭(quenching)、荧光ELISA、竞争性ELISA、SPR分析(包括但不限于:使用BIAcore生物传感器的SPR分析)、体内和体外中和分析(参见,例如,国际公开号WO2006/062685)、受体结合、以及利用来自所需要的不同来源(包括人类、灵长类或其它任何来源)的组织切片的免疫组织化学。对于免疫原,“生物活性”包括免疫原性,其定义在下文有详细论述。对于病毒,“生物活性”包括感染性,其定义在下文有详细论述。对于造影剂(contrast agent)(例如染料),“生物活性”是指当给予受试者时,造影剂增强受试者体内结构或流体对比度的能力。造影剂的生物活性还包括但不限于其在特定条件下与生物环境相互作用的能力和/或影响另一分子的响应的能力。
[0049] 对于活性试剂的“初始生物活性”,通常是指将活性试剂引入丝素蛋白基质之前立即测量出的或引入之后立即测量出的活性试剂的生物活性。即,可在将活性试剂引入丝素蛋白基质前后例如约20分钟内对活性试剂的初始生物活性进行测量。在某些情况下,可在将活性试剂引入丝素蛋白基质前后约10秒、约15秒、约20秒、约25秒、约30秒、约1分钟、约2分钟、约3分钟、约4分钟、约5分钟、约6分钟、约7分钟、约8分钟、约9分钟、约10分钟、约11分钟、约12分钟、约13分钟、约14分钟、约15分钟、约16分钟、约17分钟、约18分钟、约19分钟或约20分钟时对活性试剂的初始生物活性进行测量。在一个实施方式中,所述丝素蛋白基质为固态丝素蛋白基质。在此类实施方式中,在分布入固态丝素蛋白基质中之前,活性试剂可在处理期间丧失其部分生物活性。在另一实施方式中,本文所使用的术语“初始生物活性”可用于描述活性试剂被引入丝素蛋白基质之前的活性试剂的生物活性。在一些实施方式中,术语“初始生物活性”是指活性试剂的最大生物活性,例如,活性试剂活化(例如,通过复溶或通过提高温度)之后立即测得的生物活性。例如,如果活性试剂最初为粉末形式,则可在复溶之后立即对该活性试剂的初始生物活性进行测量。在一些实施方式中,术语“初始生物活性”是指当在制造商规定的条件下、在没有丝素蛋白基质的情况下储存或运输时,活性试剂的生物活性。在一些实施方式中,术语“初始生物活性”是指当在制造商规定的条件下、在本文描述的稳定储存的组合物中储存或运输时,活性试剂的生物活性。
本文所述的术语“初始生物活性”的定义还适用于本文随后使用的术语“初始免疫原性”和“初始感染性”。
[0050] 根据本文所述的方法,将活性试剂分布、混合或包埋于丝素蛋白基质中维持或稳定了所述活性试剂的生物活性(例如,其至少约30%的初始生物活性),而不必考虑环境条件或储存条件(例如,状态变化循环、温度、湿度或光照)。所述丝素蛋白基质可以处于溶液或固体的状态。在多个实施方式中,当活性试剂分布于丝素蛋白基质中、且该组合物经受状态变化循环和/或在规定条件下保存一段时间时,所述活性试剂可维持其至少约30%的初始生物活性,例如,至少约40%、至少约50%、至少约60%、至少约70%、至少约80%、至少约90%、至少约95%的初始生物活性或更高的初始生物活性。在一个实施方式中,所述活性试剂可维持其至少约80%的初始生物活性。换句话说,相对于无丝素蛋白基质的活性试剂的稳定性而言,丝素蛋白基质中活性试剂的稳定性(即,丝素蛋白基质中的活性试剂维持其生物活性(例如,其至少约30%的初始生物活性)的能力)可提高至少约30%、至少约40%、至少约50%、至少约60%、至少约70%、至少约80%、至少约90%、至少约95%。在一个实施方式中,所述活性试剂可维持其至少约80%的初始生物活性。
[0051] 本文所述的组合物可保存任意时间,例如:数小时、数天、数周、数月或数年。在一些实施方式中,本文所述的组合物可在0℃以上的温度下保存至少约3小时、至少约6小时、至少约9小时、至少约12小时、至少约24小时或更久。在一些实施方式中,本文所述的组合物可保存至少约1天、至少约2天、至少约3天、至少约4天、至少约5天、至少约6天、至少约7天或更久。在一些实施方式中,本文所述的组合物可保存至少约1周、至少约2周、至少约3周、至少约4周或更久。在一些实施方式中,本文所述的组合物可保存至少约1个月、至少约2个月、至少约3个月、至少约4个月、至少约5个月、至少约6个月、至少约7个月、至少约8个月、至少约9个月、至少约10个月、至少约11个月、至少约12个月或更久。
[0052] 在本文所述的方法和组合物中,本文所述的组合物可保存于任何温度下或制造商推荐的专用于活性试剂的温度下。在一些实施方式中,所述组合物可保存于液氮中或中。在一些实施方式中,所述组合物可保存于例如约-80℃至约-20℃,包括-80℃和-20℃;或保存于约-20℃至约0℃,包括-20℃和0℃。在一些实施方式中,所述组合物可在0℃以上的温度下保存。在此类实施方式中,所述组合物可在从约0℃至约为环境温度(ambient temperature)的温度下保存。本文所使用的术语“环境温度”用于描述保存本文所述的组合物的周围温度,其包括0℃-60℃之间的温度、0℃-50℃之间的温度或0℃-40℃之间的温度。在一些实施方式中,环境温度为冰箱温度(例如0℃-15℃,包括0℃和15℃)。在一些实施方式中,环境温度约为受试者的体温(例如,对于人类受试者为36℃-38℃,包括36℃和38℃;或者对于其它动物为更高或更低的体温范围)。在一些实施方式中,环境温度为室温,例如20℃-35℃,其可随地理条件而变化。例如,温暖气候区域(如非洲)的室温通常会比寒冷气候区域(如美国和英国)的室温更暖和。在一些实施方式中,所述组合物可在至少约37℃或高于37℃的温度下保存。在一些实施方式中,所述组合物可在至少约40℃或高于40℃的温度下保存。在一些实施方式中,所述组合物可在至少约45℃或高于45℃的温度下保存。
[0053] 本文所述的一些实施方式有益于开发可植入的药物递送装置,在所述药物递送装置中,活性试剂可在一段时间内维持其至少30%(包括至少约40%、至少约60%、至少约80%或更高)的初始生物活性或更高的初始生物活性。在一些实施方式中,可植入的药物装置中的组合物或活性试剂可在植入后至少约6小时、至少约12小时、至少约24小时、至少约36小时、至少约48小时、至少约3天、至少约4天、至少约5天、至少约6天、至少约1周、至少约2周、至少约3周、至少约4周、至少约2个月、至少约3个月、至少约4个月、至少约5个月、至少约6个月、至少1年或更久的时间内维持其至少约30%的初始生物活性或更高的初始生物活性。
[0054] 在一些实施方式中,可将包封于可注射形式的丝素蛋白基质(例如但并不限于:水凝胶、凝胶状粒子、和/或微球)中的一种或多种活性试剂(例如免疫原,如疫苗)作为所述活性试剂的储库(depot)(例如,疫苗储库)给予受试者(例如通过注射,如皮下注射),从而可连续或间歇地由所述储库在延长的时间段内(例如,数小时、数天、数周或数月的时间段)释放所述活性试剂(例如疫苗)。在一些实施方式中,可以一定速率释放所述活性试剂(例如疫苗),所述速率为在至少1小时、至少2小时、至少3小时、至少约4小时、至少约5小时、至少约6小时、至少约12小时、至少约24小时或更长的时间段内释放至少约1%(包括至少约5%、至少约10%、至少约20%、至少约30%、至少约40%、至少约50%、至少约60%、至少约70%、至少约80%、至少约90%、至少约95%或更多)的包封的活性试剂。在一些实施方式中,可以一定速率释放所述活性试剂(例如疫苗),所述速率为在5天、1周、至少约2周、至少约3周、至少约1个月、至少约2个月、至少约3个月或更长的时间段内释放至少约10%(包括至少约
20%、至少约30%、至少约40%、至少约50%、至少约60%、至少约70%、至少约80%、至少约90%、至少约95%或更多)的包封的活性试剂。
[0055] 在一些实施方式中,所述活性试剂在约4℃、约25℃、约37℃、约45℃或更高的温度下,在至少多达6个月内维持其至少约30%的初始生物活性,例如,至少约40%、至少约50%、至少约60%、至少约70%、至少约80%、至少约90%、至少约95%的初始生物活性或更高的活性。在一些实施方式中,所述活性试剂在约37℃或更高的温度下,在至少6个月内维持其至少约8%的初始生物活性。
[0056] 在一些实施方式中,本文所述的组合物可于光照(例如,不同波长的光和/或不同来源的光)下保存。在一些实施方式中,本文所述的组合物可于UV照射或红外线照射下保存。在一些实施方式中,本文所述的组合物可于可见光下保存。
[0057] 在一些实施方式中,当储存或运输时,本文所述的组合物可经受至少一个状态变化循环。本文所使用的术语“状态变化循环”是指物质状态的变化,包括但不限于由固态变化为流体状态,或者由流体状态变化为固态。流体状态可包括但不仅限于:液体、气体、浆料(slurries)、可流动的糊状物(paste)、等离子体,以及上述状态的任意组合。固态是指不可流动的状态,并且其还涵盖半固体(例如凝胶)。在变化为另一状态之前,本文所述的组合物可于某一状态下保存任何时间段(例如,数秒、数分钟、数小时、数周、数月或数年)。状态变化循环可以是由本文所述的环境条件的至少一种变化(例如,温度变化、环境气压变化、光条件、湿度,或上述变化的任意组合)所致。
[0058] 在一个实施方式中,所述状态变化循环指的是冷冻-解冻循环。在此类实施方式中,当储存或运输时,本文所述的组合物可经受至少1个冷冻-解冻循环、至少2个冷冻-解冻循环、至少3个冷冻-解冻循环、至少4个冷冻-解冻循环、至少5个冷冻-解冻循环、至少6个冷冻-解冻循环、至少7个冷冻-解冻循环、至少8个冷冻-解冻循环、至少9个冷冻-解冻循环、至少10个冷冻-解冻循环或更多个冷冻-解冻循环。本文使用术语“冷冻-解冻循环”来描述一系列交替的冷冻和解冻,并且还包括一系列交替的冷冻(固体)状态和流体状态。例如,一个冷冻-解冻循环包括冷冻(固体)状态与流体状态间的状态变化。冷冻和解冻之间、或冷冻状态和流体状态之间的时间间隔可以是任何时间段,例如,数小时、数天、数周或数月。例如,一旦活性试剂组合物被冷冻或处于冷冻状态,其可在零下的温度(例如约-20℃与-80℃之间)下以冷冻状态被持续储存,直至需要将其解冻以再次使用。组合物的冷冻可快速进行(例如,在液氮中进行)或逐渐进行(例如,在冷冻温度(例如约-20℃与-80℃之间)下进行)。冷冻组合物的解冻可在0℃以上的任何温度下快速进行(例如,在室温下进行),或逐渐进行(例如,在冰上进行)。通常,非丝素蛋白基质中的活性试剂可在一个或多个冷冻-解冻循环内丧失其生物活性。如本文所述,将活性试剂分布于丝素蛋白基质中可提高所述活性试剂的稳定性,并因此在一个或多个冷冻-解冻循环期间内维持其生物活性。
[0059] 在一些实施方式中,本文所述的组合物可在至少约5%、至少约10%、至少约20%、至少约30%、至少约40%、至少约50%或更高的相对湿度下保存。本文所使用的术语“相对湿度”为空气和水蒸气混合物中水蒸气含量的量度(measurement)。通常将其定义为水蒸气在空气-水混合物中的分压,以该条件下的饱和蒸汽压的百分比给出。
[0060] 在一些实施方式中,可将本文所述的组合物进行冻干从而在储存期间减少残余水分(residual moisture)。在一些实施方式中,残余水分减少了至少约5%、至少约10%、至少约20%、至少约30%、至少约40%、至少约50%、至少约60%、至少约70%、至少约80%、至少约90%或至少约95%。
[0061] 在一些实施方式中,本文所述的组合物可在任何气压下保存或经受任何气压。在一些实施方式中,本文所述的组合物可在约为大气压力或更高的压力下保存或经受约为大气压力或更高的压力,所述压力例如为约1atm、约2atm、约3atm、约4atm、约5atm、约6atm、约7atm、约8atm、约9atm或者约10atm。在一些实施方式中,本文所述的组合物可在真空下保存或经受真空。
[0062] 在一个实施方式中,所述组合物在两种或两种以上本文规定的条件下保存。
[0063] 不希望受理论约束,丝可使免疫原(例如疫苗)在升高的温度(例如室温或室温以上,包括至少约20℃、至少约30℃、至少约40℃或更高)下的降解速率降低。因此,与无丝基质的免疫原相比,分布于丝素蛋白基质中的免疫原(例如疫苗)在升高的温度(例如,室温或室温以上,包括至少约20℃、至少约30℃、至少约40℃或更高)下可具有更长的半衰期,即至少约1.5倍(例如,至少约2倍、至少约3倍、至少约4倍、至少约5倍、至少约10倍、至少约15倍、至少约20倍、至少约25倍、至少约30倍或更多倍)的半衰期。本文所使用的术语“半衰期”是指试剂维持其约50%的初始生物活性(包括初始免疫原性或初始感染性)的时间。因此,本文还提供了延长免疫原(例如疫苗)在例如升高的温度(例如室温或室温以上,包括至少约20℃、至少约30℃、至少约40℃或更高)下的半衰期的方法。所述方法包括保存免疫原性组合物,其中所述组合物包含丝素蛋白基质和分布于其中的至少一种免疫原(例如疫苗),其中当所述组合物在至少约为室温或更高的温度下保存至少约24小时时,所述免疫原(例如疫苗)维持其至少约30%的初始免疫原性(例如感染性)。在一些实施方式中,所述免疫原(例如疫苗)可维持其至少约80%的初始免疫原性(例如感染性)。在一些实施方式中,所述组合物可保存至少多达约6个月。在一些实施方式中,可在高于37℃、或高于45℃或更高的温度下保存所述组合物。
[0064] 稳定储存的组合物
[0065] 本文所述的另一些方面为稳定储存的组合物,所述组合物包含丝素蛋白基质和分布、混合或包埋于其中的活性试剂,其中,当所述组合物经受至少一个状态变化循环、和/或在本文规定的一种或多种条件下保存一段时间时,所述活性试剂维持其至少约30%的初始生物活性。在一个实施方式中,所述状态变化循环为冷冻-解冻循环。在一个实施方式中,保存所述活性试剂的时间段为至少约24小时。在一些实施方式中,所述规定条件可以为储存和/或运输活性试剂的环境条件。环境条件的非限制性实例包括温度、气压、湿度、以及光照。在一些实施方式中,本文所述的组合物可具有免疫原性。在此类实施方式中,所述活性试剂为免疫原。在一些实施方式中,所述活性试剂为疫苗。
[0066] 本文所述的任何组合物可以任何物质状态存在,例如,膜(film)、纤维、粒子、凝胶、微球、或水凝胶。在各种实施方式中,本文所述的组合物的物质状态可随所述丝素蛋白基质的状态而变化,例如,膜、纤维、粒子、凝胶、微球、或水凝胶。在一些实施方式中,所述丝素蛋白基质以固态存在。在其它实施方式中,所述丝素蛋白基质可以为溶液。
[0067] 丝素蛋白与活性试剂的任何比例均可使用。在各种实施方式中,丝素蛋白基质与活性试剂的比例为约1:1000至约1000:1、约1:500至约500:1、约1:250至约250:1、约1:125至约125:1、约1:100至约100:1、约1:50至约50:1、约1:25至约25:1、约1:10至约
10:1、约1:5至约5:1、约1:3至约3:1、或者约1:1。所述丝素蛋白基质与所述活性试剂的比例可随若干因素而改变,所述因素包括活性试剂的选择、储存条件和持续时间、丝素蛋白基质的浓度以及丝基质的形式。本领域技术人员例如可通过如下方式确定所述丝素蛋白基质与所述活性试剂的适当比例:在预先确定的时间内、在限定的条件下(例如,在0℃以上的温度下),对本文所述的各种比例下所述活性试剂维持的生物活性进行测量。用于对本文所述的各种活性试剂(例如,酶、疫苗、蛋白质、抗体和核酸)的生物活性进行测量的方法在本领域中是公知的。举例来说,给定的活性试剂在丝素蛋白中的稳定性或生物活性可基于时间和温度的组合进行测定。例如,稳定性研究可进行6个月。活性分析可在例如2周、4周后进行,随后每月进行。可制备样品以对于各个时间点提供N=3。待评估的温度储存条件的范围包括4℃(冷藏)、25℃(室温)、37℃(体温)、45℃和/或50℃(inclusive)。另外,活性可在一个、两个、三个或更多个冷冻-解冻循环后测定。可详尽地将这些变型进行组合从而全面表征用于活性试剂的长期稳定性的最优剂型。在一些实施方式中,为了改善制造商推荐的冻干活性试剂制剂的储存条件(例如,4℃)的稳定性的目的,可将丝相关的活性试剂稳定性的结果与例如具有相同储存条件的冻干活性试剂制剂进行比较。
[0068] 当所述丝素蛋白基质处于固态时,其可被进一步加工。在一些实施方式中,包含固态丝素蛋白基质的组合物可被进一步微粒化(micronized)。术语“微粒化”在本文中涉及平均尺寸为约1000μm以下的粒子,并涵盖纳米粒子和/或微米粒子。本文所使用的术语“纳米粒子”被定义为平均尺寸为约1nm-约1000nm、约5nm-约900nm、或者约10nm-约800nm的粒子。术语“微米粒子”是指平均尺寸为约1μm-1000μm、约5μm-约900μm、或者约10μm-约800μm的粒子。应理解的是,“微粒化”并不仅仅是指如下粒子:已通过对处于状(bulk)或其它形式(如固态丝素蛋白膜)的物质进行精细分割(例如机械研磨、压碎(crushing)或冲击射流(impinging jet))而生产的粒子。在一些实施方式中,微粒化粒子也可通过本领域熟知的其它机械、化学或物理学方法形成,例如,在溶液中形成或原位形成。可以通过例如粉碎(pulverizing)、压碎、研磨、冻干,或者以上方法的任意组合而使本文所述的组合物微粒化。
[0069] 丝素蛋白
[0070] 丝素蛋白由于具有如下特点而成为用于本文所述的多个方面的实施方式的特别吸引人的候选生物聚合物:例如全水性处理(all aqueous processing)(Sofia等,54J.Biomed.Mater.Res.139(2001);Perry等,20Adv.Mater.3070–72(2008))、相对容易功能化(Murphy等,29Biomat.2829-38(2008))、以及生物相容性(Santin等,46J.Biomed.Mater.Res.382-9(1999))。例如,美国食品和药物管理局(Food and DrugAdministration)已经批准将丝类作为人体植入物中的组织工程支架(参见Altman等,24Biomaterials:401(2003))。
[0071] 丝可提供能稳定生物活性分子的固定基质。对于丝基质(matrices)中包埋的酶、抗体和抗生素的在先报道表明了甚至在升高的温度下、并无需特殊储存条件或添加添加剂的情况下的稳定化和回复的活性(Pritchard等,“Silk fibroin encapsulated powder reservoirs for sustained release of adenosine”,Journal of Controlled Release(2010)144:159-167;Lu 等,“Stabilization of enzymes in silk films”,Biomacromolecules(2009)10:1032-1042)。然而,这些报道并未描述丝素蛋白可稳定作为生物制剂并且对温度敏感的疫苗(例如活疫苗)。
[0072] 本文所使用的术语“丝素蛋白”包括蚕丝素蛋白(silkworm fibroin)和昆虫丝蛋白或蜘蛛丝蛋白(参见例如,Lucas等,13Adv.Protein Chem.107(1958))。根据本文所述的多个方面,可使用任何类型的丝素蛋白。由蚕(例如家蚕(Bombyx mori))产生的丝素蛋白是最普遍的,并表现为环保的、可再生的资源。例如,丝膜中使用的丝素蛋白可通过从家蚕(B.mori)的蚕茧中提取丝胶(sericin)而获得。有机蚕茧还是可商购的。然而,存在许多可使用的不同的丝,包括蜘蛛丝(例如,由Nephila clavipes获得)、转基因丝、基因工程丝(如来自细菌、酵母哺乳动物细胞、转基因动物或转基因植物的丝(参见例如,WO97/08315、美国专利号5,245,012)),以及上述丝的变体。
[0073] 在多个实施方式中,可就不同的生物医学应用对所述丝素蛋白基质进行修饰。举例来说,为了维持分布于丝素蛋白基质中的活性试剂因组织工程或药物递送的目的而植入体内时的稳定性,丝素粒子可以是基因修饰的,这可提供对丝的进一步修饰,例如包含含有纤维蛋白结构域和矿化结构域的融合多肽,这可用于形成有机-无机复合物(参见WO2006/076711)。另外,所述丝基质可与一种或多种生物相容性聚合物联合,所述生物相容性聚合物例如为:聚环乙烷、聚乙二醇、胶原、纤连蛋白(fibronectin)、蛋白、聚天冬氨酸、聚赖氨酸、海藻酸盐/酯(alginate)、壳聚糖(chitosan)、壳多糖(chitin)、透明质酸等(参见例如WO04/062697;WO05/012606)。在一些实施方式中,所述丝素蛋白还可进行化学修饰以改变丝蛋白的物理性质和功能性,例如通过重氮偶联反应或二亚胺偶联反应、亲和素-生物素相互作用、或者基因修饰等(参见例如,WO2011/011347,Functionalization of Silk Material by Avidin-Biotin Interaction;WO2010/057142,Surface Modification of Silk Fibroin Matrices with PEG Useful as Anti-Adhesion Barriers&Anti-Thrombotic Materials;美 国 Ser No.12/192,588,Diazonium Salt Modification of Silk Polymer)。另外,丝素蛋白基质可与化学品(如甘油)联合,所述化学品例如对所述基质的柔性(flexibility)产生影响(参见例如,WO2010/042798,Modified Silk films Containing Glycerol)。
[0074] 活性试剂
[0075] 本文所使用的术语“活性试剂”指的是任何分子、化合物或组合物,当此类分子、化合物或组合物经受至少一个状态变化循环、和/或在本文所述的某种条件下保存时,期望对其生物活性进行稳定化。对于本文所述的方法和组合物而言,任何活性试剂均可保存于丝素蛋白基质中。活性试剂的实例包括但不限于:蛋白质、肽、抗原、免疫原、疫苗、抗体或抗体的部分(例如抗体样分子)、酶、核酸(例如,寡核苷酸、多核苷酸、siRNA、shRNA)、适配子(aptamers)、病毒、细菌、小分子、细胞、光合与能量收集化合物(photosynthetic and energy-harvesting compounds)、增味剂(flavors)、抗生素、治疗剂、诊断剂(如造影剂或染料)、病毒载体、以及抗毒剂(anti-venom)。
[0076] 本文所使用的术语“蛋白质”和“肽”在本文中可互换使用,表示通过相邻残基的α-氨基基团和羧基基团之间的肽键彼此连接的一系列氨基酸残基。不考虑其大小或功能,在本文中可互换使用的术语“蛋白质”和“肽”指的是蛋白质氨基酸的聚合物,所述氨基酸包括修饰氨基酸(例如,磷酸化、糖基化等)和氨基酸类似物。虽然“蛋白质”经常用于指相对较大的多肽,而“肽”经常用于指小的多肽,这些术语在本领域中的使用是相互重叠并可变的。除非另有注明,本文所使用的术语“肽”指的是肽、多肽、蛋白质和蛋白质片段。当涉及基因产物及其片段时,术语“蛋白质”和“肽”在本文中可互换使用。因此,示例性的肽或蛋白质包括基因产物、天然存在的蛋白质、同系物(homologs)、直系同源物(orthologs)、旁系同源物(paralogs)、片段,以及上述物质的其它等同物、变体、片段和类似物。
[0077] 本文所使用的术语“核酸”指的是多核苷酸,例如脱氧核糖核酸(DNA)、以及核糖核酸(RNA)(在适当情况下)、上述物质的单链或双链形式的聚合物。除非特别限定,所述术语涵盖包含已知的天然核苷酸类似物的核酸,所述类似物具有与参比核酸类似的结合特性,并且以与天然存在的核苷酸类似的方式进行代谢。除非另有说明,特定的核酸序列还隐含包括其保守修饰的变体(例如,简并密码子替换)和互补序列,以及明确表明的序列。具体来说,简并密码子替换可通过如下方式实现:生成序列中的一个或多个选定(或全部)密码子的第三位被混合基和/或脱氧肌苷(deoxyinosine)残基替换的序列(Batzer等,Nucleic Acid Res.19:5081(1991);Ohtsuka等,J.Biol.Chem.260:2605-2608(1985);以及Rossolini等,Mol.Cell.Probes8:91-98(1994))。术语“核酸”还应被理解为包括如由核苷酸类似物而得的RNA或DNA的等同物、衍生物、变体以及类似物,以及单链(正义或反义)和双链多核苷酸。
[0078] 术语“短干扰RNA”(siRNA)(在本文中还称为“小干扰RNA”)被定义为(例如通过RNAi)发挥抑制靶基因表达作用的试剂。siRNA可由化学合成、可通过体外转录制造、或可在宿主细胞内制造。siRNA分子还可通过切割双链RNA而产生,其中一条链与待失活的信使RNA相同。术语“siRNA”是指诱导RNA干扰(RNAi)途径的小抑制性RNA双链。这些分子可在长度上有所差异(通常为18-30个碱基对),并在其反义链中具有与其靶mRNA不同程度的互补性。一些(但并非全部)siRNA在正义链和/或反义链的5'或3'末端具有未配对的垂悬碱基(overhanging bases)。术语“siRNA”包括由两条独立链而来的双链、以及可形成包含双链区域的发夹结构的单链。
[0079] 本文所使用的术语“shRNA”指的是发挥如RNAi和/或siRNA种类的作用的短发卡RNA,但不同之处在于shRNA种类为稳定性提高的双链发夹状结构。本文所使用的术语“RNAi”涉及干扰RNA或RNA干扰分子(为抑制基因表达的核酸分子或其类似物,如基于RNA的分子)。RNAi是指选择性转录后基因沉默的一种手段。RNAi可导致特定mRNA的破坏,或阻止RNA(如mRNA)的加工或翻译。
[0080] 本文所使用的术语“酶”指的是如下蛋白质分子:催化其它物质的化学反应、但其自身在反应结束时不被破坏或不被实质上改变。该术语可包括天然存在的酶和生物工程酶或它们的混合物。酶家族的实例包括激酶、脱氢酶、氧化还原酶、GTP酶、羧基转移酶、酰基转移酶、脱羧酶、转氨酶、消旋酶、甲基转移酶、甲酰基转移酶、以及α-酸脱羧酶(α-ketodecarboxylases)。
[0081] 本文所使用的术语“疫苗”指的是被杀灭的微生物、活的减毒生物体、亚单位抗原、类毒素抗原、缀合抗原或其它类型的抗原性分子的任何制品,当将所述制品引入受试者体内时,其通过使免疫系统活化、抗体形成、和/或产生T细胞和/或B细胞应答而产生对特定疾病的免疫力。针对微生物的疫苗通常针对病毒、细菌、寄生虫、支原体、或其它感染原的至少一部分。在一个实施方式中,包封于丝素蛋白基质中的疫苗为活疫苗。
[0082] 本文所使用的术语“适配子”指的是能特异性识别选定的非寡核苷酸分子或分子组的单链、部分单链、部分双链或双链的核苷酸序列。在一些实施方式中,适配子通过不同于Watson-Crick碱基配对机制或三链体形成(triplex formation)的机制来识别非寡核苷酸分子或分子组。不受限制地,适配子可包括确定的序列区段和序列,所述序列区段和序列包含核苷酸、核糖核苷酸、脱氧核糖核苷酸、核苷酸类似物、修饰核苷酸和包含骨架修饰的核苷酸、分支点(branchpoints)以及非核苷酸残基、基团或桥接(bridges)。用于选择结合至分子的适配子的方法在本领域是众所周知的,并且容易为本领域普通技术人员获取。
[0083] 本文所使用的术语“抗体(antibody/antibodies)”指的是具有Fc(可结晶片段)区域或Fc区域的FcRn结合片段的单克隆/多克隆抗原结合片段或完整的免疫球蛋白。术语“抗体”还包括“抗体样分子”,如抗体片段(例如抗原结合片段)。抗原结合片段可通过重组DNA技术制造,或通过完整抗体的酶解或化学裂解来制造。“抗原结合片段”特别包括Fab、Fab'、F(ab')2、Fv、dAb、以及互补决定区(CDR)片段、单链抗体(scFv)、单域抗体、嵌合抗体、双功能抗体(diabodies)、以及含有免疫球蛋白的至少一部分的多肽(所述免疫球蛋白的一部分足以使抗原特异性结合至所述多肽)。为了本文所述的目的,还包括线性抗体(linear antibodies)。术语Fab、Fc、pFc'、F(ab')2和Fv使用其标准免疫学含义(Klein,Immunology(John Wiley,New York,N.Y.,1982);Clark,W.R.(1986)The Experimental Foundations of Modern Immunology(Wiley&Sons,Inc.,New York);以及Roitt,I.(1991)Essential Immunology,第7版(Blackwell Scientific Publications,Oxford))。 多种抗原的特异性抗体或抗原结合片段可从供应商(如R&D Systems、BD Biosciences、e-Biosciences和Miltenyi)处商购,或可通过本领域技术人员已知的方法针对这些细胞表面标志物而产生。
[0084] 本文所使用的术语“互补决定区”(CDR;即:CDR1、CDR2和CDR3)指的是其存在为抗体结合所必需的抗体可变域的氨基酸残基。各可变域通常具有三个CDR区,称为CDR1、CDR2和CDR3。各互补决定区可包含来自Kabat定义的“互补决定区”的氨基酸残基(即,大致为在轻链可变域中的残基24-34(L1)、50-56(L2)和89-97(L3)以及在重链可变域中的残基31-35(H1)、50-65(H2)和95-102(H3);Kabat等,Sequences of Proteins of Immunological Interest,第5版,Public Health Service,National Institutes of Health,Bethesda,Md.(1991));和/或来自“高变环(hypervariable loop)”的残基(即,大致为在轻链可变域中的残基26-32(L1)、50-52(L2)和91-96(L3)以及在重链可变域中的残基26-32(H1)、53-55(H2)和96-101(H3);Chothia和Lesk J.Mol.Biol.196:901-917(1987))。在某些情况下,互补决定区可同时包含来自根据Kabat定义的CDR区中的氨基酸和来自高变环中的氨基酸。
[0085] 表述“线性抗体”指的是在Zapata等,Protein Eng.,8(10):1057-1062(1995)中描述的抗体。简言之,这些抗体包含成对串联的Fd区段(VH-CH1-VH-CH1),所述Fd区段与互补的轻链多肽一起形成成对的抗原结合区域。线性抗体可以是双特异性的或单特异性的。
[0086] 本文所使用的表述“单链Fv”或“scFv”抗体片段意思是指包含抗体VH域和VL域的抗体片段,其中,这些结构域存在于单个多肽链中。Fv多肽优选在VH域和VL域之间进一步包含多肽接头,这能使scFv形成用于抗原结合的期望结构(
The Pharmacology of Monoclonal Antibodies,vol.113,Rosenburg and Moore eds.,Springer-Verlag,New York,269-315页(1994))。
[0087] 本文所使用的术语“双功能抗体”指的是具有两个抗原结合位点的小抗体片段,该片段在同一多肽链上包含相连的重链可变域(VH)和轻链可变域(VL)(VH-VL)。通过利用因过短而不能使同一链上的所述两个结构域之间进行配对的接头,所述结构域不得不与另一链的互补域配对,从而产生两个抗原结合位点(EP404,097;WO93/11161;Hollinger等,Proc.Natl.Acad.Sd.USA,P0:6444-6448(1993))。
[0088] 本文所使用的术语“小分子”指的是天然分子或合成分子,包括但不限于:肽、模拟肽(peptidomimetics)、氨基酸、氨基酸类似物、多核苷酸、多核苷酸类似物、适配子、核苷酸、核苷酸类似物、分子量小于约10,000g/mol的有机化合物或无机化合物(即,包括杂有机化合物(heteroorganic compounds)和有机金属化合物)、分子量小于约5,000g/mol的有机化合物或无机化合物、分子量小于约1,000g/mol的有机化合物或无机化合物、分子量小于约500g/mol的有机化合物或无机化合物,以及这些化合物的盐类、酯类和其它药学上可接受的形式。
[0089] 本文所使用的术语“细菌”意在涵盖细菌的全部变体,例如:原核生物和蓝细菌(cyanobacteria)。细菌很小(典型的线性尺寸为1μm左右),是无区隔化的(non-compartmentalized),具有环状DNA和70S核糖体。
[0090] 术语“抗生素”在本文中用于描述降低微生物生存能力的化合物或组合物、或者抑制微生物生长或繁殖的化合物或组合物。本公开所使用的抗生素进一步旨在包括抗微生物(antimicrobial)剂、制菌(bacteriostatic)剂或杀菌(bactericidal)剂。示例性的抗生素包括但并不局限于:青霉素类、头孢霉素类、青霉烯类(penems)、碳青霉烯类、单环内酰胺类(monobactams)、氨基糖苷类、磺酰胺类、大环内酯类、四环素类、林可酰胺类(lincosides)、喹诺酮类、氯霉素、万古霉素、甲硝唑(metronidazole)、利福平(rifampin)、异烟肼(isoniazid)、大观霉素(spectinomycin)、三甲氧苄啶(trimethoprim)、以及磺胺甲噁唑等。
[0091] 本文所使用的术语“细胞”指的是任何细胞,原核的或真核的,包括植物、酵母、蠕虫(worm)、昆虫和哺乳动物。哺乳动物细胞不受限制地包括:灵长类细胞、人类细胞以及来自于任何感兴趣的动物的细胞,所述感兴趣的动物不受限制地包括:小鼠、仓鼠、兔、狗、猫、家养动物,如科动物、科动物、鼠科动物、羊科动物(ovine)、犬科动物、猫科动物等。细胞可不受限制地为各种组织类型,如:造血细胞、神经细胞、间充质(mesenchymal)细胞、皮肤(cutaneous)细胞、粘膜细胞、基质(stromal)细胞、肌肉细胞、脾细胞、网状内皮细胞、上皮细胞、内皮细胞、肝细胞、肾细胞、胃肠细胞、肺细胞、T细胞等。还包括干细胞、胚胎干(ES)细胞、ES衍生细胞和干细胞祖细胞(progenitors)(不受限制地包括:造血干细胞、神经干细胞、基质干细胞、肌肉干细胞、心血管干细胞、肝干细胞、肺干细胞、胃肠干细胞等)。酵母细胞也可用作一些实施方式中的细胞。在一些实施方式中,细胞可以是离体(exvivo)细胞或培养的细胞(例如在体外)。例如,对于离体细胞,细胞可以从受试者中获得,其中,所述受试者是健康受试者和/或患有疾病的受试者。作为非限制性实例,细胞可通过活组织切片或本领域技术人员知晓的其它外科手术手段获得。
[0092] 术语“光合与能量收集化合物”是指能由光获取或吸收能量的分子(例如叶绿素)。
[0093] 本文所使用的术语“病毒载体”通常包含期望将其插入宿主细胞的外源DNA并通常包含表达盒(expression cassette)。所述外源DNA可包含整个转录单元、启动子基因-poly A或者所述载体可设计为含有启动子/转录终止序列,从而仅需要插入感兴趣的基因。这些类型的控制序列在本领域中是已知的,并包括用于转录起始的启动子,任选地还具有操纵子及核糖体结合位点序列。病毒载体包括但不限于:慢病毒载体(lentivirus vectors)、逆转录病毒载体、慢病毒载体(lentiviral vectors)、单纯性疱疹病毒载体、腺病毒载体、腺病毒相关病毒(AAV)载体、EPV、EBV,或上述病毒载体的变型或衍生物。多个公司出于商业目的生产此类病毒载体,包括但不限于:Avigen,Inc.(Alameda,Calif.;AAV载体)、Cell Genesys(Foster City,Calif.;逆转录病毒载体、腺病毒载体、AAV载体以及慢病毒载体)、Clontech(逆转录病毒载体和杆状病毒载体)、Genovo,Inc.(Sharon Hill,Pa.;腺病毒载体和AAV载体)、Genvec(France;腺病毒载体)、IntroGene(Leiden,Netherlands;
腺病毒载体)、Molecular Medicine(逆转录病毒载体、腺病毒载体、AAV载体以及疱疹病毒载体)、Norgen(腺病毒载体)、Oxford BioMedica(Oxford,United Kingdom;慢病毒载体)、以及Transgene(Strasbourg,France;腺病毒载体、牛痘载体、逆转录病毒载体和慢病毒载体)。
[0094] 本文所使用的术语“抗原”指的是如下分子或分子的部分:能被选择性结合剂(如抗体)结合、并且还能用于动物中从而引发生成能结合至该抗原的表位的抗体。抗原可具有一个或多个表位。术语“抗原”还可以指如下分子:若由MHC分子呈递,则能被抗体或T细胞受体(TCR)结合。本文所使用的术语“抗原”还涵盖T细胞表位。抗原还能够由免疫系统识别和/或能够引发体液免疫响应和/或细胞免疫响应,导致B淋巴细胞和/或T淋巴细胞活化。然而,这可能要求所述抗原至少在某些情况下含有Th细胞表位或连接至Th细胞表位、并在佐剂中给予所述抗原。抗原可具有一个或多个表位(B细胞表位和T细胞表位)。以上提及的特异性反应旨在表明所述抗原将优选地与其对应的抗体或TCR反应(通常以高度选择性的方式反应),而不与可能由其它抗原诱发的众多其它抗体或TCR反应。本文所述的抗原还可以为数种独立抗原的混合物。
[0095] 本文所使用的术语“病毒”是指由蛋白质壳体包裹核酸组成的感染原(infectious agent)。此类感染原不能自主复制(即,复制需要利用宿主细胞的机制)。病毒基因组可以是单链(ss)或双链(ds)的RNA或DNA,并且能或不能使用逆转录酶(RT)。另外,ssRNA病毒可以是正义的(+)或反义的(-)。示例性的病毒包括但并不限于:dsDNA病毒(例如腺病毒、疱疹病毒、痘病毒)、ssDNA病毒(例如细小病毒)、dsRNA病毒(例如呼肠孤病毒(reovirus))、(+)ssRNA病毒(例如小RNA病毒(Picornaviruses)、披膜病毒)、(-)ssRNA病毒(例如正粘液病毒(Orthomyxoviruses)、弹状病毒(Rhabdoviruses))、ssRNA-RT病毒(即,在生命周期中具有DNA中间体的(+)正义RNA(例如逆转录病毒))、和dsDNA-RT病毒(例如嗜肝DNA病毒(Hepadnaviruses))。在一些实施方式中,病毒还可包括野生型(天然)病毒、杀灭的病毒、活的减毒病毒、修饰病毒、重组病毒或上述病毒的任意组合。病毒的其它实例包括但并不限于:包膜病毒(enveloped viruses)、呼吸道合胞病毒、非包膜病毒、噬菌体、重组病毒和病毒载体。本文所使用的术语“噬菌体”指的是感染细菌的病毒。
[0096] 本文所使用的术语“抗毒剂”指的是用于治疗毒性咬伤或叮刺的生物制品。所述抗毒剂通过由期望的蛇、蜘蛛或昆虫挤出毒液而制造。随后将所述毒液稀释并注射入马、绵羊、山羊或猫中。所述动物受试者将经受对所述毒液产生的免疫响应、产生针对所述毒液的活性分子的抗体,随后可由所述动物的血液回收所述抗体并用于治疗毒液中毒(envenomation)。
[0097] 术语“治疗剂”是本领域公认的,并且是指如下任何化学部分:所述化学部分为在受试者中局部或全身起效的生物活性物质、生理活性物质或药理活性物质。治疗剂(也称为“药物”)的实例在为人熟知的参考文献(如Merck Index、the Physicians Desk Reference和The Pharmacological Basis of Therapeutics)中有所描述,所述治疗剂不受限制地包括药剂(medicaments);维生素;矿物质补充剂;用于治疗、预防、诊断、治愈或缓解疾病或病症(illness)的物质;影响机体结构或功能的物质;或前药,其在被置于生理环境中之后变得具有生物活性或活性更高。可使用在给予受试者后能够从主题组合物中释放进入邻近组织或流体的各种形式的治疗剂。实例包括类固醇和类固醇酯(例如雌激素、孕酮、睾酮、雄酮、胆固醇、炔诺酮、地高辛(digoxigenin)、胆酸、去氧胆酸和鹅去氧胆酸)、含化合物(例如碳硼烷)、化学治疗性核苷酸、药物(例如抗生素、抗病毒药、抗真菌药)、烯二炔类(例如,卡奇霉素(calicheamicins)、埃斯培拉霉素(esperamicins)、达内霉素(dynemicin)、新制癌菌素(neocarzinostatin)发色团和可达菌素(kedarcidin)发色团)、重金属配合物(例如顺铂)、激素拮抗剂(例如三苯氧胺(tamoxifen))、非特异性(非抗体)蛋白(例如寡聚糖)、寡核苷酸(例如与靶核酸序列(例如mRNA序列)结合的反义寡核苷酸)、肽、蛋白质、抗体、光动力剂(photodynamic agents)(例如罗丹明123)、放射性核素(例如,I-131、Re-186、Re-188、Y-90、Bi-212、At-211、Sr-89、Ho-166、Sm-153、Cu-67和Cu-64)、毒素(例如蓖麻毒素(ricin))、以及基于转录的药剂。
[0098] “诊断剂”是可用于诊断的任何化学部分。例如,诊断剂包括含有放射性同位素(如铟或锝)的成像剂;含有碘、钆或花菁的造影剂或染料;酶,如辣根过氧化物酶、GFP、碱性磷酸酶、或β-半乳糖苷酶;荧光物质,如铕衍生物;发光物质,如N-甲基吖啶(N-methylacrydium)衍生物等。
[0099] 免疫原和疫苗
[0100] 在某些实施方式中,所述活性试剂为免疫原。在一些实施方式中,所述免疫原为疫苗。如本文所示,与非-丝包埋的疫苗相比,由丝载体包埋并随后释放的模型疫苗MMR减毒活疫苗维持了显著的生物活性。在一个实施方式中,本文提供了可在环境温度下储存数周、同时维持相当比例的初始活性的稳定化MMR疫苗。所述减毒活疫苗的稳定化在免疫规划中提供了重要的突破口,降低了运输、设备和培训的花费;降低了损耗;并因此拓展了免疫规划。
[0101] 术语“免疫原”指的是任何能在生物体中引发免疫响应的物质(例如疫苗)。在给予受试者时,“免疫原”能够诱发针对其本身的免疫响应。关于免疫响应,本文所使用的术语“免疫的(immunological)”指的是产生定向针对接受的受试者中的免疫原的、体液(由抗体介导)和/或细胞(由抗原特异性T细胞或其分泌产物介导)的响应。该响应可为由向受试者给予免疫原或免疫原性肽而引发的主动响应、或者由给予针对所述免疫原的抗体或激活的(primed)T细胞而引发的被动响应。与I类MHC分子或II类MHC分子相关的多肽表位呈递引发细胞免疫响应,从而活化抗原特异性CD4+辅助T细胞和/或CD8+细胞毒性T细胞。此类响应还可包括活化单核细胞、巨噬细胞、NK细胞、嗜碱性粒细胞、树突细胞、星形细胞、小神经胶质细胞、嗜酸性粒细胞或先天免疫的其它组分。
[0102] 术语“免疫原性”是指物质(如抗原或表位)在受试者中引发体液和/或细胞介导的免疫响应的能力。本领域技术人员可以容易地对物质的免疫原性进行测量。可通过本领域公认的任何方法对细胞介导的免疫响应的存在进行测定,例如:增殖分析(CD4+T细胞)、CTL(细胞毒性T淋巴细胞)分析(参见Burke,supra;Tigges,supra)、或受试者的组织切片的免疫组织化学,从而对给予免疫原后活化细胞(如单核细胞和巨噬细胞)的存在进行测定。本领域技术人员可通过任何完善的方法容易地对受试者中体液介导的免疫响应的存在进行测定。例如,生物样品(如血液)中产生的抗体水平可通过蛋白质印迹、ELISA或其它已知的抗体检测方法进行测量。
[0103] 可用于本文所述的多个方面的一些实施方式中的免疫原包括杀灭的病原体、活的减毒病原体、蛋白质亚单位及其缀合物、灭活的毒素、以及合成肽、碳水化合物及其缀合物、以及抗原。本文所使用的术语“病原体”意为任何产生疾病的试剂(尤其是病毒或细菌或其它微生物)。
[0104] 本文所使用的术语“杀灭的病原体”指的是先前为有毒力的(virulent)(即能够导致疾病)、但已经以化学品或加热破坏的病原体。包含杀灭的病原体的疫苗的实例不受限制地包括:流感疫苗、霍乱疫苗、淋巴腺鼠疫(bubonic plague)疫苗、脊髓灰质炎疫苗、甲型肝炎疫苗和狂犬疫苗。
[0105] 本文所使用的术语“活的减毒病原体”是指尚未灭活的病原体,即,能在受纳细胞(permissive cell)上复制并诱发特异性免疫响应、但并不在受试者中诱发由对应的野生型病原体诱发的疾病的病原体。活的减毒病原体可由本领域技术人员例如通过如下方式生产:在使其毒性无效化的条件下培养野生型病原体;或使用密切相关但毒性较低的生物体来产生该免疫响应。示例性的活的减毒病原体包括但不限于:病毒性疾病黄热病、麻疹、风疹和腮腺炎,以及细菌性疾病伤寒病。在一些实施方式中,肺结核分枝杆菌活疫苗并非由感染性菌株制成,而是含有毒性修饰的菌株,称为“BCG”,用于引发对疫苗的免疫响应。含有鼠疫耶尔森氏菌(Yersinia pestis)EV菌株的活的减毒疫苗被用于鼠疫免疫接种。
[0106] 在一些实施方式中,用于本文所述的组合物中的免疫原可以为灭活的致病毒素,而非病原体。此类非限制性的组合物包括破伤风和白喉。在一些实施方式中,尽管免疫原可包含来自病原体的灭活的化合物(例如灭活的毒素),然而也可将合成肽、碳水化合物或抗原用作本文所述的免疫原性组合物中的免疫原。
[0107] 在某些实施方式中,本文所述的组合物中使用的免疫原可包括蛋白质亚单位(即,杀灭的病原体或活的减毒病原体的片段,或者所述片段的缀合物)。此类示例性的实例不受限制地包括:针对乙型肝炎病毒的亚单位疫苗,所述亚单位仅由所述病毒的表面蛋白(先前由慢性感染的患者的血清提取,但现在通过将所述病毒基因重组入酵母菌中生产)组成;针对人乳头瘤病毒(HPV)的病毒样粒子(VLP)疫苗,所述病毒样粒子由流感病毒的主要衣壳蛋白以及血凝素和神经氨酸酶(neuraminidase)亚单位组成。在此类实施方式中,某些病原体具有弱免疫原性的多糖类外层包衣(polysaccharide outer coat)。通过将这些外层包衣连接至蛋白质(例如毒素),免疫系统可将所述多糖类识别为蛋白质抗原。示例性的缀合免疫原为用于B型流感嗜血杆菌疫苗中的免疫原。因此,本文所述的方面中也包括缀合免疫原。
[0108] 免疫原的其它实例包括可源自下列物质的免疫原:乙型肝炎病毒、B型流感嗜血杆菌、脊髓灰质炎病毒、C型脑膜炎奈瑟菌(Neisseria meningitides C)、流感、水痘、或者结核分枝杆菌卡介苗(Mycobacteria tuberculosis bacille Calmette-Guérin)、破伤风类毒素、白喉类毒素、或者百日咳博德特氏菌(Bordetella pertussis)。所述免疫原还可为联合免疫原,如DTaP、DTwP、DTwP hepB、DTP hep B Hib、或者DTaP hep B Hib IPV。
[0109] 在一些实施方式中,所述免疫原为细菌,如结核分枝杆菌卡介苗或百日咳博德特氏菌。所述细菌免疫原可以是杀灭的或减毒的。所述免疫原可包括细菌亚单位。示例性的免疫原性细菌亚单位包括源自下列物质的细菌亚单位:C型脑膜炎奈瑟菌、B型流感嗜血杆菌、肺炎链球菌(Streptococcus pneumoniae)、B族链球菌、或者百日咳博德特氏菌。所述细菌免疫原可以为重组体。所述细菌亚单位可以为多糖类或包含多糖类。在另一些其它实施方式中,所述免疫原为病毒亚单位,例如,源自乙型肝炎病毒或人乳头瘤病毒的亚单位。所述病毒免疫原也可以为重组体。所述病毒免疫原还可包括杀灭的病毒。
[0110] 如本文所述进行稳定的免疫原可以为疫苗产品,例如: (炭疽吸附型疫苗,Emergent Biosolutions,Rockville,MD); BCG Live(膀胱内用卡介苗(Bacillus Calmette-Guérin),Organon Tekina Corp.LLC,Durham,NC);
BCG Live(Sanofi Pasteur Inc); (白喉和破伤风类毒素以及无细
胞百日咳[DTaP]吸附型疫苗,Sanofi Pasteur Inc.); (吸附DTaP疫
苗,GlaxoSmithKline); (DTaP 疫 苗,Sanofi Pasteur);
(DTaP/Hib#,Sanofi Pasteur); (白喉和破伤风类毒素、无细胞百日咳吸附
型以及灭活脊髓灰质炎病毒疫苗,GlaxoSmithKline); (DTaP-HepB-IPV,
GlaxoSmithKline); (白喉和破伤风类毒素以及无细胞百日咳吸附型、灭活
脊髓灰质炎病毒以及嗜血杆菌b缀合[破伤风类毒素缀合]疫苗,Sanofi Pasteur);白喉和破伤风类毒素吸附型(小儿用,Sanofi Pasteur); (白喉和破伤风类毒
素吸附型,成人用,Sanofi Pasteur); (嗜血杆菌b破伤风类毒素缀合疫苗,
Sanofi Pasteur); (Hib疫苗,Merck);Hiberix(嗜血杆菌b破伤风类毒
素缀合疫苗,加强剂量(booster dose),GlaxoSmithKline); (乙型肝炎-Hib
疫苗,Merck); (甲型肝炎疫苗,小儿用,GlaxoSmithKline); (甲型
肝炎疫苗,小儿用,Merck); (Hep B,小儿用,青少年用,GlaxoSmithKline);
RECOMBIVAX (乙型肝炎疫苗,Merck); (HepA/HepB疫苗,18岁以
上,GlaxoSmithKline); (人乳头瘤病毒二价[16型和18型]重组疫苗,
GlaxoSmithKline); (人乳头瘤病毒四价[6型、11型、16型和18型]重组
TM
疫苗,Merck); (流感疫苗,18岁以上,CSL);AGRIFLU (肌内注射用流感病
毒疫苗,Novartis Vaccines); (流感疫苗,18岁以上,GlaxoSmithKline);
(流感疫苗,18岁以上,GlaxoSmithKline); (流感疫苗,4
岁以上,Novartis Vaccine); (流感疫苗,6个月以上,Sanofi Pasteur);
(流感疫苗,2岁以上,MedImmune); (e-IPV脊髓灰质炎疫苗,Sanofi
Pasteur);JE (日本脑炎病毒灭活型疫苗,BIKEN,Japan); (日本脑炎
病毒灭活型疫苗,Novarits); (脑膜炎球菌[A群、C群、Y群和W-135群]
和白喉疫苗,Sanofi Pasteur); -A/C/Y/W-135(脑膜炎球菌多糖疫苗,
Sanofi Pasteur); (MMR疫苗,Merck); (脑膜炎球菌[A群、C群、
Y群和W-135群]寡糖白喉CRM197缀合疫苗,Novartis Vaccines); (MMR和
水痘疫苗,Merck);PNEUMOVAX (肺炎球菌多糖疫苗,Merck); (7价肺
炎球菌疫苗,Wyeth/Lederle); (13价肺炎球菌疫苗,Wyeth/Lederle);
TM
POLIOVAX (灭活脊髓灰质炎病毒,Sanofi Pasteur); (狂犬疫苗,Sanofi
TM
Pasteur);RABAVERT (狂犬疫苗,Chiron); (口服五价轮状病毒活疫苗,
TM
Merck); (口服轮状病毒活疫苗,GlaxoSmithKline);DECAVAC (破伤风和白喉类毒素疫苗,Sanofi Pasteur);Td(通用)(破伤风和白喉类毒素,吸附型,Massachusetts Biol.Labs); (伤寒Vi多糖疫苗,Sanofi Pasteur); (破伤风
类毒素、减弱的白喉类毒素和无细胞百日咳,Sanofi Pasteur); (破伤风类
毒素、减弱的白喉类毒素和无细胞百日咳,GlaxoSmithKline); (口服活Ty21a
伤寒疫苗(typhoid vaccine live oral Ty21a),Berna Biotech);ACAM2000TM(天花(牛痘)活疫苗,Acambis,Inc.); (天花(牛痘)疫苗); (水痘[活]疫
苗,Merck); (黄热病疫苗,Sanofi Pasteur); (水痘带状疱疹病
毒,Merck);或上述疫苗的组合。本文所述的组合物中也可包括列入疾病控制和预防中心(Center for Disease Control and Prevention,CDC)数据库中的任何疫苗产品。
[0111] 在一些实施方式中,本文所述的方法和组合物中也可包含动物疫苗,如犬科动物疫苗和猫科动物疫苗。动物疫苗的实例包括但不限于: MAX5(五联疫苗(5-way vaccine):犬瘟热(Canine Distemper)、传染性犬肝炎、2型腺病毒、副流感病毒和细小病毒,Fort Dodge); (细小病毒,Neo Tech); PLUS5(犬
瘟热、1型和2型腺病毒、副流感病毒和细小病毒;Pfizer);BRONCHI- III(犬
副流感病毒;Fort Dodge);以及 4(猫鼻气管炎(feline rhinotracheitis)、
杯状病毒(calici)、以及猫泛白细胞减少症病毒(panleukopenia viruses)和鹦鹉热衣原体(Chlamydia psittaci),Schering-Plough/Intervet)。本文所述的组合物中可包含任何市售的动物疫苗。
[0112] 活的减毒病毒
[0113] 活的减毒免疫原性组合物(例如活的减毒疫苗)可通常引发更持久的免疫响应。因此,其有时是用于给予受试者(例如健康哺乳动物)的优选组合物。在一些实施方式中,本文所述的组合物中使用的免疫原为活的、减毒的病原体。在特定的实施方式中,所述免疫原为活的减毒病毒。因此,本文还描述了包含至少一种活的减毒病毒(包括至少两种活的减毒病毒、至少三种活的减毒病毒或更多种活的减毒病毒)的方法和免疫原性组合物。所述免疫原性组合物包含丝素蛋白基质和分布于所述丝素蛋白基质中的至少一种活的减毒病毒(包括至少两种活的减毒病毒、至少三种活的减毒病毒或更多种活的减毒病毒),其中,当所述组合物(a)经受至少一个状态变化循环、和/或(b)在规定条件下保存一段时间时,所述活的减毒病毒维持其至少约30%的初始感染性。在一些实施方式中,所述活的减毒病毒可维持至少约30%、至少约40%、至少约50%、至少约60%、至少约70%、至少约80%、至少约90%、至少约95%的初始感染性或更高的初始感染性。
[0114] 对于病毒,本文所使用的术语“感染性”是指病毒具有如下能力的特征:进入易感宿主、在易感宿主中生存和繁殖、或致使易感宿主产生免疫响应的能力。本领域技术人员知晓的用于测定病毒感染性的任何方法都可用于本文所述的目的,例如,可采用实施例1中描述的体外感染性分析。
[0115] 在特定的实施方式中,所述活的减毒病毒可以是包膜病毒,如副粘液病毒科、披膜病毒科(Togaviridae)、正粘液病毒科(Orthomyxoviridae)、黄病毒科(Flaviviridae)、疱疹病毒科(Herpesviridae)、弹状病毒、或者逆转录病毒科(Retroviridae),这些活的减毒包膜病毒可以是水痘、麻疹病毒、腮腺炎病毒、德国麻疹病毒、呼吸道合胞病毒、黄热病病毒、或者流感病毒。“包膜病毒”是指包含含有脂质或含有脂蛋白的膜的病毒,所述膜包围其蛋白质衣壳。这些病毒包膜可衍生自部分宿主细胞膜(磷脂和蛋白质),但包含一些病毒糖蛋白。功能上来说,病毒包膜可用于帮助病毒进入宿主细胞。例如,包膜表面上的糖蛋白起到识别并结合至宿主膜上的受体位点的作用。所述病毒包膜随后与宿主的膜融合,允许所述衣壳和病毒基因组进入并感染所述宿主。然而,由于所述病毒包膜对干燥、热和清洁剂(detergents)相对敏感,这些包膜病毒可比非包膜病毒更易被杀灭,并因此在宿主环境外存活受限。因此,本文提供的方法和免疫原性组合物对于维持活的减毒包膜病毒在宿主环境外的存活、并维持其被引入宿主细胞后的感染性而言是特别重要的。
[0116] 在其它实施方式中,所述活的、减毒病毒可以为非包膜病毒,即,不具有上述病毒包膜的病毒。所述非包膜病毒可以为轮状病毒、呼肠孤病毒、肝炎病毒、狂犬病毒和/或脊髓灰质炎病毒。
[0117] 本文进一步提供了无细胞的稳定化病毒制剂,所述制剂包含丝素蛋白基质和分布、混合或包埋于其中的感染性病毒,其中,当所述制剂(a)经受至少一个状态变化循环、和/或(b)在本文规定的条件下保存一段时间时,所述病毒维持其至少约30%的初始感染性。
[0118] 添加剂和药学上可接受的载体
[0119] 本文所述的组合物的多个实施方式可进一步包含分布、混合或包埋于所述丝素蛋白基质中的添加剂。在一些实施方式中,所述添加剂为稳定剂。向本文所述的组合物添加“稳定剂”可进一步提高所述活性试剂的稳定性,即,相对于不添加所述稳定剂时的生物活性而言,所述活性试剂可维持更高的生物活性。在一些实施方式中,所述稳定剂选自于由如下稳定剂所组成的组:糖类、糖醇、离子、表面活性剂,以及上述物质的任意组合。在一个实施方式中,将所述糖类(例如蔗糖)加入本文所述的组合物中。
[0120] 举例来说,可将额外的稳定剂添加至所述丝素蛋白溶液或基质。可使用先前显出对于口服脊髓灰质炎疫苗有效的稳定剂实例以及本文所讨论的稳定剂。稳定剂可包括阳离+ 2+ + + + +子稳定剂(以最稳定至最不稳定列出):(CH3)4N>Mg 、K>Na、NH4>Li ;阴离子稳定剂(最稳- 2- 2- - -
定至最不稳定):CH3COO、SO4 、PO4 >Cl、SCN ;以及重水(D2O)(Dorval等,1989)。参见例如Mirchamsy等,Stabilizing effect of magnesium chloride and sucrose on Sabin live polio vaccine,41Devel.Biol.Standardization255(1978);Rapp等,Protection of measles virus by sulfate ions against thermal inactivation,90J.Bact.132(1965)。
本领域已知的其它稳定剂,例如,用于稳定其它疫苗的稳定剂,也可包含于本文所述的组合物之中,例如:氨基酸,如谷氨酸钠、精氨酸、赖氨酸和半胱氨酸;单糖,如葡萄糖、半乳糖、果糖和甘露糖;二糖,如蔗糖、麦芽糖和乳糖;糖醇,如山梨糖醇和甘露糖醇;多糖,如寡多糖、淀粉纤维素,以及上述多糖的衍生物;人血清白蛋白和牛血清白蛋白;明胶及明胶衍生物,如水解明胶;以及作为抗氧化剂抗坏血酸。这些物质在例如如下出版物中有所描述:由Nei撰写的“Toketsu-Kanso To Hogo Busshitsu(Lyophilization And Protective Materials)”,1-176页,由Tokyo Daigaku Shuppan Kai(Publishing Association of the University of Tokyo)出版,1972年于日本;以及由Ota等撰写的“Shinku Gijutsu Koza(8):Sinku Kanso(Lecture on Vacuum Technology(8):Vacuum Drying)”,176-182页,由Nikkan Kogyo Shimbun Co.,Ltd.出版,1964年于日本。
[0121] 在一些实施方式中,本文所述的组合物或制剂可进一步包含药学上可接受的载体。根据选定的给药途径,所述组合物或制剂可处于任何形式,例如,片剂、锭剂(lozenge)、悬浮液剂、自由流动的粉末剂、气雾剂(aerosol)、以及胶囊剂。本文所使用的术语“药学上可接受的”是指在健全的(sound)医学判断范围内,适合用于与人类和动物组织相接触而无过度的毒性、刺激、过敏反应或者其它问题或并发症(complication),具有合理的收益/风险比的化合物、材料、组合物和/或剂型。
[0122] 本文所使用的术语“药学上可接受的载体”是指用于给予本文所述的活性试剂的药学上可接受的材料、组合物或辅料(vehicle)。药学上可接受的载体包括与所述活性试剂的活性相容的、并对于受试者而言是生理学上可接受的任何以及全部的溶剂、分散媒介、包衣、抗细菌剂和抗真菌剂、等渗剂和吸收延缓剂等。一些可作为药学上可接受的载体的材料的实例包括:(1)糖,如乳糖、葡萄糖和蔗糖;(2)淀粉,如玉米淀粉和土豆淀粉;(3)纤维素及其衍生物,如羧甲基纤维素钠、甲基纤维素、乙基纤维素、微晶纤维素和醋酸纤维素;(4)西黄蓍胶(tragacanth)粉;(5)麦芽;(6)明胶;(7)润滑剂,如硬脂酸镁、十二烷基硫酸钠和滑石;(8)赋形剂,如可可脂和栓蜡(suppository waxes);(9)油,如花生油籽油、红花油、芝麻油、橄榄油、玉米油和大豆油;(10)二醇,如丙二醇;(11)多元醇,如甘油、山梨糖醇、甘露醇和聚乙二醇(PEG);(12)酯,如油酸乙酯和月桂酸乙酯;(13)琼脂;(14)缓冲剂,如氢氧化镁和氢氧化铝;(15)海藻酸;(16)无热原(pyrogen-free)的水;(17)等渗盐水;(18)林格氏溶液;(19)乙醇;(20)pH缓冲溶液;(21)聚酯、聚碳酸酯和/或聚酸酐;(22)填充剂(bulking agents),如多肽和氨基酸;(23)血清组分,如血清白蛋白、HDL和LDL;(24)C2-C12醇,如乙醇;以及(25)其它可用于药物制剂中的无毒相容物质。湿润剂、着色剂、隔离剂(release agent)、包衣剂、甜味剂、增味剂(flavoring agents)、芳香剂、防腐剂和抗氧化剂也可存在于制剂中。对于待口服给予的本文所述的组合物或制剂而言,药学上可接受的载体包括但不限于药学上可接受的赋形剂,如惰性稀释剂(inert diluents)、崩解剂、粘合剂(binding agents)、润滑剂、甜味剂、增味剂、着色剂和防腐剂。适合的惰性稀释剂包括碳酸钠和碳酸、磷酸钠和磷酸钙、以及乳糖;玉米淀粉和海藻酸则是适合的崩解剂。粘合剂可包括淀粉和明胶;润滑剂(若存在的话)则将通常为硬脂酸镁、硬脂酸或滑石。如果期望的话,可使用如单硬脂酸甘油酯或二硬脂酸甘油酯的材料对所述片剂进行包衣,从而延缓在胃肠道中的吸收。
[0123] 在本文所述的制剂中,药学上可接受的载体可根据给药途径和剂型而有所不同。本文所述的组合物和制剂可经由本领域技术人员已知的任何给药方式递送。例如,本文所述的组合物和制剂可以经由如下给药途径以全身方式递送:例如但不限于,口服给药以及肠胃外给药,包括静脉内给药、肌内给药、腹腔内给药、真皮内给药和皮下给药。在一些实施方式中,本文所述的组合物和制剂处于适于注射的形式。在其它实施方式中,将本文所述的组合物和制剂配制为用于口服给药。
[0124] 当肠胃外给药时,通常可以单位剂量可注射形式(溶液、悬浮液、乳剂)配制本文所述的组合物和制剂。适于注射的组合物和制剂包括无菌水溶液或分散液。所述载体可以为溶剂或分散介质,所述载体包含例如水、细胞培养基、缓冲液(例如磷酸盐缓冲盐水)、多元醇(例如甘油、丙二醇、液体聚乙二醇等)以及上述物质的合适混合物。在一些实施方式中,所述药物载体可以为缓冲溶液(例如PBS)。
[0125] 口服组合物可以制备为任何口服用可接受的剂型,包括但不限于:片剂、胶囊剂、乳剂和水性悬浮液剂、分散液剂和溶液剂。通常使用的用于片剂的载体包括乳糖和玉米淀粉。通常也将润滑剂(如硬脂酸镁)加至片剂中。对于胶囊剂形式的口服给药,有用的稀释剂包括乳糖和干燥玉米淀粉。当口服给予水性悬浮液剂或乳剂时,活性成分可与乳化剂或悬浮试剂联合、并悬浮或溶解于油相中。期望的话,可添加某些甜味剂、增味剂或着色剂。用于口服的液体制剂也可以干燥粉末剂的形式制备,所述干燥粉末剂在使用前以适合的溶剂复溶。
[0126] 根据所期望的给药途径和制剂,所述组合物也可含有辅助物质(auxiliary substances),如润湿剂或乳化剂、pH缓冲剂、胶凝剂增粘剂、防腐剂、着色剂等。可查阅标准文本如“REMINGTON'S PHARMACEUTICAL SCIENCE”第17版,1985(以引用的方式将其并入本文),以制备适合的制剂,而无需过度的实验。然而,关于本文所述的组合物,使用的任何辅料、稀释剂、或添加剂对于本文所述的活性试剂而言应当必须是生物相容的。本领域技术人员将认识到的是,应对所述组合物的组分进行选择,以使其对于所述活性试剂而言是生物相容的。这对于化学和制药原理方面的技术人员来说不成问题,或者可容易地通过参考标准文本或通过简单实验(不涉及过度实验)而避免产生问题。
[0127] 在一些实施方式中,本文所述的组合物和制剂可配制为乳剂或凝胶。此类凝胶组合物和制剂可局部植入受试者的疾病组织区域中。
[0128] 对于体内给药,本文所述的组合物或制剂可使用递送装置(例如注射器)给药。因此,本文所述的另外的方面提供包含至少一个具有出料口(outlet)的腔体(chamber)的递送装置,其中所述至少一个腔体包含预先确定量的任何本文所述的组合物、并且所述出料口为所述腔体内封装的组合物提供出口。在一些实施方式中,本文所述的递送装置可进一步包含控制所述组合物经所述出料口释放的促动器(actuator)。该递送装置可以是任何促进将本文所述的任何组合物给予受试者的装置,例如,注射器、干粉注射器、鼻喷雾器(spray)、雾化器(nebulizer)、或植入物(如微芯片),例如用于任何本文所述的组合物的持续释放或受控释放。
[0129] 在本文所述的组合物的一些实施方式中,可对所述丝素蛋白基质本身进行修饰,以控制其降解并从而控制活性试剂的释放,例如,使得所述释放在数小时至数天或数月的时间段内发生。在一些实施方式中,本文所述的组合物可与本领域技术人员能获得并且知晓的其它类型的递送体系联合。所述其它类型的递送体系包括例如:基于聚合物的体系,如聚乳酸和/或聚乙醇酸、聚酸酐、聚己酸内酯、共聚草酸酯(copolyoxalates)、聚酯酰胺、聚原酸酯(polyorthoesters)、聚羟基丁酸,以及上述聚合物的组合。含有上述聚合物的药物微胶囊在例如美国专利5,075,109中有描述。其它实例包括:基于脂质的非聚合物体系,包括固醇,如胆固醇、胆固醇酯,以及脂肪酸或neukal脂肪,如甘油单酯、甘油二酯和甘油三酯;水凝胶释放体系;基于脂质体的体系;基于磷脂的体系;橡胶(silastic)体系;基于肽的体系;或部分融合的植入物。特定的实例包括但不限于:侵蚀体系(erosional systems),其中所述组合物以某种形式包含于基质中(例如,如美国专利号4,452,775、
4,675,189、5,736,152、4,667,014、4,748,034和295,239,660中的描述);或者扩散体系(diffusional systems),其中活性组分控制释放速率(例如,如美国专利号3,832,253、
3,854,480、5,133,974和5,407,686中的描述)。所述剂型可以为例如微球、水凝胶、聚合物储器(polymeric reservoirs)、胆固醇基质、或者聚合物体系。在一些实施方式中,所述体系可允许所述组合物发生持续释放或受控释放,例如,通过对含有所述组合物的剂型的扩散或侵蚀/降解速率进行控制而实现。另外,基于硬件递送系统可用于对本文所述的组合物或制剂的一个或多个实施方式进行递送。长期持续释放的剂型或植入物的使用可特别适合于慢性病症(如糖尿病)的治疗。本文所述的长期释放是指剂型或植入物被制造并配置为在至少30天内、或至少60天内,在治疗学水平上递送本文所述的组合物或制剂。在一些实施方式中,所述长期释放是指剂型或植入物被配置为在数月之内,在治疗学水平上递送活性试剂。
[0130] 制备稳定储存的组合物的方法
[0131] 提供了制备本文所述的稳定储存的组合物的方法。在一些实施方式中,所述稳定储存的组合物具有免疫原性。所述方法包括提供或获得包含至少一种活性试剂的丝素蛋白基质,其中,在规定条件下储存或运输一段时间时,所述至少一种活性试剂维持其至少约30%的初始生物活性。在一些实施方式中,所述方法进一步包括将至少一种活性试剂混合或添加至丝素蛋白基质中。在一些实施方式中,所述方法进一步包括对包含至少一种活性试剂的丝素蛋白基质进行干燥,形成固态丝素蛋白,其中,在规定条件下储存或运输一段时间时,所述至少一种活性试剂维持其至少约30%的初始生物活性。在这些实施方式中,所述丝素蛋白基质可以是溶液或凝胶状溶液。所述包含至少一种活性试剂的丝素蛋白基质可以在空气或氮气中干燥,或通过冻干法干燥。在一个实施方式中,所述含有至少一种活性试剂的丝素蛋白基质(例如丝溶液)可以经受冻干作用,以形成装载有所述活性试剂的冻干固态丝素蛋白,其中,在规定条件(例如,在37℃、45℃、或高于45℃的温度下储存或运输)下储存或运输一段时间(例如,至少6个月、或至多6个月)时,所述至少一种活性试剂维持其至少约
60%、至少约70%、或至少约80%的初始生物活性(例如病毒效价,参见例如实施例3)。
[0132] 在一些实施方式中,所述方法可进一步包括将包含至少一种活性试剂的固态或干燥丝素蛋白进行冻干,例如,从而进一步减少所述组合物的残余水分,其中,在规定条件(例如,在37℃、45℃、或高于45℃的温度下储存或运输)下储存或运输一段时间(例如,至少6个月、或至多6个月)时,所述至少一种活性试剂维持其至少约60%、至少约70%、或至少约80%的初始生物活性(例如病毒效价,参见例如实施例3)。
[0133] 在一个实施方式中,生产固态稳定储存的组合物的方法包括:(a)提供或获得包含至少一种活性试剂的丝素蛋白基质;以及(b)对所述包含至少一种活性试剂的丝素蛋白基质进行干燥,以形成固态丝素蛋白,其中,在规定条件下储存或运输一段时间时,所述至少一种活性试剂维持其至少约30%的初始生物活性。在一些实施方式中,所述方法进一步包括步骤(c):对步骤(b)的固态丝素蛋白进行冻干,例如从而在0℃以上的温度(例如,高于30℃、高于37℃、高于40℃)下,维持所述活性试剂的至少约60%、至少约70%、或至少约80%的初始生物活性。在一些实施方式中,步骤(b)的固态丝素蛋白在步骤(c)的冻干之前经受后处理,例如,以甲醇、乙醇、切应力(shear stress)、电场、压力等进行处理。在一些实施方式中,所述活性试剂为免疫原性组合物。在一个实施方式中,所述免疫原性组合物包含单价疫苗。在另一个实施方式中,所述免疫原性组合物包含多价疫苗(multivalent/polyvalent vaccine),例如,二价疫苗或三价疫苗。
[0134] 本文所使用的术语“单价疫苗”是指旨在针对单一抗原或单一微生物进行免疫的疫苗。
[0135] 本文所使用的术语“多价疫苗”是指旨在针对微生物的两种以上不同菌株、或针对两种以上不同微生物进行免疫的疫苗。例如,二价疫苗通常为旨在针对微生物的两种不同菌株、或针对两种不同微生物进行免疫的疫苗。三价疫苗通常为旨在针对微生物的三种不同菌株、或针对三种不同微生物进行免疫的疫苗。示例性的三价疫苗为旨在针对麻疹、腮腺炎和风疹进行免疫的疫苗。
[0136] 不希望受理论约束,丝可阻止病毒蛋白质发生热引发的聚集、和/或提高所述疫苗的玻璃化转变温度(或病毒蛋白质的熔点),从而在升高的温度下维持感染性。因此,在一些实施方式中,本文所述的制备免疫原性组合物的方法可用于降低病毒蛋白质在一定温度下(在缺少丝基质时,病毒在该温度下将进行聚集)聚集的可能性、或阻止所述聚集。例如,在一些实施方式中,与缺少所述丝素蛋白基质的免疫原相比,本文所述的制备免疫原性组合物的方法可用于使病毒蛋白质聚集的可能性降低至少约10%、至少约20%、至少约30%、至少约40%、至少约50%、至少约60%、至少约70%、至少约80%、至少约90%、至少约95%或更高。在一些实施方式中,与缺少所述丝素蛋白基质的免疫原相比,本文所述的免疫原性组合物中的病毒蛋白质聚集可降低至少约1.5倍、至少约2倍、至少约3倍、至少约4倍、至少约5倍或更多。所述病毒蛋白质的聚集可通过例如使用如实施例3中所示的动态光散射法对病毒粒子的有效直径进行测量而确定。
[0137] 换言之,在一些实施方式中,与缺少所述丝素蛋白基质的免疫原相比,本文所述的制备免疫原性组合物的方法可用于使所述病毒蛋白质的聚集温度提高至少约10℃、至少约20℃、至少约30℃、至少约40℃、至少约50℃、至少约60℃、至少约70℃、至少约80℃、至少约90℃、至少约100℃或更高。所述病毒蛋白质的聚集温度可通过例如使用如实施例3中所示的动态光散射法在一定的温度范围内对病毒粒子的有效直径进行测量而确定。病毒粒子的有效直径开始增加的温度可以为所述病毒蛋白质的聚集温度。
[0138] 在一些实施方式中,与缺少所述丝素蛋白基质的免疫原相比,本文所述的制备免疫原性组合物的方法可用于使疫苗的玻璃化转变温度和/或熔点提高至少约10℃、至少约20℃、至少约30℃、至少约40℃、至少约50℃、至少约60℃、至少约70℃、至少约80℃、至少约90℃、至少约100℃、至少约125℃、至少约150℃或更高。疫苗的玻璃化转变温度和/或熔点可通过例如如实施例3中示出的差示扫描量热法而确定。
[0139] 用于制造固态丝素蛋白的水性丝素蛋白溶液可使用本领域已知的技术制备。用于包埋或承载活性试剂的溶液中的丝素蛋白的浓度可适合于特定的活性试剂。可使用任何浓度的丝素蛋白溶液。在一个实施方式中,例如,为了疫苗稳定化,丝的浓度可以为至少约2%、至少约4%、至少约5%、至少约6%、至少约7%、至少约8%、至少约9%、至少约10%、至少约12%、至少约14%、至少约15%、至少约16%、至少约18%、或者至少约20%(w/v),包括端点在内。制备丝素蛋白溶液的合适工序在例如美国专利申请序列号11/247,358;WO/2005/012606;
以及WO/2008/127401中得以公开。随后可将所述丝水溶液加工为丝基质,如丝膜、保形涂层(conformal coatings)或保形层(conformal layers)、或者3维支架、或者电纺纤维(electrospun fibers),以用于进一步加工为丝反射体(reflector)。本文可使用微过滤步骤。例如,在进一步加工为丝基质之前,可额外地通过离心和基于注射器的微过滤对所制备的丝素蛋白溶液进行加工。
[0140] 还可将额外的聚合物(例如生物相容聚合物和生物可降解聚合物)混合于所述丝素蛋白中。例如,显示出期望的机械性质的额外的生物聚合物(如壳聚糖)可在水中加工、与丝素蛋白混合、并通常形成膜。其它生物聚合物,如壳聚糖、胶原、明胶、琼脂糖、壳多糖、聚羟基脂肪酸酯(polyhydroxyalkanoates)、普鲁兰(pullan)、淀粉(直链淀粉、支链淀粉)、纤维素、海藻酸盐/酯、纤连蛋白、角蛋白、透明质酸、果胶(pectin)、聚天冬氨酸、聚赖氨酸、果胶、葡聚糖、以及相关的生物聚合物或者上述生物聚合物的组合,可在特定应用中加以利用;并且,还可选择性地使用合成的生物可降解聚合物,如聚环氧乙烷、聚乙二醇、聚乳酸、聚乙醇酸、聚己内酯、聚原酸酯、聚己内酯、聚富马酸酯、聚酸酐类、以及相关的共聚物。
[0141] 丝素蛋白基质可以处于溶液状态或处于固态。如本文所述,所述固态丝素蛋白基质可处于任何物质形式,如丝纤维、电纺纤维、膜、纤维毡(mats)、3D支架、干燥凝胶、小球(包括微球和/或纳米球)、一种或多种不同形式的丝材料的粒子或复合物。在其它实施方式中,所述固态丝素蛋白为粒子。
[0142] 在一个实施方式中,所述固态丝素蛋白为丝膜。例如,可通过如下方式制备丝素蛋白膜:使包含丝素蛋白的水性溶液(例如,丝浓度为约3%(w/v)-约30%(w/v)、或约5%(w/v)-约15%(w/v))沉积于支持基底上、并允许所述丝素蛋白溶液干燥成膜。就这一点而言,可将涂覆有基于丝素蛋白的溶液的基底在如12小时的时间内暴露于空气中。所述丝素蛋白溶液的沉积可通过例如使用旋转涂布法(spin coating method)进行,其中,将所述丝素蛋白溶液旋转涂布至基底上,从而允许制造非均一高度的薄膜;或简单地通过将丝素蛋白溶液倾注至基底顶部。丝素蛋白膜的性质(如厚度和其它组分的含量)可基于施加至所述基底的丝素蛋白溶液的浓度和/或体积、以及将丝素蛋白溶液加工成丝膜的技术进行改变。举例而言,可通过改变丝素蛋白在所述溶液中的浓度、或通过使用期望体积的丝素蛋白溶液来对所述丝膜的厚度进行控制,产生厚度为约2nm-1mm厚的丝素蛋白膜。在一个实施方式中,可使用多种浓度的丝素蛋白和旋转速率将丝素蛋白旋转涂布至基底上,产生厚约2nm-约100μm的膜。
[0143] 在一些实施方式中,代替在气体(如空气或氮气)下对含有一种或多种活性试剂(例如免疫原)的丝素蛋白溶液进行干燥,所述含有活性试剂的丝素蛋白溶液可经受冻干作用,从而形成冻干的丝素蛋白基质(例如,冻干丝素蛋白膜)。使所述含有一种或多种活性试剂(例如免疫原,如疫苗)的丝素蛋白溶液经受冻干作用而干燥,不仅改进了所述活性试剂(例如免疫原,如疫苗)在制造工序期间的初始回复(initial recovery),而且还出人意料地提供了在升高的温度下(例如室温或室温以上、或37℃或以上、或45℃或以上)、在延长的时间段内(例如,至少约1周、至少约2周、至少约3周、至少约4周、至少约2个月、至少约3个月、至少约4个月、至少约5个月、至少约6个月或更久的时间内)所述活性试剂(例如免疫原,如疫苗)更优的稳定化。
[0144] 在一些实施方式中,所述固态丝素蛋白可以为一层或多层丝素蛋白的复合物。各层丝素蛋白可具有相同或不同的组成或性质。举例来说,各层丝素蛋白可具有相同或不同的丝素蛋白浓度、和/或各层可具有相同或不同的机械性质和/或降解性质。在一个实施方式中,所述固态丝素蛋白可以为多层丝素蛋白(例如,可被调节为反射特定波长)。
[0145] 在一些实施方式中,所述固态丝素蛋白可以为丝水凝胶。制造丝水凝胶的方法在本领域中是已知的。例如,丝水凝胶可通过将切应力施加至丝素蛋白溶液而制造,所述丝素蛋白溶液包含一种或多种活性试剂(如免疫原),并且丝素蛋白的浓度为约0.5%(w/v)-约20%(w/v)、或者约1%(w/v)-约15%(w/v)、或者约2%(w/v)-约10%(w/v)。在此类实施方式中,所述活性试剂(例如免疫原)与丝溶液的重量比可以为约1:10-约10:1。在一个实施方式中,所述活性试剂(例如免疫原)与丝溶液的重量比可以为1:1左右。参见例如国际专利申请号:WO2011/005381,以引用的方式将涉及用于封装和递送的、由涡旋诱导的(vortex-induced)丝素蛋白凝胶化的生产方法的内容并入本文。不受限制地,也可使用其它用于制造其中分布有一种或多种活性试剂(如免疫原)的丝水凝胶的方法,如通过超声(例如,美国专利申请号US2010/0178304和国际申请号:WO2008/150861)、或通过pH调节(例如,美国专利申请号:US2011/0171239)。以引用的方式将上述专利申请的内容并入本文。
[0146] 在一些实施方式中,所述固态丝素蛋白可包括丝微球。多种生产丝微球或丝纳米球的方法在本领域中是已知的。在一些实施方式中,丝微米粒子或丝纳米粒子可通过聚乙烯醇(PVA)相分离法生产,所述方法在例如国际专利申请号WO2011/041395中有描述,以引用的方式将其内容并入本文。在此类实施方式中,所述PVA相分离法中使用的丝浓度可以为约0.5%(w/v)-约20%(w/v)、或者约1%(w/v)-约15%(w/v)、或者约3%(w/v)-约10%(w/v)。在一个实施方式中,所述PVA相分离中使用的丝浓度可以为约5%(w/v)。在一些实施方式中,活性试剂(例如免疫原)与丝溶液的重量比可以为约1:300-约1:2000、或约
1:500-约1:1500。在一个实施方式中,活性试剂(例如免疫原)与丝溶液的重量比可以为约
1:1000。为了制造包封本文所述的活性试剂(如免疫原)的丝微米粒子或丝纳米粒子,可使用其它生产丝微球或丝纳米球的方法,例如,在美国专利申请号US2010/0028451和国际专利申请号WO2008/118133(使用脂质作为制造丝微球或丝纳米球的模板)、以及Wenk等,J Control Release2008;132;26-34(使用喷雾法生产丝微米球或丝纳米球)中描述的方法。
[0147] 在一些实施方式中,所述丝微球或丝纳米球可进一步包埋于生物聚合物中,例如以将活性试剂(如免疫原)的释放延长一段时间。在一些实施方式中,所述生物聚合物可以为丝水凝胶,从而包封装载有所述活性试剂(如免疫原)的丝微球或丝纳米球。参见例如:国际专利申请号WO2010/141133中关于制造用于抗生素递送的丝素蛋白支架的方法。
[0148] 在一些实施方式中,所述固态丝素蛋白组合物(本文所述的稳定储存的组合物)可经受后处理,例如以对所述丝素蛋白的降解速率进行修饰。额外的处理可包括但不限于:有机溶剂处理、机械处理、或电磁处理。举例来说,可通过例如对β-折叠晶体(beta-sheet crystal)的量和/或晶体取向进行修饰,来对所述丝素蛋白的降解速率进行控制。因此,可通过使丝素蛋白与醇(例如甲醇或乙醇)接触,而对所述丝素蛋白中β-折叠晶体的量和/或晶体取向进行控制,这在本领域中是已建立的方法。在一些实施方式中,所述丝素蛋白可经受机械力(例如,拉伸或切应力),从而改变β-折叠晶体的量和/或晶体取向的排列。在一些实施方式中,所述丝素蛋白可经受电场或压力。在一些实施方式中,所述丝素蛋白可与盐接触。
[0149] 不希望受理论约束,活性试剂由丝素蛋白基质释放的速率可通过β-折叠晶体结构的含量、丝浓度和/或所述丝素蛋白基质的孔隙度(porosity)得以控制。在丝基质中形成孔隙的方法在本领域中是已知的,例如,致孔剂浸出法(porogen-leaching method)、冻干法、和/或气体形成法。此类方法在例如美国专利申请号US2010/0279112、US2010/0279112以及US7842780中有描述,以引用的方式将其内容并入本文。
[0150] 在一些实施方式中,本文所述的制备稳定储存的组合物的方法可进一步包括通过机械手段缩小(reducing)所述干燥的固态丝素蛋白,从而获得如本文定义的微粒化粒子。获得微粒化粒子的示例性的机械手段包括微粒化、粉碎、压碎、研磨、冻干,或上述手段的任意组合。
[0151] 根据常规实践,期望地在无菌条件下使用预先已进行细菌杀灭的组分对本文所述的组合物进行处理。储存中的无菌性可通过引入抗原相容性杀菌物质(germicidal substance)(如硫柳汞(thimerosal))而得以维持。
[0152] 试剂盒和装置
[0153] 本文还描述了包含至少一种稳定储存的组合物或制剂的包装(packages)和试剂盒。所述包装可制备于各种类型的容器中,所述容器可选自于由下列容器所组成的组:小瓶(vial)、安瓿(ampule)、胶囊、管(tube)、递送装置、瓶(bottle)、以及小包(packet)。在一些实施方式中,所述递送装置为注射器。在一些实施方式中,所述注射器可为无针注射器。包装中含有的稳定储存的组合物可以处于下列形式:水凝胶、凝胶状粒子、粉末、微球、纳米球,或上述形式的任意组合。在一些实施方式中,包装中含有的稳定储存的组合物可以为冻干组合物。在一些实施方式中,所述稳定储存的组合物可装载于注射器中以用于注射。
[0154] 本文提供的试剂盒包含本文所述的包装,以及药学上可接受的溶液(例如PBS)。在一些实施方式中,所述试剂盒可进一步包含至少一种递送装置,用于将本文所述的组合物或制剂给予受试者。在其它实施方式中,所述试剂盒可进一步包含消毒剂。在某些实施方式中,本文所述的此类包装和试剂盒可用于疫苗接种的目的。
[0155] 本文所使用的“受试者”是指人或动物。通常,所述动物为脊椎动物,如灵长类动物、啮齿动物、家养动物或狩猎动物(game animal)。灵长类动物包括黑猩猩、食蟹猴、蜘蛛猴和猕猴(如恒河猴)。啮齿动物包括小鼠、大鼠、旱獭(woodchucks)、貂(ferrets)、兔和仓鼠。家养动物和狩猎动物包括牛(cows)、马、猪、鹿、野牛、水牛、猫科物种(如,家猫)、犬科物种(如,狗、狐狸、狼)、类(如,鸡、鸸鹋(emu)、鸵鸟)和鱼类(如,鳟鱼(trout)、鲶鱼和鲑鱼)。在本文描述的方面的某些实施方式中,受试者是哺乳动物,例如,灵长类动物、如人类。受试者可以为雄性或雌性。所述受试者优选为哺乳动物。所述哺乳动物可以为人类、非人灵长类、小鼠、大鼠、狗、猫、马或牛,但并不限于这些实例。另外,本文所述的方法和组合物可用于对家养动物和/或宠物进行治疗。
[0156] 预先装载有至少一种本文所述的组合物或制剂的递送装置也处于本文所述的多个方面的范围之内。递送装置的实施方式包括至少一个具有出料口的腔体,其中所述至少一个腔体包含预先确定量的本文所述的组合物,并且所述出料口向所述组合物提供出口。
[0157] 本文所述的术语“腔体”指的是任何配制为储存和/或运送本文所述的组合物的结构。视使用者的应用、需求和/或偏好而定,所述腔体可为任何形状或任何大小。示例性的腔体包括但不限于:桶(barrel)、管、盒(cassette)、以及凹穴(depression)(例如微孔(microwell))。
[0158] 在一些实施方式中,本文所述的递送装置可进一步包含促动器,以对所述组合物经由所述出料口的释放进行控制,从而将其中的组合物给予受试者。本文所使用的术语“促动器”为可对任一种能量进行转化,以经由所述装置的出料口移动所述组合物的机械装置。举例来说,促动器可对电能进行转化,以经由所述出料口移动所述组合物或控制所述组合物经由所述出料口的释放。在一些实施方式中,促动器可对压力进行转化,以经由所述出料口移除所述组合物或控制所述组合物经由所述出料口的释放。例如,注射器的柱塞(plunger)对力或压力进行转化,以由桶(腔体)中释放组合物,从而将所述组合物注射入受试者中。
[0159] 本文所述的递送装置的实例包括但不限于:注射器、干粉注射器、鼻喷雾器、雾化器、以及植入物。在一些实施方式中,植入物可以为微芯片,例如,美国专利号5797898;6669683、7052488以及7582080中所描述的。在一些实施方式中,所述递送装置可用于疫苗接种。在此类实施方式中,疫苗递送装置/系统可包括但不限于在下列文献中描述的装置和/或系统:美国专利申请号:US2004/0133160;US2004/0096455;US2005/0112135;
US2005/0123565;US2009/0043280;和US2009/0143724,以及美国专利号:5346481;和
5900238。
[0160] 术语“预先确定的量”通常用来指代由使用者例如根据应用或治疗而期望和/或确定的组合物的量。在一些实施方式中,术语“预先确定的量”指的是有效治疗或预防疾病或失调(例如,增加对所述疾病的免疫力;降低、抑制或延缓所述疾病的至少一种症状;或在所述疾病中产生改善(例如有利或所期望的临床结果))的组合物的量。为了本文所述的多个方面的目的,有利或所期望的临床结果包括但不限于不管是可检测的还是不可检测的:一种以上症状减轻(alleviation)、患病程度减少、疾病状态的稳定(例如不恶化)、疾病发展延缓或放慢、疾病状态的转佳(amelioration)或缓和(palliation)、以及缓解(无论是部分或全部)。在一些实施方式中,“治疗”可意味着与如果不接受治疗所预期到的存活相比而言延长的存活。因此,本领域技术人员认识到的是,治疗可改善疾病状况,但可能无法完全治愈所述疾病。关于免疫原性组合物或疫苗组合物,术语“预先确定的量”可以是指对特定疾病而言,有效提供或增强免疫力的组合物的量。血液测试或本领域技术人员已知的任何方法可用于检查免疫力。因此,在一些实施方式中,所述递送装置包含有效剂量的免疫原性组合物或疫苗组合物。
[0161] 本文所述的各个方面的实施方式可由以下编号的段落进行说明。
[0162] 1.一种包括保存组合物的步骤的方法,其中,所述组合物包含丝素蛋白基质和分布于其中的至少一种活性试剂,
[0163] 其中,当所述组合物(a)经受至少一个冷冻-解冻循环;或者(b)在0℃以上的温度下保存至少约24小时;或者(c)所述(a)和(b)两者均有时,所述活性试剂维持其至少约30%的初始生物活性。
[0164] 2.如段1所述的方法,其中,所述活性试剂维持其至少约50%的初始生物活性。
[0165] 3.如段1或2所述的方法,其中,所述活性试剂维持其至少约80%的初始生物活性。
[0166] 4.如段1-3中任一项所述的方法,其中,将所述组合物保存至少约1个月。
[0167] 5.如段1-4中任一项所述的方法,其中,将所述组合物保存至少约6个月。
[0168] 6.如段1-5中任一项所述的方法,其中,所述组合物为膜、纤维、粒子、凝胶或水凝胶。
[0169] 7.如段1-6中任一项所述的方法,其中,所述组合物为冻干的。
[0170] 8.如段1-7中任一项所述的方法,其中,所述组合物为微粒化的。
[0171] 9.如段8所述的方法,其中,所述微粒化的组合物为纳米粒子或微米粒子。
[0172] 10.如段9所述的方法,其中,所述纳米粒子或微米粒子的大小为约10nm-约1000μm。
[0173] 11.如段1-10中任一项所述的方法,其中,所述组合物进一步包含添加剂。
[0174] 12.如段11所述的方法,其中,所述添加剂选自于:稳定剂、药学上可接受的载体,或上述添加剂的任意组合。
[0175] 13.如段1-12中任一项所述的方法,其中,在约0℃-室温以上的温度下保存所述组合物。
[0176] 14.如段13所述的方法,其中,在约室温-约37℃的温度下保存所述组合物。
[0177] 15.如段1-14中任一项所述的方法,其中,在高于37℃的温度下保存所述组合物。
[0178] 16.如段1-15中任一项所述的方法,其中,在光照下保存所述组合物。
[0179] 17.如段1-16中任一项所述的方法,其中,在至少约10%的相对湿度下保存所述组合物。
[0180] 18.如段1-17中任一项所述的方法,其中,所述活性试剂选自于由下列活性试剂所组成的组:蛋白质、肽、抗原、免疫原、疫苗、抗体或抗体的部分、抗体样分子、酶、核酸、siRNA、shRNA、适配子、病毒、细菌、小分子、细胞、光合与能量收集化合物、增味剂、抗生素、治疗剂、诊断剂、病毒载体、以及抗毒剂。
[0181] 19.如段1-18中任一项所述的方法,其中,所述活性试剂为免疫原。
[0182] 20.如段19所述的方法,其中,所述免疫原选自于由下列免疫原所组成的组:杀灭的病原体、活的减毒病原体、蛋白质亚单位及其缀合物、灭活的毒素、以及合成肽、碳水化合物、以及抗原。
[0183] 21.如段19或20所述的方法,其中,所述免疫原源自于:乙型肝炎病毒、B型流感嗜血杆菌、脊髓灰质炎病毒、C型脑膜炎奈瑟菌、流感、水痘、或者结核分枝杆菌卡介苗、破伤风类毒素、白喉类毒素、以及百日咳博德特氏菌。
[0184] 22.如段19或20所述的方法,其中,所述免疫原为联合免疫原,所述联合免疫原选自于由下列联合免疫原所组成的组:DTaP、DTwP、DTwP hepB、DTP hep B Hib、DTaP hep B Hib IPV,以及上述联合免疫原的任意组合。
[0185] 23.如段19或20所述的方法,其中,所述免疫原为活的减毒病毒。
[0186] 24.如段23所述的方法,其中,所述活的减毒病毒为包膜病毒。
[0187] 25.如段24所述的方法,其中,所述包膜病毒选自于由下列包膜病毒所组成的组:副粘液病毒科、披膜病毒科、正粘液病毒科、黄病毒科、疱疹病毒科、弹状病毒、逆转录病毒科,以及上述包膜病毒的任意组合。
[0188] 26.如段23-25中任一项所述的方法,其中,所述病毒为水痘。
[0189] 27.如段23-25中任一项所述的方法,其中,所述病毒为流感病毒。
[0190] 28.如段23所述的方法,其中,所述活的减毒病毒导致麻疹、腮腺炎、或风疹。
[0191] 29.如段19或20所述的方法,其中,所述免疫原为活的减毒非包膜病毒。
[0192] 30.如段29所述的方法,其中,所述非包膜病毒为轮状病毒、呼肠孤病毒、肝炎病毒、狂犬病毒或脊髓灰质炎病毒。
[0193] 31.如段19所述的方法,其中,所述免疫原为细菌。
[0194] 32.如段31所述的方法,其中,所述细菌为结核分枝杆菌卡介苗或百日咳博德特氏菌。
[0195] 33.如段19所述的方法,其中,所述免疫原为细菌亚单位。
[0196] 34.如段33所述的方法,其中,所述细菌亚单位源自于:C型脑膜炎奈瑟菌、B型流感嗜血杆菌、肺炎链球菌、或B族链球菌。
[0197] 35.如段33所述的方法,其中,所述细菌亚单位为多糖。
[0198] 36.如段19所述的方法,其中,所述免疫原为病毒亚单位。
[0199] 37.如段36所述的方法,其中,所述病毒亚单位源自于乙型肝炎病毒或人乳头瘤病毒。
[0200] 38.如段19所述的方法,其中,所述免疫原为重组体。
[0201] 39.如段19所述的方法,其中,所述免疫原为疫苗产品,所述疫苗产品选自于由下列疫苗产品所组成的组:炭疽疫苗(BioThrax);BCG(卡介苗)(Tice、Mycobax);DTaP(Daptacel);DTaP(Infanrix);DTaP(Tripedia);DTaP/Hib(TriHIBit);DTaP-IPV(Kinrix);DTaP-HepB-IPV(Pediarix);DTaP-IPV/Hib(Pentacel);DT(白喉疫苗加破伤风疫苗)(Sanofi);Hib疫苗(ACTHib);DT(Massachusetts);Hib(PedvaxHib);Hib/Hep B(Comvax);Hep A(Havrix),甲型肝炎疫苗;Hep A(Vaqta),甲型肝炎疫苗;Hep B(Engerix-B),乙型肝炎疫苗;Hep B(Recombivax),乙型肝炎疫苗;HepA/HepB疫苗(Twinrix);人乳头瘤病毒(HPV)(Gardasil);流感疫苗(Afluria);流感疫苗(Fluarix);
流感疫苗(Flulaval);流感疫苗(Fluvirin);流感疫苗(FLuzone);流感疫苗(FluMist);
IPV(Ipol),脊髓灰质炎疫苗;日本脑炎疫苗(JE-Vax);日本脑炎疫苗(Ixiaro);脑膜炎球菌疫苗(Menactra);MMR疫苗(MMR-II);MMRV疫苗(ProQuad);肺炎球菌疫苗(Pneumovax);
肺炎球菌疫苗(Prevnar);灭活脊髓灰质炎病毒(Poliovax),脊髓灰质炎疫苗;狂犬疫苗(Imovax);狂犬疫苗(RabAvert);轮状病毒疫苗(RotaTeq);轮状病毒疫苗(Rotarix);Td疫苗(Decavac);Td疫苗(Massachusetts);Tdap疫苗(Adacel);Tdap疫苗(Boostrix);伤寒(灭活Typhim Vi),斑疹伤寒疫苗;伤寒(口服-Ty21a),斑疹伤寒疫苗;牛痘苗(ACAM2000);
水痘疫苗(Varivax);黄热病疫苗(YF-Vax);带状疱疹疫苗(Zostavax);以及上述疫苗产品的任意组合。
[0202] 40.如段1-39中任一项所述的方法,其中,所述丝素蛋白基质与所述活性试剂的比例为约1:1000-约1000:1。
[0203] 41.一种稳定储存的组合物,所述组合物包含丝素蛋白基质和分布于其中的活性试剂,
[0204] 其中,当所述组合物(a)经受至少一个冷冻-解冻循环;或者(b)在0℃以上的温度下保存至少约24小时;或者(c)所述(a)和(b)两者均有时,所述活性试剂维持其至少约30%的初始生物活性。
[0205] 42.如段41所述的组合物,其中,所述活性试剂维持其至少约50%的初始生物活性。
[0206] 43.如段41或42所述的组合物,其中,所述活性试剂维持其至少约80%的初始生物活性。
[0207] 44.如段41-43中任一项所述的组合物,其中,将所述组合物保存至少约1个月。
[0208] 45.如段41-44中任一项所述的组合物,其中,将所述组合物保存至少约6个月。
[0209] 46.如段41-45中任一项所述的组合物,其中,所述组合物为膜、纤维、粒子、凝胶或水凝胶。
[0210] 47.如段41-46中任一项所述的组合物,其中,所述组合物为冻干的。
[0211] 48.如段41-47中任一项所述的组合物,其中,所述组合物为微粒化的。
[0212] 49.如段48所述的组合物,其中,所述微粒化的组合物为纳米粒子或微米粒子。
[0213] 50.如段49所述的组合物,其中,所述纳米粒子或微米粒子的大小为约10nm-约1000μm。
[0214] 51.如段41-50中任一项所述的组合物,其进一步包含分布遍及所述丝素蛋白基质的添加剂。
[0215] 52.如段51所述的组合物,其中,所述添加剂选自于:稳定剂、药学上可接受的载体,或上述添加剂的任意组合。
[0216] 53.如段41-52中任一项所述的组合物,其中,在约0℃-室温以上的温度下保存所述组合物。
[0217] 54.如段41-53中任一项所述的组合物,其中,在约室温-约37℃的温度下保存所述组合物。
[0218] 55.如段41-54中任一项所述的组合物,其中,在高于37℃的温度下保存所述组合物。
[0219] 56.如段41-55中任一项所述的组合物,其中,在光照下保存所述组合物。
[0220] 57.如段41-56中任一项所述的组合物,其中,在至少约10%的相对湿度下保存所述组合物。
[0221] 58.如段41-57中任一项所述的组合物,其中,所述活性试剂选自于由下列活性试剂所组成的组:蛋白质、肽、抗原、免疫原、疫苗、抗体或抗体的部分、抗体样分子、酶、核酸、siRNA、shRNA、适配子、病毒、细菌、小分子、细胞、光合与能量收集化合物、增味剂、抗生素、治疗剂、诊断剂、病毒载体、抗毒剂,以及上述活性试剂的任意组合。
[0222] 59.如段41-58中任一项所述的组合物,其中,所述活性试剂为免疫原。
[0223] 60.如段59所述的组合物,其中,所述免疫原选自于由下列免疫原所组成的组:杀灭的病原体、活的减毒病原体、蛋白质亚单位及其缀合物、灭活的毒素、以及合成肽、碳水化合物、以及抗原。
[0224] 61.如段59或60所述的组合物,其中,所述免疫原源自于:乙型肝炎病毒、B型流感嗜血杆菌、脊髓灰质炎病毒、C型脑膜炎奈瑟菌、流感、水痘、或者结核分枝杆菌卡介苗、破伤风类毒素、白喉类毒素、以及百日咳博德特氏菌。
[0225] 62.如段59或60所述的组合物,其中,所述免疫原为联合免疫原,所述联合免疫原选自于由下列联合免疫原所组成的组:DTaP、DTwP、DTwP hepB、DTP hep B Hib、DTaP hep B Hib IPV,以及上述联合免疫原的任意组合。
[0226] 63.如段59或60所述的组合物,其中,所述免疫原为活的减毒病毒。
[0227] 64.如段63所述的组合物,其中,所述活的减毒病毒为包膜病毒。
[0228] 65.如段64所述的组合物,其中,所述包膜病毒选自于由下列包膜病毒所组成的组:副粘液病毒科、披膜病毒科、正粘液病毒科、黄病毒科、疱疹病毒科、弹状病毒、逆转录病毒科,以及上述包膜病毒的任意组合。
[0229] 66.如段63-65中任一项所述的组合物,其中,所述病毒为水痘。
[0230] 67.如段63-65中任一项所述的组合物,其中,所述病毒为流感病毒。
[0231] 68.如段63所述的组合物,其中,所述活的减毒病毒导致麻疹、腮腺炎、或风疹。
[0232] 69.如段59或60所述的组合物,其中,所述免疫原为活的减毒非包膜病毒。
[0233] 70.如段69所述的组合物,其中,所述非包膜病毒为轮状病毒、呼肠孤病毒、肝炎病毒、狂犬病毒或脊髓灰质炎病毒。
[0234] 71.如段59所述的组合物,其中,所述免疫原为细菌。
[0235] 72.如段71所述的组合物,其中,所述细菌为结核分枝杆菌卡介苗或百日咳博德特氏菌。
[0236] 73.如段59所述的组合物,其中,所述免疫原为细菌亚单位。
[0237] 74.如段73所述的组合物,其中,所述细菌亚单位源自于:C型脑膜炎奈瑟菌、B型流感嗜血杆菌、肺炎链球菌、或B族链球菌。
[0238] 75.如段73所述的组合物,其中,所述细菌亚单位为多糖。
[0239] 76.如段59所述的组合物,其中,所述免疫原为病毒亚单位。
[0240] 77.如段76所述的组合物,其中,所述病毒亚单位源自于乙型肝炎病毒或人乳头瘤病毒。
[0241] 78.如段59所述的组合物,其中,所述免疫原为重组体。
[0242] 79.如段59所述的组合物,其中,所述免疫原为疫苗产品,所述疫苗产品选自于由下列疫苗产品所组成的组:炭疽疫苗(BioThrax);BCG(卡介苗)(Tice、Mycobax);DTaP(Daptacel);DTaP(Infanrix);DTaP(Tripedia);DTaP/Hib(TriHIBit);DTaP-IPV(Kinrix);DTaP-HepB-IPV(Pediarix);DTaP-IPV/Hib(Pentacel);DT(白喉疫苗加破伤风疫苗)(Sanofi);Hib疫苗(ACTHib);DT(Massachusetts);Hib(PedvaxHib);Hib/Hep B(Comvax);Hep A(Havrix),甲型肝炎疫苗;Hep A(Vaqta),甲型肝炎疫苗;Hep B(Engerix-B),乙型肝炎疫苗;Hep B(Recombivax),乙型肝炎疫苗;HepA/HepB疫苗(Twinrix);人乳头瘤病毒(HPV)(Gardasil);流感疫苗(Afluria);流感疫苗(Fluarix);
流感疫苗(Flulaval);流感疫苗(Fluvirin);流感疫苗(FLuzone);流感疫苗(FluMist);
IPV(Ipol),脊髓灰质炎疫苗;日本脑炎疫苗(JE-Vax);日本脑炎疫苗(Ixiaro);脑膜炎球菌疫苗(Menactra);MMR疫苗(MMR-II);MMRV疫苗(ProQuad);肺炎球菌疫苗(Pneumovax);
肺炎球菌疫苗(Prevnar);灭活脊髓灰质炎病毒(Poliovax),脊髓灰质炎疫苗;狂犬疫苗(Imovax);狂犬疫苗(RabAvert);轮状病毒疫苗(RotaTeq);轮状病毒疫苗(Rotarix);Td疫苗(Decavac);Td疫苗(Massachusetts);Tdap疫苗(Adacel);Tdap疫苗(Boostrix);伤寒(灭活Typhim Vi),斑疹伤寒疫苗;伤寒(口服-Ty21a),斑疹伤寒疫苗;牛痘苗(ACAM2000);
水痘疫苗(Varivax);黄热病疫苗(YF-Vax);带状疱疹疫苗(Zostavax);以及上述疫苗产品的任意组合。
[0243] 80.如段41-79中任一项所述的组合物,其中,所述丝素蛋白基质与所述活性试剂的比例为约1:1000-约1000:1。
[0244] 81.一种制备如段41-80中任一项所述的稳定储存的组合物的方法,所述方法包括下列步骤:
[0245] a.提供包含至少一种活性试剂的丝素蛋白溶液;以及
[0246] b.对步骤(a)的丝素蛋白溶液进行干燥,形成固态丝素蛋白,从而获得所述组合物,所述组合物中的所述至少一种活性试剂在储存时维持其至少约30%的初始生物活性。
[0247] 82.如段81所述的方法,其中,所述干燥为冻干。
[0248] 83.如段81所述的方法,其中,所述干燥为空气干燥。
[0249] 84.如段81-83中任一项所述的方法,其进一步包括将来自步骤(b)的所述固态丝素蛋白进行冻干。
[0250] 85.如段81-84中任一项所述的方法,其进一步包括对所述组合物进行后处理。
[0251] 86.如段85所述的方法,其中,所述后处理改变所述组合物的结晶性。
[0252] 87.如段85或86所述的方法,其中,所述后处理为使所述组合物与甲醇或乙醇接触。
[0253] 88.如段85-87中任一项所述的方法,其中,所述后处理为使所述组合物经受切应力。
[0254] 89.如段85-88中任一项所述的方法,其中,所述后处理为使所述组合物经受电场。
[0255] 90.如段85-89中任一项所述的方法,其中,所述后处理为使所述组合物经受压力。
[0256] 91.如段85-90中任一项所述的方法,其中,所述后处理为使所述组合物与盐接触。
[0257] 92.如段81-91中任一项所述的方法,其进一步包括通过机械手段缩小步骤(b)的所述固态丝素蛋白,从而获得微粒化的粒子。
[0258] 93.如段92所述的方法,其中,所述机械手段选自于:微粒化、粉碎、压碎、研磨、冻干,或上述机械手段的任意组合。
[0259] 94.如段92或93所述的方法,其中,所述微粒化的粒子的大小为约10nm-约1000μm。
[0260] 95.如段81-94中任一项所述的方法,其中,所述至少一种活性试剂在储存时维持其至少约80%的初始生物活性。
[0261] 96.如段81-95中任一项所述的方法,其中,在至少约6个月的时期内进行所述储存。
[0262] 97.如段81-96中任一项所述的方法,其中,在约室温-约37℃的温度下进行所述储存。
[0263] 98.如段81-97中任一项所述的方法,其中,在高于37℃的温度下进行所述储存。
[0264] 99.一种包括保存免疫原性组合物的步骤的方法,其中,所述组合物包含丝素蛋白基质和分布于其中的至少一种免疫原,
[0265] 其中,当所述组合物(a)经受至少一个冷冻-解冻循环;或者(b)在0℃以上的温度下保存至少约24小时;或者(c)所述(a)和(b)两者均有时,所述免疫原维持其至少约30%的初始免疫原性。
[0266] 100.如段99所述的方法,其中,所述免疫原维持其至少约50%的初始免疫原性。
[0267] 101.如段99或100所述的方法,其中,所述免疫原维持其至少约80%的初始免疫原性。
[0268] 102.如段99-101中任一项所述的方法,其中,将所述组合物保存至少约1个月。
[0269] 103.如段99-102中任一项所述的方法,其中,将所述组合物保存至少约6个月。
[0270] 104.如段99-103中任一项所述的方法,其中,所述组合物为膜、纤维、粒子、凝胶或水凝胶。
[0271] 105.如段99-104中任一项所述的方法,其中,所述组合物为冻干的。
[0272] 106.如段99-105中任一项所述的方法,其中,所述组合物为微粒化的。
[0273] 107.如段106所述的方法,其中,所述微粒化的组合物为纳米粒子或微米粒子。
[0274] 108.如段107所述的方法,其中,所述纳米粒子或微米粒子的大小为约10nm-约1000μm。
[0275] 109.如段99-108中任一项所述的方法,其中,所述组合物进一步包含分布遍及所述丝素蛋白基质的添加剂。
[0276] 110.如段109所述的方法,其中,所述添加剂选自于由如下添加剂所组成的组:稳定剂、药学上可接受的载体,以及上述添加剂的任意组合。
[0277] 111.如段110所述的方法,其中,所述稳定剂选自于由如下稳定剂所组成的组:糖、糖醇、离子、表面活性剂,以及上述稳定剂的任意组合。
[0278] 112.如段111所述的方法,其中,所述糖为蔗糖。
[0279] 113.如段99-112中任一项所述的方法,其中,在约0℃-室温以上的温度下保存所述组合物。
[0280] 114.如段99-113中任一项所述的方法,其中,在约室温-约37℃的温度下保存所述组合物。
[0281] 115.如段99-114中任一项所述的方法,其中,在高于37℃的温度下保存所述组合物。
[0282] 116.如段99-115中任一项所述的方法,其中,在光照下保存所述组合物。
[0283] 117.如段99-116中任一项所述的方法,其中,在至少约10%的相对湿度下保存所述组合物。
[0284] 118.如段99-117中任一项所述的方法,其中,所述免疫原选自于由下列免疫原所组成的组:杀灭的病原体、活的减毒病原体、蛋白质亚单位及其缀合物、灭活的毒素、合成肽、碳水化合物、抗原,以及上述免疫原的任意组合。
[0285] 119.如段99-118中任一项所述的方法,其中,所述免疫原源自于:乙型肝炎病毒、B型流感嗜血杆菌、脊髓灰质炎病毒、C型脑膜炎奈瑟菌、流感、水痘、或者结核分枝杆菌卡介苗、破伤风类毒素、白喉类毒素、以及百日咳博德特氏菌。
[0286] 120.如段99-118中任一项所述的方法,其中,所述免疫原为联合免疫原,所述联合免疫原选自于由下列联合免疫原所组成的组:DTaP、DTwP、DTwP hepB、DTP hep B Hib、DTaP hep B Hib IPV,以及上述联合免疫原的任意组合。
[0287] 121.如段99-118中任一项所述的方法,其中,所述免疫原为活的减毒病毒。
[0288] 122.如段121所述的方法,其中,所述活的减毒病毒为包膜病毒。
[0289] 123.如段122所述的方法,其中,所述包膜病毒选自于由下列包膜病毒所组成的组:副粘液病毒科、披膜病毒科、正粘液病毒科、黄病毒科、疱疹病毒科、弹状病毒、逆转录病毒科,以及上述包膜病毒的任意组合。
[0290] 124.如段121-123中任一项所述的方法,其中,所述病毒为水痘。
[0291] 125.如段121-123中任一项所述的方法,其中,所述病毒为流感病毒。
[0292] 126.如段121所述的方法,其中,所述活的减毒病毒导致麻疹、腮腺炎、或风疹。
[0293] 127.如段99-118中任一项所述的方法,其中,所述免疫原为活的减毒非包膜病毒。
[0294] 128.如段127所述的方法,其中,所述非包膜病毒为轮状病毒、呼肠孤病毒、肝炎病毒、狂犬病毒或脊髓灰质炎病毒。
[0295] 129.如段99-118中任一项所述的方法,其中,所述免疫原为细菌。
[0296] 130.如段129所述的方法,其中,所述细菌为结核分枝杆菌卡介苗或百日咳博德特氏菌。
[0297] 131.如段99-118中任一项所述的方法,其中,所述免疫原为细菌亚单位。
[0298] 132.如段131所述的方法,其中,所述细菌亚单位源自于:C型脑膜炎奈瑟菌、B型流感嗜血杆菌、肺炎链球菌、或B族链球菌。
[0299] 133.如段131所述的方法,其中,所述细菌亚单位为多糖。
[0300] 134.如段99-118中任一项所述的方法,其中,所述免疫原为病毒亚单位。
[0301] 135.如段134所述的方法,其中,所述病毒亚单位源自于乙型肝炎病毒或人乳头瘤病毒。
[0302] 136.如段99-118中任一项所述的方法,其中,所述免疫原为重组体。
[0303] 137.如段99-118中任一项所述的方法,其中,所述免疫原为疫苗产品,所述疫苗产品选自于由下列疫苗产品所组成的组:炭疽疫苗(BioThrax);BCG(卡介苗)(Tice、Mycobax);DTaP(Daptacel);DTaP(Infanrix);DTaP(Tripedia);DTaP/Hib(TriHIBit);DTaP-IPV(Kinrix);DTaP-HepB-IPV(Pediarix);DTaP-IPV/Hib(Pentacel);DT(白喉疫苗加破伤风疫苗)(Sanofi);Hib疫苗(ACTHib);DT(Massachusetts);Hib(PedvaxHib);
Hib/Hep B(Comvax);Hep A(Havrix),甲型肝炎疫苗;Hep A(Vaqta),甲型肝炎疫苗;
Hep B(Engerix-B),乙型肝炎疫苗;Hep B(Recombivax),乙型肝炎疫苗;HepA/HepB疫苗(Twinrix);人乳头瘤病毒(HPV)(Gardasil);流感疫苗(Afluria);流感疫苗(Fluarix);
流感疫苗(Flulaval);流感疫苗(Fluvirin);流感疫苗(FLuzone);流感疫苗(FluMist);
IPV(Ipol),脊髓灰质炎疫苗;日本脑炎疫苗(JE-Vax);日本脑炎疫苗(Ixiaro);脑膜炎球菌疫苗(Menactra);MMR疫苗(MMR-II);MMRV疫苗(ProQuad);肺炎球菌疫苗(Pneumovax);
肺炎球菌疫苗(Prevnar);灭活脊髓灰质炎病毒(Poliovax),脊髓灰质炎疫苗;狂犬疫苗(Imovax);狂犬疫苗(RabAvert);轮状病毒疫苗(RotaTeq);轮状病毒疫苗(Rotarix);Td疫苗(Decavac);Td疫苗(Massachusetts);Tdap疫苗(Adacel);Tdap疫苗(Boostrix);伤寒(灭活Typhim Vi),斑疹伤寒疫苗;伤寒(口服-Ty21a),斑疹伤寒疫苗;牛痘苗(ACAM2000);
水痘疫苗(Varivax);黄热病疫苗(YF-Vax);带状疱疹疫苗(Zostavax);以及上述疫苗产品的任意组合。
[0304] 138.如段99-137中任一项所述的方法,其中,所述丝素蛋白基质与所述免疫原的比例为约1:1000-约1000:1。
[0305] 139.一种稳定储存的免疫原性组合物,所述组合物包含丝素蛋白基质和分布于其中的免疫原,
[0306] 其中,当所述组合物(a)经受至少一个冷冻-解冻循环;或者(b)在0℃以上的温度下保存至少约24小时;或者(c)所述(a)和(b)两者均有时,所述免疫原维持其至少约30%的初始免疫原性。
[0307] 140.如段139所述的组合物,其中,所述免疫原维持其至少约50%的初始免疫原性。
[0308] 141.如段139或140所述的组合物,其中,所述免疫原维持其至少约80%的初始免疫原性。
[0309] 142.如段139-141中任一项所述的组合物,其中,将所述组合物保存至少约1个月。
[0310] 143.如段139-142中任一项所述的组合物,其中,将所述组合物保存至少约6个月。
[0311] 144.如段139-143中任一项所述的组合物,其中,所述组合物为膜、纤维、粒子、凝胶或水凝胶。
[0312] 145.如段139-144中任一项所述的组合物,其中,所述组合物为冻干的。
[0313] 146.如段139-145中任一项所述的组合物,其中,所述组合物为微粒化的。
[0314] 147.如段146所述的组合物,其中,所述微粒化的组合物为纳米粒子或微米粒子。
[0315] 148.如段147所述的组合物,其中,所述纳米粒子或微米粒子的大小为约10nm-约1000μm。
[0316] 149.如段139-148中任一项所述的组合物,其进一步包含分布遍及所述丝素蛋白基质的添加剂。
[0317] 150.如段149所述的组合物,其中,所述添加剂选自于由如下添加剂所组成的组:稳定剂、药学上可接受的载体,以及上述添加剂的任意组合。
[0318] 151.如段150所述的组合物,其中,所述稳定剂选自于由如下稳定剂所组成的组:糖、糖醇、离子、表面活性剂,以及上述稳定剂的任意组合。
[0319] 152.如段151所述的组合物,其中,所述糖为蔗糖。
[0320] 153.如段139-152中任一项所述的组合物,其中,在约0℃-室温以上的温度下保存所述组合物。
[0321] 154.如段139-153中任一项所述的组合物,其中,在约室温-约37℃的温度下保存所述组合物。
[0322] 155.如段139-154中任一项所述的组合物,其中,在高于37℃的温度下保存所述组合物。
[0323] 156.如段139-155中任一项所述的组合物,其中,在光照下保存所述组合物。
[0324] 157.如段139-156中任一项所述的组合物,其中,在至少约10%的相对湿度下保存所述组合物。
[0325] 158.如段139-157中任一项所述的组合物,其中,所述免疫原选自于由下列免疫原所组成的组:杀灭的病原体、活的减毒病原体、蛋白质亚单位及其缀合物、灭活的毒素、合成肽、碳水化合物、抗原,以及上述免疫原的任意组合。
[0326] 159.如段139-158中任一项所述的组合物,其中,所述免疫原源自于:乙型肝炎病毒、B型流感嗜血杆菌、脊髓灰质炎病毒、C型脑膜炎奈瑟菌、流感、水痘、或者结核分枝杆菌卡介苗、破伤风类毒素、白喉类毒素、以及百日咳博德特氏菌。
[0327] 160.如段139-158中任一项所述的组合物,其中,所述免疫原为联合免疫原,所述联合免疫原选自于由下列联合免疫原所组成的组:DTaP、DTwP、DTwP hepB、DTP hep B Hib、DTaP hep B Hib IPV,以及上述联合免疫原的任意组合。
[0328] 161.如段139-158中任一项所述的组合物,其中,所述免疫原为活的减毒病毒。
[0329] 162.如段161所述的组合物,其中,所述活的减毒病毒为包膜病毒。
[0330] 163.如段162所述的组合物,其中,所述包膜病毒选自于由下列包膜病毒所组成的组:副粘液病毒科、披膜病毒科、正粘液病毒科、黄病毒科、疱疹病毒科、弹状病毒、逆转录病毒科,以及上述包膜病毒的任意组合。
[0331] 164.如段161-163中任一项所述的组合物,其中,所述病毒为水痘。
[0332] 165.如段161-163中任一项所述的组合物,其中,所述病毒为流感病毒。
[0333] 166.如段161所述的组合物,其中,所述活的减毒病毒导致麻疹、腮腺炎、或风疹。
[0334] 167.如段139-158中任一项所述的组合物,其中,所述免疫原为活的减毒非包膜病毒。
[0335] 168.如段167所述的组合物,其中,所述非包膜病毒为轮状病毒、呼肠孤病毒、肝炎病毒、狂犬病毒或脊髓灰质炎病毒。
[0336] 169.如段139-158中任一项所述的组合物,其中,所述免疫原为细菌。
[0337] 170.如段169所述的组合物,其中,所述细菌为结核分枝杆菌卡介苗或百日咳博德特氏菌。
[0338] 171.如段139-158中任一项所述的组合物,其中,所述免疫原为细菌亚单位。
[0339] 172.如段171所述的组合物,其中,所述细菌亚单位源自于:C型脑膜炎奈瑟菌、B型流感嗜血杆菌、肺炎链球菌、或B族链球菌。
[0340] 173.如段171所述的组合物,其中,所述细菌亚单位为多糖。
[0341] 174.如段139-158中任一项所述的组合物,其中,所述免疫原为病毒亚单位。
[0342] 175.如段174所述的组合物,其中,所述病毒亚单位源自于乙型肝炎病毒或人乳头瘤病毒。
[0343] 176.如段139-158中任一项所述的组合物,其中,所述免疫原为重组体。
[0344] 177.如段139-158中任一项所述的组合物,其中,所述免疫原为疫苗产品,所述疫苗产品选自于由下列疫苗产品所组成的组:炭疽疫苗(BioThrax);BCG(卡介苗)(Tice、Mycobax);DTaP(Daptacel);DTaP(Infanrix);DTaP(Tripedia);DTaP/Hib(TriHIBit);DTaP-IPV(Kinrix);DTaP-HepB-IPV(Pediarix);DTaP-IPV/Hib(Pentacel);DT(白喉疫苗加破伤风疫苗)(Sanofi);Hib疫苗(ACTHib);DT(Massachusetts);Hib(PedvaxHib);
Hib/Hep B(Comvax);Hep A(Havrix),甲型肝炎疫苗;Hep A(Vaqta),甲型肝炎疫苗;
Hep B(Engerix-B),乙型肝炎疫苗;Hep B(Recombivax),乙型肝炎疫苗;HepA/HepB疫苗(Twinrix);人乳头瘤病毒(HPV)(Gardasil);流感疫苗(Afluria);流感疫苗(Fluarix);
流感疫苗(Flulaval);流感疫苗(Fluvirin);流感疫苗(FLuzone);流感疫苗(FluMist);
IPV(Ipol),脊髓灰质炎疫苗;日本脑炎疫苗(JE-Vax);日本脑炎疫苗(Ixiaro);脑膜炎球菌疫苗(Menactra);MMR疫苗(MMR-II);MMRV疫苗(ProQuad);肺炎球菌疫苗(Pneumovax);
肺炎球菌疫苗(Prevnar);灭活脊髓灰质炎病毒(Poliovax),脊髓灰质炎疫苗;狂犬疫苗(Imovax);狂犬疫苗(RabAvert);轮状病毒疫苗(RotaTeq);轮状病毒疫苗(Rotarix);Td疫苗(Decavac);Td疫苗(Massachusetts);Tdap疫苗(Adacel);Tdap疫苗(Boostrix);伤寒(灭活Typhim Vi),斑疹伤寒疫苗;伤寒(口服-Ty21a),斑疹伤寒疫苗;牛痘苗(ACAM2000);
水痘疫苗(Varivax);黄热病疫苗(YF-Vax);带状疱疹疫苗(Zostavax);以及上述疫苗产品的任意组合。
[0345] 178.如段139-177中任一项所述的组合物,其中,所述丝素蛋白基质与所述免疫原的比例为约1:1000-约1000:1。
[0346] 179.一种制备如段139-178中任一项所述的稳定储存的免疫原性组合物的方法,所述方法包括下列步骤:
[0347] a.提供包含至少一种免疫原的丝素蛋白溶液;以及
[0348] b.对步骤(a)的丝素蛋白溶液进行干燥,形成固态丝素蛋白,从而获得所述免疫原性组合物,所述组合物中的所述至少一种免疫原在储存时维持其至少约30%的初始免疫原性。
[0349] 180.如段179所述的方法,其中,所述干燥为冻干。
[0350] 181.如段179所述的方法,其中,所述干燥为空气干燥。
[0351] 182.如段179-181中任一项所述的方法,其进一步包括将来自步骤(b)的所述固态丝素蛋白进行冻干。
[0352] 183.如段179-182中任一项所述的方法,其进一步包括对所述组合物进行后处理。
[0353] 184.如段183所述的方法,其中,所述后处理改变所述组合物的结晶性。
[0354] 185.如段183或184所述的方法,其中,所述后处理为使所述组合物与甲醇或乙醇接触。
[0355] 186.如段183-185中任一项所述的方法,其中,所述后处理为使所述组合物经受切应力。
[0356] 187.如段183-186中任一项所述的方法,其中,所述后处理为使所述组合物经受电场。
[0357] 188.如段183-187中任一项所述的方法,其中,所述后处理为使所述组合物经受压力。
[0358] 189.如段183-188中任一项所述的方法,其中,所述后处理为使所述组合物与盐接触。
[0359] 190.如段179-189中任一项所述的方法,其进一步包括通过机械手段缩小步骤(b)的所述固态丝素蛋白,从而获得微粒化的粒子。
[0360] 191.如段190所述的方法,其中,所述机械手段选自于:微粒化、粉碎、压碎、研磨、冻干,或上述机械手段的任意组合。
[0361] 192.如段190或191所述的方法,其中,所述微粒化的粒子的大小为约10nm-约1000μm。
[0362] 193.如段179-192中任一项所述的方法,其中,所述至少一种免疫原在储存时维持其至少约80%的初始免疫原性。
[0363] 194.如段179-193中任一项所述的方法,其中,在至少6个月的时期内进行所述储存。
[0364] 195.如段179-194中任一项所述的方法,其中,在约室温-约37℃的温度下进行所述储存。
[0365] 196.如段179-195中任一项所述的方法,其中,在高于37℃的温度下进行所述储存。
[0366] 197.一种免疫原性组合物,所述免疫原性组合物包含丝素蛋白基质和分布于其中的至少一种活的减毒病毒,
[0367] 其中,当所述组合物(a)经受至少一个冷冻-解冻循环;或者(b)在0℃以上的温度下保存至少约24小时时,所述活的减毒病毒维持其至少约30%的初始感染性。
[0368] 198.如段197所述的组合物,其中,所述病毒维持其至少约50%的初始感染稳定性。
[0369] 199.如段197或198所述的组合物,其中,所述病毒维持其至少约80%的初始感染稳定性。
[0370] 200.如段197-199中任一项所述的组合物,其中,将所述组合物保存至少约6个月。
[0371] 201.如段197-200中任一项所述的组合物,其中,在约室温-约37℃的温度下保存所述组合物。
[0372] 202.如段197-201中任一项所述的组合物,其中,在高于37℃的温度下保存所述组合物。
[0373] 203.如段197-202中任一项所述的组合物,其中,所述组合物为冻干的。
[0374] 204.如段197-203中任一项所述的组合物,其中,所述活的减毒病毒为包膜病毒。
[0375] 205.如段204所述的组合物,其中,所述包膜病毒选自于由下列包膜病毒所组成的组:副粘液病毒科、披膜病毒科、正粘液病毒科、黄病毒科、逆转录病毒科、疱疹病毒科、弹状病毒,以及上述包膜病毒的任意组合。
[0376] 206.如段204或205所述的组合物,其中,所述包膜病毒为水痘、麻疹病毒、腮腺炎病毒、德国麻疹病毒、呼吸道合胞病毒、黄热病病毒、或流感病毒。
[0377] 207.如段197-203中任一项所述的组合物,其中,所述活的减毒病毒为非包膜病毒。
[0378] 208.如段207所述的组合物,其中,所述非包膜病毒为轮状病毒。
[0379] 209.如段197-208中任一项所述的组合物,其进一步包含添加剂。
[0380] 210.如段209所述的组合物,其中,所述添加剂选自于由如下添加剂所组成的组:稳定剂、药学上可接受的载体,以及上述添加剂的任意组合。
[0381] 211.如段210所述的组合物,其中,所述稳定剂选自于由如下稳定剂所组成的组:糖、糖醇、离子、表面活性剂,以及上述稳定剂的任意组合。
[0382] 212.如段211所述的组合物,其中,所述糖为蔗糖。
[0383] 213.一种无细胞的稳定化病毒制剂,所述制剂包含丝素蛋白基质和分布于其中的感染性病毒,
[0384] 其中,当所述制剂(a)经受至少一个冷冻-解冻循环;或者(b)在0℃以上的温度下保存至少约24小时;或者(c)所述(a)和(b)两者均有时,所述病毒维持其至少约30%的初始感染性。
[0385] 214.如段213所述的制剂,其中,所述病毒和所述丝素蛋白基质为冻干的。
[0386] 215.如段213或214所述的制剂,其中,所述病毒维持其至少约80%的初始感染性。
[0387] 216.如段213-215中任一项所述的制剂,其中,将所述制剂保存至少约6个月。
[0388] 217.如段213-216中任一项所述的制剂,其中,在约室温-约37℃的温度下保存所述制剂。
[0389] 218.如段213-217中任一项所述的制剂,其中,在高于37℃的温度下保存所述制剂。
[0390] 219.如段213-218中任一项所述的制剂,其中,所述病毒为包膜病毒。
[0391] 220.如段213-218中任一项所述的制剂,其中,所述病毒为呼吸道合胞病毒。
[0392] 221.如段213-218中任一项所述的制剂,其中,所述病毒为非包膜病毒。
[0393] 222.如段213-218中任一项所述的制剂,其中,所述病毒为噬菌体。
[0394] 223.如段213-218中任一项所述的制剂,其中,所述病毒为重组体病毒。
[0395] 224.如段213-218中任一项所述的制剂,其中,所述病毒为病毒载体。
[0396] 225.如段224所述的制剂,其中,所述病毒载体选自于由下列病毒载体所组成的组:逆转录载体、慢病毒载体、腺病毒载体、腺病毒相关病毒载体,以及上述病毒载体的任意组合。
[0397] 226.一种制剂,所述制剂包含如段41-80、139-178或197-212中任一项所述的至少一种组合物。
[0398] 227.如段226所述的制剂,其中,所述制剂选自于由下列剂型所组成的组:片剂、锭剂、悬浮液剂、自由流动的粉末剂、气雾剂、胶囊剂,以及上述剂型的任意组合。
[0399] 228.如段226-227中任一项所述的制剂,其进一步包含药学上可接受的载体。
[0400] 229.一种包装,所述包装包含如段41-80、139-178或197-212中任一项所述的至少一种组合物;或者如段213-225或226-228中任一项所述的制剂。
[0401] 230.如段229所述的包装,其中,所述容器选自于由下列容器所组成的组:小瓶、安瓿、胶囊、管、注射器、瓶、小包,以及上述容器的任意组合。
[0402] 231.如段230所述的包装,其中,所述注射器是无针注射器。
[0403] 232.一种试剂盒,所述试剂盒包含如段229-231中任一项所述的包装;以及药学上可接受的溶液。
[0404] 233.如段232所述的试剂盒,其进一步包含至少一个注射器。
[0405] 234.如段232或233所述的试剂盒,其进一步包含消毒剂。
[0406] 235.一种递送装置,所述递送装置包含至少一个具有出料口的腔体,
[0407] 其中,所述至少一个腔体包含预先确定量的如段41-80、139-178或191-212中任一项所述的组合物;以及
[0408] 所述出料口向所述组合物提供出口。
[0409] 236.如段235所述的装置,其中,所述递送装置选自于由下列递送装置所组成的组:注射器、干粉注射器、鼻喷雾器、雾化器、植入物,以及上述递送装置的任意组合。
[0410] 237.如段235所述的装置,其中,所述植入物为微芯片。
[0411] 238.如段235-237中任一项所述的装置,其进一步包含促动器,以对所述组合物经由所述出料口的释放进行控制。
[0412] 对于尚未列出的范围,本领域技术人员应理解的是,可对本文描述并阐述的多个实施方式中的任何一个作出进一步的改进,以引入本文所公开的任何其它实施方式中示出的特征。
[0413] 下列实施例阐明了本发明的一些实施方式和一些方面。对相关领域技术人员来说显而易见的是,在不改变本发明的精神或范围的情况下可进行各种修改、增加、替换等,并且这些修改和变化都落入所附权利要求书所限定的本发明的范围之内。下述实施例不以任何方式限制本发明。
[0414] 实施例
[0415] 实施例1.MMR疫苗在丝素蛋白中的稳定性
[0416] 使用了商业批次的三价疫苗 II(麻疹、腮腺炎和风疹病毒活疫苗)(Merck&Co.,INC.,USA)。这一冻干的活病毒疫苗含有Ender's减毒Edmonston麻疹、Jeryl Lynn腮腺炎、以及Wistar RA27/3风疹病毒。在使用之前,将所述疫苗在提供的稀释剂中复溶,并且每0.5ml剂量含有不低于1,000TCID50(组织培养感染剂量)的麻疹病毒;
12,500TCID50的腮腺炎病毒;以及1,000TCID50的风疹病毒。制造条件表明必须在复溶8小时内使用所述疫苗,并在4℃储存,否则便将其废弃。每一剂量的疫苗被计算为含有山梨糖醇(14.5mg)、磷酸钠、蔗糖(1.9mg)、氯化钠、水解明胶(14.5mg)、重组人白蛋白(≤0.3mg)、胎牛血清(<1ppm)、其它缓冲和媒介成分以及大约25mcg的新霉素。该产品不含防腐剂。在复溶之前,所述冻干疫苗为浅黄色致密结晶体(compact crystalline plug)。
[0417] 按照MMR与丝溶液的重量比为1:1的浓度,制备了灭菌的9%(w/v)丝溶液和复溶MMR疫苗的混合物。随后将膜浇注至聚四氟乙烯(Teflon)涂覆的表面。允许在室温(RT)下、在无菌罩中使所述膜干燥24hr。还制备了复溶疫苗在溶液中24hr的样品以用于比较。
[0418] 通过将所述疫苗复溶、看做1log10稀释,随后将疫苗溶液进行由1.5log10至3.5log10、每次步进(step)0.5log10的连续稀释(serial dilution)来生成标准曲线。将丝膜再溶解于小份水中,其将溶液中疫苗的终浓度稀释至1.5log10。使Vero细胞(非洲绿猴肾细胞;ATCC,Manassas,VA)生长至汇合(confluence)、胰蛋白酶处理、计数、调整至50,000细胞/ml,并铺于24孔板中。随后,将50μl疫苗稀释液、再溶解的丝膜和储存24小时的复溶疫苗添加至Vero细胞的孔中,三次重复。使病毒在细胞内复制3天,随后将RNA由感染细胞分离、转化为cDNA并使用qPCR定量。目标RNA的量和PCR循环间存在对数线性关系(荧光升至高于背景值时(循环阈值,Ct))。存在于样品中的病毒存活力越高,则Ct值越低。
[0419] qPCR感染性分析的结果显示,在疫苗稀释度的增长与Ct值上升之间存在线性关系(图1)。该分析产生了低疫苗稀释度含有较大量的活病毒、从而产生较低的Ct值这一预期结果。将这一结果用作标准曲线,通过由丝包封的疫苗样品和复溶疫苗样品的Ct值推算最终log10稀释度,可对丝包封的疫苗样品和复溶疫苗样品的结果进行定量。
[0420] 随后,将所述log10稀释值转化为log10TCID50/剂量的效价值。随后将MMR-丝膜的log10TCID50/剂量值与浇注时的初始稀释度(1.5log10稀释)的log10TCID50/剂量相联系,产生残余效价。在室温下储存24hr的复溶对照疫苗未产生Ct值,表明其即使未丧失全部效价、也几乎丧失了全部效价。对于麻疹、腮腺炎和风疹,由所述MMR-丝膜回复的初始效价分别为75.89%、58.04%和62.48%(表1)。
[0421] 表1.1:1(w/w)MMR-丝膜的初始效价回复
[0422]
[0423] 对于在室温下储存相同时间的复溶对照疫苗(残余效价低于检测下限)而言,这是实质上的改进。丝包埋的疫苗中效价的初始损失可能是在膜制备期间由对冻干疫苗进行复溶产生、而非由于疫苗与丝之间相互作用的效果。为了表明活性损失最有可能在MMR-丝彻底干燥为膜之前、仍在溶液中之时发生,在细胞接种前,在室温下将小份冻干疫苗在水中复溶24hr、18hr、12hr和6hr(图2)。
[0424] 如图2所示,所述疫苗在溶液中保留的时间越长,其效价的降低就越明显。在细胞接种前在溶液中保留24hr的疫苗样品对于任何病毒组分均不显出残余效价。一旦将所述膜干燥并储存,所述丝即显出对于所述疫苗的稳定效应。如图3所示,在室温下储存3个月后,所述丝膜对于麻疹、腮腺炎和风疹病毒分别维持了96%、92%和80%的效价。该结果表明仅储存于未加工的丝膜中的MMR疫苗就能够延长商业化制备的冻干疫苗在室温下的效价。
[0425] 实施例2.添加剂的添加
[0426] 对添加稳定化添加剂能否进一步提升病毒的热稳定性进行了检验。同样为活的减毒疫苗的口服脊髓灰质炎病毒疫苗(OPV)已被广泛研究、并在添加MgCl2稳定剂的情况下得以商业化制备。已经进行了稳定化添加剂对OPV的效果的研究,并且先前测试的稳定剂包括蔗糖、硫酸镁和氯化镁(Mirchamsy等,1978;Rapp等,1965)。随后由MMR、丝和稳定剂的溶液制备MMR-丝膜。以1M MgCl2、1M MgSO4和70%蔗糖稳定的MMR-膜的初始回复示于图4中。尽管对于OPV而言,MgCl2是优异的稳定剂,然而其对于麻疹、腮腺炎和风疹而言具有负稳定效应。MgSO4对疫苗的麻疹组分提供了最佳稳定效果,然而对腮腺炎几乎无效果、且对风疹具有负效果。然而,蔗糖对于所述MMR疫苗的全部三种组分均起到稳定剂的作用。此外,相对于仅为MMR-丝膜的初始回复(表1)而言,在蔗糖中稳定化的病毒组分的初始回复显示出一定改善。并且,与在室温下复溶于水中的疫苗(图2)相比,在室温下于70%蔗糖溶液中复溶的疫苗(图5)在24hr内显出维持了更高的病毒效价。与复溶于水中的MMR疫苗相比,复溶于70%蔗糖中的疫苗还提供了在4℃和37℃的更佳的稳定性(图6)。使用如蔗糖的稳定化添加剂可使疫苗活性在膜制备期间的初始损失最小化。在膜干燥工序期间,蔗糖可在MMR和丝仍在溶液中时稳定所述疫苗。
[0427] 实施例3.麻疹、腮腺炎和风疹疫苗的长期稳定化
[0428] 我们显示了在高达45℃的储存温度下,包埋于丝膜和冻干丝膜中的疫苗在半衰期方面得以显著延长。在丝存在下,病毒蛋白质的降解速率得以降低。生物物理学表征已经证明,通过降低储存期间的残余水分、并提高所述病毒蛋白质的熔点,丝向疫苗提供了结构稳定性。因此,我们呈现了一种能延长疫苗效价、而无需冷藏的疫苗稳定化系统。可将所述丝模塑(molded)为各种各样的可针对特定的稳定化和递送需求而定制的递送系统,包括膜、水凝胶、微球和微针。根据丝的生物相容性及FDA批准将其用于生物医学装置中的历史,这一物质系统已可在体外或体内用作递送工具。
[0429] 固定于丝膜中之后的残余疫苗活性
[0430] 以疫苗与丝的重量比为1:1来制备所述丝膜。在制备所述膜后立即测定初始回复疫苗效价,以确定在膜制造工序期间损失了多少疫苗感染性。为了将所述疫苗并入丝溶液,冻干疫苗必须进行复溶。所述冻干疫苗复溶后立即进行细胞接种。一旦所述冻干疫苗得以复溶,则效价迅速下降(Galazka,1998,WHO2006),并且,根据制造商的说明,MMR疫苗必须在复溶8小时以内使用,否则即将其弃用。完全干燥后,即将含有相同量冻干疫苗的膜溶解于无菌水中,并将该溶液加至Vero细胞用于效价测试。将丝膜效价的结果与冻干疫苗的效价结果进行了比较,从而确定初始回复效价。由MMR-丝膜观测到的初始残余效价归纳于表2中,麻疹、腮腺炎和风疹组分的残余效价分别为84.7%、73.9%和87.0%。
[0431] 表2.包埋疫苗的丝膜和冻干丝膜的初始回复病毒效价的比较
[0432]
[0433] 使用这一空气干燥法制造了足够多的包埋疫苗的丝膜并储存以用于6个月的研究,从而评估在四个不同温度(4℃、25℃、37℃和45℃)下的长期稳定性。然而,我们假设观察到的膜的病毒效价的主要损失发生于所述MMR-丝处于溶液中以用于制备工序的期间。为了验证这一假设,将冻干疫苗复溶于制造商提供的稀释剂中,并在4℃、25℃和37℃储存所述溶液(图8A-图8C)。效价测量在复溶后6小时、12小时、18小时和24小时后进行。与预测相吻合,所述疫苗在溶液中数小时内便迅速丧失效价,并且在较高温度下储存导致效价更迅速地下降。与膜的干燥时间相比,4℃在溶液中12小时的情况下,对于麻疹组分、腮腺炎组分和风疹组分,所维持的残余效价分别为53.4%、73.4%和76.3%。在25℃12小时的情况下,麻疹组分、腮腺炎组分和风疹组分所维持的残余效价分别仅为57.8%、53.1%和46.6%。对于在37℃复溶12小时的疫苗,观测到更加急剧的下降,对于麻疹、腮腺炎和风疹而言,所回复的效价分别仅为36.5%、46.6%和23.9%。基于这些结果,我们假设降低初始疫苗在溶液中的时间将改善回复。因此,制备了冻干的MMR-丝膜,以缩短MMR-丝溶液阶段。冻干工序显著提升了在丝膜中的疫苗的长期热稳定性。如表2所示,与由空气干燥的丝膜回复的初始效价相比,冻干膜将麻疹、腮腺炎和风疹的回复分别改善至94.7%、89.6%和98.4%。
[0434] 包封疫苗的丝膜的热稳定性
[0435] 将疫苗稳定性定量表达为由储存后的膜观测到的残余效价。对残余效价进行测量,并与初始残余效价(表2)进行比较,以对疫苗稳定性进行说明。对在丝膜中储存六个月的疫苗的全部病毒组分的残余效价进行测量,除了在4℃的储存这一例外,总体趋势显示所述丝膜增强了麻疹、腮腺炎和风疹病毒粒子的稳定化,这由与在同样温度下储存的制造商的冻干疫苗相比而言显示出了更高的残余效价体现出。图9A-图9D显示出了在4℃、25℃、37℃和45℃储存6个月的冻干MMR疫苗粉末与丝膜疫苗的麻疹组分的残余效价的比较。除了在4℃的储存这一例外,所述丝膜显示出更高的疫苗残余效价。即使在4℃,所述丝膜的残余效价与MMR粉末类似。粉末的残余效价并不波动,然而这一温度下,丝膜在测量的效价方面表现出更高的可变性。在最初3个月,所述丝膜以更高的回复残余效价胜过粉末。在后三个月中,所述丝膜表现出残余效价略微降低,而粉末的残余效价维持相对稳定。在6个月的研究结束时,储存于丝膜中的MMR疫苗的麻疹组分的残余效价为87.2%,相比之下所述粉末为92.2%。然而,当在25℃、37℃和45%储存时,所述丝膜显出改善的麻疹残余效价。在
25℃储存时,所述丝膜在各时间点显出更高的回复效价,并且在六个月结束时表现出83.9%的回复效价,相比之下,在六个月结束时粉末的回复效价为74.5%。
[0436] 由丝提供的稳定化对于在升高的温度(37℃和45℃)下储存的膜和粉末而言甚至更为明显。在37℃,所述丝膜在整个6个月的过程中在麻疹感染性的稳定性方面显示出显著改善,得到56.5%的回复效价,相比之下,所述粉末为9.9%。就在45℃储存的膜和粉末的情况而言,疫苗的麻疹组分在储存20周后完全丧失其效价,而丝膜在24周后仍维持了53.5%的活性。对于腮腺炎组分(图10A-图10D)和风疹组分(图11A-图11D),两者均显示出类似趋势。同样,类似于麻疹组分的结果,所述丝膜在37℃和45℃均显示出对腮腺炎组分更强的稳定化。在两个温度下,所述丝膜均在储存的第一个月期间显示出残余活性轻微下降,然而在第一个月以后,残余效价的下降则大为慢于储存的粉末的疫苗活性的下降。在该研究结束时,在37℃储存的丝膜维持了61.3%的腮腺炎感染性,而所述粉末维持了13.0%的感染性。在45℃储存6个月后,所述丝膜回复了59.6%的腮腺炎效价,而所述粉末在20周后完全丧失其效价。所述风疹组分在效价方面显示出类似趋势。对于在4℃、25℃、37℃和45℃储存的丝膜,分别回复了88.4%、78.4%、60.3%和58.3%的残余效价。除了在4℃储存的粉末这一例外,这些结果显示出,与粉末相比,所述丝提供了增强的稳定化作用和对效价的维持。所述粉末在4℃、25℃、37℃和45℃的残余效价分别为89.4%、56.3%、15.3%和0%。
[0437] 尽管初始制备了冻干丝膜以对在膜制造工序期间损失的疫苗初始回复进行改善,其在升高的温度下提供了甚至更高的疫苗稳定化作用。储存于冻干丝膜中的麻疹、腮腺炎和风疹组分的残余效价分别示于图12A-图12D、图13A-图13D、以及图14A-图14D中。不考虑储存温度,冻干膜对于所述疫苗的全部组分均提供了水平相仿的稳定化作用。尽管所述冻干丝膜在全部温度下均显出改善的稳定化作用和残余效价的回复,稳定化水平在更高的温度下更为显著。在储存6个月后,所述冻干丝膜在37℃和45℃分别维持了85.2%和85.1%的麻疹残余效价。类似地,当储存于37℃和45℃时,在6个月后,分别维持了86.2%和86.0%的腮腺炎效价。风疹组分显出由所述冻干丝膜带来的稳定化作用最强:在37℃储存6个月后,维持了88.2%的病毒效价;而在45℃储存时,仍维持了87.5%的病毒效价。
[0438] 通过降解动力学对热稳定性进行评估
[0439] 通过log10的病毒滴度下降相对于暴露时间(exposure time,以周计)的线性回归,计算出各温度下的降解速率(kobs)。所得曲线的斜率表示降解速率。随后由所述kobs及其标准误对各温度下的病毒半衰期(t1/2)以及相应的95%置信区间进行计算。所述病毒半衰期为平均效价降低至初始值的50%所需的时间或预测半衰期。对于每一病毒组分和疫苗封装方法,所估计的降解速率和相应的半衰期总结于表3,并在图16A-16C中以半衰期对温度作图。三个体系在所测试的温度范围内的降解速率也非常符合Arrhenius图(图14A-15C)。从图中可以看出,粉末疫苗形式的斜率值始终高于两种丝体系,表明在储存温度上升时,粉末的降解速率更迅速地增加。
[0440] 表3.疫苗粉末、丝膜包封疫苗和冻干丝膜包封疫苗的降解速率和预测半衰期的总结
[0441]
[0442]
[0443]
[0444] 对于麻疹、腮腺炎和风疹组分,除了在4℃储存的样品这一例外,在25℃、37℃和45℃,丝包封的疫苗体系和冻干的丝包封的疫苗体系相对于粉末疫苗而言显示出较低的降解速率。该降低的降解速率对应于预测半衰期的延长。从该表中可知,对于所有病毒组分显出类似趋势;并且显示在升高的温度下,丝膜相比粉末制剂而言延长了疫苗的半衰期;冻干丝膜则相比粉末和丝膜这两者而言均显著改善了疫苗半衰期。此外,随着储存温度增高,对于粉末制剂和丝膜制剂这两者,降解速率和预测半衰期均分别显著增加与降低。然而,冻干丝膜样品则在所有测试的储存温度下均维持了缓慢的降解速率。对由4℃至45℃麻疹组分的降解速率变化进行评价,在所述温度范围内,粉末疫苗显出降解速率由0.0136±0.0025log10TCID50/周至0.0401±0.0010log10TCID50/周,增加了1,444%;
而MMR-丝膜和冻干MMR-丝膜在降解速率方面分别由0.0139±0.0261log10TCID50/周至
0.009±0.0005log10TCID50/周,增加了195%;以及由0.0128±0.0019log10TCID50/周至
0.009±0.0001log10TCID50/周,增加了42%。腮腺炎和风疹组分显出类似趋势。除了在4℃的储存这一例外,在粉末疫苗的数据中显示预测的麻疹半衰期为178.6周,大于丝膜的96.6周和冻干丝膜的135.3周;在升高的温度下,丝膜和冻干丝膜在病毒半衰期方面显示出了更为显著的增加。在37℃和45℃时,病毒预测半衰期的区别表现得尤为明显。在35℃时,所述丝膜的21.9周的半衰期相对于由粉末提供的9.4周而言是显著的改善,然而冻干丝膜则将半衰期显著增加至93.8周。在45℃储存提供了类似的结果:粉末、丝膜和冻干丝膜分别显示出5.1周、19.8周和94.9周的半衰期。
[0445] 使用回归分析对疫苗降解速率的温度依赖性进行进一步评价。对于粉末、丝膜和冻干丝膜体系,由病毒滴度下降对时间作图(未示出),数据可以由直线合理近似,呈现伪零级行为(pseudo zero-order behavior)。病毒滴度下降对时间的作图与残余效价曲线相对应并显出与残余效价曲线类似的趋势。从所述图中可见,病毒浓度变化的线性响应表明降解机制遵循零级动力学。虽然对所述数据进行更严格的检验后,病毒滴度下降对时间的线性度在长时间间隔处有所下降。这些数据表明,所述降解速率可能会偏离零级行为,并在较长的时间段内降低。因此,认为疫苗随时间降解的动力学模型为伪零级模型。由于通常仅随时间推移监测活性药物成分的浓度变化,而其它反应物和缓冲液组分大大过量而未经分析,伪反应级数在药物稳定性研究中遇到(Zhou等,2009年)。因此,一级反应可呈现为零级反应、或伪零级反应。在零级反应中,反应速率不依赖于反应物的浓度且是恒定的。零级速率等式如下:
[0446]
[0447] 并且使用下列等式对在各个温度下获得的数据进行拟合(fitted):
[0448]
[0449] 其中,Ct为在时间t时测量的效价(以log10TCID50示出)、C0为在时间0时的测量的效价、kobs为由线性回归确定的降解速率、并且t为储存时间(以周计)。预测半衰期t1/2为平均效价降低至初始值的50%所需要的时间。通过以下等式对各个温度下的半衰期进行评估:
[0450]
[0451] 三种疫苗体系的热降解速率应遵循关于绝对温度的Arrhenius定律表达式,如下列等式中所示:-E/RT
[0452] k(T)=Ae
[0453] 其中,k为热降解速率、A为指前因子(preexponential factor)、E为活化能、R为气体常数、T为绝对温度。在较大的温度范围内,降解速率对绝对温度倒数的图可显示出温度依赖性的降解趋势。该Arrhenius图显示,粉末疫苗具有最陡的斜率,表明粉末疫苗的降解对于温度的依赖性比两种丝体系的依赖性更大。通过比较,丝体系更平缓的斜率表明,丝大大降低了疫苗在升高的温度下的降解速率,并能够在高环境温度下维持疫苗效价。由三种疫苗体系的半衰期比较可以看出,随储存温度升高,所述丝体系对半衰期的提升更为明显和显著。
[0454] 处理条件对疫苗体系残余水分的影响
[0455] MMR疫苗以冻干的形式供给以及稳定剂在疫苗中的存在使得水分含量减少,大大提高了它们的热稳定性(Galazka等,1998)。冻干疫苗的贮藏寿命依赖于严守冷链并维持低残余水分含量这两者。随着储存温度增高,空气中存在的水的量也增加。制造了MMR-丝膜并在环境条件下空气干燥,因此,与冻干的MMR粉末和冻干的MMR-丝膜这两者相比,其含有较高的初始残余水分。在确定干燥状态后立即计算的MMR-丝膜的残余水分确定为4.42%±0.65。MMR粉末和冻干MMR-丝膜的残余水分分别计算为2.39%±0.23和1.89%±0.13。除了MMR-丝膜这一例外,冻干疫苗体系在4℃储存6个月后,其残余水分的变化非常小。事实上,与初始测量值相比,在全部温度点下储存6个月的冻干膜的残余水分均表现出非常小的差别(aberration):仅显示出在45℃时残余水分由初始值至最高纪录值的6.9%的净增加。由于加工条件,MMR-丝膜具有较高的残余水分,然而在45℃进行的6个月储存中,到达所记录的最高残余水分值的净增仅为30.1%,相比之下MMR粉末体系中显出
61.5%的增长。疫苗体系的残余水分含量与残余效价相对应。在升高的温度下,MMR粉末比丝膜表现出更大的效价损失,这与残余水分的较大提升密切相关。类似地,冻干MMR-丝膜的残余水分最低限度地增加,使得病毒效价更好地得以维持。
[0456] 表4.MMR粉末、MMR-丝膜和冻干MMR-丝膜在特定储存条件下的残余水分的比较[0457]
[0458] 疫苗-丝体系的结构表征
[0459] 为了对丝如何向疫苗提供增强的热稳定性进行探讨,对使用量热法和光散射法的物理测量结果进行了研究。利用DSC(图17)证实了丝包封剂通过提高疫苗的玻璃化转变温度(Tg)而向疫苗提供稳定化作用。冻干丝膜的固态DSC显示出178℃处的Tg。MMR粉末的DSC热谱图显示出68.9℃处的Tg;冻干MMR-丝膜显示出89.2℃处的Tg,以及116.6℃和164.8℃处的两个峰,这两个峰可能表示熔融温度Tm和降解温度Td。尚不清楚Tg的改变是否归因于由丝带来的结构稳定化或丝和存在于疫苗样品中的多种赋形剂之间的相互作用。
随后对疫苗进行纯化,以移除所添加的赋形剂。所产生的溶液含有悬浮于灭菌的无核酸酶的水中的纯化病毒粒子。由于该病毒样品为液体溶液,因此对这些样品进行了nano-DSC。在水中的纯化病毒粒子的nano-DSC热谱图(图18)显示出16.8℃处的Tm,表明病毒蛋白质经历了构象变化。丝中的纯化病毒粒子溶液显示出在68.3℃处的提升的Tm。尽管nano-DSC的范围并未延伸足够远以显示丝的Tg,仍显示了丝溶液的热谱图来说明Tg值均不能归因于丝结构的变化。为了对Tm是否对应于病毒粒子由于聚集而导致的变性进行研究,通过DLS对病毒粒子的大小进行了检测(图19)。裸病毒粒子的平均有效直径的平均值为250nm左右。这与报道的麻疹、腮腺炎和风疹的值相符(Russell等,1967;Hall和Martin,1973)。
结果表明,纯化病毒的溶液在16℃左右显示出平均有效直径增加,表明存在蛋白质聚集。另一方面,丝溶液中的病毒粒子的DLS直至70℃左右才显示出平均有效直径增加,表明蛋白质在更高的温度下聚集。DLS的结果很好地对应于nano-DSC的结果,因为由光散射检测到的聚集在由DSC测量的蛋白质解折叠的温度范围内发生。
[0460] 由丝膜、冻干丝膜、丝水凝胶和丝微球的疫苗释放。
[0461] 为了证明丝不仅提供疫苗的稳定化,而且还提供对疫苗释放动力学的控制,以各种丝制剂进行了释放研究。每种丝制剂(膜、冻干膜、水凝胶和微球)包含相同初始量的疫苗。包封疫苗的丝膜与包封疫苗的冻干丝膜的累积释放曲线示于图20A-图20B中。使用置于两块明胶水凝胶之间的单个膜进行这两种体系的体外释放研究,使得能够由于丝膜溶解入水凝胶中而释放疫苗。由8%(w/v)丝溶液制备的包埋疫苗的丝膜显示出轻微的突释(burst release)效应,通常为扩散释放。在6小时的最终收集时,释放了几乎全部包封的疫苗,92.43%的疫苗得以回收并具有活性。以4%(w/v)制备的丝膜显示出类似的释放曲线,不同之处仅在于由于其更加迅速地释放了接近完全释放的量,因而突释更快。冻干丝膜显出更明显的突释效应:在置于水凝胶中10分钟内,8%丝膜释放了44%的所装载的MMR、且4%丝膜释放了56%的所装载的MMR。在90分钟内,冻干丝膜释放了几乎全部所装载的MMR。
相比之下,丝水凝胶和微球制剂显出数天级别的明显更慢的释放(图21A-图21B)。4%和8%的丝水凝胶将疫苗释放延长至8天。此外,16%的丝水凝胶能够进一步延长释放,这是由于直至第8天为止仅释放了73.53%的疫苗。由丝微球的疫苗释放显示出作为延长并持续的释放体系更高的潜力。类似地,增加微球的丝浓度使得释放速率减慢;在第8天时,16%的丝微球释放了65.35%的所装载的疫苗。由16%的丝微球的释放的相对线性度(relative
2
linearity)也是令人感兴趣的,这是由于该曲线的回归系数(R)为0.988,表明近似为零级释放。
[0462] 通过使用量热法和光散射而对麻疹、腮腺炎和风疹疫苗进行的生物物理表征,使得能够对疫苗储存期间作为升高的温度的函数的病毒的物理稳定化进行说明。由于疫苗的温度敏感性,疫苗配给和储存过程是脆弱的,这些问题往往伴随相当大的物流成本(logistical cost)(Zweig,2006)。已知生物活性分子(如酶)的固定化使得稳定性增加并改善了处理情况(handling)。由于固定化维持了恒定的环境条件,从而保护生物活性分子免受pH值、温度或离子强度变化的影响,因而固定化很重要(Kumakura,1995)。丝的化学性质、结构和组装产生了独特的纳米尺度环境,使得该蛋白质聚合物成为在更长的时间段内对生物活性分子进行稳定化中有吸引力的候选物(Jin和Kaplan,2003)。在未经化学处理的情况下,丝可用于由水溶液中将生物活性分子包封于两亲的自组装域中。
[0463] II(活的减毒麻疹、腮腺炎和风疹疫苗)作为在使用时待复溶的冻干制剂而提供。在复溶之前,疫苗必须在2℃至8℃储存,且将在24个月内是稳定的,并且一旦复溶则必须在8小时内使用。对于麻疹、腮腺炎和风疹疫苗的热稳定性的WHO要求采用如下两个稳定性指标:1)在37℃孵育7天后,所述疫苗在每一人类剂量中应维持至少1,000个活病毒粒子;以及2)在储存期间,病毒滴度不应下降超过1log10(WHO,1982;WHO,1994)。
与其它疫苗形式不同的是,活病毒疫苗依赖于其免疫原性来建立适当的免疫响应,这需要保留足够数量的活病毒粒子。这些热不稳定的病毒粒子的储存需要稳定剂的添加。每剂量的 II在14.5mg山梨糖醇、磷酸钠、1.9mg蔗糖、氯化钠、14.5mg水解明胶、≤0.3mg的重组人白蛋白、<1ppm的牛胎儿血清、其它缓冲和媒介成分以及约25μg的新霉素中被稳定化。
[0464] 过度暴露于高于推荐储存条件的温度下可通过许多方式破坏疫苗,最显著的是改变病毒蛋白质的三级结构、降低病毒感染性,从而降低疫苗效价(Chen和Kristensen,2009)。蛋白质结构的改变可导致聚集并改变细胞摄取、影响疫苗活性(Brandau等,2003;
Manning等,1989;Middaugh,1996)。麻疹和腮腺炎属于副粘液病毒科,特征在于为含有核衣壳的包膜病毒,所述核衣壳封装单链反义病毒RNA,并由在病毒表面上表达的融合(F)糖蛋白和血凝素(H)糖蛋白包围(图22A)(Kingston等,2008;Woelk等,2002)。类似地,风疹属于披膜病毒科,是一种具有两种病毒特异性糖蛋白E1和E2的包膜病毒,所述糖蛋白包围二十面体的核衣壳,所述核衣壳封装单链正义病毒RNA(Dorsett等,1985;Nakhasi等,
1991)。
[0465] 副粘液病毒的感染方法涉及通过与血凝素(H)糖蛋白和融合(F)糖蛋白这两者间的相互作用,将该病毒附着至宿主细胞的CD46和CD150受体(图22C)(Wild等,1991;Malvoisin和Wild,1993;Moss和Griffin,2006)。病毒和细胞的融合允许病毒进入、并将病毒核酸物质释放入所述细胞。病毒灭活(inactivation)的主要原因在于病毒表面蛋白的破坏及应激(stresses)(如升高的温度)可在病毒蛋白质中诱发构象变化(Rexroad等,
2006;Ausar等,2006)。这些构象变化可通过诱导病毒粒子聚集(阻止细胞结合与摄取)来影响病毒稳定性,从而导致病毒灭活(图22D)(Ohtake等,2010)。开发耐热损害的疫苗制剂与提高疫苗的热稳定性将具有重大效益,包括延长贮藏寿命、减少疫苗损失和减少对冷链需求的依赖性。
[0466] 在37℃和45℃的升高的温度下,由丝蛋白提供的疫苗稳定性的改善更为显著;而储存于4℃和25℃时,所述稳定性与所制造的粉末形式相比为相当或略优。根据制造商以多种赋形剂进行稳定的冻干疫苗应在至少两年内维持稳定和活性。然而,当冷链被打破、疫苗储存在高于冷藏温度(refrigeration temperature)下时,发生疫苗变质(spoilage)。在这种情况下,丝将向所述疫苗提供足够的稳定性,从而在一定的环境条件范围内维持稳定性。由于病毒粒子维持在水合状态的时间越长,其越有可能遭受可能导致不稳定的降解反应(如水解和脱酰胺作用)(Li,1994),MMR-丝膜的冻干改善了回复的初始疫苗效价。在储存六个月的过程中由所述冻干丝膜提供的持续的增强的稳定化作用也可部分归因于冻干膜的储存条件。常规丝膜储存在Eppendorf管中,而所述冻干膜则储存于具有低残余水分含量的真空密封小瓶中。
[0467] 由解折叠和降解动力学模型对实验效价数据进行的评价被用于对不同疫苗体系在选定温度下预计(projected)的加速稳定性(accelerated stability)进行说明,同时通过生物物理表征对所述效价数据与温度诱发的构象变化的联系进行说明。在加速稳定性研究条件下,蛋白质药物的固有稳定性经常大幅下降。在升高的温度下,蛋白质解折叠速率升高、并且参与蛋白质去稳定作用的大多数化学相互作用与在较低温度下相比得以加速(Creighton,1990)。通过在升高的温度下储存而使降解过程加速,允许对丝作为抑制失活过程的合适候选稳定剂进行评估。对效价数据的检查表明,由三种疫苗体系观察到的降解可与零级动力学体系相符。对零级反应、一级反应和二级反应的浓度-时间曲线所进行的观测表明,作为时间的函数,零级动力学在三类反应中总是预测到最大程度的组合物。因此,预测反应级数时,零级动力学模型的假设将预测到可能发生于未来某些时间的降解的最大量(Zhou等,2009)。因此,在假设MMR病毒的降解是伪零级的情况下,使用零级动力学建立降解曲线模型,我们预测到对封装疫苗的丝膜体系和封装疫苗的冻干丝膜体系的半衰期的最保守估计(most conservative estimates)。
[0468] 对于所有三种病毒组分所观察到的总体趋势为:两种类型的丝膜均降低了病毒的降解速率,冻干丝体系则在三种体系中显示出最低的降解速率,从而显示出最大的半衰期,而粉末形式的疫苗在测试的全部温度点处降解都最迅速。在4℃的样品中观测到对这一趋势的偏离:相比于非冻干丝膜,粉末疫苗显出较低的降解速率并具有高的预测半衰期。该结果可能的解释为:与常规丝膜相比,粉末疫苗具有冻干制剂的优势。在膜制备期间,额外的水分被引入到包封的疫苗中,与制造商提供的疫苗粉末相比,这提高了丝膜内分子间的移动性和降解的机会。毫无疑问,即便存在额外水分这一障碍,丝膜在升高的温度下也提供了更高的稳定性。然而,冻干疫苗粉末已被配制为在2℃至8℃的最优温度范围内维持稳定。冻干的这一优点也可用于解释冻干丝膜在疫苗稳定化上取得的成功:这是因为所述冻干丝膜提供了由丝和冻干两者给出的稳定性。
[0469] 除使用效价数据进行的动力学研究外,进行了使用量热法和光散射的生物物理表征来证实所述结果。鉴于丝素蛋白的高玻璃化转变温度(178℃),丝蛋白只要自组装为β-折叠构象,便是热力学稳定的。这些特征提供了使疫苗稳定的环境。疫苗-丝溶液由处于天然形式的疫苗分子和主要以无规卷曲(random coils)的形式存在的丝素蛋白形成。一旦膜被浇注,丝素蛋白有一些转换为含有疏水区的β-折叠,而无规卷曲则含有更亲水性的区域。疫苗似乎在这样的环境中得以稳定,这可能是由于与丝素蛋白链的相互作用或链移动性受限(图21B)。固态DSC(图17)显示MMR粉末的Tg为68.9℃。然而,该值可以是误导性的,因为它可能并没有反映Tg和病毒粒子自身的相应结构变化,而是反映了由已经存在于所述MMR粉末疫苗制剂中的各种蛋白质赋形剂和稳定剂所导致的提升的值。MMR-丝膜显示出89.2℃处的Tg,表明由于丝的存在,疫苗的Tg产生变化。然而,冻干的MMR-丝膜的热谱图还显示出在116.6℃和164.8℃处存在两个放热峰。在116.6℃处的峰最有可能为表明蛋白质解折叠的Tm,第二个峰则是表明降解的Td。不能确定解折叠和降解应归因于病毒蛋白质还是疫苗制剂中存在的各种赋形剂。因此,很难得出结论说,丝存在时疫苗Tg的增加直接有助于病毒粒子的结构稳定性。
[0470] 为了澄清这一状况,对疫苗进行纯化以除去赋形剂。由于纯化结果为液体制剂,病毒粒子处于不太稳定的环境中。因此,病毒粒子溶液在-80℃储存直至使用。nono-DSC的Tm出现于蛋白质解折叠时,此时疏水性和亲水性区域被暴露至水性缓冲溶液。相邻的疏水性蛋白质分子将聚集,从而将这些区域与周围的水溶液屏蔽。由于蛋白质的未折叠状态与天然状态相比具有更大的表面积,丝这一稳定剂提供的对于结构性较弱的状态(less structured state)的优先排阻(preferential exclusion)程度将提升这一稳定化形式的化学势,甚至高于天然状态的化学势(Brandau等,2003)。这一增加的稳定性可体现在蛋白质解折叠转换的中点(Tm)的升高。包封疫苗的丝溶液的提升的Tm是由于丝提供的结构稳定化,从而防止了病毒蛋白质的变性和聚集。16.8℃处的Tm值可能是由于病毒表面糖蛋白(麻疹和腮腺炎的F和N以及风疹的E1和E2)的解折叠,所述解折叠是由于施加至所述病毒粒子的提升的热量所致。这种变性最有可能导致病毒粒子聚集(图22D),阻止其与动物细胞结合和融合(图22C),导致病毒粒子和作为整体的疫苗的感染性丧失。此相关的聚集在DSC热谱图上显示为紧随Tm的热流的急剧变化。显示出所述聚集(放热过程)为蛋白质吸热解折叠的直接结果。Tm峰的宽度(broadness)最可能为样品中存在的若干蛋白质解折叠联合作用的结果。此外,蛋白质聚集也可能通过与变性吸热(denaturational endotherm)相叠加而对所述宽峰做出贡献(Packer等,2002)。MMR的感染性依赖于病毒蛋白的构象稳定性(Kissman等,2008)。由丝分子的存在引起的Tm的增加表明,所述丝向病毒蛋白质提供了防止其发生热变性的结构稳定性。病毒粒子和丝疏水区域之间的相互作用、以及受限的链移动性,可能会阻止病毒蛋白聚集(图22B),从而保留病毒感染性和疫苗感染性。
[0471] 蛋白质的解折叠通常与其流体力学尺寸(hydrodynamic size)增加相关,因为部分或完全解折叠的蛋白质状态是不稳定的,并形成聚集体(Roberts,2007)。光散射的结果表明,与在丝中的病毒粒子溶液相比,裸病毒粒子在低得多的温度下聚集。如DLS所验证的粒子聚集的起始发生在与由DSC所示出的蛋白质解折叠大约相同的温度下,表明所述蛋白质解折叠直接导致了聚集。DLS的结果证实了DSC的如下结果:丝为病毒粒子、特别是病毒表面糖蛋白提供了结构稳定性,防止分子间的碰撞,从而使得在升高的温度下发生的聚集最小化。
[0472] 由于将多余的水引入所述体系可导致移动性和相应的病毒蛋白反应性的增加,因此湿度也可对疫苗产品具有明显影响(Waterman和Adami,2005)。膜的残余水分分析揭示,在稳定性测试的过程中,残余水分的增加、尤其是在高温度范围内残余水分的增加,很可能是由于由Eppendorf管提供的缺乏水分受控的环境。MMR粉末和冻干的MMR-丝膜由于吸湿性极强而在低湿度条件下储存(通过冻干小瓶和瓶塞、并在富氮环境下密封来提供所述低湿度条件);而MMR丝膜则是储存于Eppendorf管中,与真空密封的小瓶相比,这将允许更有机会将大气湿度吸收入所述容器中。在Eppendorf管中水活性的增加也是由于与所述丝膜结合的初始水的量(与粉末和冻干膜相比已经处于较高水平)、以及初始包装的相对湿度。在升高的温度下丝膜中显示的残余水分增加也可通过可能的水自所述丝脱附来解释,尽管允许进行空气干燥,在所述丝基质中仍含有痕量的分子间结合的水分子(Hu等,2007)。此外,对于在室温下储存的丝膜,由天气模式决定的大气湿度的变化将对Eppendorf管内的相对湿度造成影响。
[0473] 尽管考虑了残余水分对疫苗的影响,然而将丝膜储存于Eppendorf管中仅为表明如下内容:使用最小的加工条件,并无需特殊的储存考虑事项,包封疫苗的丝膜就能够在升高的温度下显出与在同一温度下测试的市售冻干疫苗相比而言增强的稳定性。由于湿度和温度而致的移动性增加将对冻干丝膜如何在常规丝膜的稳定性方面显出如此明显的增加作出解释。冻干工序和冻干膜的低水分储存明显限制了病毒蛋白质在高温下的移动性,从而导致病毒蛋白质对热诱导的解折叠和相关联的聚集具有耐受性。尽管丝膜的绝对残余水分高于MMR粉末的绝对残余水分,在测试温度范围内,粉末中残余水分的百分比增加超过丝膜中所观测到的残余水分的百分比增加。温度的升高似乎在粉末中对温度诱导的水分产生了较大影响,高于在丝膜中产生的影响。看起来,丝在储存过程中提供了对分子移动性的抑制,从而阻止蛋白质解折叠及随后的聚集;而粉末中由温度诱导的水分导致的水活性增加在缺少丝提供的构象稳定性的情况下,增加了病毒蛋白质的聚集。
[0474] 对多种包埋疫苗的丝递送载体进行了释放研究,从而显示丝能够稳定所述疫苗并控制释放动力学。装载有疫苗的丝膜和冻干丝膜是未经处理的和水溶性的。其具有被模塑为递送形式(如微针,通过皮下注射针经皮药物递送的一种安全无痛的替代品)的潜能(Tsioris等,2011)。可以设想,贴剂(patch)可敷至皮肤,装载有疫苗的丝微针将穿刺皮肤,丝针将溶解并皮下释放所述疫苗。丝膜的释放曲线显示出实现这一目的的希望。由于具有类似于组织的稠度(consistency)(Wightmas等,2007),在明胶水凝胶中进行丝膜和冻干丝膜的释放研究。浇注4%和8%的丝而得的丝膜显示出相似的释放曲线(图20A-图20B),显示初始突释、继以降低的释放速率。4%的丝膜显出更快速的释放,这是由于丝蛋白的浓度较低,使得允许疫苗从基质中更快扩散,同时还允许膜更迅速地溶解。随着丝浓度增加至8%,释放速率减慢,这是由于膜的β-折叠含量增加,形成更刚性的(rigid)基质并减缓了疫苗向水凝胶中的扩散。冻干丝膜的释放曲线显示出更明显的初始突释效应。并非疫苗在初始接触水凝胶时即由所述丝迅速扩散,由冻干膜的初始突释最有可能是由于冻干膜的迅速溶解。后续释放可能是由于疫苗由未溶解的膜的扩散。与丝膜相同的原因,4%的冻干丝膜比8%的冻干丝膜表现出更快的释放曲线。丝膜释放的时间尺度为小时级别,在90分钟时释放了96.85%的包封的MMR。
[0475] 疫苗-丝递送载体还被制造为不溶形式的丝水凝胶和微球。这些形式可以被引入可注射的疫苗递送,所述疫苗递送形成能在延长的时间段内缓慢地释放所述疫苗的皮下疫苗储库(depot)。所述水凝胶和微球在数天的期间内释放所述疫苗。较慢的药物释放可通过如下内容得以解释:疫苗扩散受到水凝胶和微球中增加的β-折叠含量的限制。此外,随着水凝胶和微球浓度增加,释放的线性度提高,对应于释放速率的降低。增高水凝胶的丝浓度使得疫苗释放速率下降。然而,增高MMR-丝微球的丝浓度减缓了释放速率,且所述释放2
速率变得更加线性,接近零级释放。8%的微球具有0.95的回归系数(R),且16%的丝具有
0.988的值。由微球中释放疫苗的线性度增加可能是由于小体积产生了较小的扩散梯度,以使疫苗粒子跨越进入体相(bulk phase)。
[0476] 这些结果表明,可将这些丝包埋的疫苗体系制造为在升高的温度下为疫苗提供热稳定性,同时也作为受控和持续疫苗递送系统发挥作用。在所推荐的冷链范围之外的升高的温度下一段时间后,MMR疫苗在冻干丝膜中的包埋显示出远超出制造商的疫苗的增强的稳定性。由于丝是生物相容的、可生物降解的、并且是FDA批准的生物材料(Altman等,2003;Horan等,2005),选择丝作为包封聚合物还支持可植入疫苗-丝体系或可注射疫苗-丝体系的安全性。
[0477] 包封疫苗的丝膜和冻干丝膜为麻疹、腮腺炎和风疹疫苗的长期热稳定化提供了高度有效的载体。与制造商提供的疫苗相比,在25℃、37℃和45℃,这两种丝膜体系均能够延长所述疫苗的全部三种病毒组分的半衰期。丝通过减少样品在升高的温度下储存期间的残余水分、并且还向疫苗提供了结构稳定性以提升病毒蛋白质变性的温度,减少了温度诱发的病毒蛋白质解折叠和随后的聚集。此外,丝载体可制备为能够对疫苗释放动力学进行定制(tailoring)的不同递送载体。这一丝载体体系提供了新的疫苗递送体系,所述体系易于制造、无需特殊的加工考虑事项,并能够维持疫苗效价,而无需严格遵守冷链。
[0478] 实施例3的方法
[0479] 三价疫苗:为了估计效价,我们使用了商业来源的三价麻疹、腮腺炎、风疹疫苗II(Merck&Co.,Inc.,USA),这是一种无菌冻干活病毒疫苗,含有Enders'减毒Edmonston麻疹、Jeryl Lynn腮腺炎和WistarRA27/3风疹。在使用之前,在稀释剂中复溶所述疫苗,每0.5ml剂量含有不低于1,000TCID50(组织培养感染剂量)的麻疹病毒;
12,500TCID50的腮腺炎病毒;以及1,000TCID50的风疹病毒。制造商条件声明所述疫苗必须在复溶8小时内使用,并在4℃下储存,否则即将其弃用。每0.5ml剂量含有山梨糖醇(14.5mg)、磷酸钠、蔗糖(1.9mg)、氯化钠、水解明胶(14.5mg)、重组人白蛋白(<0.3mg)、胎牛血清(<1ppm)、其它缓冲和媒介成分以及约25μg的新霉素。
[0480] 丝素蛋白的纯化:根据在先描述的方法制备丝素蛋白水溶液(Wang等,2008)。在0.02M的Na2CO3水溶液中将家蚕蚕丝的蚕茧煮沸30分钟,然后用DI水彻底冲洗以提取丝胶。在干燥后,在60℃将丝于9.3M的溴化锂溶液中溶解4-6小时,然后使用Slide-a-Lyzer透析盒(MWCO3,500,Pierce)在蒸馏水中透析48小时。将该溶液离心以除去丝聚集体和其它不溶性残余物。丝素蛋白的终浓度为约9%(w/v)。然后对所述溶液进行高压灭菌。
[0481] 病毒纯化:将冻干疫苗粉末在无菌水中复溶,并装入0.5kDa的透析管(Sigma Aldrich公司)中,并且以0.15M NaCl溶液进行透析,从而由疫苗溶液除去赋形剂。随后,使回收的疫苗溶液通过PD-10脱盐柱(GE Healthcare),以除去过量的盐。遵循了按照制造商说明的旋转方案。收集回收的纯化病毒粒子溶液并在-80℃储存于Eppendorf管中直至使用。
[0482] 丝膜中的疫苗包埋:包封疫苗的丝膜的制造过程示于图7。以MMR与丝溶液的重量比为1:1的浓度制备了灭菌的9%(w/v)丝溶液和冻干MMR疫苗。然后将膜浇注至聚四氟乙烯涂覆的表面上。使膜在室温下于无菌罩中避光干燥12小时。在环境条件下将单独的膜置于Eppendorf管中,并储存于4℃、25℃、37℃和45℃以用于稳定性研究。
[0483] 包埋疫苗的丝膜的冻干:将MMR-丝溶液(重量比1:1)分装至96孔板中,并使用VirTis25L Genesis SQ Super XL-70冷冻干燥机进行冻干。在-45℃将样品冷冻480分钟。初次干燥在-20℃进行2,400分钟,二次干燥在35℃进行620分钟。将样品维持在-45℃,直至从冻干机中移出。随后将膜从有孔板中移出,并转移至5cc的玻璃血清小瓶中。在氮气和真空条件下,在MBRAUN LABmaster手套箱(Garching,德国)中将5mm冻干塞应用于所述小瓶,并使用5mm卷边机(crimper)在所述小瓶上收紧5mm铝密封圈(seal)。将所述小瓶储存于4℃、25℃、37℃和45℃以用于稳定性研究。所述小瓶、瓶塞、密封圈和卷边机由VWR(Bridgeport,NJ)提供。
[0484] 丝水凝胶中的疫苗包埋:将丝溶液调节至2-5wt%的浓度,然后高压灭菌。随后将1mL的所述丝溶液转移至高压灭菌的2ml Fisher玻璃小瓶中,并使用Fisher涡旋混合器在3,200rpm下将溶液在所述玻璃小瓶中混合7分钟。收集混浊溶液,并转移至2ml的Eppendorf管中,以1:1wt将疫苗和缓地混合至溶液中。将疫苗-丝溶液在Eppendorf管中于室温下孵育,直至凝胶化。随后将凝胶冷藏以用于长期储存。
[0485] 丝微球中的疫苗包埋:使用如Wang等(2010)描述的程序,由丝/PVA混合物生产装载有疫苗的微球。将疫苗粉末添加至5wt%的丝溶液中,以达到1:1000的重量比。将这一溶液与5%(w/v)的PVA(聚乙烯醇,分子量为30,000-70,000,Sigma Aldrich)储液(stock solution)和缓地混合。使用1:4的一致的重量比,通过将1ml的5wt%丝溶液与4ml的5wt%PVA溶液混合,制备了5%(w/v)的丝-PVA溶液。对所述丝溶液进行高压灭菌。在混合后,将溶液在室温下搅拌2小时。随后,将所述5%(w/v)的溶液转移至35mm培养皿中。使该溶液在通风橱中干燥过夜。将干燥的膜溶于30ml超纯水中,在室温下轻轻振荡10分钟,随后在4℃以16,000rpm离心20分钟。弃去上清液,将沉淀物(pellet)重悬于30ml超纯水中,并再次离心。将最终的沉淀物悬浮于2ml超纯水中。
[0486] 定量实时RT-PCR感染性分析:通过对仅以疫苗复溶于无菌水中的溶液进行连续稀释而产生标准曲线。将复溶的疫苗视为1log10稀释,并以0.5log10的步进,由1.5log10连续稀释至3.5log10。将MMR-丝膜(含有1log10稀释的疫苗)重新溶解于小份水中,并将该溶液直接添加至培养的细胞。Vero细胞(非洲绿猴肾细胞)(ATCC,Manassas,VA)在M199培养基中培养,其中具有25mM的HEPES与L-谷氨酰胺(Sigma-Aldrich,St.Louis,MO)、1%青霉素/链霉素(Invitrogen Life Technologies,Carlsbad,USA)、以及5%的胎牛血清(Invitrogen)。所述细胞进行胰蛋白酶处理、计数并调节至50,000细胞/ml,并铺于24孔板中。接下来,将50μL疫苗稀释液和重新溶解的丝膜添加至Vero细胞的孔中,三个重复。使病毒在细胞中复制3天,然后由感染细胞中分离RNA、转化为cDNA并使用qPCR定量。目标RNA的量和PCR循环之间存在对数线性关系(荧光升至高于背景值时(循环阈值,Ct))。存在于样品中的病毒存活力越高、PCR产物的荧光达到背景以上就越快、所需循环就越少,因而Ct值也就越低。为了对变化的细胞生长进行说明,每次进行分析时,均通过将含有同样量疫苗(所述疫苗装载于MMR-丝膜中)的疫苗溶液进行连续稀释,从而产生标准曲线。在初始膜制备后马上对病毒感染性进行测量,以确定基线活性(时间0)。将在随后的时间点进行的测量与时间0的值进行比较,以确定残余效价。通过将由MMR-丝膜测得的病毒感染性与仅有疫苗的溶液(所含疫苗的浓度与丝膜中装载的疫苗浓度相同)的感染性进行比较,对由丝膜获得的初始回复效价(刚浇注膜后的病毒活性)进行确定。MMR-丝膜中的残余效价通过将某一时间点处测量的病毒感染性与初始回复效价进行比较而计算得出;储存中的疫苗粉末的残余效价通过将病毒活性与疫苗溶液(用于由丝膜中测定初始回复效价的溶液)的感染性进行比较而得出。作为对照,同样测量了未装载疫苗的丝膜的病毒活性。
[0487] 使用TRIzol试剂(Invitrogen)和氯仿由Vero细胞分离RNA。使用QiagenRNeasy试剂盒(Qiagen,Valencia,CA)对所述RNA进行纯化。使用高容量cDNA逆转录试剂盒(Applied Biosystems,Foster City,CA)在纯化的RNA中进行逆转录,从而合成cDNA。在Strategene Mx3000P QPCR系统(Strategene,La Jolla,CA)上进行实时RT-PCR。
在50μL混合物体积中进行PCR反应,所述混合物中含有TaqMan Universal PCR Mater Mix(1X)(Applied Biosystems,Foster City,CA)、0.9μM的各PCR引物、以及0.25μM的探针和5μL的cDNA样品。对于麻疹检测,使用正向引物(5'-CCCTGAGGGATTCAACATGATTCT-3')、反向引物(5'-ATCCACCTTCTTAG CTCCGAATC-3')和探针(5'FAM-TCTTGCTCGCAAAGGCGGTTACGG-BHQ13')扩增了114bp的片段(nt584-697)(Hubschen等,2008)。对于风疹检测,使用正向引物(5'-TGATACCCAGACCTGTGTTCAC-3')、反向引物(5'-GGTCGATGAGG ACGTGTAGG-3')和探针(5'JOE-GATCACCCAGCACTCCACGCAA-BHQ13')扩增了129bp的区域(nt195-323)(Hubschen等,2008)。对于腮腺炎病毒的134bp的区域的检测,使用了正向引物(5'-CATAGGAGATATGTGGGG-3')、反向引物(5'-GTCTTCGCCAACGATG GTGATGATTG-3')和探针(5'JOE-CCATGCAGGCGGTCACATTCCGACAA CTGC-TAMRA3')(Kubar等,2004)。全部引物和探针均获得自Sigma-Aldrich(St.Louis,MO)。PCR反应条件为:50℃2min、95℃10min;
随后进行50次循环(所述循环为:95℃15s以及60℃1min)。
[0488] 体外疫苗释放:在37℃进行体外疫苗释放研究。在明胶水凝胶模型中进行丝膜和TM冻干丝膜的释放研究。通过将4.5g的Knox 原味明胶粉末与40ml的煮沸的DI水混合,获得0.112g/mL的水凝胶,从而制备所述明胶水凝胶。将该溶液倾入35mm培养皿中并使其冷却。为了开始释放研究,将膜置于两块水凝胶厚片(slab)之间。一旦到达时间点,即由凝胶移出所述膜,从而使释放停止。然后在400μL的1mg/mL胶原酶(Sigma Aldrich)中于
37℃消化所述水凝胶2小时。随后,通过Vero细胞感染性分析对所释放的MMR进行定量。
[0489] 丝水凝胶和微球的体外释放在2mL的Eppendorf管中进行。将各水凝胶或微球溶液置于Eppendorf管中,并添加1.5mL的无菌PBS。在每一时间点,移出Eppendorf管内的PBS,转移至另一Eppendorf管,并在-80℃储存。随后,向管中加入新的PBS,以对供给进行补充。一旦在设定的时间点取得了全部样品,则对所述溶液进行Vero细胞感染性分析,以对所释放的MMR的量进行定量。以累积释放的MMR描述释放值。
[0490] 残余水分测定:通过热重分析法对冻干疫苗粉末、MMR-丝膜和冻干的MMR-丝膜的残余水分进行测定,该方法由对Worrall等,2001中的方法加以修改而得,该方法对在80℃干燥1小时后的各疫苗体系的三个样品的平均重量进行估算。由干燥疫苗体系失去的水的重量以百分比表示。
[0491] 差示扫描量热法(DSC):将5mg样品包封于Al盘(pans)中,并在50ml/min的净化的(purged)干燥氮气流下,在TA Instrument Q100DSC(New Castle,DE)中加热。将热流对温度的不连续曲线的起始温度记为Tg。全部测量均在10℃/min下进行。首先在-20℃将所述样品平衡5分钟,随后加热至200℃,在200℃保持5分钟,随后冷却至20℃。在CSC Model6100Nano II Differential Scanning Calorimeter(Lindon,UT)上进行nono-DSC测量。以1mg/ml的浓度制备样品。对于在0℃-100℃间进行的加热和冷却而言,均将扫描速率设定为1℃/min。
[0492] 动态光散射(DLS):作为温度的函数,利用DLS对麻疹、腮腺炎和风疹病毒粒子的大小进行监测。将400μl小份的2mg/ml的样品溶液经由0.45μm注射式过滤器(GE,Fairfield,CT)进行过滤。使用DynaPro DLS系统(Wyatt Technology,Santa Barbara,CA)进行DLS,将参数设定为:60秒的采集时间、10次采集以及75mW的激光功率。将100μL的小份样品转移至待插入DLS中的无RNA酶、无DNA酶、无蛋白质的UVette Eppendorf cuvette中。由Stokes-Einstein等式,使用累积法(method of cumulants)由扩散系数计算出有效流体动力学直径(Koppel,1972)。
[0493] 实施例3的参考文献:
[0494] [1]Adu,F.D.,Adedeji,A.A.,Esan,J.S.and Odusanya,O.G.(1996).Live viral vaccine potency:an index for assessing the cold chain system.Public Health.110:325-330.
[0495] [2]Altman,G.H.,Diaz,F.,Jukuba,C.,Calabro,T.,Horan,R.L.,Chen,J.,Richmond,J.,and Kaplan,D.L.(2003).Silk-based biomaterials.Biomaterials.24:401-416.
[0496] [3]Arora,A.,Prausnitz,M.and Mitragotri,S.(2008).Micro-scaledevices for transdermal drug delivery,InternationalJournal of
Pharmaceutics.364:227-236.
[0497] [4]Arya,S.C.(2001).Stabilization of vaccines:to be or not tobe.Vaccine.19:595-597.
[0498] [ 5 ]Ausar,S.F.,Hudson,T.R.,Hudson,M.H.,Vedvick,T.S.andMiddaugh,C.R.(2006).Conformational stability and disassembly of Norwalk vires like panicles:effect of pH and temperature.Journal of Biological
Chemistry.281:19478-19488.
[0499] [6]Beauchamp,J.and Mansoor,O.(1992).Temperature and the storage of vaccines.New Zealand Medical Journal.105:135.
[0500] [7]Bishai,D.M.(1992).Vaccine storage practices in pediatric offices.Pediatrics.89:193-196.
[0501] [8]Brandau,D.T.,Jones,L.S.,Wiethoff,C.M.,Rexroad,J.and Middaugh,C.R.(2003).Minireview:Thermal Stability of Vaccines.Journal of Pharmaceutical Sciences.92(2):218-231.
[0502] [9]Chen,D.and Kristensen,D.(2009).Opportunities and challenges of developing thermostable vaccines.Expert Review of Vaccines.8.5:547-558.
[0503] [10]Cheriyan,E.(1993).Monitoring the vaccine cold chain.Archives of disease in childhood.69:600-601.
[0504] [11]Cheyne,J.(1989).Vaccine delivery management.Reviews of infectious diseases.11:S617-S622.
[0505] [12]Colinet G.,Rossignol,J.and Peetermans,J.(1982).A study of the stability of a bivalent measles-lnumps vaccine.Journal of biological standardization.10:341-346.
[0506] [13]Creighton,T.E.(1990).Protein folding.BiochemicalJournal.270:I-16.
[0507] [14]Dorsett,P.H.,Miller, D.C.,Green,K.Y.and Byrd,F.I.(1985).Structure and function of the rubella virus proteins.Reviews of Infectious Diseases.7(1):S150-S156.
[0508] [15]Evans,M.and Pope,M.(1995).Vaccine handling and storage in general practice.Health Trends.27:124-126.
[0509] [16]Galazka,A.,Milstien,J.,and Zaffran,M.(1998).Thennostability of Vaccines.In:Global Programme for Vaccines and Immunization.World Health Organization,Geneva.
[0510] [17]Hall,W.W.and Martin,S.J.(1973).Purification and Characterization of Measles Virus.Journal of General Virology.19:175-188.
[0511] [18]Health Protection Agency.(2007).Foreign travel associated illness,England,Wales,and Northern Ireland.2007Report.[Online].Accessed at hpa.org.uk/Publications/InfectiousDiseases/TravelHealth/0708Foreigntravelassociatedillness2007/.
[0512] [19]Hofmann,S.,Wong Po Foo,C.T.,Rossetti,F.,Textor,M.,Vunjak-Novakovic,G.,Kaplan,D.L.,Merkle,H.P.and Meinel I.(2006).Silk fibroin as an organic polymer for controlled drug delivery.Journal of Controlled Release.111:219-227.
[0513] [20]Horan,R.I.,Antle,K.,Collette,A.I.,Wang,Y.,Huang,J.and Moreau,J.E..In vitro degradation of silk fibroin.Biomaterials.26:3385-3393.
[0514] [21]Hu,X.,Kaplan,D.L.and Cebe,P.(2007).Effect of water on the thermal properties of silk fibroin.Thermochimica Acta.461:137-144.
[0515] [22]Hubschen,J.M.,Kremer,J.R.,de Landtsheer,S.,and Muller,C.P.(2008).A multiplex TaqMan PCR assay for the detection of measles and rubella virus.dournal of Virological Methods.149:246-250.
[0516] [23]Jin,H.J.and Kaplan,D.L.(2003).Mechanism of silk processing in insects and spiders.Nature.424:1057-1061.
[0517] [24]Kingston,R.L.,Gay,L.S.,Baase,W.S.and Matthews,B.W.(2008).Structure of the nucleocapsid-binding domain from the mumps virus polymerase;An example of protein folding induced by crystallization.Journal of Molecular Biology.379(4):719-731.
[0518] [25]Kissman,J.,Ausar,S.F.,Rudolph,A.,Braun,C.,Cape,S.P.,Sievers,R.E.,Federspiel,J.,Joshi,S.B.and Middaugh C.R.(2008).Stabilization of measles virus for vaccine formulation.Human Vaccines.4(5):350-359.
[0519] [26]Koppel,D.E.(1972).Analysis of macromolecular polydispersity in intensity COrrelation spectroscopy:The method of cumulants.Jotmral of Chemical Physics.57(11):4814-4820.
[0520] [27]Kubar,A.,Yapar,M.,Besirbellioglu,B.,Avci,Y.,and Guney,C.(2004).Rapid and quantitative detection of mumps virus RNA by one-step real-time RT-PCR.Diagnostic Microbiology andInfectious Disease.49:83-88.
[0521] [28]Kumakura,M.(1995).Effect of heat treatment on enzyme entrapped into polymer gels.Journal of Molecular Catalysis B:Enzymatic.L1-L6.
[0522] [29]Lee,S.,Schoneich,C.,and Borchardt,R.T.(1994).Chemical instability of protein pharmaceuticals:mechanisms of oxidation and strategies ofstabilization.Biotechnology and Bioengineering.48:490-500.
[0523] [30]Liddle,J.L.M.and Harris,M.F.(1995).How general practitioners store vaccines.A survey in south-westem Sydney.The Medical Journal ofAustralia.162:366-368.
[0524] [31]Malvoisin,E.and Wild T.F.(1993).Measles virusglycoproteins:studies on the structure and interaction of the haemagglutinin and fusion proteins.Journal of General Virology.74:2365-2372.
[0525] [32]Manning,M.D.and Borchardt,P.K.(1989).Stability of pharmaceutical proteins.Pharmaceutical Research.6:903-918.
[0526] [33]McAleer,W.J.,Markus,H.Z.,McLean,A.A.,Buynak,E.B.and Hilleman,M.R.(1980).Stability on storage at various temperatures of live measles,mumps and rubella virus vaccines in new stabilizer.
[0527] [34]Middaugh,C.R.(1996).Formulation and delivery ofbiopharmaceuticals.Journal of Pharmaceutical Sciences.85:1259-1260.
[0528] [35]Moss,W.J.and Griffin,D.E.(2006).Global measles elimination.Nature Review Microbiology.4:900-908.
[0529] [36]Nakhasi,H.L., C ao,X.,Rouault,T.A.and Liu,T.(1991).Specific binding of host cell proteins to the 3’-terminal stem-loop structure of rubella virus negative-strand RNA.Journal of Virology.5961-5967.
[0530] [37]Ohtake,S.,Arakawa,T.and Koyama,A.H.(2010).Arginine as aSynergistic Virucidal Agent.Molecules.15:1408-1424.
[0531] [38]Packer,L.,Colowick,S.P.and Kaplan,N.O.(2002).Methods inenzymology.Ed.Packer,L.Academic Press,California,USA.Volume349.
[0532] [39]Pritchard,E.,Szybala,C.,Boison,D.,and Kaplan,D.L.(2010).Silk fibroin encapsulated powder reservoirs for sustained release of adenosine.Journal of Controlled Release.144(2):159-167.
[0533] [40]Rexroad, J .,Evans,R.K.and Middaugh,C.R.(2006).Effect of pH and ionic strength on the physical stability of adenovirus type5.Journal ofPharmaceutical Sciences.95:1469,1479.
[0534] [41]Roberts,C.J.(2007).Non-Native Protein Aggregation Kinetics.Biotechnology and Bioengineering.98(5):927-938.
[0535] [42]Russell,B.,Seizer,G.and Goetze,H.(1967).The Panicle size of rubella virus.Journal of General Virology.1:305-310.
[0536] [43]Schalk,J.A.C.,de Vries,C.G.J.C.A,and Jongen,P.M.J.M.(2005).Potency estimation of measles,mumps and rubella trivalent vaccines with quantitative PCR infectivity assay.Biologicals.33:71-79
[0537] [44]Tsioris,K.,Raja,W.K.,Pritchard,E.M.,Panilaitis,B.,Kaplan,D.L.and Omenetto,F.G.(2011).Fabrication of silk microneedles for controlled-release drug delivery.Advanced Functional Materials.Published online:December2,2011.[0538] [45]Vepari,C.and Kaplan,D.L.(2007).Silk as a biomaterial.Progress in Polymer Science.32(8-9):991-1007.
[0539] [46]Wang,X.,Yucel,T.,Lu,Q.,Hu,X.and Kaplan,D.L.(2010).Silk nanospheres and microspheres from silk/pya blend films for drug delivery).Biomaterials.31:1025-1035.
[0540] [47]Wang,X.,Zhang,X,Castellot,J.,Herman,1.,Iafrati,M.and Kaplan,D.L.(2008).Controlled release from multilayer silk biomaterial coatings to modulate vascular cell responses.Biomaterials.29:894-903.
[0541] [48]Waterman,K.and Adami,R.C.(2005).Accelerated aging:Prediction of chemical stability of pharmaceuticals.International Jounral ofPharmaceutics.293:101-125.
[0542] [49]Wightman,G.,Beard,J.and Allison,R.(2007).An investigation into the behaviors of air rifle pellets in ballistic gel and their interaction with bone.Forensic Science International.200(1-3):41-49.
[0543] [50]WHO.(1982).Report of Expert Committee on BiologicalStandardization.Thirty-second report.Requirement for measles vaccine(live).Addendum1981,Geneva,World Health Organization.(Technical Report Series no.673,Annex6).
[0544] [51]WHO.(1994).Report of Expert Committee on BiologicalStandardization.Requirements for measles,mumps and rubella vaccines and combined vaccines(live).Geneva,World Health Organization.(Technical Report Series,No.840,Annex39).
[0545] [52]WHO(2006).Temperature sensitivity of vaccines.WHO publications.[Online].Thereference can be accessed at whqlibdoc.who.int/hq/2006/WHO_IV B_06.I0_eng.pdf
[0546] [53]WHO.(2011).Measles.Media centre fact sheet N ° 286.October2011.[online].The reference can be accessed at who.int/mediacentre/factsheets/fs286/en/
[0547] [54]WHO,UNAIDA,World Bank,UNESCO,UNFPA(2000).Health:a key to prosperity.In:Success Stories in Developing Countries.World HealthOrganization,Geneva.
[0548] [55]Wild,T.F.,Malvoisin,E.and Buckland,R.(1991).Measles virus:both the haemagglutinin and fusion glycoproteins are required for fusion.Journal of General Virology.72:439442.
[0549] [56]Woelk,C.H.,Pybus,O.G.,Jin,L.,Brown,D.W.G.and Holmes,E.C.(2002).Increased positive selection pressure in persistent(SSPE)versus acute measles virus infections.Journal of General Virology.83:1419-1430.
[0550] [57]Wolfson,L.J.,Gasse,F.,Lee-Martin,S.,Lydon,P.,Magan,A.,Tibouti,A.,Johns,B.,Hutubessy,R.,Salama,P.and Okwo-Bele,J.(2008).Estimating the costs of achieving the WHO-UNICEF Global Immunization Vision and Strategy,2006-2015.Bulletin of the World Health Organization.86:27-39.
[0551] [58]Worrall,E.E.,Litamoi,J.K.,Seck.B.M.and Ayelet,G.(2001).Xerovac:an ultra rapid method for the dehydration and preservation of live attenuated Rinderpest and Peste des Petits ruminants vaccines.Vaccine.19:834-839.
[0552] [59]Zhou,D.,Porter,W.R.and Zhang,G.G.Z.(2009).Chapter5-Drug stability and degradation studies.Developing Solid Oral Dosage Forms:Pharmaceufical Theory and Practice.Ed:Qiu,Y.,Chen,Y.,Zhang,G.G.Z.,Liu,L.and Porter,W.R.Pg:87-124.
[0553] [60]Zweig,S.E.(2006).Advances in vaccine stability monitoringtechnology.Vaccine.24:5977-5985.
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈