首页 / 专利库 / 疗法 / 治疗 / 细胞疗法 / 免疫疗法中的巨噬细胞CAR(MOTO-CAR)

免疫疗法中的巨噬细胞CAR(MOTO-CAR)

阅读:358发布:2020-05-14

专利汇可以提供免疫疗法中的巨噬细胞CAR(MOTO-CAR)专利检索,专利查询,专利分析的服务。并且提供修饰的免疫巨噬细胞用于 治疗 癌症和其它 疾病 。具体地,所述巨噬细胞表达嵌合 抗原 受体(CAR)。单链可变 片段 (scFV)可以针对胸苷激酶1(TK1)或次黄嘌呤 鸟 嘌呤 磷酸 核糖基转移酶(HPRT)。 信号 传导结构域可以来自Toll-样受体(TLR)。,下面是免疫疗法中的巨噬细胞CAR(MOTO-CAR)专利的具体信息内容。

1.一种用于治疗疾病的疗法,所述疗法包含:
所述疾病的特征在于与病变细胞相关但与正常细胞无关的抗原
通过用具有转导的嵌合抗原受体(CAR)的巨噬细胞进行治疗来杀死所述病变细胞,所述转导的嵌合抗原受体包含单克隆抗体的单链可变片段(scFv)与信号传导结构域的融合,所述单克隆抗体对所述抗原具有特异性。
2.如权利要求1所述的疗法,其中所述疾病是癌症。
3.如权利要求1所述的疗法,其中所述抗原是TK1,并且所述单克隆抗体对TK1具有特异性。
4.如权利要求1所述的疗法,其中所述抗原是HGPRT,并且所述单克隆抗体对HGPRT具有特异性。
5.一种用于治疗疾病的疗法,所述疗法包含:
所述疾病的特征在于与病变细胞相关但与正常细胞无关的抗原,
通过用具有双特异性T细胞衔接分子的巨噬细胞进行治疗来杀死所述病变细胞,所述双特异性T细胞衔接分子是由来自单克隆抗体的单链可变片段(scFv)与来自经由巨噬细胞信号传导结构域结合于巨噬细胞的另一抗体的scFv融合而得,
所述单克隆抗体对所述抗原具有特异性。
6.一种用于治疗肿瘤的方法,所述方法包含用具有MOTO-CAR载体(scFV与toll样受体细胞内活化区融合)的免疫细胞进行治疗,其中scFV来自单克隆抗体特异性的肿瘤相关抗原。
7.一种用于治疗肿瘤的方法,所述方法包含用具有MOTO-CAR载体(scFV与toll样受体细胞内活化区融合)的免疫巨噬细胞进行治疗,其中scFV来自单克隆抗体特异性的肿瘤相关抗原。
8.如权利要求12所述的方法,其中所述抗原存在于肿瘤细胞中或存在于肿瘤细胞上。
9.如权利要求13所述的方法,其中所述抗原存在于肿瘤细胞的表面上。
10.如权利要求12所述的方法,其中所述抗原是TK1或HPRT。
11.一种用于治疗疾病的方法,所述方法包含用具有MOTO-CAR载体(scFV与toll样受体细胞内活化区融合)的免疫巨噬细胞进行治疗,其中scFV来自单克隆抗体特异性的肿瘤相关抗原。
12.一种用于治疗肿瘤的方法,所述方法包含用选自巨噬细胞、单核细胞、白细胞、淋巴细胞和树突状细胞之一的修饰的免疫细胞进行治疗,所述修饰的免疫细胞包含转导的嵌合抗原受体(CARS),所述转导的嵌合抗原受体包含单克隆抗体的单链可变片段(scFv)与信号传导结构域的融合。
13.一种双特异性巨噬细胞衔接分子(BIME),所述双特异性巨噬细胞衔接分子包含通过基酸间隔子连接到针对肿瘤抗原的ScFv的巨噬细胞活化蛋白或ScFv。
14.如权利要求12所述的方法,其中所述修饰的免疫细胞是另外包含巨噬细胞特异性启动子的单核细胞,其中所述单核细胞在从血液移到组织中后变成巨噬细胞。
15.如权利要求12所述的方法,其中所述信号传导结构域是除来自toll样受体的细胞质域部分外的信号传导结构域。
16.如权利要求12所述的方法,其中所述单克隆抗体是人或小鼠单克隆抗体。
17.如权利要求12所述的方法,其中所述免疫细胞是由共刺激分子刺激的巨噬细胞。
18.如权利要求17所述的方法,其中所述共刺激分子是MD2。
19.一种用于将免疫巨噬细胞修饰成具有针对人类TK1或HPRT的受体的方法,所述方法包含:
产生对TK1或HPRT具有特异性的单克隆抗体,
通过所述单克隆抗体的单链可变片段(scFv)与信号传导结构域的融合,创造嵌合抗原受体(CAR),以及
将所述CAR转导到所述免疫细胞。
20.如权利要求19所述的方法,其中所述信号传导结构域是来自toll样受体的细胞质域部分。
21.如权利要求19所述的方法,其中toll样受体是TLR4。
22.一种修饰的免疫细胞,所述免疫细胞选自巨噬细胞、单核细胞、白细胞、淋巴细胞和树突状细胞之一,包含转导的嵌合抗原受体(CARS),所述转导的嵌合抗原受体包含单克隆抗体的单链可变片段(scFv)与信号传导结构域的融合。
23.如权利要求22所述的细胞,其中所述单克隆抗体对TK1或HPRT具有特异性。

说明书全文

免疫疗法中的巨噬细胞CAR(MOTO-CAR)

背景技术

[0001] 癌症描述一组疾病,其涉及不受控制的细胞生长和死亡、基因组不稳定和突变、长期炎症促发肿瘤、血管生成诱导、免疫系统逃逸、代谢途径失调、永生细胞复制以及转移性组织入侵[1]。在美国,癌症是位于心脏病之后的第二大死因[2]。每年预计会诊断出超过160万个新的癌症病例,预计超过580,000个美国人会死亡(每天约1600例癌症死亡),占全美国死亡人数的近四分之一[2,3]。
[0002] 免疫系统在癌症的产生和进展中起重要的作用。分化成巨噬细胞的单核细胞根据不同刺激会显示各种响应,并且根据其周围的微环境展现出不同的功能。巨噬细胞可以是促炎的(M1)或抗炎的(M2)。研究显示,巨噬细胞渗透到肿瘤部位中可占肿瘤的50%以上,通过诱导血管生成帮助转移,并预示不良预后。迁移至肿瘤部位和保留在肿瘤部位中的促进血管生成和转移的巨噬细胞被称作肿瘤相关巨噬细胞(TAM),并且被认为表达抗炎M2表型。
[0003] 巨噬细胞是来源于髓系的细胞,属于先天性免疫系统。它们来源于迁移到组织中的血液单核细胞。其主要功能之一是吞噬生物并清除细胞碎片。它们还在炎症的出现和消除中起重要的作用[9,10]。此外,取决于其从周围的微环境接收到的刺激的类型,巨噬细胞可显示出从促炎到抗炎不同的响应[11]。已经提出了两种主要的巨噬细胞表型:M1和M2,其与极端巨噬细胞响应相关。
[0004] M1促炎巨噬细胞在与某些分子(例如脂多糖(LPS)、IFN-γ、IL-1β、TNF-α)接触和与toll样受体结合时会被激活。M1巨噬细胞构成免疫系统用来对抗感染的一个强有的武器。它们能够直接(病原体模式识别受体)或间接(Fc受体,补体受体)识别病原体。它们还具有产生作为帮助杀死病原体的手段的活性类(ROS)的能力。另外,M1巨噬细胞分泌可以吸引其它类型免疫细胞并整合/协调免疫响应的促炎细胞因子和趋化因子。M1活化通过IFN-g、TNFa、GM-CSF、LPS以及其它toll样受体(TLR)配体诱导。
[0005] 相比而言,M2抗炎巨噬细胞还被称作可替代激活的巨噬细胞,通过诸如IL-4、IL-13以及IL-10这样的抗炎分子激活[12,13]。M2巨噬细胞展现出免疫调节、组织修复以及血管生成特性,其容许它们将调节性T细胞募集至炎症部位。M2巨噬细胞并未构成一个均匀群体,经常进一步再分为M2a、M2b以及M2c类别。全部三个亚群的共同特性是高产IL-10并低产IL-12。它们的特征之一是产生消耗L-精酸的酶精氨酸酶-1,从而抑制T细胞响应并剥夺其底物的iNOS。
[0006] 由于巨噬细胞在细胞微环境中得到的各种信号,对巨噬细胞极化的体内分子机制的表征较差[10,14]。近年来,在诸如个体发育、妊娠等各种生理状况下以及诸如过敏、慢性炎症和癌症等的病理状况下确认体内巨噬细胞极化已经取得了进展。然而,目前尚不清楚体外巨噬细胞极化是否是塑性的,而且巨噬细胞在细胞因子的帮助下可来回极化为任一表型[15,16]。干扰素γ(IFN-γ)和IL-4是可将巨噬细胞分别极化为M1和M2表型的两种细胞因子[15]。
[0007] 巨噬细胞的存在对于肿瘤进展和生长十分重要,对于确定预后具有意义[17,18]。由于巨噬细胞可展现出促炎和抗炎特性,所以理解它们在肿瘤进展和转移中的极化和功能十分重要。
[0008] 巨噬细胞的极化
[0009] 肿瘤微环境可影响巨噬细胞极化。由于IL-10、糖皮质激素、凋亡细胞以及可干扰先天性免疫细胞功能的免疫复合物的有害环境,极化过程可以是多种多样的和复杂的[11,19]。极化机制目前尚不清楚,但是已知它们涉及转录调控。例如,曝露于LPS或IFN-γ的巨噬细胞会极化为M1表型,而曝露于IL-4或IL-13的巨噬细胞则会极化为M2表型。LPS或IFN-γ可与巨噬细胞表面上的toll样受体4(TLR4)相互作用,从而诱导Trif和MyD88通路,诱导转录因子IRF3、AP-1以及NFκB的活化,并因此激活对于促炎M1巨噬细胞响应为必需的TNF基因、干扰素基因、CXCL10、NOS2、IL-12等[20]。类似地,IL-4和IL-13与IL-4R结合,激活Jak/Stat6通路,其调控CCL17、ARG1、IRF4、IL-10、SOCS3等(与抗炎响应(M2响应)相关的基因)的表达。
[0010] 巨噬细胞极化的其它机制包括微小核糖核酸(miRNA)的微观管理。miRNA是长度为22个核苷酸的小的非编码RNA,由于它们会影响mRNA的降解速率,所以它们可以调控转录后的基因表达。经表明,几种miRNA在极化巨噬细胞中,特别是在miRNA-155、miRNA-125、miRNA-378(M1极化)、以及miRNAlet-7c、miRNA-9、miRNA-21、miRNA-146、miRNA147、miRNA-
187(M2极化)中被高度表达[21]。
[0011] 巨噬细胞极化是一个复杂过程,其中取决于微环境刺激,巨噬细胞会表现出和引发不同的响应。因此,巨噬细胞极化更好地表示为连续的激活状态,其中M1和M2表型是该范围的极限。近年来,对于巨噬细胞活化和巨噬细胞极化的定义/描述存在很多争论。最近由Murray等人发表的论文中描述了一组标准,其被考虑用于巨噬细胞活化、极化、活化剂以及标记物的统一定义/描述。该出版物对于活化/极化巨噬细胞的定义和表征来说是迫切需要的[22]。
[0012] M1表型
[0013] M1促炎巨噬细胞或典型的活化巨噬细胞具有攻击性和高度吞噬性,并会产生大量的活性氧类和活性氮类,从而促进Th1响应[11]。M1巨噬细胞分泌高平的两种重要的炎性细胞因子IL-12和IL-23。IL-12诱导Th17细胞的活化和克隆扩增,Th17细胞可以分泌大量的能够促发炎症的IL-17[23]。这些特征容许M1巨噬细胞控制转移,抑制肿瘤生长,并控制微生物感染[24]。此外,M1巨噬细胞向肿瘤部位的渗透和募集与具有实体瘤的患者中更好的预后和更高的总存活率相互关联[17,18,25-28]。
[0014] 巨噬细胞极化为M1表型通过诸如IFN-γ、TNF-α、IL-1β以及LPS这样的炎性信号以及转录因子和miRNA进行体外调控[29,30]。典型的活化巨噬细胞启动STAT1转录因子的诱导,STAT1转录因子靶向CXCL9、CXCL10(也称作IP-10)、IFN调控因子-1以及细胞因子信号传导-1抑制因子[31]。细胞因子信号传导-1蛋白在细胞因子受体的下游起作用,并参与负反馈环,以削弱细胞因子信号传导。在肿瘤微环境中,Notch信号传导在M1巨噬细胞的极化中起重要的作用,这是由于它容许转录因子RBP-J调控典型活化。
[0015] 不考虑其它外源性诱导物如何,缺少Notch信号传导的巨噬细胞表达为M2表型[32]。当巨噬细胞从M2转变为M1时,一个重要的miRNA,miRNA-155,被上调;过度表达miRNA-155的M1巨噬细胞通常更具有攻击性,并且与肿瘤减小相关联[33]。此外已经发现,miRNA-
342-5p通过靶向小鼠中的Akt1可以在巨噬细胞中促发更大的炎性响应。该miRNA还会促进Nos2和IL-6的上调,Nos2和IL-6充当巨噬细胞的炎性信号[34]。诸如miRNA-125和miRNA-
378这样的其它miRNA也被证明包含在巨噬细胞(M1)的典型激活通路中[35]。
[0016] 典型的活化巨噬细胞被认为在癌细胞的识别和破坏中起重要的作用,这是由于它们的存在通常表明良好预后。识别后,恶性细胞可通过几种机制被M1巨噬细胞破坏,所述机制包括接触依赖性吞噬作用和细胞毒性(即细胞因子释放,例如TNF-α)[24]。但是,诸如肿瘤微环境或组织驻留细胞这样的环境信号可将M1巨噬细胞极化为M2巨噬细胞。鼠类巨噬细胞的体内研究显示,巨噬细胞在其细胞因子和表面标记物的表达中是塑性的,并且在癌症的存在下巨噬细胞再极化为M1表型可帮助免疫系统抵抗肿瘤[19]。
[0017] M2表型
[0018] M2巨噬细胞是抗炎性的,并且可以协助血管生成过程和组织修复过程。它们表达清道夫受体并产生大量的IL-10和其它抗炎细胞因子[33,36]。通过M2巨噬细胞表达IL-10可促发Th2响应。随后Th2细胞上调IL-3和IL-4的产生。IL-3与其它细胞因子(例如促红细胞生成素(EPO)、粒细胞巨噬细胞集落刺激因子(GM-CSF)以及IL-6)一起刺激髓系中所有细胞(粒细胞、单核细胞以及树突状细胞)的增殖。IL-4是康复过程中一个重要的细胞因子,这是由于它有助于产生细胞外基质[23]。M2巨噬细胞展现出可通过允许血管喂养恶性细胞从而促进其生长以帮助肿瘤进展的功能。在大部分实体瘤中存在的巨噬细胞(被认为是M2)与治疗成功和更长存活率负相关[37]。此外,M2巨噬细胞的存在与乳腺癌的转移潜能相关。Lin及其同事发现,在小鼠中巨噬细胞早期募集至乳腺瘤部位会增加血管生成和恶性肿瘤的发病率[38]。据信肿瘤微环境会帮助巨噬细胞保持为M2表型[23,39]。肿瘤微环境中诸如脂联素和IL-10这样的抗炎信号的存在可增强M2响应[41]。
[0019] 肿瘤相关巨噬细胞(TAM)
[0020] 曝露于肿瘤微环境的细胞表现不同。例如,实体瘤周边存在的肿瘤相关巨噬细胞被认为会帮助促进肿瘤生长和转移,并具有M2-样表型[42]。肿瘤相关巨噬细胞可以是组织驻留巨噬细胞,或者来源于骨髓的募集巨噬细胞(从单核细胞分化为巨噬细胞并迁移至组织中的巨噬细胞)。Cortez-Retamozo的研究发现,脾中大量的TAM前体迁移至肿瘤基质,表明该器官也是TAM的储存器[43]。发现脾中存在的TAM前体通过其CCR2趋化因子受体启动迁移[43]。最近的研究发现,CSF-1是将巨噬细胞吸引至肿瘤周边的主因子,并且癌细胞产生的CSF-1预示着更低的存活率,它表明总体不良预后[44-46]。诸如TNF-α和IL-6这样的其它细胞因子也与巨噬细胞向肿瘤周边的积累/募集相关联[45]。
[0021] 据信在肿瘤边界周围募集的巨噬细胞由肿瘤中激活的“血管生成转换(angiogenics witch)”调控。血管生成转换定义为肿瘤产生高密度的血管网络的过程,所述高密度的血管网络可能会使肿瘤变成转移性瘤,并且对于恶性转变是必要的。在乳腺癌小鼠模型中,观察到完全的血管生成转换需要巨噬细胞的存在。当肿瘤周围巨噬细胞的成熟、迁移以及积累被延迟时,血管生成转换也被延迟,表明血管生成转换在不存在巨噬细胞的情况下不会发生,并且巨噬细胞的存在对于恶性肿瘤的进展是必要的[47]。此外,肿瘤基质细胞可产生诸如CSF1、CCL2、CCL3、CCL5以及胎盘生长因子这样的趋化因子,其可以将巨噬细胞募集至肿瘤周边。这些趋化因子为巨噬细胞激活血管生成转换提供环境,在其中巨噬细胞产生高水平的IL-10、TGF-β、ARG-1以及低水平的IL-12、TNF-α以及IL-6。这些细胞因子的表达水平表明巨噬细胞可调节免疫逃逸。应特别注意,巨噬细胞被吸引到缺氧性肿瘤环境并通过产生缺氧诱导因子-1α(HIF-1α)和HIF-2α进行响应,HIF-1α和HIF-2α调控与血管生成相关的基因的转录。在血管生成转换过程中,巨噬细胞还可分泌VEGF(通过NF-κB通路刺激),其可以促进血管成熟和血管通透性[48]。
[0022] 肿瘤相关巨噬细胞被认为能够通过从诸如IL-1R和MyD88这样的恶性细胞接收极化信号来保持其M2-样表型,其通过IkB激酶β和NF-kB信号传导级联介导。抑制TAM中的NF-kB会促发典型活化[40]。此外,另一个研究表明,p50NF-kB亚基包含在M1巨噬细胞的抑制中,并且炎症的减少促进了肿瘤生长。由Saccani等人产生的p50NF-κB敲除小鼠表明,M1的攻击性在敲除p50NF-kB后被恢复,从而降低肿瘤存活[49]。
[0023] 由于肿瘤块含有大量的M2样巨噬细胞,所以TAM可用作癌症治疗的靶点。减少TAM数量或将其极化为M1表型可帮助破坏癌细胞并阻碍肿瘤生长[50-52]。Luo及其同事使用了抗豆荚蛋白疫苗、半胱氨酸蛋白酶以及TAM中上调的应激蛋白,其被认为是潜在的肿瘤靶点[52]。当给小鼠施用抗豆荚蛋白疫苗时,控制血管生成的基因被下调,并且肿瘤生长被终止[52]。
[0024] 代谢和活化途径
[0025] 肿瘤细胞中存在的代谢变化由产生癌症的同样的基因突变控制[53]。由于这些代谢变化,癌细胞能够产生可改变巨噬细胞极化并促进肿瘤生长的信号[54,55]。
[0026] M1和M2巨噬细胞展示出不同的代谢形式,这反映它们不同的行为[56]。M1表型增加糖酵解并使葡萄糖代谢偏向氧化性磷酸戊糖途径,从而降低氧气消耗并因此产生大量的自由基氧类和氮类,以及诸如TNF-α、IL-12以及IL-6这样的炎性细胞因子[56,57]。M2表型增加脂肪酸的摄入和氧化,这降低了向磷酸戊糖途径的通量同时增加总的细胞氧化还原电势,从而上调清道夫受体和免疫调节细胞因子,例如IL-10和TGF-β[56]。
[0027] 多种代谢途径在巨噬细胞极化中起重要的作用。诸如Akt1和Akt2这样的蛋白激酶通过允许癌细胞存活、增殖、并使用中间代谢来改变巨噬细胞的极化[58]。其它蛋白激酶可通过增加糖酵解和降低氧气消耗通过葡萄糖代谢引导巨噬细胞极化[57,59]。Shu及其同事是第一批使用PET扫描和葡萄糖类似物观察体内巨噬细胞代谢和免疫响应的人[60]。
[0028] L-精氨酸代谢还展现出对巨噬细胞中的细胞因子表达重要的离散位移,并例示不同的代谢途径,其会改变TAM-肿瘤细胞相互作用[61]。典型的活化(M1)巨噬细胞有利于诱导型一氧化氮合酶(iNOS)。iNOS通路产生细胞毒性一氧化氮(NO),并因此展现出抗肿瘤行为。已经显示可替代活化的(M2)巨噬细胞有利于精氨酸酶通路,并产生脲和l-氨酸,其有助于肿瘤细胞进一步生长[61,62]。
[0029] 直接操控代谢途径可改变巨噬细胞极化。在葡萄糖代谢中起作用的糖激酶样蛋白(CARKL)蛋白已经被用于改变巨噬细胞因子标签[56,57]。当CARKL被RNAi敲减时,巨噬细胞倾向于采用M1样代谢途径(偏向糖酵解和降低的氧气消耗的代谢)。当CARKL被过度表达时,巨噬细胞则采用M2样代谢(降低的糖酵解通量和更多的氧气消耗)[56]。当巨噬细胞通过LPS/TLR4结合采用M1样代谢状态时,CARKL水平会降低,通过NFκB通路控制的基因被激活(TNF-α、IL-12以及IL-6),并且细胞氧化还原电势会由于持续增加的NADH:NAD+和GSH:GSSSG复合物浓度而增加。在M2样代谢状态过程中,巨噬细胞会上调CARKL和通过STAT6/IL-
4(IL-10和TGF-β)调控的基因。
[0030] 针对癌症的巨噬细胞免疫治疗方法
[0031] 癌症免疫疗法的作用是刺激免疫系统,以识别、抵抗并破坏癌细胞。使用单核细胞/巨噬细胞进行的癌症免疫疗法的目标是将巨噬细胞极化为促炎响应(M1),以便使得巨噬细胞和其它免疫细胞破坏肿瘤。许多细胞因子和细菌化合物可在体外实现该目标,尽管副作用在体内通常太严重。关键是找到具有最小的或易于管理的患者副作用的化合物。使用单核细胞/巨噬细胞进行的免疫疗法在过去的几十年中已经得到使用,并且每年都在开发出新的方法[64,65]。早期的免疫疗法已经为更好的癌症疗法建立了良好基础,并在用免疫疗法治疗的患者中提高了存活率[66]。
[0032] 一些癌症免疫疗法的方法包括使用细胞因子或趋化因子来将激活的巨噬细胞和其它免疫细胞募集到肿瘤部位,这允许对肿瘤部位进行识别和靶向破坏[67,68]。经显示,IFN-α和IFN-β通过诱导细胞分化和细胞凋亡来抑制肿瘤进展[69]。另外,IFN治疗是抗增殖的,并且可增加细胞周期中的S阶段时间[70,71]。Zhang及其同事在裸小鼠中使用IFN-β基因疗法进行了一个研究,以靶向人类前列腺癌细胞。其结果表明,腺病毒递送的IFN-β基因疗法涉及巨噬细胞,并帮助抑制生长和转移[72]。
[0033] 巨噬细胞抑制因子(MIF)是可用于癌症免疫疗法的另一种细胞因子。MIF通常存在于实体瘤中,并预示不良预后。MIF抑制攻击性巨噬细胞的功能,并驱使巨噬细胞倾向于M2表型,其可促使肿瘤生长和进展。Simpson、Templeton以及Cross(2012)发现,MIF会诱导骨髓细胞(巨噬细胞前体)分化为表达M2表型的抑制性骨髓细胞群[73]。通过靶向MIF,其能够耗尽该抑制性巨噬细胞群,从而抑制它们的生长并因此控制肿瘤生长和转移[73]。
[0034] 趋化因子受体类型2,CCR2,对于将单核细胞募集至炎性部位很重要,并且已经显示它是防止巨噬细胞募集至肿瘤部位、血管生成以及转移的靶点。Sanford及其同事(2013)在胰腺小鼠模型中研究了一种新的CCR2抑制剂(PF-04136309),表明CCR2抑制剂减少了单核细胞/巨噬细胞向肿瘤部位的募集,降低了肿瘤生长和转移,并增加了抗肿瘤免疫[74]。由Schmall等人进行的另一个最近的研究显示,通过10种不同的人癌共培养的巨噬细胞上调了CCR2表达。此外它们还显示,在使用CCR2拮抗剂治疗的肺小鼠模型中肿瘤生长和转移被减少[75]。
[0035] 其它研究使用脂质体递送药物,以减少来自肿瘤的M2巨噬细胞,并终止血管生成。表达高水平的IL-1β的癌细胞生长得更快,并在体内诱导更多的血管生成。Kimura及其同事发现,曝露于表达IL-1β的肿瘤细胞的巨噬细胞产生了更高水平的血管生成因子和趋化因子,例如血管内皮生长因子A(VEG-A)、IL-8、单核细胞趋化蛋白1等,从而促使肿瘤生长和血管生成[76]。当使用氯膦酸脂质体来减少巨噬细胞时,他们发现更少的产IL-1β肿瘤细胞。
他们还发现,通过抑制癌细胞中的NF-κB和AP-1转录因子,肿瘤生长和血管生成被减少。这些发现可表明,肿瘤部位周围的巨噬细胞可涉及促进肿瘤生长和血管生成[76]。
[0036] 诸如蛋氨酸脑啡肽(MENK)这样的化合物具有体内和体外抗肿瘤特性。MENK能够通过下调CD206和精氨酸酶-1(M2标记物)同时上调CD64、MHC-II以及一氧化氮(M1标记物)的产生将M2巨噬细胞极化为M1巨噬细胞。MENK还可上调TNF-α并下调IL-10[77]。
[0037] 最近的研究集中在作为M2巨噬细胞的潜在抑制剂的双膦酸盐上。双膦酸盐通常用来治疗转移性乳腺癌患者,以预防诸如骨吸收这样的骨骼并发症[78]。尽管双膦酸盐在体内停留较短的时间段,但是双膦酸盐可靶向破骨细胞(与巨噬细胞相同家族的细胞),这是由于它们的高羟磷灰石亲和性。一旦双膦酸盐与骨结合,骨基质便通过内吞作用将双膦酸盐内在化。一旦进入细胞质中,双膦酸盐便可抑制蛋白的异戊烯化(一个防止整联蛋白信号传导和内体运输的事件),从而迫使细胞凋亡。[69]直到最近,尚不清楚双膦酸盐是否可靶向肿瘤相关巨噬细胞,但是最近Junankar等人的研究显示,巨噬细胞通过吞饮作用和吞噬作用(一个在肿瘤周围的上皮细胞中不会发生的事件)摄入含氮双膦酸盐化合物[79]。使用双膦酸盐迫使TAM凋亡可减少血管生成和转移。
[0038] 癌症免疫疗法的其它方法包括使用可引发免疫响应的生物材料。由于其一旦溶于水中的反应性,免疫疗法中使用阳离子聚合物。Chen等人使用包括PEI、聚赖氨酸、阳离子葡聚糖以及阳离子凝胶在内的阳离子聚合物来产生强烈的Th1免疫响应[77]。他们还能够诱导CD4+细胞的增殖和对于M1巨噬细胞典型的IL-12分泌[77]。Huang及其同事还使用生物材料来触发TAM,以便通过靶向TLR4产生抗肿瘤响应[80]。该研究发现,TAM能够极化为M1表型并表达IL-12。他们发现,这些阳离子分子具有直接杀肿瘤活性,并在小鼠中显示出肿瘤减小[80]。
[0039] CAR T细胞免疫疗法
[0040] 人工T细胞受体(也称作嵌合T细胞受体、嵌合免疫受体、嵌合抗原受体(CAR))是工程化的受体,其可将任意的特异性赋予免疫效应细胞。通常,这些受体被用来将单克隆抗体的特异性赋予T细胞;其编码序列的传送由逆转录病毒载体推动。
[0041] 最近,已经开发了利用这些工程化的T细胞来靶向和破坏含有癌症特异性的或癌症相关的生物标记物的细胞的疗法。一旦建立适当的靶标,便将T细胞受体(TCR)的胞外域替换为来自抗所述靶点的抗体的单链可变片段(scFv)。该scFv含有确定结合的抗体可变区。因此,当与所述靶点接触时,scFv与可激活T细胞的信号传导级联结合,并将其启动。这些工程化的免疫细胞由于其组合性质被称作嵌合抗原受体(CAR),并代表癌症治疗中一种新的新颖性疗法。然而,CAR受到适当的靶点的可用性的限制。
[0042] 与细胞内T细胞信号传导域融合的细胞外抗体片段指向肿瘤表位的嵌合抗原受体(CAR)被转导到T细胞中,赋予其新的对非-MHC限制表位的特异性[3]。嵌合抗原受体(CAR)是提供表面抗原结合功能和T细胞活化功能的重组受体。在过去的十年中已经报道了许多CAR,其靶向大量的细胞表面肿瘤抗原。其生物功能在引入包含共刺激域的三元受体后被显著改变,称为第二代CAR。最近它们已经在用靶向CD19的自体T细胞治疗的患者中显示出临床益处。CAR可与共刺激配体、嵌合共刺激受体或细胞因子结合,以进一步增强T细胞的效力、特异性以及安全性。CAR代表一类新的具有令人激动的癌症免疫疗法潜力的药物。
[0043] T细胞能够诱导有效的抗肿瘤响应,但是由于许多这些表位与自身表位非常相似或者相同,所以能够对肿瘤表面上的肽-MHC表位做出最有效响应的T细胞经常会遭受克隆抗性或缺失。T细胞疗法涉及通过引入针对肿瘤相关的T细胞表位的TCR进行的T细胞体外基因修饰。该策略已经显示出前景,但是总体上仍存在围绕T细胞表位的各种挑战,以及引入的TCR与内源性TCR的可能错配。多个提案建议通过允许T细胞对常规抗体表位响应来控制T细胞对抗肿瘤的能力。
[0044] BiTE(双特异性T细胞衔接分子)
[0045] 另一个靶向精确抗体表位的T细胞的策略利用长期研究的类型的称作“双特异性抗体”的分子,其将抗癌抗体与识别CD3亚基的抗体连接。最近其被称作BiTE(双特异性T细胞衔接分子)。与肿瘤表位结合的单链可变片段(scFv)与结合到T细胞受体复合物的不变部分的第二个scFv连接,从而导致激活并靶向针对肿瘤表位的效应T细胞,而不考虑TCR介导的T细胞特异性如何。证据显示,这些试剂比单独的抗肿瘤细胞抗体明显更有效。已经创建了靶向10种以上的肿瘤相关表位的BiTE,包括针对CD19的博纳吐单抗(blinatumomab)(针对B细胞白血病)和针对EpCAM的MT-110(针对各种腺癌和癌症干细胞),两者目前均正在临床试验中进行评估。在临床试验中接受博纳吐单抗的顽固性急性淋巴细胞白血病(ALL)患者中发现无复发存活的高响应率和最小残留疾病的消除。
[0046] 胸苷激酶(TK1)
[0047] 人胸苷激酶1(TK1)是一种众所周知的核苷酸补救途径酶,其在肿瘤中过度表达的特性已经被广泛研究。由于TK1首先通过其在癌症患者血清中的表达来普及(sTK),所以已经对其诊断和预后潜力进行了深入研究。例如,几个研究已经显示,许多不同癌症患者中的sTK1被以阶段类方式提高,更高的TK1水平表示更晚期的肿瘤[81]。
[0048] 其它研究已经研究了TK1的预后潜力。一个这种研究显示,原发性乳腺瘤中的TK1水平可用来预测复发。其它令人激动的TK1预后研究显示,当患者对治疗作出响应时sTK1水平会显著降低,而在对其治疗无响应的患者中sTK1水平则会继续升高。同样已知的是,sTK1水平在复发前开始升高,并注意在一些情况下sTK1水平可“在临床症状发生1-6个月之前”预测复发。一些其它研究确认TK1作为癌症的诊断和预后指标的丰富潜力[82]。
[0049] 尽管TK1的诊断和预后潜力已经充分确立,但是相比之下TK1的治疗潜力仍然不明。尽管HSV-TK确实已经用于基因疗法并且PET成像确实利用TK1来确认增殖性癌细胞,但是很少(如果有的话)有研究钻研TK1免疫疗法的可能性。可能这主要是由于TK1是一种已知的胞质蛋白。最近发现,TK1不仅在癌细胞中被表达,而且还在大多数肿瘤类型的表面膜上被表达,因此是肿瘤免疫疗法非常切实可行的靶点。
[0050] 已经使用常规TK活性放射性分析证明了TK1对于血液恶性肿瘤和实体瘤的诊断和预后潜力。TK1已经在癌症诊断生物标记物的情境中被深入研究,在该情境中显示在实体瘤和血液恶性肿瘤中在组织和血清中其均被上调。
[0051] 显示血清中的TK1水平在诸如膀胱癌、宫颈癌、胃癌、非小细胞肺癌以及肾癌和结直肠癌这样的其它癌症中也具有诊断潜力。总之,高TK1血清水平与肿瘤攻击性相关联,并且可以指示癌变发生中的早期事件。但是,TK1进入血清中的机制和其在血清中的功能远未探索清楚。也许,其在血清中的功能与调控免疫系统相关。需要进行进一步的分析来理解这一关联及其重要性。
[0052] 在其最基础的结构中作为单体的人类TK1(hTK1)的长度为234个氨基酸,分子量为25.5kDa。TK1采用各种低聚形式,尽管其最通常是二聚体或四聚体,分别为大约53kDa和
100kDa。在1993年,Munch-Petersen报道TK1二聚体是所述酶的低效率形式,具有高的Km(15μM)。另一方面,TK1四聚体则是高效率形式,具有低的Km(0.7μM),并且报道与二聚体相比在催化其磷酰基转移反应中具有增加30倍的效率。TK1的结晶表明四聚体形式由二聚体的二聚体构成。照此,存在标记为强和弱的两个不同的单体-单体界面。弱界面主要间接通过供体分子ATP被稳定,而强界面则直接通过许多极性相互作用被稳定。每个单体具有α/β-结构域,其与包括RecA在内的DNA结合蛋白最相似。
[0053] 胸苷激酶1(TK1)是一种核苷酸补救途径酶,主要负责将脱氧胸苷转化为脱氧胸苷单磷酸酯,并且其在细胞复制过程中被高度上调。在DNA合成过程中,核苷酸被从头合成,或者通过它们从细胞内和细胞外来源回收的补救途径合成。
[0054] TK1是负责维持细胞核苷酸库的两种主要补救途径激酶之一。TK1主要负责脱氧胸苷(dT)的磷酸化。然后其产物dTMP随后被磷酸化并作为三磷酸脱氧胸苷(dTTP)结合到DNA中。意料之中的是,dTTP帮助调控这一过程,这是由于它会抑制TK1,它是该过程的限速步骤。在正常增殖条件下,TK1由细胞周期调控。TK1水平在G1阶段很低或者几乎刚能被检测到,并在G1阶段晚期开始增加。TK1水平在S阶段达到峰值,浓度接近200nM,比G1阶段的水平高至少10倍。有趣的是,Sherley等人报道在正常条件下,与细胞周期过程中蛋白活性水平增加15倍相比TK1mRNA仅增加3倍或更少。他们还确定,S阶段的[35S]结合速率比G1阶段的效率高12倍。表明S阶段TK1水平的迅速增加是由于TK1翻译效率的增加,而不是由于转录的增加。考虑到Chou等人的研究,这一发现特别受人青睐,在Chou等人的研究中5'非翻译区(5'UTR)允许独立于帽对TK1mRNA进行翻译。自那以后Munch-Peterson等人证明这一TK1的迅速增加还是由于非活性二聚体TK1形式转化为活性四聚体TK1形式的结果。几个研究确认,TK1水平会由于DNA损伤(特别是在放疗或化疗之后)而增加。
[0055] 在2010年,Chen等人通过显示p53-/-肿瘤细胞会响应于DNA损伤而增加TK1水平而p53野生型肿瘤细胞则不会来进一步表征TK1与DNA损伤之间的关联。TK1与p53之间的这一关联已经在其它研究中得到了验证,所述研究报道维持依赖于细胞周期的TK1调控需要正常的p53功能,并且在损失p53的情况下存在TK1的补偿性增加。这一关联的更详细分析显示,DNA损伤后TK1水平的增加取决于p21。实际上,Huang等人(2001)显示p21的c-末端结构域与TK1相互作用,并且TK1的过度表达会阻止p21依赖性生长的抑制。这些结果对TK1在肿瘤细胞中的常规作用提出挑战。例如,Chen等人确认TK1敲减并未影响肿瘤细胞的生长,尽管dTTP水平显著降低(p<0.01)。他们的结果支持TK1在肿瘤细胞中的主要作用是DNA修复而不是为复制和生长提供足够的dTTP水平这一结论。尽管这一结论被支持,但是TK1的生化功能仍不清楚。在正常细胞中,TK1负责以细胞周期依赖性方式维持dTTP核苷酸库。此外,TK1在DNA损伤后的DNA修复和肿瘤细胞存活中起非常重要的作用。人们对TK1的生物学重要性的了解甚少,并且有些令人困惑。正常的TK1功能对于肾脏和唾腺的正常发育和功能是必要的,尽管这些机制尚未被理解。似乎TK1对于免疫系统的正常功能也是必要的,并可在其失调中起作用。TK1的另一个未探索的和令人困惑的功能是其在癌症患者的循环系统中的作用。
[0056] 次黄嘌呤鸟嘌呤磷酸核糖基转移酶(HPRT)。
[0057] HGPRT或HPRT是一种用来大规模产生鸟嘌呤和次黄嘌呤核苷基的重要的酶。HPRT通过将磷酸核糖从PRPP转移至次黄嘌呤或鸟嘌呤碱基来起作用,分别形成IMP和GMP。
由于其在DNA维持中的作用,HGPRT被称为持家基因,并且由于其在所有真核细胞内的恒定表达,所以经常被用作定量分析的标准物。
[0058] 次黄嘌呤-鸟嘌呤磷酸核糖基转移酶(HGPRT)是一种在人类中通过HPRT1基因座编码的酶。该酶允许细胞回收嘌呤,它是一类DNA及其化学同类RNA的构件。制造嘌呤会比回收嘌呤消耗更多的能量并耗费更长的时间,这使得回收这些分子变得更有效。回收嘌呤确保细胞具有充足的构件供应,用来产生DNA和RNA。回收嘌呤的过程还称作嘌呤补救途径。
[0059] 次黄嘌呤磷酸核糖基转移酶1(HGPRT)
[0060] 对于用于细胞分裂和成功DNA复制的核苷酸的产生同样重要的是,次黄嘌呤鸟嘌呤磷酸核糖基转移酶(HPRT或HGPRT)是一种重要的用来在嘌呤补救途径中大规模产生鸟嘌呤和次黄嘌呤核苷的酶。补救途径酶充当回收剂,利用旧的核苷酸组分,以绕过核苷酸合成需要的能量消耗。由于90%的游离嘌呤被回收,这一产生方法在大部分人类细胞周期中占主导。作为该过程中的一种重要的酶,HPRT对于细胞的存活和增殖是必要的。然而,其在癌细胞增殖能力中的作用很大程度上仍是未知的。通过评估这一关系的初期工作,初步数据表明癌细胞可上调HPRT并且仅将蛋白展现到细胞表面上。
[0061] 次黄嘌呤鸟嘌呤磷酸核糖基转移酶(HGPRT)是一种涉及鸟嘌呤和次黄嘌呤核苷的嘌呤合成的补救途径酶(Caskey和Kruh,1979)。HGPRT是一种转移酶,它会将核糖单磷酸酯从PRPP切下并将其共价结合到鸟嘌呤碱基以形成GMP。一旦核糖单磷酸酯被从PRPP释放,它便会释放作为副产物的焦磷酸酯(PPi)。随着GMP的产生,附加的酶将会结合更多的磷酸酯基团,形成功能性GTP。由于HGPRT会将核糖单磷酸酯从PRPP转移至次黄嘌呤碱基形成IMP,这一相同过程也与次黄嘌呤核苷核苷酸的合成一致。该酶将磷酸核糖从PRPP转移至次黄嘌呤或鸟嘌呤碱基(Stout和Caskey,1985;Wilson,Tarrt,以及Kelley,1983)。HGPRT酶由10个β链和6个α螺旋构成,残基37-189形成酶的核心(Eads,Scapin,Xu,Grubmeyer,以及Sacchettini,1994)。取决于周边组织的pH,蛋白可作为具有相同亚基的二聚体或四聚体存在(Eads等人,1994;Keough,Brereton,DeJersey,以及Guddat,2005;Zhang等人,2016)。每个蛋白亚基的分子量是48.8783kDa,分子的不稳定指数为21.69,其将蛋白归类为稳定的。同源四聚体含有标记为A、A'、B以及B'的4个亚基(Eads等人,1994)。
[0062] 图8显示HGPRT的生化途径。人类HGPRT的同源四聚体结构具有β折叠、β链、α螺旋以及β转。蛋白具有仅27%的α螺旋和27%的β折叠,其表明酶的剩余的46%是β转角和无规卷曲。所述结构具有标记为A、A`和B、B'的亚基。每个亚基大致上是相同的,并从相同的mRNA信息翻译而来。
[0063] 所述酶具有几个区域,每个区域具有不同的底物识别和反应性功能。中心β折叠的羧基末端主要用于底物识别。蛋白的核心区域含有扭绞的平行β折叠,其具有被4个α螺旋环绕的5个β链。因其产生一个与焦磷酸酯结合的环,残基65-74形成蛋白最柔软部分。与PRPP底物结合的酶的残基是129-140,其位于活性位点的底部。为了使活性位点的酶活性行之有效,需要金属离子Mg2+(Eads等人,1994;Zhang等人,2016)。
[0064] 编码HGPRT的基因称作HPRT。该47,827bp基因位于X染色体的长臂上,并且相对较大,特别是考虑到仅仅一小部分转录的DNA最终被翻译。所述基因含有9个外显子,其编码217个氨基酸蛋白,这代表仅仅1.3%的原始基因组信息(Fuscoe,Fenwick,Ledbetter,以及Caskey,1983;Stout和Caskey,1985;Wilson等人,1983)。由于最终的蛋白产物涉及细胞维护,所以HPRT基因上游的控制序列含有哺乳动物管家基因的标志;缺少包括TATA和CAAT盒的5'转录序列,并且存在特别富含GC的序列,其沿基因的5'端具有多个GC六核苷酸基序(Kim等人,1986)。作为管家基因,HPRT以低水平存在于所有躯体组织中(Melton,Mcewan,Reid,以及Mckie,1986)。在大部分人类细胞中,HPRT mRNA转录物包含总mRNA的仅0.005至
0.01%(Caskey,1981)。唯一的例外是在中枢神经组织中,在其中存在异常升高水平的HPRT表达,其占总mRNA的0.02至0.04%,与其它躯体组织相比增加了4倍(Caskey,1981;Zoref-shani,Frishberg,以及Bromberg,2000)。由于中枢神经系统(CNS)中的细胞未被刺激从而分化并且因此会需要更少的核苷酸合成机器,所以该升高的表达尚未被充分理解。另外,人类基因组在染色体5、11以及13的常染色体DNA中含有非功能性HPRT同源区(Fuscoe等人,
1983)。这些DNA序列是否会被转录还未知,并且很有可能是假基因,但是它们的确切来源和表达尚未被充分理解(Nyhan和Diego,2012)。
[0065] 由于癌细胞的增殖能力和对产生核苷酸的巨大需求,预计HPRT在这些环境中会被上调(Linehan和Goedegebuure,2005)。通过确定HPRT在癌性环境中是否被上调的初步研究确定,在HPRT与癌细胞的细胞质膜之间存在强烈的关联。该关联通过使用多种不同测试已经在各种癌症类型和细胞系中被观察到。针对多种不同癌细胞系已经获得了共焦图象和流式细胞术分析,并且显示HPRT在测试的所有癌症类型的表面上均被一致性地表达。补救途径酶DCK和APRT未观察到该相同表达,表明HPRT在癌性环境中起作用并不是在所有补救途径酶中共享。该表面表达的原因尚不清楚,只能推测为什么它在癌症中会存在于外部。有可能这一独特的表面表达表明HGPRT作为嘌呤合成酶的主要作用之外的次要作用,并且可提供关于肿瘤微环境的独特生态系统的附加信息。发明内容
[0066] 本发明系统成功用于癌症疗法的重要因素包括用嵌合抗原受体对巨噬细胞进行修饰(MOTO-CAR),并且肿瘤抗原与癌细胞相关联,但与正常细胞无关。
[0067] 巨噬细胞
[0068] 一个方面是针对癌症抗原的修饰巨噬细胞的用途。使用CAR技术,巨噬细胞具有针对癌症抗原的抗原受体。
[0069] 如上所述,CAR技术已经被用来开发具有针对癌症抗原的抗原受体的T细胞。由于其与人类产生的物质相同或相似,这些抗原是在正常条件下不会激活免疫响应的物质。由于这一原因,T细胞被修饰为具有这种受体。已经研究了涉及具有嵌合抗原受体(CAR)的这种T细胞的疗法,其中所述抗原受体指向肿瘤表位。如以上背景部分所述,所述T细胞能够诱导有效的抗肿瘤响应,这些疗法是有前景的,但是已经出现了各种问题。
[0070] 例如已经发现,能够最有效地与肿瘤表面上的肽-MHC表位响应的正常T细胞经常会遭受克隆抗性或缺失,这是由于许多这些表位与自身表位非常相似或相同。T细胞疗法涉及通过引入针对肿瘤相关T细胞表位的TCR对T细胞进行体外基因修饰。该策略已经显示出前景,但是总体上围绕T细胞表位的各种挑战,以及引入的TCR与内源性TCR的可能错配仍然存在。存在多种建议,通过允许T细胞对常规抗体表位响应来控制T细胞对抗肿瘤的能力。
[0071] T细胞可以是长寿命的,可无限期地存在于体内,并且还可针对癌症抗原进行抗原刺激。这意味着对肿瘤抗原标记物具有抗原特异性的T细胞可在疗法治疗和癌症消除后存在。这可能会是一个问题,因为肿瘤抗原通常是人造的(首先需要CAR)并且可针对不同身体功能以少量存在。修饰的CAR T细胞的持续存在和可能的靶抗原的良性发生可导致有害的和不必要的T细胞活化。这可能会损害体内的一个重要过程,或引起细胞因子暴,其中T细胞的细胞因子产生/活化反馈环路的崩溃导致不受控制的和激增的免疫细胞活化,从而引起大规模的免疫响应。细胞因子风暴可造成显著损害,并可能会引起死亡。
[0072] 所述问题在本发明的治疗系统中通过修饰巨噬细胞并产生针对癌症抗原的巨噬细胞CAR(MOTO-CAR)细胞得到解决。尽管巨噬细胞在感染后可持续数周,但不像CAR T细胞那样具有记忆。因此,通过保持CAR,响应对无害的低浓度癌症抗原的可能损害会消失。另外,巨噬细胞不参与细胞因子风暴事件,并且会消除T细胞CAR存在的问题。
[0073] 与癌症相关的抗原
[0074] 本发明疗法的一个方面是某些癌症和肿瘤抗原与癌症和肿瘤相关,但与非癌性组织无关。例如已经证明,TK1和HGPRT在许多(可能全部)癌性类型的表面上表达,但在正常细胞表面上的表达很少或没有表达。这提供一种抗原标记物,其允许某一疗法检测和靶向癌细胞并在不损害非癌性细胞的情况下杀死癌性细胞。
[0075] 一个方面是通过将修饰巨噬细胞特异性CAR技术与针对人胸苷激酶1(TK1)和次黄嘌呤鸟嘌呤磷酸核糖基转移酶(HPRT)的人类/人源化抗体结合使用单核细胞/巨噬细胞对抗癌症的应用。其还包括使用针对其它常规肿瘤靶点(例如CD19、CD20、表皮生长因子(EGFR)、受体酪胺酸激酶样孤儿受体1(ROR1)以及其它新的肿瘤靶点)的人源化抗体来产生可能会被激活以对抗许多不同肿瘤的巨噬细胞的应用。
[0076] 据信存在其它可能的抗原标记物,其可被本发明的治疗系统用来靶向癌细胞而不是正常细胞。这些可包括,例如,补救途径酶,有助于转移的物质,例如辅助血管形成的物质。在正常细胞表面上不存在但是可在癌细胞表面上表达的任何正常抗原以及与正常蛋白明显不同任何突变的正常人类蛋白可通过CAR或MOTO CAR加以识别。如果与非突变蛋白足够不同以便被抗体分辨,那么可仅在癌细胞上表达的一些胚胎抗原由于肿瘤形成而产生的突变蛋白也可用作靶点。
[0077] TK1和HPRT在许多形式的癌症中均被上调,并且已经在许多癌细胞表面上找到。两者在正常细胞表面上均未找到,因此是免疫疗法的主要靶点。初步发现表明,HGPRT以与TK1相同的比例存在于表面上,即如果TK1高那么HGPRT也高,如果TK1低那么HGPRT也低。尽管不受理论的束缚,但是它们可复合在一起。
[0078] 本发明技术考虑将来自人源化或非人类哺乳动物(例如小鼠)单克隆抗体的scFv产生的CAR或BiTE用于HGPRT或TK1,其可在经适当的基因工程化以操控最终来自患者但不局限于此的巨噬细胞后被使用,以便治疗诸如癌症这样的疾病。抗原物质(例如TK1、HGPRT)存在于癌细胞表面上而不是在任何正常细胞表面上这一事实是所述发现的一个主要部分,这是由于该知识可用来使巨噬细胞特别指向肿瘤细胞。
[0079] 本发明技术的独特之处在于使用特别产生的与癌细胞相关但与正常细胞无关的人类癌症抗原的抗体可用来靶向肿瘤的这一事实。例如,以这一方式在癌细胞表面上表达的抗原,例如TK1和HGPRT,可用于通过CAR、MOTOCAR以及BiTE靶向肿瘤。
[0080] 对人类HGPRT具有特异性的抗体是已知的,例如“抗-HPRT抗体(ab10479)”(http://www.abcam.com/hprt-antibody-ab10479.html)所述。
[0081] 对人类TK具有特异性的抗体是已知的,例如美国专利第9267948号、第7837998号、第7311906号以及第5698409号中所公开。
[0082] 一个方面是使用设计成抵抗特定的肿瘤相关抗原的含有MOTO-CAR载体(scFV与toll样受体细胞内活化区融合)的巨噬细胞或单核细胞或其它免疫细胞,并使用单核细胞或巨噬细胞和MOTO-CAR技术抵抗肿瘤或其它疾病。所述技术可用于使用载体利用单核细胞或巨噬细胞来诱发免疫响应的任何特定抗原。
[0083] 一个方面是使用设计成抵抗诸如TK1和HPRT这样的特定的肿瘤相关抗原的含有MOTO-CAR载体(scFV与toll样受体细胞内活化区融合)的巨噬细胞或单核细胞或其它免疫细胞。
[0084] 一个方面是一种用于治疗肿瘤的方法,其中特定肿瘤抗原特别是指HPRT。在患有攻击性肿瘤的患者的血清中TK1具有高水平,其可以与MOTO-CAR结合并在到达肿瘤部位之前激活CAR。经显示,HPRT具有低血清水平,并且似乎更多地分散在癌细胞膜上而不是正常细胞上。
[0085] 一个方面是一种用于在癌性环境中将巨噬细胞极化为M1表型的方法。MOTO-CAR被设计为与癌细胞表面上的TK1或HPRT结合并激活巨噬细胞,从而将其转化为攻击性杀死巨噬细胞的M1而不是与肿瘤相关的M2,并防止其受到免疫破坏。
[0086] 一个方面是使用巨噬细胞特异性启动子进行巨噬细胞CAR活化。由于MOTO-CAR可与血清中的可溶TK1结合,所以其可以在不接近肿瘤的情况下进行活化。针对于此的可能解决方案是将单核细胞从患者中分离,并使用将会受巨噬细胞特异性启动子控制的MOTO-CAR构建体将其感染。单核细胞只有从血液移动到组织时才会变成巨噬细胞。使MOTO-CAR受巨噬细胞特异性启动子的控制可以使MOTO-CAR仅在组织中表达,从而避免与在血清中活化相关的问题。
[0087] 另一个方面是利用细胞质巨噬细胞活化分子/信号传导级联,例如toll样受体。MOTO-CAR可利用toll样受体的胞浆结构域激活。存在可具有类似功能的其它活化信号传导分子。并且考虑不同的活化分子。所使用的分子不必是toll样受体,存在可利用该技术的其它信号传导途径。
[0088] 另一个方面涉及利用来源于人类/人源化单克隆的scFv,考虑使用小鼠或人类的scFv。例如,来自小鼠和人类的具有scFv(对TK1具有特异性)的MOTO-CAR,或使用可产生人类单克隆抗体的酵母库获得抗TK1和HPRT的人类抗体。
[0089] 另一个方面是使用该技术靶向诸如癌症这样的疾病,并进一步开发用于其它疾病(即感染性疾病和自身免疫性疾病)。MOTO-CAR技术可不仅局限于进攻性癌症,并且可存在该技术可能有效的其它疾病。
[0090] 另一个方面是使用共刺激分子来增强巨噬细胞活化。(MD2、CD14)可使用作为MOTO-CAR构建体的一部分的涉及巨噬细胞活化的其它分子。大部分免疫细胞在完全激活之前需要其它分子的刺激。在一些应用中,为了使MOTO-CAR被完全激活,可能需要辅助分子的共激活。这些分子可包括(但不限于)MD-2和CD14。
[0091] 另一个方面是用于免疫疗法的双特异性巨噬细胞衔接分子(BIME)的应用。除MOTO-CAR之外,可利用一种称作双特异性巨噬细胞衔接分子(BIME)的技术。BIME利用巨噬细胞活化和新的肿瘤抗原。其涉及巨噬细胞激活蛋白或ScFv通过氨基酸间隔基团与抗肿瘤抗原的ScFv连接的联合体。作为实例的是3种不同的示例性BIME。第一种是由IFN-γ分子通过氨基酸间隔基团与抗TK1、HPRT或任何其它肿瘤抗原的任何ScFv连接构成的分子。第二种设计为抗CSF-1受体的ScFv与抗肿瘤抗原的ScFv的联合体。第三种涉及抗MD2蛋白疏水袋的双特异性抗体,其将通过物理接触细胞液中的两个TLR4的TIR结构域来触发信号传导级联的两个TLR4蛋白紧密接近激活。MOTO-CAR和BIME是新一代癌症免疫疗法技术的一部分,并且两者均可用于治疗许多不同癌症类型。附图说明
[0092] 图1是说明巨噬细胞嵌合抗原受体的示意图。
[0093] 图2是显示巨噬细胞Toll样受体CAR的示意图。(MOTOCAR)。toll样受体、FC-γIII受体、IL-1或者IFN-γ受体的细胞内结构域和跨膜结构域可与合适的铰链和抗肿瘤抗原的ScFv融合,以便在与特定肿瘤抗原结合时激活巨噬细胞。
[0094] 图3a是显示可用于建立巨噬细胞CAR的不同巨噬细胞受体的示意图。
[0095] 图3b是显示Fcγ受体III的信号传导的示意图。
[0096] 图4是显示双特异性巨噬细胞衔接分子IFN-γ(BIMEIFN-γ)的示意图。M2肿瘤驻留巨噬细胞可被极化并使用通过氨基酸间隔基团连接到抗肿瘤抗原的ScFv的IFN-γ分子固定到肿瘤细胞。
[0097] 图5是显示双特异性巨噬细胞衔接分子(BIME)的示意图。M2巨噬细胞可被极化为M1表型并指向肿瘤细胞。双特异性抗体可阻断CSF-1受体从而阻断CSF-1,一种可导致M2形态的受体。同时,巨噬细胞可与抗肿瘤抗原的ScFv固定在一起。然后患者可接收IFN-γ并且巨噬细胞可被极化为用来消除肿瘤的M1表型。
[0098] 图6是显示巨噬细胞激活剂MD2(BIMEMD2)的示意图。Toll样受体4的二聚化可使用抗MD2蛋白疏水袋的ScFv触发。然后可加入BIME将巨噬细胞固定到肿瘤细胞。
[0099] 图7是说明Toll样受体信号传导的示意图。
[0100] 图8显示HGPRT的生化途径。
[0101] 图9是说明HGPRT与APRT和dCK(另外两种补救途径酶)相比的蛋白表面表达的曲线图。(b)使用流式细胞术确认在细胞表面上存在HGPRT。

具体实施方式

[0102] TK1和HPRT仅在肿瘤细胞的表面膜上表达,并导致产生一系列抗人类TK1和HPRT的单克隆抗体。这些特定单克隆抗体的特定结合能力可用于经修饰的巨噬细胞特异性嵌合抗原受体转殖的巨噬细胞,以治疗癌症患者。将单核细胞/巨噬细胞修饰为具有抗人类TK1受体(MOTOCAR)的方法可包括产生对TK1和HPRT具有特异性的人类/人源化单克隆抗体(图1)。这些TK1和HPRT特异性单克隆抗体可用于通过将单链可变片段与可被转导至巨噬细胞(图
3a、图3b)的巨噬细胞(MO)信号传导域(图2)(例如来自toll样受体(TO)、FCγIII、IL-1或INF-γ受体的胞浆结构域部分)融合(图7)产生嵌合抗原受体(CAR)。前提是单核细胞/巨噬细胞可从患者中移除并在离体情况下用巨噬细胞特异性嵌合抗原受体慢病毒载体转染。这可使巨噬细胞识别并结合到在其表面膜上表达TK1、HPRT或任何其它肿瘤抗原的细胞,从而刺激巨噬细胞活化和癌细胞死亡。由于TK1存在于许多不同肿瘤表面上但不存在于正常细胞表面上,所以这可用于治疗多种不同类型的癌症。
[0103] MOTO-CAR的创建
[0104] 用包含对人类TK1具有特异性的抗体的单克隆抗体杂交瘤细胞(CB1)纯化cDNA,并用于通过聚合酶链反应(PCR)扩增CB1可变区的重链和轻链。来自重链和轻链的序列使用NCBI Blast进行确认。CB1的重链和轻链通过位点重叠延伸(SOE)PCR融合在一起,以便使用G4S接头制造单链可变片段(scFv)。针对酵母和人类使用由IDT提供的密码子优化工具(https://www.idtdna.com/CodonOpt)对G4S接头进行密码子优化,以便最大化蛋白表达。使用限制酶切下CB1scFv并将其插入pMP71CAR载体中。
[0105] 将TK-1和HPRT特异性的人类scFv抗体从酵母抗体库分离。对TK-1和HPRT蛋白进行分离、His标记以及纯化。TK-1和HPRT蛋白用抗-His生物素化的抗体标记,并加入用于选择TK-1和HPRT特异性抗体克隆的库中。TK-1和HPRT抗体克隆交替使用抗生物素蛋白链菌素或抗生物素微珠进行染色,并使用磁性柱富集。进行另外两轮的分类和选择以分离TK-1和HPRT特异性抗体。对于最终的选择,适合的TK-1和HPRT抗体克隆及其相应的蛋白通过荧光激活细胞分类术(FACS)通过使用荧光结合的抗-HA或抗-c-myc抗体交替标记进行分类,以分离TK-1和HPRT特异性抗体。选择了高亲和性克隆进行CAR创建。可选择其它人类抗体或来自其它动物的人源化抗体,或者使用噬菌体显示或其它重组方法将其改变为TK-1或HPRT特异性。
[0106] 然后将所选scFv克隆与人类IgG1恒定结构域结合,以产生用于诸如蛋白印迹或ELIZA这样的应用的抗体,以便确认scFv的结合特异性。抗体构建体被插入pPNL9酵母分泌载体中,YVH10酵母用所述构建体进行转化并被诱导以产生抗体。诸如大肠杆菌系统或哺乳动物系统这样的其它表达系统也可用来分泌抗体。
[0107] 蛋白特异性抗体片段的分离和表征
[0108] 参考图9,105个酵母与经荧光标签APC标记的2.5ug目标蛋白一起孵育。左上方(红色)的峰表示未与目标蛋白结合的酵母群(我们的隐性对照)。在左侧左下方(蓝色)的峰显示未表达其表面蛋白的酵母,而右上方(蓝色)的峰则表明所表达的抗体片段与目标蛋白的结合。
[0109] “抗体中的结构匹配性界定抗原结合位点(Structural Consensus among Antibodies Defines the Antigen Binding Site)”。《公共科学图书馆计算生物学(PLoS Comput Biol)》8(2):e1002388。doi:10.1371/journal.pcbi.1002388。KunikV,AshkenaziS,OfranY(2012)。Paratome:用于根据序列或结构对抗体中的抗原结合区域进行系统确认的在线工具。《核酸研究(Nucleic Acids Res)》。2012年7月;40(Web服务器期号):W521-4。doi:10.1093/nar/gks480。电子版公布时间2012年6月6日。
[0110] 发现
[0111] 一个方面是来自人源化或非人类哺乳动物(比如小鼠)单克隆抗体的scFv产生的CAR或BiTE在HPRT和TK1中的应用,其可在经适当的基因工程化以操控最终来自患者但不局限于此的巨噬细胞淋巴细胞后被使用,以便治疗诸如癌症这样的疾病。HPRT和TK1存在于癌细胞表面上而不是在任何正常细胞表面上这一事实是所述发现的一个主要部分,这是由于该知识可用于使淋巴细胞特别指向肿瘤细胞。
[0112] 本发明系统的一个方面在于这样的事实:使用特定产生的人类HPRT或TK1的抗体发现HPRT和TK1在人类癌细胞表面上表达,并且据信不会在正常细胞表面上表达,从而可用于通过CAR和BiTE靶向肿瘤。尽管T细胞已经广泛用于CAR疗法并产生不同的结果,但是还提出使用基因修饰的巨噬细胞,使用来自与Toll样受体(例如Toll样受体4)的胞浆结构域结合的独特抗体的scFv激活抗肿瘤巨噬细胞。这一独特方法会克服许多与目前的T细胞CAR技术相关的固有问题。利用指向肿瘤细胞上特定的独特靶点的巨噬细胞的杀死能力会增强响应而不会出现诸如细胞因子风暴、记忆活化以及在靶脱靶问题这样的重要缺点。
[0113] 一个方面是将抗人类肿瘤抗原的特定单克隆抗体的潜力与患者巨噬细胞的激活受体结合,以确保特别针对肿瘤的局部M1响应。所述应用旨在保护以下技术:所述技术允许将来自人源化或小鼠单克隆抗体的scFv产生的CAR或BiTE应用于HPRT、TK1或其它肿瘤抗原的,其可在经适当的基因工程化以操控最终来自患者但不局限于此的巨噬细胞、中性粒细胞或其它免疫细胞之后被使用,以便治疗诸如癌症这样的疾病。来自人源化小鼠单克隆的scFv将被工程化为与TLR4的跨膜区和胞浆结构域结合,从而产生TLR4巨噬细胞嵌合抗原受体。HPRT存在于癌细胞表面上而不是在任何正常细胞表面上这一事实是所述发现的一个主要部分,这是由于该知识和这些技术可用于使巨噬细胞被指向(使用HPRT单克隆部分)和激活(使用TLR4胞浆结构域部分),特别针对于肿瘤细胞。
[0114] 很明显,巨噬细胞在癌症进展中起着重要的作用,并且涉及巨噬细胞的免疫疗法应包括在该疾病的治疗中。在副作用最小的情况下将巨噬细胞极化为M1响应可以成为强有力的抗实体瘤疗法。诸如LPS或TNF-α这样的炎性信号可容易地将巨噬细胞体外极化为M1表型。但是在体内,诸如LPS和TNF-α这样的物质会加剧涉及先天性和适应性免疫系统中的细胞的全身炎性响应。其可在包括粘膜表面和肺在内的几种组织中引起发烧和炎症。这些炎性信号也具有高度细胞毒性(Apostolaki,Armaka,Victoratos,以及Kollias,2010;Kolb和Granger,1968;Michel和Nagy,1997)。免疫疗法需要免疫系统的活化,但是很难找到不会产生副作用的细胞因子、趋化因子、化合物或生物材料。巨噬细胞属于先天性免疫系统并会展现出促炎和抗炎特性,所以是理想的免疫疗法候选物。
[0115] 尽管已经参照某些具体实施例和实例对本发明进行了描述,但是本领域技术人员应理解,在不偏离本发明的范围和精神的情况下实现多种变型是可能的,并且如权利要求书所述,本发明旨在包括不偏离本发明精神的本发明的所有改变和修改
[0116] 参考文献列表A
[0117] 1.Hanahan,D.,&Weinberg,R.a.(2011).Hallmarks of cancer:the next generation.Cell,144(5),646–74.http://doi.org/10.1016/j.cell.2011.02.013[0118] 2.American Cancer Society.(2015).Cancer Facts&Figures 2015.
[0119] 3.Hoyert,D.L.,&Xu,J.(2012).National Vital Statistics Reports Deaths:Preliminary Data for 2011(Vol.61).
[0120] 4.Kurahara,H.,Shinchi,H.,Mataki,Y.,Maemura,K.,Noma,H.,Kubo,F.,…Takao,S.(2011).Significance of M2-polarized tumor-associated macrophage in pancreatic cancer.The Journal of Surgical Research,167(2),e211–9.http://doi.org/10.1016/j.jss.2009.05.026
[0121] 5.Steidl,C.,Lee,T.,&Shah,S.(2010a).Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma.The New England Journal of Medicine,875–885.Retrieved from http://www.nejm.org/doi/full/10.1056/NEJMoa0905680[0122] 6.Eiró,N.,&Vizoso,F.J.(2012).Inflammation and cancer.World Journal of Gastrointestinal Surgery,4(3),62–72.http://doi.org/10.4240/wjgs.v4.i3.62[0123] 7.Kelly,P.M.,Davison,R.S.,Bliss,E.,&McGee,J.O.(1988).Macrophages in human breast disease:a quantitative immunohistochemical study.British Journal of Cancer,57(2),174–7.Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2246436&tool=p mcentrez&rendertype=abstract[0124] 8.Lewis,C.,&Leek,R.(1995).Cytokine regulation of angiogenesis in breast cancer:the role  of tumor-associated macrophages.Journal of Leukocyte…,57(May),747–751.Retrieved from http://www.jleukbio.org/content/
57/5/747.short
[0125] 9.Mantovani,A.,Biswas,S.K.,Galdiero,M.R.,Sica,A.,&Locati,M.(2013).Macrophage plasticity and polarization in tissue repair and remodelling.The Journal of Pathology,229(2),176–85.http://doi.org/10.1002/path.4133[0126] 10.Porta,C.,Rimoldi,M.,Raes,G.,Brys,L.,Ghezzi,P.,Di Liberto,D.,…Sica,A.(2009).Tolerance and M2(alternative)macrophage polarization are related processes orchestrated by p50 nuclear factor kappaB.Proceedings of the National Academy of Sciences of the United States of America,106(35),14978–83.http://doi.org/10.1073/pnas.0809784106
[0127] 11.Sica,A.,&Mantovani,A.(2012).Macrophage plasticity and polarization:in vivo veritas.The Journal of Clinical Investigation,122(3),
787–796.http://doi.org/10.1172/JCI59643DS1
[0128] 12.Anderson,C.F.,&Mosser,D.M.(2002).Anovel phenotype for an activated macrophage:the type 2 activated macrophage.Journal of Leukocyte Biology,72(1),101–6.Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12101268[0129] 13.Ghassabeh,G.H.,De Baetselier,P.,Brys,L., W.,Van Ginderachter,J.a,Meerschaut,S.,…Raes,G.(2006).Identification of a common gene signature for type II cytokine-associated myeloid cells elicited in vivo in different pathologic conditions.Blood,108(2),575–83.http://doi.org/10.1182/blood-2005-04-1485
[0130] 14.Liao,X.,Sharma,N.,&Kapadia,F.(2011).Krüppel-like factor 4 regulates macrophage polarization.The Journal of Clinical Investigation,121(7).http://doi.org/10.1172/JCI45444DS1
[0131] 15.Davis,M.J.,Tsang,T.M.,Qiu,Y.,Dayrit,J.K.,Freij,J.B.,Huffnagle,G.B.,&Olszewski,M.A.(2013).Macrophage M1/M2polarization dynamically adapts to changes in cytokine microenvironments in Cryptococcus neoformans infection.mBio,4(3),e00264–13.http://doi.org/10.1128/mBio.00264-13[0132] 16.Mantovani,A.,Sozzani,S.,Locati,M.,Allavena,P.,&Sica,A.(2002).Macrophage polarization:tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes.Trends in Immunology,23(11),549–
55.Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12401408
[0133] 17.Edin,S.,Wikberg,M.L.,Dahlin,A.M., Oberg,A.,Oldenborg,P.-A.,&Palmqvist,R.(2012).The distribution of macrophages with a m1 or m2 phenotype in relation to prognosis and the molecular characteristics of colorectal cancer.PloS One,7(10),e47045.http://doi.org/10.1371/
journal.pone.0047045
[0134] 18.Forssell,J.,Oberg,A.,Henriksson,M.L.,Stenling,R.,Jung,A.,&Palmqvist,R.(2007).High macrophage infiltration along the tumor front correlates with improved survival in colon cancer.Clinical Cancer Research,13(5),1472–9.http://doi.org/10.1158/1078-0432.CCR-06-2073
[0135] 19.Guiducci,C.,Vicari,A.P.,Sangaletti,S.,Trinchieri,G.,&Colombo,M.P.(2005).Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection.Cancer Research,65(8),3437–46.http://doi.org/10.1158/0008-5472.CAN-04-4262
[0136] 20.Baccala,R.,Hoebe,K.,Kono,D.H.,Beutler,B.,&Theofilopoulos,A.N.(2007).TLR-dependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity.Nature Medicine,13(5),543–51.http://doi.org/10.1038/nm1590
[0137] 21.Banerjee,S.,Xie,N.,Cui,H.,Tan,Z.,Yang,S.,Icyuz,M.,…Liu,G.(2013).MicroRNA let-7c regulates macrophage polarization.Journal of Immunology(Baltimore,Md.:1950),190(12),6542–9.http://doi.org/10.4049/jimmunol.1202496[0138] 22.Murray,P.J.,Allen,J.E.,Biswas,S.K.,Fisher,E.A.,Gilroy,D.W.,Goerdt,S.,…Wynn,T.A.(2014).Macrophage Activation and Polarization:Nomenclature and Experimental Guidelines.Immunity,41(1),14–20.http://doi.org/10.1016/j.immuni.2014.06.008
[0139] 23.Hao,N.-B.,Lü,M.-H.,Fan,Y.-H.,Cao,Y.-L.,Zhang,Z.-R.,&Yang,S.-M.(2012).Macrophages in tumor microenvironments and the progression of tumors.Clinical&Developmental Immunology,2012,948098.http://doi.org/10.1155/2012/948098
[0140] 24.Sinha,P.,Clements,V.K.,&Ostrand-Rosenberg,S.(2005).Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease.Journal of Immunology,174(2),636–45.Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15634881
[0141] 25.Bingle,L.,Brown,N.J.,&Lewis,C.E.(2002).The role of tumour-associated macrophages in tumour progression:implications for new anticancer therapies.The Journal of Pathology,196(3),254–65.http://doi.org/10.1002/path.1027
[0142] 26.Herbeuval,J.-P.,Lambert,C.,Sabido,O.,Cottier,M.,Fournel,P.,Dy,M.,&Genin,C.(2003).Macrophages from cancer patients:analysis of TRAIL,TRAIL receptors,and colon tumor.Journal of the National Cancer Institute,95(8),611–21.Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12697854
[0143] 27.Ma,J.,Liu,L.,Che,G.,Yu,N.,Dai,F.,&You,Z.(2010).The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time.BMC Cancer,10,112.http://doi.org/10.1186/1471-2407-10-112
[0144] 28.Ohri,C.M.,Shikotra,A.,Green,R.H.,Waller,D.a,&Bradding,P.(2009).Macrophages within NSCLC tumour islets are predominantly of a cytotoxic M1 phenotype associated with extended survival.The European Respiratory Journal,33(1),118–26.http://doi.org/10.1183/09031936.00065708
[0145] 29.Urban,J.L.,Shepard,H.M.,Rothstein,J.L.,Sugarman,B.J.,&Schreiber,H.(1986).Tumor necrosis factor:a potent effector molecule for tumor cell killing by activated macrophages.Proceedings of the National Academy of Sciences of the United States of America,83(14),5233–7.Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=323925&tool=pmcentrez&rendertype=abstract
[0146] 30.Wong,S.-C.,Puaux,A.-L.,Chittezhath,M.,Shalova,I.,Kajiji,T.S.,Wang,X.,…Biswas,S.K.(2010).Macrophage polarization to a unique phenotype driven by B cells.European Journal of Immunology,40(8),2296–307.http://doi.org/10.1002/eji.200940288
[0147] 31.Hardison,S.E.,Herrera,G.,Young,M.L.,Hole,C.R.,Wozniak,K.L.,&Wormley,F.L.(2012).Protective immunity against pulmonary cryptococcosis is associated with STAT1-mediated classical macrophage activation.Journal of Immunology(Baltimore,Md.:1950),189(8),4060–8.http://doi.org/10.4049/jimmunol.1103455
[0148] 32.Wang,Y.-C.,He,F.,Feng,F.,Liu,X.-W.,Dong,G.-Y.,Qin,H.-Y.,…Han,H.(2010).Notch signaling determines the M1 versus M2 polarization  of macrophages in antitumor immune responses.Cancer Research,70(12),4840–9.http://doi.org/10.1158/0008-5472.CAN-10-0269
[0149] 33.Cai,X.,Yin,Y.,Li,N.,Zhu,D.,Zhang,J.,Zhang,C.-Y.,&Zen,K.(2012).Re-polarization of tumor-associated macrophages to  pro-inflammatory M1 macrophages by microRNA-155.Journal of Molecular Cell Biology,4(5),341–3.http://doi.org/10.1093/jmcb/mjs044
[0150] 34.Wei,Y.,Nazari-Jahantigh,M.,Chan,L.,Zhu,M.,Heyll,K.,Corbalán-Campos,J.,…Schober,A.(2013).The microRNA-342-5p fosters inflammatory macrophage activation through an Akt1-and microRNA-155-dependent pathway during atherosclerosis.Circulation,127(15),1609–19.http://doi.org/10.1161/CIRCULATIONAHA.112.000736
[0151] 35.Squadrito,M.L.,Etzrodt,M.,De Palma,M.,&Pittet,M.J.(2013).MicroRNA-mediated control of macrophages and its implications for cancer.Trends in Immunology,34(7),350–9.http://doi.org/10.1016/j.it.2013.02.003
[0152] 36.Biswas,S.K.,Gangi,L.,Paul,S.,Schioppa,T.,Saccani,A.,Sironi,M.,…Sica,A.(2006).A distinct and unique transcriptional program expressed by tumor-associated macrophages(defective NF-kappaB and enhanced IRF-3/STAT1 activation).Blood,107(5),2112–22.http://doi.org/10.1182/blood-2005-01-0428[0153] 37.Steidl,C.,Lee,T.,&Shah,S.(2010b).Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma.The New England Journal of Medicine,362(10),875–885.Retrieved from http://www.nejm.org/doi/full/10.1056/NEJMoa0905680
[0154] 38.Lin,E.Y.,Li,J.-F.,Gnatovskiy,L.,Deng,Y.,Zhu,L.,Grzesik,D.a,…Pollard,J.W.(2006).Macrophages regulate the angiogenic switch in a mouse model of breast cancer.Cancer Research,66(23),11238–46.http://doi.org/10.1158/0008-5472.CAN-06-1278
[0155] 39.Hagemann,T.,Wilson,J.,Burke,F.,Kulbe,H.,Li,N.F.,Plüddemann,A.,…Balkwill,F.R.(2006).Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype.The Journal of Immunology,176(8),5023–32.Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16585599
[0156] 40.Hagemann,T.,Lawrence,T.,McNeish,I.,Charles,K.a,Kulbe,H.,Thompson,R.G.,…Balkwill,F.R.(2008).“Re-educating”tumor-associated macrophages by targeting NF-kappaB.The Journal of Experimental Medicine,205(6),1261–8.http://doi.org/10.1084/jem.20080108
[0157] 41.Mandal,P.,Pratt,B.T.,Barnes,M.,McMullen,M.R.,&Nagy,L.E.(2011).Molecular mechanism for adiponectin-dependent M2 macrophage polarization:link between the metabolic and innate immune activity of full-length adiponectin.The Journal of Biological Chemistry,286(15),13460–9.http://doi.org/10.1074/jbc.M110.204644
[0158] 42.Mantovani,A.,Allavena,P.,Sica,A.,&Balkwill,F.(2008).Cancer-related inflammation.Nature,454(7203),436–44.http://doi.org/10.1038/nature07205[0159] 43.Cortez-Retamozo,V.,Etzrodt,M.,Newton,A.,Rauch,P.J.,Chudnovskiy,A.,Berger,C.,…Pittet,M.J.(2012).Origins of tumor-associated macrophages and neutrophils.Proceedings of the National Academy of Sciences of the United States of America,109(7),2491–6.http://doi.org/10.1073/pnas.1113744109[0160] 44.Hercus,T.R.,Thomas,D.,Guthridge,M.A.,Ekert,P.G.,King-Scott,J.,Parker,M.W.,&Lopez,A.F.(2009).The granulocyte-macrophage colony-stimulating factor receptor:linking its structure to cell signaling and its role in disease.Blood,114(7),1289–98.http://doi.org/10.1182/blood-2008-12-164004[0161] 45.Smith,H.O.,Stephens,N.D.,Qualls,C.R.,Fligelman,T.,Wang,T.,Lin,C.-Y.,…Pollard,J.W.(2013).The clinical significance of inflammatory cytokines in primary cell culture in endometrial carcinoma.Molecular Oncology,7(1),41–54.http://doi.org/10.1016/j.molonc.2012.07.002
[0162] 46.West,R.B.,Rubin,B.P.,Miller,M.A.,Subramanian,S.,Kaygusuz,G.,Montgomery,K.,…van de Rijn,M.(2006).A landscape effect in tenosynovial giant-cell tumor from activation of CSF1 expression by a translocation in a minority of tumor cells.Proceedings of the National Academy of Sciences of the United  States of America,103(3),690–5.http://doi.org/10.1073/pnas.0507321103
[0163] 47.Lin,E.Y.,&Pollard,J.W.(2007).Tumor-associated macrophages press the angiogenic switch in breast cancer.Cancer Research,67(11),5064–6.http://doi.org/10.1158/0008-5472.CAN-07-0912
[0164] 48.Dalton,H.J.,Armaiz-Pena,G.N.,Gonzalez-Villasana,V.,Lopez-Berestein,G.,Bar-Eli,M.,&Sood,A.K.(2014).Monocyte subpopulations in angiogenesis.Cancer Research,74(5),1287–93.http://doi.org/10.1158/0008-5472.CAN-13-2825
[0165] 49.Saccani,A.,Schioppa,T.,Porta,C.,Biswas,S.K.,Nebuloni,M.,Vago,L.,…Sica,A.(2006).p50 nuclear factor-kappaB overexpression in tumor-associated macrophages  inhibits  M1 inflammatory  responses  and antitumor resistance.Cancer Research,66(23),11432–40.http://doi.org/10.1158/0008-
5472.CAN-06-1867
[0166] 50.Gazzaniga,S.,Bravo,A.I.,Guglielmotti,A.,van Rooijen,N.,Maschi,F.,Vecchi,A.,…Wainstok,R.(2007).Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft.The Journal of Investigative Dermatology,127(8),2031–41.http://doi.org/10.1038/sj.jid.5700827
[0167] 51.Luo,Y.,Zhou,H.,&Krueger,J.(2006).Targeting tumor-associated macrophages as a novel strategy against breast cancer.Journal of Clinical Investigation,116(8),2132–2141.http://doi.org/10.1172/JCI27648.2132[0168] 52.Zeisberger,S.M.,Odermatt,B.,Marty,C.,Zehnder- a H.M.,Ballmer-Hofer,K.,&Schwendener,R.a.(2006).Clodronate-liposome-mediated depletion of tumour-associated macrophages:a new and highly effective antiangiogenic therapy approach.British Journal of Cancer,95(3),272–
81.http://doi.org/10.1038/sj.bjc.6603240
[0169] 53.Bettencourt-Dias,M.,Giet,R.,Sinka,R.,Mazumdar,a,Lock,W.G.,Balloux,F.,…Glover,D.M.(2004).Genome-wide survey of protein kinases required for cell cycle progression.Nature,432(7020),980–7.http://doi.org/10.1038/nature03160
[0170] 54.Geschwind,J.H.,Vali,M.,&Wahl,R.(2006).Effects of 3 bromopyruvate(hexokinase 2 inhibitor)on glucose uptake in lewis rats using 2-(F-18)fluoro-2-deoxy-d-glucose.In 2006 Gastrointestinal Cancers Symposium(pp.12–14).[0171] 55.Wolf,A.,Agnihotri,S.,Micallef,J.,Mukherjee,J.,Sabha,N.,Cairns,R.,…Guha,A.(2011).Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme.The Journal of Experimental Medicine,208(2),313–26.http://doi.org/10.1084/jem.20101470[0172] 56.Blagih,J.,&Jones,R.G.(2012).Polarizing macrophages through reprogramming of glucose metabolism.Cell Metabolism,15(6),793–5.http://doi.org/10.1016/j.cmet.2012.05.008
[0173] 57.Haschemi,A.,Kosma,P.,Gille,L.,Evans,C.R.,Burant,C.F.,Starkl,P.,…Wagner,O.(2012).The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism.Cell Metabolism,15(6),813–
26.http://doi.org/10.1016/j.cmet.2012.04.023
[0174] 58.Arranz,A.,Doxaki,C.,Vergadi,E.,Martinez de la Torre,Y.,Vaporidi,K.,Lagoudaki,E.D.,…Tsatsanis,C.(2012).Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization.Proceedings of the National Academy of Sciences of the United States of America,109(24),9517–22.http://doi.org/10.1073/pnas.1119038109
[0175] 59.Jones,R.G.,&Thompson,C.B.(2007).Revving the engine:signal transduction fuels T cell activation.Immunity,27(2),173–8.http://doi.org/10.1016/j.immuni.2007.07.008
[0176] 60.Shu,C.J.,Guo,S.,Kim,Y.J.,Shelly,S.M.,Nijagal,A.,Ray,P.,…Witte,O.N.(2005).Visualization of a primary anti-tumor immune response by positron emission tomography.Proceedings of the National Academy of Sciences of the United  States  of  America,102(48),17412–7.http://doi.org/10.1073/pnas.0508698102
[0177] 61.Van Ginderachter,J.A.,Movahedi,K.,Hassanzadeh Ghassabeh,G.,Meerschaut,S.,Beschin,A.,Raes,G.,&De Baetselier,P.(2006).Classical and alternative activation of mononuclear phagocytes:Picking the best of both worlds for tumor promotion.Immunobiology,211(6),487–501.Retrieved from http://www.sciencedirect.com/science/article/pii/S0171298506000829
[0178] 62.Mills,C.D.,Shearer,J.,Evans,R.,&Caldwell,M.D.(1992).Macrophage arginine metabolism and the inhibition or stimulation of cancer.Journal of Immunology(Baltimore,Md.:1950),149(8),2709–14.Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1401910
[0179] 63.Ji,Y.,Sun,S.,Xu,A.,Bhargava,P.,Yang,L.,Lam,K.S.L.,…Qi,L.(2012).Activation of natural killer T cells promotes M2 Macrophage polarization in adipose tissue and improves systemic glucose tolerance via interleukin-4(IL-4)/STAT6 protein signaling axis in obesity.The Journal of Biological Chemistry,287(17),13561–71.http://doi.org/10.1074/jbc.M112.350066
[0180] 64.Andreesen,R.,Scheibenbogen,C.,&Brugger,W.(1990).Adoptive transfer of tumor cytotoxic macrophages generated in vitro from circulating blood monocytes:a new approach to cancer immunotherapy.Cancer Research,7450–7456.Retrieved from http://cancerres.aacrjournals.org/content/50/23/
7450.short
[0181] 65.Korbelik,M.,Naraparaju,V.R.,&Yamamoto,N.(1997).Macrophage-directed immunotherapy as adjuvant to photodynamic therapy of cancer.British Journal of Cancer,75(2),202–7.Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2063270&tool=p mcentrez&rendertype=abstract[0182] 66.Ellem,K.A.O.,Rourke,M.G.E.O.,Johnson,G.R.,Parry,G.,Misko,I.S.,Schmidt,C.W.,…Mulligan,R.C.(1997).A case report:immune responses and clinical course of the first human use of granulocyte/macrophage-colony-stimulating-factor-transduced autologous melanoma.Cancer Immunology,Immunotherapy,10–20.Retrieved from http://www.springerlink.com/index/JQ4EB21E4C7ADMT7.pdf
[0183] 67.Gast,G.de,&Klümpen,H.(2000).immunotherapy with subcutaneous granulocyte macrophage colony-stimulating factor,low-dose interleukin 2,and interferon in  progressive  metastatic melanoma.Clinical  Cancer Research.Retrieved from http://clincancerres.aacrjournals.org/content/6/4/
1267.short
[0184] 68.Hill,H.,Jr,T.C.,&Sabel,M.(2002).Immunotherapy with Interleukin 12 and Granulocyte-Macrophage Colony-stimulating  Factor-encapsulated Microspheres Coinduction of  Innate  and  Adaptive Antitumor.Cancer Research.Retrieved from http://cancerres.aacrjournals.org/content/62/24/7254.short
[0185] 69.Lokshin,A.,Mayotte,J.,&Levitt,M.(1995).Mechanism of Interferon Beta-Induced Squamous Differentiation and Programmed Cell Death in Human Non-Small-Cell Lung Cancer Cell Lines.Journal of the National Cancer Institute,87,206–212.Retrieved from http://jnci.oxfordjournals.org/content/87/3/
206.short
[0186] 70.Johns,T.,&Mackay,I.(1992).Antiproliferative  potencies of interferons on melanoma cell lines and xenografts:higher efficacy of interferon Journal of the National Cancer Institute,(type II),1185–1190.Retrieved from http://jnci.oxfordjournals.org/content/84/15/1185[0187] 71.Qin,X.-Q.,Runkel,L.,Deck,C.,DeDios,C.,&Barsoum,J.(1997)
.Interferon-beta induces S phase accumulation selectively in human transformed cells.Journal of Interferon&Cytokine Research,17(6),355–
367.http://doi.org/10.1089/jir.1997.17.355
[0188] 72.Zhang,F.,Lu,W.,&Dong,Z.(2002).Tumor-infiltrating macrophages are involved in suppressing growth and metastasis of human prostate cancer cells by INF-β gene therapy in nude mice.Clinical Cancer Research,2942–2951.Retrieved from http://clincancerres.aacrjournals.org/content/8/9/
2942.short
[0189] 73.Simpson,K.D.,Templeton,D.J.,&Cross,J.V.(2012).Macrophage Migration Inhibitory Factor Promotes Tumor Growth and Metastasis by Inducing Myeloid-Derived Suppressor Cells in the Tumor Microenvironment.The Journal of Immunology.http://doi.org/10.4049/jimmunol.1201161
[0190] 74.Sanford,D.E.,Belt,B.A.,Panni,R.Z.,Mayer,A.,Deshpande,A.D.,Carpenter,D.,…Linehan,D.C.(2013).Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer:a role for targeting the CCL2/CCR2 axis.Clinical Cancer Research:An Official Journal of the American Association for Cancer Research,19(13),3404–15.http://doi.org/10.1158/1078-0432.CCR-13-0525
[0191] 75.Schmall,A.,Al-Tamari,H.M.,Herold,S.,Kampschulte,M.,Weigert,A.,Wietelmann,A.,…Savai,R.(2014).Macrophage and Cancer Cell Crosstalk via CCR2 and CX3CR1 is a Fundamental Mechanism Driving Lung Cancer.American Journal of Respiratory and Critical Care Medicine.http://doi.org/10.1164/rccm.201406-1137OC
[0192] 76.Kimura,Y.N.,Watari,K.,Fotovati,A.,Hosoi,F.,Yasumoto,K.,Izumi,H.,…Ono,M.(2007).Inflammatory stimuli from macrophages and cancer cells synergistically promote tumor growth and angiogenesis.Cancer Science,98(12),2009–18.http://doi.org/10.1111/j.1349-7006.2007.00633.x
[0193] 77.Chen,H.,Li,P.,Yin,Y.,Cai,X.,Huang,Z.,Chen,J.,…Zhang,J.(2010).The promotion of type 1 T helper cell responses to cationic polymers in vivo via toll-like receptor-4 mediated IL-12 secretion.Biomaterials,31(32),8172–80.http://doi.org/10.1016/j.biomaterials.2010.07.056
[0194] 78.Rogers,T.L.,&Holen,I.(2011).Tumour macrophages as potential targets of bisphosphonates.Journal of Translational Medicine,9(1),177.http://doi.org/10.1186/1479-5876-9-177
[0195] 79.Junankar,S.,Shay,G.,Jurczyluk,J.,Ali,N.,Down,J.,Pocock,N.,…Rogers,M.J.(2015).Real-time intravital imaging establishes tumor-associated macrophages as the extraskeletal target of bisphosphonate action in cancer.Cancer Discovery,5(1),35–42.http://doi.org/10.1158/2159-8290.CD-14-0621
[0196] 80.Huang,Z.,Yang,Y.,Jiang,Y.,Shao,J.,Sun,X.,Chen,J.,…Zhang,J.(2013).Anti-tumor immune responses of tumor-associated macrophages via toll-like receptor 4 triggered by cationic polymers.Biomaterials,34(3),746–55.http://doi.org/10.1016/j.biomaterials.2012.09.062
[0197] 81.Q.He,T.Fornander,H.Johansson et al.,“Thymidine kinase 1 in serum predicts increased risk of distant or loco-regional recurrence following surgery in patients with early breast cancer,”Anticancer Research,vol.26,no.6,pp.4753–4759,2006.
[0198] 82.K.L.O’Neill,M.Hoper,and G.W.Odling-Smee,“Can thymidine kinase levels in breast tumors predict disease recurrence?”Journal of the National Cancer Institute,vol.84,no.23,pp.1825–1828,1992.
[0199] 83.Apostolaki,M.,Armaka,M.,Victoratos,P.,&Kollias,G.(2010).Cellular Mechanisms of TNF Function in Models of Inflammation and Autoimmunity-Karger Publishers.Retrieved September 12,2013,from http://www.karger.com/Article/Abstract/289195
[0200] 84.Kolb,W.,&Granger,G.(1968).Lymphocyte in vitro cytotoxicity:characterization of human lymphotoxin.Proceedings of the National Academy of Sciences of the United States of America,1250–1255.Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC225248/
[0201] 85.Michel,O.,&Nagy,A.(1997).Dose-response relationship to inhaled endotoxin in normal subjects.American Journal of Respiratory and Critical Care Medicine,156(4 Pt 1),1157–64.Retrieved from http://www.atsjournals.org/doi/abs/10.1164/ajrccm.156.4.97-02002
[0202] 参考文献列表B
[0203] American Cancer Society,Cancer Facts and Figures.2015.
[0204] Schreiber H.Tumor-specific immune responses.SeminImmunol 2008;20:265-6;PMID:18977672;http://dx.doi.org/10.1016/j.smim.2008.10.001.
[0205] Stone,J.D.Aggen,D.H.,Scheitinger,A,Schreiber,H,and Kranz,D.M.2012 A sensitivity scale for targeting T cells with Chimeric Antigen Receptors(CARs)and Bispecific T-cell engagers(BiTEs)Onclommunology 1:6,863-873
[0206] Schreiber H.Cancer Immunology.Philadelphia,PA:Lippincott-Williams&Wilkins 2012.
[0207] Karyampudi L,Knutson KL.Antibodies in cancer immunotherapy.Cancer Biomark 2010;6:291-305;PMID:20938089.
[0208] Grillo-L.pez AJ,White CA,Varns C,Shen D,Wei  A,McClure A,et al.Overview of the clinical development of rituximab:first monoclonal antibody approved for the treatment of lymphoma.Semin Oncol 1999;26:66-73;PMID:10561020.
[0209] Goldenberg MM.Trastuzumab,a recombinant DNA derived humanized monoclonal antibody,a novel agent for the treatment of metastatic breast cancer.Clin Ther 1999;21:309-18;PMID:10211534;http://dx.doi.org/10.1016/S0149-2918(00)88288-0.
[0210] Seliger B,Cabrera T,Garrido F,Ferrone S.HLA class I antigen abnormalities and immune escape by malignant cells.Semin Cancer Biol 2002;12:3-13;PMID:11926409;http://dx.doi.org/10.1006/scbi.2001.0404.
[0211] Garrido F,Cabrera T,Concha A,Glew S,Ruiz-Cabello F,Stern PL.Natural history of HLA expression during tumour development.Immunol Today 1993;14:491 9;PMID:8274189;http://dx.doi.org/10.1016/0167-5699(93)90264-L.
[0212] Meidenbauer N,Zippelius A,Pittet MJ,Laumer M,Vogl S,Heymann J,et al.High frequency of functionally active Melan-a-specific T cells in a patient with progressive immunoproteasome-deficient melanoma.Cancer Res 2004;64:6319-26;PMID:15342421;http://dx.doi.org/10.1158/0008-5472.CAN-04-1341.[0213] Yu Z,Theoret MR,Touloukian CE,Surman DR,Garman SC,Feigenbaum L,et al.Poor immunogenicityof a self/tumor antigen derives from peptide-MHCI instability and is independent of tolerance.J Clin Invest2004;114:551-9;PMID:
15314692.
[0214] Alegre.M,Robison,R.A.and O'Neill,K.L.Thymidine Kinase 1:A Universal Marker for Cancer.2013 Cancer and Clinical Oncology 2013 vol 2:No 1;p 159-167.
[0215] O'Neill,K.L.,Buckwalter,M.R.,&Murray,B.K.(2001).Thymidine kinase:diagnostic and prognostic potential.Expert Rev Mol Diagn,1(4),428-433.http://dx.doi.org/10.1586/14737159.1.4.428
[0216] American Cancer Society.(2015).Cancer Facts&Figures 2015.
[0217] Anderson,C.F.,&Mosser,D.M.(2002).A novel phenotype for an activated macrophage:the type 2 activated macrophage.Journal of Leukocyte Biology,72(1),101–6.Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12101268[0218] Andreesen,R.,Scheibenbogen,C.,&Brugger,W.(1990).Adoptive transfer of tumor cytotoxic macrophages generated in vitro from circulating blood monocytes:a new approach to cancer immunotherapy.Cancer Research,7450–7456.Retrieved from http://cancerres.aacrjournals.org/content/50/23/
7450.short
[0219] Apostolaki,M.,Armaka,M.,Victoratos,P.,&Kollias,G.(2010).Cellular Mechanisms of TNF Function in Models of Inflammation and Autoimmunity-Karger Publishers.Retrieved September 12,2013,from http://www.karger.com/Article/Abstract/289195
[0220] Arranz,A.,Doxaki,C.,Vergadi,E.,Martinez de la Torre,Y.,Vaporidi,K.,Lagoudaki,E.D.,…Tsatsanis,C.(2012).Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization.Proceedings of the National Academy of Sciences of the United States of America,109(24),9517–
22.http://doi.org/10.1073/pnas.1119038109
[0221] Baccala,R.,Hoebe,K.,Kono,D.H.,Beutler,B.,&Theofilopoulos,A.N.(2007).TLR-dependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity.Nature Medicine,13(5),543–51.http://doi.org/10.1038/nm1590
[0222] Banerjee,S.,Xie,N.,Cui,H.,Tan,Z.,Yang,S.,Icyuz,M.,…Liu,G.(2013).MicroRNA let-7c regulates macrophage polarization.Journal of Immunology(Baltimore,Md.:1950),190(12),6542–9.http://doi.org/10.4049/jimmunol.1202496[0223] Barros,M.H.M.,Hauck,F.,Dreyer,J.H.,Kempkes,B.,&Niedobitek,G.(2013).Macrophage Polarisation:an Immunohistochemical Approach for Identifying M1 and M2  Macrophages.PloS One,8(11),e80908.http://doi.org/10.1371/journal.pone.0080908
[0224] Bettencourt-Dias,M.,Giet,R.,Sinka,R.,Mazumdar,a,Lock,W.G.,Balloux,F.,…Glover,D.M.(2004).Genome-wide survey of protein kinases required for cell cycle progression.Nature,432(7020),980–7.http://doi.org/10.1038/nature03160
[0225] Bingle,L.,Brown,N.J.,&Lewis,C.E.(2002).The role of tumour-associated macrophages in tumour  progression:implications for new anticancer therapies.The Journal of Pathology,196(3),254–65.http://doi.org/10.1002/path.1027
[0226] Biswas,S.K.,Gangi,L.,Paul,S.,Schioppa,T.,Saccani,A.,Sironi,M.,…Sica,A.(2006).A distinct and unique transcriptional program expressed by tumor-associated macrophages(defective NF-kappaB and enhanced IRF-3/STAT1 activation).Blood,107(5),2112–22.http://doi.org/10.1182/blood-2005-01-0428[0227] Blagih,J.,&Jones,R.G.(2012).Polarizing  macrophages through reprogramming of glucose metabolism.Cell Metabolism,15(6),793–5.http://doi.org/10.1016/j.cmet.2012.05.008
[0228] Cai,X.,Yin,Y.,Li,N.,Zhu,D.,Zhang,J.,Zhang,C.-Y.,&Zen,K.(2012).Re-polarization of tumor-associated macrophages to  pro-inflammatory M1 macrophages by microRNA-155.Journal of Molecular Cell Biology,4(5),341–3.http://doi.org/10.1093/jmcb/mjs044
[0229] Chen,H.,Li,P.,Yin,Y.,Cai,X.,Huang,Z.,Chen,J.,…Zhang,J.(2010).The promotion of type 1 T helper cell responses to cationic polymers in vivo via toll-like receptor-4 mediated IL-12 secretion.Biomaterials,31(32),8172–80.http://doi.org/10.1016/j.biomaterials.2010.07.056
[0230] Cortez-Retamozo,V.,Etzrodt,M.,Newton,A.,Rauch,P.J.,Chudnovskiy,A.,Berger,C.,…Pittet,M.J.(2012).Origins of tumor-associated macrophages and neutrophils.Proceedings of the National Academy of Sciences of the United States of America,109(7),2491–6.http://doi.org/10.1073/pnas.1113744109[0231] Dalton,H.J.,Armaiz-Pena,G.N.,Gonzalez-Villasana,V.,Lopez-Berestein,G.,Bar-Eli,M.,&Sood,A.K.(2014).Monocyte subpopulations in angiogenesis.Cancer Research,74(5),1287–93.http://doi.org/10.1158/0008-5472.CAN-13-2825[0232] Davis,M.J.,Tsang,T.M.,Qiu,Y.,Dayrit,J.K.,Freij,J.B.,Huffnagle,G.B.,&Olszewski,M.A.(2013).Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in Cryptococcus neoformans infection.mBio,4(3),e00264–13.http://doi.org/10.1128/mBio.00264-13[0233] Edin,S.,Wikberg,M.L.,Dahlin,A.M., Oberg,A.,Oldenborg,P.-
A.,&Palmqvist,R.(2012).The distribution of macrophages with a m1 or m2 phenotype in relation to prognosis and the molecular characteristics of colorectal cancer.PloS One,7(10),e47045.http://doi.org/10.1371/
journal.pone.0047045
[0234] Eiró,N.,&Vizoso,F.J.(2012).Inflammation and cancer.World Journal of Gastrointestinal Surgery,4(3),62–72.http://doi.org/10.4240/wjgs.v4.i3.62[0235] Ellem,K.A.O.,Rourke,M.G.E.O.,Johnson,G.R.,Parry,G.,Misko,I.S.,Schmidt,C.W.,…Mulligan,R.C.(1997).A case report:immune responses and clinical course of the first human use of granulocyte/macrophage-colony-stimulating-factor-transduced autologous melanoma.Cancer Immunology,Immunotherapy,10–20.Retrieved from http://www.springerlink.com/index/JQ4EB21E4C7ADMT7.pdf
[0236] Forssell,J.,Oberg,A.,Henriksson,M.L.,Stenling,R.,Jung,A.,&Palmqvist,R.(2007).High macrophage infiltration along the tumor front correlates with improved survival in colon cancer.Clinical Cancer Research,13(5),1472–9.http://doi.org/10.1158/1078-0432.CCR-06-2073
[0237] Gast,G.de,&Klümpen,H.(2000).immunotherapy with subcutaneous granulocyte macrophage colony-stimulating factor,low-dose interleukin 2,and interferon in  progressive metastatic  melanoma.Clinical Cancer Research.Retrieved from http://clincancerres.aacrjournals.org/content/6/4/
1267.short
[0238] Gazzaniga,S.,Bravo,A.I.,Guglielmotti,A.,van Rooijen,N.,Maschi,F.,Vecchi,A.,…Wainstok,R.(2007).Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft.The Journal of Investigative Dermatology,127(8),2031–41.http://doi.org/10.1038/sj.jid.5700827
[0239] Geschwind,J.H.,Vali,M.,&Wahl,R.(2006).Effects of 3┓bromopyruvate(hexokinase 2 inhibitor)on glucose uptake in lewis rats using 2-(F-18)fluoro-2-deoxy-d-glucose.In 2006 Gastrointestinal Cancers Symposium(pp.12–14).[0240] Ghassabeh,G.H.,De Baetselier,P.,Brys,L., W.,Van Ginderachter,J.a,Meerschaut,S.,…Raes,G.(2006).Identification of a common gene signature for type II cytokine-associated myeloid cells elicited in vivo in different pathologic conditions.Blood,108(2),575–83.http://doi.org/10.1182/blood-2005-
04-1485
[0241] Guiducci,C.,Vicari,A.P.,Sangaletti,S.,Trinchieri,G.,&Colombo,M.P.(2005).Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection.Cancer Research,65(8),3437–46.http://doi.org/10.1158/0008-5472.CAN-04-4262
[0242] Hagemann,T.,Lawrence,T.,McNeish,I.,Charles,K.a,Kulbe,H.,Thompson,R.G.,…Balkwill,F.R.(2008).“Re-educating”tumor-associated macrophages by targeting NF-kappaB.The Journal of Experimental Medicine,205(6),1261–8.http://doi.org/10.1084/jem.20080108
[0243] Hagemann,T.,Wilson,J.,Burke,F.,Kulbe,H.,Li,N.F.,Plüddemann,A.,…Balkwill,F.R.(2006).Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype.The Journal of Immunology,176(8),5023–32.Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16585599
[0244] Hanahan,D.,&Weinberg,R.a.(2011).Hallmarks of cancer:the next generation.Cell,144(5),646–74.http://doi.org/10.1016/j.cell.2011.02.013[0245] Hao,N.-B.,Lü,M.-H.,Fan,Y.-H.,Cao,Y.-L.,Zhang,Z.-R.,&Yang,S.-M.(2012).Macrophages  in tumor microenvironments and  the  progression of tumors.Clinical&Developmental Immunology,2012,948098.http://doi.org/10.1155/
2012/948098
[0246] Hardison,S.E.,Herrera,G.,Young,M.L.,Hole,C.R.,Wozniak,K.L.,&Wormley,F.L.(2012).Protective immunity against pulmonary cryptococcosis is associated with STAT1-mediated classical macrophage activation.Journal of Immunology(Baltimore,Md.:1950),189(8),4060–8.http://doi.org/10.4049/jimmunol.1103455[0247] Haschemi,A.,Kosma,P.,Gille,L.,Evans,C.R.,Burant,C.F.,Starkl,P.,…Wagner,O.(2012).The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism.Cell Metabolism,15(6),813–
26.http://doi.org/10.1016/j.cmet.2012.04.023
[0248] Herbeuval,J.-P.,Lambert,C.,Sabido,O.,Cottier,M.,Fournel,P.,Dy,M.,&Genin,C.(2003).Macrophages from cancer patients:analysis of TRAIL,TRAIL receptors,and colon tumor cell apoptosis.Journal of the National Cancer Institute,95(8),611–21.Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12697854
[0249] Hercus,T.R.,Thomas,D.,Guthridge,M.A.,Ekert,P.G.,King-Scott,J.,Parker,M.W.,&Lopez,A.F.(2009).The granulocyte-macrophage colony-stimulating factor receptor:linking  its  structure  to cell  signaling and  its role in disease.Blood,114(7),1289–98.http://doi.org/10.1182/blood-2008-12-164004[0250] Hill,H.,Jr,T.C.,&Sabel,M.(2002).Immunotherapy with Interleukin 12 and Granulocyte-Macrophage Colony-stimulating Factor-encapsulated Microspheres Coinduction of Innate and Adaptive Antitumor.Cancer Research.Retrieved from http://cancerres.aacrjournals.org/content/62/24/7254.short
[0251] Hoyert,D.L.,&Xu,J.(2012).National Vital Statistics Reports Deaths:Preliminary Data for 2011(Vol.61).
[0252] Hu,Y.,Zhang,H.,Lu,Y.,Bai,H.,Xu,Y.,Zhu,X.,…Chen,Q.(2011).Class A scavenger receptor attenuates myocardial infarction-induced cardiomyocyte necrosis through suppressing M1 macrophage subset polarization.Basic Research in Cardiology,106(6),1311–28.http://doi.org/10.1007/s00395-011-0204-x[0253] Huang,Z.,Yang,Y.,Jiang,Y.,Shao,J.,Sun,X.,Chen,J.,…Zhang,J.(2013).Anti-tumor immune responses of tumor-associated macrophages via toll-like receptor 4 triggered by cationic polymers.Biomaterials,34(3),746–55.http://doi.org/10.1016/j.biomaterials.2012.09.062
[0254] Jaffee,E.,&Hruban,R.(2001).Novel allogeneic granulocyte-macrophage colony-stimulating factor–secreting tumor vaccine for pancreatic cancer:a phase I trial of safety and immune activation.Journal of Clinical…,19(1),145–156.
[0255] Ji,Y.,Sun,S.,Xu,A.,Bhargava,P.,Yang,L.,Lam,K.S.L.,…Qi,L.(2012).Activation of natural killer T cells promotes M2 Macrophage polarization in adipose tissue and improves systemic glucose tolerance via interleukin-4(IL-4)/STAT6 protein signaling axis in obesity.The Journal of Biological Chemistry,287(17),13561–71.http://doi.org/10.1074/jbc.M112.350066
[0256] Johns,T.,&Mackay,I.(1992).Antiproliferative potencies of interferons on melanoma cell lines and xenografts:higher efficacy of interferon Journal of the National Cancer Institute,(type II),1185–1190.Retrieved from http://jnci.oxfordjournals.org/content/84/15/1185
[0257] Jones,R.G.,&Thompson,C.B.(2007).Revving the engine:signal transduction fuels T cell activation.Immunity,27(2),173–8.http://doi.org/
10.1016/j.immuni.2007.07.008
[0258] Junankar,S.,Shay,G.,Jurczyluk,J.,Ali,N.,Down,J.,Pocock,N.,…Rogers,M.J.(2015).Real-time intravital imaging establishes tumor-associated macrophages as the extraskeletal target of bisphosphonate action in cancer.Cancer Discovery,5(1),35–42.http://doi.org/10.1158/2159-8290.CD-14-0621
[0259] Kelly,P.M.,Davison,R.S.,Bliss,E.,&McGee,J.O.(1988).Macrophages in human breast disease:a quantitative immunohistochemical study.British Journal of Cancer,57(2),174–7.Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2246436&tool=p mcentrez&rendertype=abstract[0260] Kimura,Y.N.,Watari,K.,Fotovati,A.,Hosoi,F.,Yasumoto,K.,Izumi,H.,…Ono,M.(2007).Inflammatory stimuli from macrophages and cancer cells synergistically promote tumor growth and angiogenesis.Cancer Science,98(12),2009–18.http://doi.org/10.1111/j.1349-7006.2007.00633.x
[0261] Kolb,W.,&Granger,G.(1968).Lymphocyte  in vitro cytotoxicity:characterization of human lymphotoxin.Proceedings of the National Academy of Sciences of the United States of America,1250–1255.Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC225248/
[0262] Korbelik,M.,Naraparaju,V.R.,&Yamamoto,N.(1997).Macrophage-directed immunotherapy as adjuvant to photodynamic therapy of cancer.British Journal of Cancer,75(2),202–7.Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2063270&tool=p mcentrez&rendertype=abstract[0263] Kurahara,H.,Shinchi,H.,Mataki,Y.,Maemura,K.,Noma,H.,Kubo,F.,…Takao,S.(2011).Significance of M2-polarized tumor-associated macrophage in pancreatic cancer.The Journal of Surgical Research,167(2),e211–9.http://doi.org/10.1016/j.jss.2009.05.026
[0264] Lawrence,T.,&Natoli,G.(2011).Transcriptional regulation of macrophage polarization:enabling diversity with identity.Nature Reviews.Immunology,11(11),750–61.http://doi.org/10.1038/nri3088
[0265] Lewis,C.,&Leek,R.(1995).Cytokine regulation of angiogenesis in breast cancer:the role of tumor-associated macrophages.Journal of Leukocyte…,57(May),747–751.Retrieved from http://www.jleukbio.org/content/57/5/747.short[0266] Liao,X.,Sharma,N.,&Kapadia,F.(2011).Krüppel-like factor 4 regulates macrophage polarization.The Journal of Clinical Investigation,121(7).http://doi.org/10.1172/JCI45444DS1
[0267] Lin,E.Y.,Li,J.-F.,Gnatovskiy,L.,Deng,Y.,Zhu,L.,Grzesik,D.a,…Pollard,J.W.(2006).Macrophages regulate the angiogenic switch in a mouse model of breast cancer.Cancer Research,66(23),11238–46.http://doi.org/10.1158/0008-5472.CAN-06-1278
[0268] Lin,E.Y.,&Pollard,J.W.(2007).Tumor-associated macrophages press the angiogenic switch in breast cancer.Cancer Research,67(11),5064–6.http://doi.org/10.1158/0008-5472.CAN-07-0912
[0269] Lodish,H.F.,Zhou,B.,Liu,G.,&Chen,C.-Z.(2008).Micromanagement of the immune system by microRNAs.Nature Reviews.Immunology,8(2),120–30.http://doi.org/10.1038/nri2252
[0270] Lokshin,A.,Mayotte,J.,&Levitt,M.(1995).Mechanism of Interferon Beta-Induced Squamous Differentiation and Programmed Cell Death in Human Non-Small-Cell Lung Cancer Cell Lines.Journal of the National Cancer Institute,87,206–212.Retrieved from http://jnci.oxfordjournals.org/content/87/3/
206.short
[0271] Luo,Y.,Zhou,H.,&Krueger,J.(2006).Targeting tumor-associated macrophages as a novel strategy against breast cancer.Journal of Clinical Investigation,116(8),2132–2141.http://doi.org/10.1172/JCI27648.2132[0272] Ma,J.,Liu,L.,Che,G.,Yu,N.,Dai,F.,&You,Z.(2010).The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time.BMC Cancer,10,112.http://doi.org/10.1186/1471-2407-10-112[0273] Mandal,P.,Pratt,B.T.,Barnes,M.,McMullen,M.R.,&Nagy,L.E.(2011).Molecular mechanism for adiponectin-dependent M2 macrophage polarization:link between the metabolic and innate immune activity of full-length adiponectin.The Journal of Biological Chemistry,286(15),13460–9.http://doi.org/10.1074/jbc.M110.204644
[0274] Mantovani,A.,Allavena,P.,Sica,A.,&Balkwill,F.(2008).Cancer-related inflammation.Nature,454(7203),436–44.http://doi.org/10.1038/nature07205[0275] Mantovani,A.,Biswas,S.K.,Galdiero,M.R.,Sica,A.,&Locati,M.(2013).Macrophage plasticity and polarization in tissue repair and remodelling.The Journal of Pathology,229(2),176–85.http://doi.org/10.1002/path.4133[0276] Mantovani,A.,Sozzani,S.,Locati,M.,Allavena,P.,&Sica,A.(2002).Macrophage polarization:tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes.Trends in Immunology,23(11),549–55.Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12401408
[0277] Michel,O.,&Nagy,A.(1997).Dose-response relationship to inhaled endotoxin in normal subjects.American Journal of Respiratory and Critical Care Medicine,156(4 Pt 1),1157–64.Retrieved from http://www.atsjournals.org/doi/abs/10.1164/ajrccm.156.4.97-02002
[0278] Mills,C.D.,Shearer,J.,Evans,R.,&Caldwell,M.D.(1992).Macrophage arginine metabolism and the inhibition or stimulation of cancer.Journal of Immunology(Baltimore,Md.:1950),149(8),2709–14.Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1401910
[0279] Murray,P.J.,Allen,J.E.,Biswas,S.K.,Fisher,E.A.,Gilroy,D.W.,Goerdt,S.,…Wynn,T.A.(2014).Macrophage Activation and Polarization:Nomenclature and Experimental Guidelines.Immunity,41(1),14–20.http://doi.org/10.1016/j.immuni.2014.06.008
[0280] Ohri,C.M.,Shikotra,A.,Green,R.H.,Waller,D.a,&Bradding,P.(2009).Macrophages within NSCLC tumour islets are predominantly of a cytotoxic M1 phenotype associated with extended survival.The European Respiratory Journal,33(1),118–26.http://doi.org/10.1183/09031936.00065708
[0281] Porta,C.,Rimoldi,M.,Raes,G.,Brys,L.,Ghezzi,P.,Di Liberto,D.,…Sica,A.(2009).Tolerance and M2(alternative)macrophage polarization are related processes orchestrated by p50 nuclear factor kappaB.Proceedings of the National Academy of Sciences of the United States of America,106(35),14978–83.http://doi.org/10.1073/pnas.0809784106
[0282] Qin,X.-Q.,Runkel,L.,Deck,C.,DeDios,C.,&Barsoum,J.(1997).Interferon-beta induces  S phase accumulation selectively in human transformed cells.Journal of Interferon&Cytokine Research,17(6),355–367.http://doi.org/10.1089/jir.1997.17.355
[0283] Rogers,T.L.,&Holen,I.(2011).Tumour macrophages as potential targets of bisphosphonates.Journal of Translational Medicine,9(1),177.http://doi.org/10.1186/1479-5876-9-177
[0284] Saccani,A.,Schioppa,T.,Porta,C.,Biswas,S.K.,Nebuloni,M.,Vago,L.,…Sica,A.(2006).p50 nuclear factor-kappaB overexpression in tumor-associated macrophages  inhibits  M1 inflammatory  responses  and antitumor resistance.Cancer Research,66(23),11432–40.http://doi.org/10.1158/0008-
5472.CAN-06-1867
[0285] Sanford,D.E.,Belt,B.A.,Panni,R.Z.,Mayer,A.,Deshpande,A.D.,Carpenter,D.,…Linehan,D.C.(2013).Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer:a role for targeting the CCL2/CCR2 axis.Clinical Cancer Research:An Official Journal of the American Association for Cancer Research,19(13),3404–15.http://doi.org/10.1158/1078-0432.CCR-13-
0525
[0286] Schmall,A.,Al-Tamari,H.M.,Herold,S.,Kampschulte,M.,Weigert,A.,Wietelmann,A.,…Savai,R.(2014).Macrophage and Cancer Cell Crosstalk via CCR2 and CX3CR1 is a Fundamental Mechanism Driving Lung Cancer.American Journal of Respiratory and Critical Care Medicine.http://doi.org/10.1164/rccm.201406-1137OC
[0287] Shaw,R.J.(2006).Glucose metabolism and cancer.Current Opinion in Cell Biology,18(6),598–608.http://doi.org/10.1016/j.ceb.2006.10.005
[0288] Shu,C.J.,Guo,S.,Kim,Y.J.,Shelly,S.M.,Nijagal,A.,Ray,P.,…Witte,O.N.(2005).Visualization of a primary anti-tumor immune response by positron emission tomography.Proceedings of the National Academy of Sciences of the United  States  of  America,102(48),17412–7.http://doi.org/10.1073/pnas.0508698102
[0289] Sica,A.,&Mantovani,A.(2012).Macrophage plasticity and polarization:in vivo veritas.The Journal of Clinical Investigation,122(3),787–796.http://doi.org/10.1172/JCI59643DS1
[0290] Simons,J.W.,Carducci,M.a,Mikhak,B.,Lim,M.,Biedrzycki,B.,Borellini,F.,…Nelson,W.G.(2006).Phase I/II trial of an allogeneic cellular immunotherapy in hormone- prostate cancer.Clinical Cancer Research,12(11 Pt 1),3394–401.http://doi.org/10.1158/1078-0432.CCR-06-0145
[0291] Simpson,K.D.,Templeton,D.J.,&Cross,J.V.(2012).Macrophage Migration Inhibitory Factor Promotes Tumor Growth and Metastasis by Inducing Myeloid-Derived Suppressor Cells in the Tumor Microenvironment.The Journal of Immunology.http://doi.org/10.4049/jimmunol.1201161
[0292] Sinha,P.,Clements,V.K.,&Ostrand-Rosenberg,S.(2005).Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease.Journal of Immunology,174(2),636–45.Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15634881
[0293] Smith,H.O.,Stephens,N.D.,Qualls,C.R.,Fligelman,T.,Wang,T.,Lin,C.-Y.,…Pollard,J.W.(2013).The clinical significance of inflammatory cytokines in primary cell culture in endometrial carcinoma.Molecular Oncology,7(1),41–54.http://doi.org/10.1016/j.molonc.2012.07.002
[0294] Squadrito,M.L.,Etzrodt,M.,De Palma,M.,&Pittet,M.J.(2013).MicroRNA-mediated control of macrophages and its implications for cancer.Trends in Immunology,34(7),350–9.http://doi.org/10.1016/j.it.2013.02.003
[0295] Steidl,C.,Lee,T.,&Shah,S.(2010a).Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma.The New England Journal of Medicine,875–885.Retrieved from http://www.nejm.org/doi/full/10.1056/NEJMoa0905680[0296] Steidl,C.,Lee,T.,&Shah,S.(2010b).Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma.The New England Journal of Medicine,
362(10),875–885.Retrieved from http://www.nejm.org/doi/full/10.1056/NEJMoa0905680
[0297] Urban,J.L.,Shepard,H.M.,Rothstein,J.L.,Sugarman,B.J.,&Schreiber,H.(1986).Tumor necrosis factor:a potent effector molecule for tumor cell killing by activated macrophages.Proceedings of the National Academy of Sciences of the United States of America,83(14),5233–7.Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=323925&tool=pmcentrez&rendertype=abstract
[0298] Van Ginderachter,J.A.,Movahedi,K.,Hassanzadeh Ghassabeh,G.,Meerschaut,S.,Beschin,A.,Raes,G.,&De Baetselier,P.(2006).Classical and alternative activation of mononuclear phagocytes:Picking the best of both worlds for tumor promotion.Immunobiology,211(6),487–501.Retrieved from http://www.sciencedirect.com/science/article/pii/S0171298506000829
[0299] Wang,Y.-C.,He,F.,Feng,F.,Liu,X.-W.,Dong,G.-Y.,Qin,H.-Y.,…Han,H.(2010).Notch signaling determines the M1 versus M2 polarization  of macrophages in antitumor immune responses.Cancer Research,70(12),4840–9.http://doi.org/10.1158/0008-5472.CAN-10-0269
[0300] Wei,Y.,Nazari-Jahantigh,M.,Chan,L.,Zhu,M.,Heyll,K.,Corbalán-Campos,J.,…Schober,A.(2013).The microRNA-342-5p fosters inflammatory macrophage activation through an Akt1-and microRNA-155-dependent pathway during atherosclerosis.Circulation,127(15),1609–19.http://doi.org/10.1161/CIRCULATIONAHA.112.000736
[0301] West,R.B.,Rubin,B.P.,Miller,M.A.,Subramanian,S.,Kaygusuz,G.,Montgomery,K.,…van de Rijn,M.(2006).A landscape effect in tenosynovial giant-cell tumor from activation of CSF1 expression by a translocation in a minority of tumor cells.Proceedings of the National Academy of Sciences of the United  States of America,103(3),690–5.http://doi.org/10.1073/pnas.0507321103
[0302] Wolf,A.,Agnihotri,S.,Micallef,J.,Mukherjee,J.,Sabha,N.,Cairns,R.,…Guha,A.(2011).Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme.The Journal of Experimental Medicine,208(2),313–26.http://doi.org/10.1084/jem.20101470[0303] Wong,S.-C.,Puaux,A.-L.,Chittezhath,M.,Shalova,I.,Kajiji,T.S.,Wang,X.,…Biswas,S.K.(2010).Macrophage polarization to a unique phenotype driven by B cells.European Journal of Immunology,40(8),2296–307.http://doi.org/10.1002/eji.200940288
[0304] Zeisberger,S.M.,Odermatt,B.,Marty,C.,Zehnder- a H.M.,Ballmer-Hofer,K.,&Schwendener,R.a.(2006).Clodronate-liposome-mediated depletion of tumour-associated macrophages:a new and highly effective antiangiogenic therapy approach.British Journal of Cancer,95(3),272–81.http://doi.org/10.1038/sj.bjc.6603240
[0305] Zhang,F.,Lu,W.,&Dong,Z.(2002).Tumor-infiltrating macrophages are involved in suppressing growth and metastasis of human prostate cancer cells by  INF-βgene therapy  in  nude mice.Clinical Cancer Research,2942–2951.Retrieved from http://clincancerres.aacrjournals.org/content/8/9/
2942.short
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈