首页 / 专利库 / 医疗设备 / 透析器 / 便携式透析机器

便携式透析机器

阅读:599发布:2020-05-11

专利汇可以提供便携式透析机器专利检索,专利查询,专利分析的服务。并且本 说明书 公开了具有可拆卸的 控制器 单元和基部单元的便携式 透析 机器。控制器单元包括: 门 ,其具有内部面;具有面板的 外壳 ,其中外壳和面板界定被配置为接收门的内部面的凹陷区域;以及 歧管 接收器,其被固定地附接于面板。基部单元具有:平面表面,其用于接收 流体 容器;秤,其与平面表面集成;加热器,其与平面表面热连通;以及钠 传感器 ,其与平面表面电磁连通。所公开的便携式透析系统的实施方案具有改进的结构的和功能的特征,包括改进的模 块 性、使用的容易性和安全性特征。,下面是便携式透析机器专利的具体信息内容。

1.一种用于处理血液的透析机器,其可拆卸地固定于透析器且可连接到血液回路和透析液回路,所述透析机器包括:
a.控制器单元,其中所述控制器单元包括:
i.,其具有内部面;
ii.具有面板的外壳,其中所述外壳和所述面板界定被配置为接收所述门的所述内部面的凹陷区域,其中所述面板包括有度的表面,所述有角度的表面被配置成把降落在所述有角度的表面上的分朝着至少一个湿度传感器引导;
iii.歧管接收器,其被固定地附接于所述面板,其中所述歧管接收器适于接收歧管,所述血液通过所述歧管从患者流动经过所述透析器;以及
iv.处理单元,其用于控制所述血液经过所述歧管和所述透析器的流动;
b.基部单元,其用于流体储存,其中所述基部单元适于与所述控制器单元数据通信,并且其中所述基部单元包括:
i.平面表面,其用于接收流体容器,其中所述流体容器与所述歧管流体连通;
ii.第一秤,其与所述平面表面物理连通;
iii.加热器,其与所述流体容器热连通;以及,
iv.钠传感器,其与所述平面表面电磁连通,
其中所述歧管接收器被配置为接收模塑塑料基板,该模塑塑料基板界定被从第二流动路径流体地隔离的第一流动路径。
2.根据权利要求1所述的透析机器,其中所述歧管接收器包括仿形的引导器、钉或闩中的至少一种。
3.根据权利要求1所述的透析机器,其中所述面板被配置为提供通向多个的通路。
4.根据权利要求1所述的透析机器,其中所述面板被配置为提供通向在实质上平行的对准中的四个蠕动泵的通路。
5.根据权利要求4所述的透析机器,其中所述内部面包括四个泵靴。
6.根据权利要求5所述的透析机器,其中,当所述门被接收入所述凹陷区域中时,所述四个泵靴中的每个与所述四个蠕动泵中的一个对准。
7.根据权利要求5所述的透析机器,其中所述四个泵靴中的至少一个被构件和弹簧可运动地附接于所述门。
8.根据权利要求7所述的透析机器,其中所述构件是螺栓
9.根据权利要求7所述的透析机器,其中所述控制器单元还包括用于测量所述构件的运动的传感器。
10.根据权利要求9所述的透析机器,其中所述控制器单元还包括用于接收来自所述传感器的对所述构件的运动的测量结果并且基于所述测量结果确定流体压的控制器。
11.根据权利要求1所述的透析机器,其中所述透析机器被配置为使用六升的水进行透析治疗,其中所述水来自非无菌的源。
12.根据权利要求1所述的透析机器,其中所述第一流动路径和所述第二流动路径中的每个具有在1.5mm至7.22mm的范围内的水力直径。
13.根据权利要求1所述的透析机器,其中所述模塑塑料基板被结合于多个管路,并且其中所述多个管路被结合于透析器。
14.根据权利要求13所述的透析机器,其中所述控制器单元还包括被连接于所述外壳的外部的构件,其中所述构件被配置为物理地接收所述透析器。
15.根据权利要求13所述的透析机器,其中所述基部单元还包括被连接于所述基部单元的外部的构件,其中所述构件被配置为物理地接收所述透析器。
16.根据权利要求13所述的透析机器,其中所述多个管路适于可移除地附接于吸附剂插盒。
17.根据权利要求16所述的透析机器,其中所述基部单元还包括被连接于所述基部单元的外部表面的构件,其中所述构件被配置为物理地接收所述吸附剂插盒。
18.根据权利要求1所述的透析机器,其中所述控制器单元包括底部表面,其中所述底部表面包括第一物理接口和第一数据接口。
19.根据权利要求18所述的透析机器,其中所述基部单元具有顶部表面,并且其中所述顶部表面包括被配置与所述第一物理接口互补的第二物理接口和能够与所述第一数据接口接驳的第二数据接口。
20.根据权利要求1所述的透析机器,其中所述第一秤包括多个挠曲部和霍尔传感器,其中所述挠曲部中的每个与所述平面表面物理连通,并且其中所述霍尔传感器中的每个被配置为传感物理位移。
21.根据权利要求1所述的透析机器,其中所述钠传感器包括电导传感器。
22.根据权利要求21所述的透析机器,其中所述电导传感器包括具有多个的线圈、与所述线圈电连通的电容器,和能量源,其中所述线圈和所述电容器界定电路且所述能量源与所述电路电连通。
23.根据权利要求22所述的透析机器,其中所述电导传感器基于保持跨所述电容器的恒定电压所需要的来自所述能量源的能量输入而输出指示所述流体中的钠浓度的值。
24.根据权利要求1所述的透析机器,其中所述基部单元包括至少一个湿度传感器
25.根据权利要求1所述的透析机器,其中所述基部单元包括能够在开放状态中或在关闭状态中的门,并且其中当所述控制器单元的所述门的所述内部面被接收在所述凹陷区域中时,所述基部单元的所述门被物理地阻挡以不在所述开放状态中。
26.根据权利要求1所述的透析机器,其中所述基部单元包括能够在开放状态中或在关闭状态中的门,并且其中当所述控制器单元的所述门的所述内部面在所述凹陷区域中时,所述基部单元的所述门被物理地锁定为所述关闭状态。
27.根据权利要求1所述的透析机器,其中所述控制器单元包括多个传感器,当所述控制器单元的所述门的所述内部面在所述凹陷区域中时,所述多个传感器与所述模塑塑料基板连通。
28.根据权利要求27所述的透析机器,其中所述多个传感器中的至少一个包括压力换能器。
29.根据权利要求28所述的透析机器,其中所述压力换能器与集成入所述模塑塑料基板中的柔性膜压力连通。
30.根据权利要求1所述的透析机器,其中所述控制器单元包括与所述模塑塑料基板连通的至少一个门部件。
31.根据权利要求30所述的透析机器,其中所述控制器单元包括被配置为激活所述阀门部件的多个程序指令,并且其中对所述阀门部件的激活使流体流被引导经过所述模塑塑料基板中的两个分离的流体路径中的一个。
32.根据权利要求31所述的透析机器,其中对所述阀门部件的所述激活取决于血液净化系统的操作模式。
33.根据权利要求30所述的透析机器,其中所述阀门部件具有开放位置和关闭位置,并且其中所述阀门部件包括:
a.孔口关闭构件,其毗邻于孔口,流体能够流动经过该孔口;
b.位移构件,其具有第一部分和第二部分,其中当阀门部件在所述开放位置中时所述第一部分毗邻于所述孔口关闭构件;
c.第一磁体和第二磁体,其中所述第一磁体和所述第二磁体紧邻于所述位移构件至足以把磁力施加在所述位移构件上;以及,
d.致动器,其用于产生磁场以把所述位移构件朝向所述第一磁体运动、使所述第一部分按压所述孔口关闭构件并且使所述孔口关闭构件关闭所述孔口。
34.根据权利要求33所述的透析机器,其中所述第一部分包括外壳、弹性材料、杆和在所述弹性材料和所述杆之间的缝隙。
35.根据权利要求33所述的透析机器,还包括被定位为传感所述阀门部件中的缝隙是存在还是不存在的光学传感器
36.根据权利要求33所述的透析机器,其中所述第一部分包括杆并且所述位移构件的所述第二部分是直径比所述杆大的金属体。
37.根据权利要求36所述的透析机器,其中所述杆被结合于柱体。
38.根据权利要求33所述的透析机器,其中所述第一磁体比所述第二磁体大。
39.根据权利要求33所述的透析机器,其中所述孔口关闭构件包括膜片、弹性材料和可压缩材料中的至少一种。
40.根据权利要求33所述的透析机器,其中所述孔口关闭构件压紧阀座以关闭所述孔口。
41.根据权利要求30所述的透析机器,其中所述阀门部件包括:
a.孔口关闭构件,其毗邻于孔口,流体能够流动经过该孔口,其中当所述阀门部件在关闭位置中时所述孔口关闭构件压紧阀座;
b.可运动构件,其是相对于所述孔口关闭构件物理地可运动的,其中所述可运动构件从当所述阀门部件在开放位置中时的第一位置运动至当所述阀门部件在所述关闭位置中时的第二位置,并且其中,在所述第二位置中,所述可运动构件按压所述孔口关闭构件以使所述孔口关闭构件压紧所述阀座;
c.第一磁体和第二磁体,其具有分离部,其中所述第一磁体和所述第二磁体产生在所述分离部中的磁场并且其中所述磁场具有方向;以及,
d.致动器,其能够产生电磁力,其中所述电磁力与所述磁场的方向相反。
42.根据权利要求41所述的透析机器,其中所述第一磁体和所述第二磁体提供用于所述可运动构件的运动的支承表面。
43.根据权利要求41所述的透析机器,其中具有第一磁极的所述第一磁体比具有第二磁极的所述第二磁体大。
44.根据权利要求43所述的透析机器,其中所述第一磁极和所述第二磁极排斥彼此并且其中所述第一磁体和所述第二磁体被配置为使所述第一磁极和所述第二磁极面向彼此。
45.根据权利要求27所述的透析机器,其中所述多个传感器中的至少一个是流量计。
46.根据权利要求45所述的透析机器,其中所述流量计包括至少两个探针,所述至少两个探针中的每个具有主体和被定位在所述模塑塑料基板上的接触表面,其中所述至少两个探针中的第一探针响应于第一热信号而产生在流动经过所述模塑塑料基板的流体内的热波并且所述至少两个探针中的第二探针传感在所述流体内的所述热波。
47.根据权利要求46所述的透析机器,其中所述流量计还包括基准信号发生器,其中所述基准信号发生器输出基准信号。
48.根据权利要求47所述的透析机器,其中所述流量计还包括热源,其中所述热源接收来自所述基准信号发生器的所述基准信号,被配置为与所述至少两个探针中的所述第一探针热啮合,并且产生具有来源于所述基准信号的相位的所述第一热信号。
49.根据权利要求48所述的透析机器,其中所述流量计还包括温度传感器,其中所述温度传感器被配置为与所述第二探针热啮合,并且产生具有来源于所述热波的相位的第二热信号。
50.根据权利要求49所述的透析机器,其中所述流量计还包括倍增器,该倍增器用于接收来自所述基准信号发生器的输入信号、接收所述第二热信号并输出第三信号。
51.根据权利要求50所述的透析机器,其中所述流量计还包括用于接收来源于所述第三信号的信号并且用于接收来自所述基准信号发生器的所述基准信号的低通滤波器,其中所述低通滤波器基于所述基准信号调制其截止频率
52.根据权利要求48所述的透析机器,其中所述第二探针与所述第一探针分隔小于两英寸的距离。
53.根据权利要求50所述的透析机器,还包括用于放大所述第三信号并且产生来源于所述第三信号的信号的放大器
54.根据权利要求48所述的透析机器,其中所述至少两个探针中的每个的主体具有在
0.03英寸至0.15英寸的范围内的直径。
55.根据权利要求48所述的透析机器,其中所述至少两个探针中的每个的所述接触表面具有在0.025英寸至0.2英寸的范围内的直径。
56.根据权利要求48所述的透析机器,其中所述第二探针包括热敏电阻器。
57.根据权利要求51所述的透析机器,其中所述低通滤波器产生经滤波信号并且其中所述基准信号发生器至少部分地基于所述经滤波信号产生所述基准信号。
58.根据权利要求47所述的透析机器,其中所述流量计动态地调整所述基准信号以保持恒定频率。
59.根据权利要求47所述的透析机器,其中所述流量计动态地调整所述基准信号以保持恒定相位。
60.根据权利要求45所述的透析机器,其中所述流量计被配置为把光束投射入在所述模塑塑料基板内的流体中;探测在所述流体中的在上游的第一点处和在下游的第二点处的所得到的声信号;确定在所述流体中的在上游探测到的声信号和在下游探测到的声信号之间的相位差;并且,从所确定的相位差计算所述流体的流量。
61.根据权利要求60所述的透析机器,其中所述相位差通过将代表在上游和下游探测到的声信号相位的信号相减来确定。
62.根据权利要求45所述的透析机器,其中所述流量计包括:用于把光束投射入流动经过所述模塑塑料基板的透明片段的流体中的光学系统;用于探测在所述透明片段的上游的第一点处的声信号的第一声波探测器;用于探测在所述透明片段的下游的第二点处的声信号的第二声波探测器;用于确定在上游探测到的声信号和在下游探测到的声信号之间的相位差并且用于从所确定的相位差计算所述模塑塑料基板中的流体的流量的处理器。
63.根据权利要求62所述的透析机器,其中用于确定所述相位差的所述处理器包括减法单元。
64.根据权利要求62所述的透析机器,其中所述光学系统是脉冲激光系统。
65.根据权利要求62所述的透析机器,其中所述光束被垂直于所述流体的流动的方向投射。
66.根据权利要求62所述的透析机器,其中所述流量计具有在20ml/min至600ml/min之间的操作性传感范围。
67.根据权利要求45所述的透析机器,其中所述流量计具有在20ml/min至600ml/min之间的操作性传感范围。
68.根据权利要求1所述的透析机器,其中所述控制器单元还包括用于探测被内嵌在所述模塑塑料基板中的识别数据的读取器。
69.根据权利要求1所述的透析机器,其中所述控制器单元还包括温度传感器,该温度传感器适于当所述门在所述凹陷区域中时与所述模塑塑料基板热连通。
70.根据权利要求1所述的透析机器,其中所述控制器单元包括用于确定向患者的血液管线连接部是否已经被断开连接的断开连接监视器。
71.根据权利要求70所述的透析机器,其中所述断开连接监视器包括:
a.压力换能器,其与所述歧管中的血液流动路径压力连通,其中所述压力换能器产生指示所述血液流动路径中的脉冲信号的信号;
b.心脏基准信号发生器,其中所述心脏基准信号发生器探测所述患者的脉搏并且产生指示所述患者的脉搏的信号;
c.压力换能器数据接收器,其中所述压力换能器数据接收器接收指示所述血液流动路径中的所述脉冲信号的所述信号;
d.心脏基准信号接收器,其中所述心脏基准信号接收器接收指示所述患者的脉搏的所述信号;以及,
e.处理器,其中所述处理器把指示所述血液流动路径中的所述脉冲信号的所述信号和指示所述患者的脉搏的所述信号交叉相关,以产生指示向所述患者的所述血液管线连接部的断开连接的数据。
72.根据权利要求71所述的透析机器,其中所述断开连接监视器还包括控制器,其中所述控制器基于指示向所述患者的所述血液管线连接部的断开连接的所述数据触发警报器。
73.根据权利要求71所述的透析机器,其中所述断开连接监视器还包括控制器,其中所述控制器基于指示向患者的所述血液管线连接部的断开连接的所述数据把透析泵停机。
74.根据权利要求71所述的透析机器,其中所述压力换能器非侵入地产生指示所述血液流动路径中的脉冲信号的信号。
75.根据权利要求71所述的透析机器,其中所述断开连接监视器还包括用于指导患者在启动透析泵之前首先附接所述心脏信号基准发生器的程序指令。
76.根据权利要求71所述的透析机器,其中所述断开连接监视器还包括用于指导所述透析机器在启动透析泵之前捕获指示所述血液流动路径中的所述脉冲信号的所述信号的程序指令。
77.根据权利要求1所述的透析机器,其中所述控制器单元还包括:
a.显示器;
b.第二秤;
c.条形码读取器;以及,
d.存储器,其存储多个程序指令,其中,在执行时,所述指令产生:
i.用于在所述显示器上呈现的第一图形用户界面,其中所述第一图形用户界面显示需要在透析治疗中使用的每个添加剂;
ii.用于在所述显示器上呈现的第二图形用户界面,其中所述第二图形用户界面提示所述透析机器的用户提交多个添加剂来使用所述条形码读取器进行扫描;以及,iii.用于在所述显示器上呈现的第三图形用户界面,其中所述第三图形用户界面提示所述透析机器的用户提交多个添加剂来使用所述第二秤进行测量。
78.根据权利要求77所述的透析机器,其中所述第二秤是数字秤。
79.根据权利要求77所述的透析机器,其中所述条形码读取器提供成功的读取的视觉指示。
80.根据权利要求77所述的透析机器,其中所述存储器还包括把多个添加剂名称与多个条形码相关联的表格。
81.根据权利要求77所述的透析机器,其中所述存储器还包括把多个添加剂与多个重量值相关联的表格。
82.根据权利要求77所述的透析机器,其中所述第二图形用户界面显示添加剂包装的视觉代表。
83.根据权利要求77所述的透析机器,其中所述第三图形用户界面仅在添加剂的条形码不被识别时提示所述透析机器的所述用户提交所述添加剂来使用所述第二秤进行测量。
84.根据权利要求77所述的透析机器,其中所述第三图形用户界面仅在用于添加剂的条形码是不可用的时提示所述透析机器的所述用户提交所述添加剂来使用所述第二秤进行测量。
85.根据权利要求1所述的透析机器,其中所述控制器单元还包括:
a.显示器;
b.第二秤,其包括多个磁体;
c.电子读取器;以及,
d.存储器,其存储多个程序指令,其中,在执行时,所述指令产生:
i.用于在所述显示器上呈现的第一图形用户界面,其中所述第一图形用户界面提示所述透析机器的用户提交多个添加剂来使用所述电子读取器进行扫描;以及,ii.用于在所述显示器上呈现的第二图形用户界面,其中所述第二图形用户界面提示所述透析机器的用户提交多个添加剂来使用所述第二秤进行测量。
86.根据权利要求85所述的透析机器,其中,在执行时,所述指令还产生用于在所述显示器上呈现的第三图形用户界面,其中所述第三图形用户界面显示需要在透析治疗中使用的每个添加剂。
87.根据权利要求85所述的透析机器,其中所述第二秤是数字秤并且其中所述数字秤产生代表被放置在所述数字秤上的物体的重量的数据。
88.根据权利要求87所述的透析机器,其中所述数字秤还包括至少三个挠曲部。
89.根据权利要求88所述的透析机器,其中所述挠曲部中的每个包括磁体和相应的霍尔传感器。
90.根据权利要求1所述的透析机器,其中所述控制器单元还包括存储多个程序指令的存储器,其中所述第一流动路径和所述第二流动路径被阀门流体地分隔,并且其中所述程序指令被配置为根据所选择的操作模式定义所述阀门的第一状态和所述阀门的第二状态。
91.根据权利要求90所述的透析机器,其中所述所选择的操作模式是预充模式或治疗模式。
92.根据权利要求90所述的透析机器,其中所述阀门的所述第一状态把所述第一流动路径置于与所述第二流动路径流体连通。
93.根据权利要求92所述的透析机器,其中所述阀门的所述第二状态把所述第一流动路径置于与所述第二流动路径流体隔离。
94.根据权利要求1所述的透析机器,其中所述模塑塑料基板包括用于把流体输注入患者中的第一流体回路以及用于从所述患者移除流体的第二流体回路。
95.根据权利要求94所述的透析机器,其中所述控制器单元还包括:被配置为在所述第一流体回路和所述第二流体回路上交替地操作的第一泵;被配置为在所述第二流体回路和所述第一流体回路上交替地操作的第二泵;以及,用于使所述第一泵可选择地在所述第一流体回路和所述第二流体回路上操作并且用于使所述第二泵可选择地在所述第一流体回路和所述第二流体回路上操作的控制器,其中所述第一泵和所述第二泵中的每个在给定的时间在仅一个流体回路上操作。
96.根据权利要求95所述的透析机器,其中,相比于所述第二泵,所述第一泵每单位时间泵送较高量的流体。
97.根据权利要求95所述的透析机器,其中所述第一泵和所述第二泵在所述第一流体回路和所述第二流体回路上交替地操作持续一个时间段,其中所述时间段来源于被所述第一泵和所述第二泵每单位时间泵送的流体的量的可允许的差异。
98.根据权利要求95所述的透析机器,其中所述第一泵和所述第二泵是蠕动泵。
99.根据权利要求95所述的透析机器,还包括用于均衡化所述第一流体回路和所述第二流体回路之间的压力差的限流器。
100.根据权利要求99所述的透析机器,其中所述限流器是主动式的并且基于压力差均衡化所述压力差,所述压力差是由所述第一流体回路中的第一压力传感器以及由所述第二流体回路中的第二压力传感器所测量到的。
101.根据权利要求1所述的透析机器,其中所述面板还包括通向通道的被两个成斜坡表面界定的漏斗并且其中所述通道包括至少一个湿度传感器。
102.根据权利要求101所述的透析机器,其中,当所述门被接收入所述凹陷区域中时,所述漏斗被定位在所述歧管下方并且被配置为把从所述歧管泄漏的流体朝向所述湿度传感器引导。
103.根据权利要求1所述的透析机器,其中所述控制器单元的底部表面适于被可移除地附接于所述基部单元的顶部表面。
104.根据权利要求103所述的透析机器,其中所述控制器单元与所述基部单元电连通。
105.根据权利要求1所述的透析机器,其中所述控制器单元与所述基部单元物理地分离。
106.根据权利要求105所述的透析机器,其中所述控制器单元与所述基部单元数据通信。
107.根据权利要求105所述的透析机器,其中所述控制器单元与所述基部单元流体连通。
108.一种用于处理血液的透析机器,其可连接到血液回路和透析液回路,所述透析机器包括:
一次性塑料歧管,其包括适于连接到患者的管路且包括用于从所述患者拉动血液的流动路径;
a.第一单元,其中所述第一单元包括:
i.门,其具有第一面;
ii.外壳,其被附接于所述门,其中外壳具有第二面;
iii.至少一个歧管接收器,其被固定地附接于所述第二面,其中所述歧管接收器适于物理地接收所述一次性塑料歧管,其中所述第二面包括有角度的表面,所述有角度的表面被配置成把降落在所述有角度的表面上的水分朝着至少一个湿度传感器引导;
iv.显示器,其用于显示图形用户界面;以及
v.处理单元,其用于控制所述血液经过所述一次性塑料歧管和透析器的流动;以及b.第二单元,其用于流体储存,其中所述第二单元适于与所述第一单元数据通信,并且其中所述第二单元包括:
i.至少一个平面表面,其用于支持流体容器,其中所述流体容器与所述一次性塑料歧管流体连通;
ii.秤,其与所述平面表面集成;
iii.加热器,其与所述流体容器热连通;以及,
iv.钠传感器,其紧邻于所述平面表面,
其中所述透析机器可拆卸地固定于透析器,所述透析器与所述一次性塑料歧管流体连通且适于泵送所述血液经过所述透析器,并且
其中所述歧管接收器被配置为接收模塑的塑料基板,并且其中管状节段把所述模塑的塑料基板连接于透析器。
109.根据权利要求108所述的透析机器,其中所述一次性塑料歧管是模塑的且界定与第二流动路径流体地隔离的第一流动路径。
110.根据权利要求109所述的透析机器,其中所述模塑的一次性塑料歧管包括:
a.第一层;
b.第二层;
c.被所述第一层的第一表面和所述第二层的第一表面界定的所述第一流动路径;
d.被所述第一层的第一表面和所述第二层的第一表面界定的所述第二流动路径;以及,
e.阀门,其与所述第一流动路径和所述第二流动路径二者都流体连通,其中所述阀门具有第一状态和第二状态,并且其中,当在所述第一状态中时,所述第一流动路径和所述第二流动路径流体隔离,而当在所述第二状态中时,所述第一流动路径和所述第二流动路径流体连通。
111.根据权利要求109所述的透析机器,其中所述模塑的一次性塑料歧管包括与第二多个接驳口相对对准的第一多个接驳口。
112.根据权利要求111所述的透析机器,其中所述第一多个接驳口和所述第二多个接驳口中的至少一个包括具有外部圆柱形外壳的构件,其中所述构件具有被中心轴线界定的内部空间。
113.根据权利要求112所述的透析机器,其中所述中心轴线相对于所述模塑的一次性塑料歧管所处在其内的平面成角度。
114.根据权利要求113所述的透析机器,其中所述角度在5度至15度的范围内。
115.根据权利要求111所述的透析机器,其中所述第一多个接驳口中的至少一个由具有第一直径和第二直径的横截面区域界定,其中所述第二直径的方向垂直于所述第一直径的方向。
116.根据权利要求115所述的透析机器,其中所述第一多个接驳口中的所述至少一个连接于由具有第三直径和第四直径的横截面区域界定的接驳口通道,其中所述第四直径的方向垂直于所述第三直径的方向,并且其中所述第三直径大于所述第一直径并且其中所述第四直径小于所述第二直径。
117.根据权利要求116所述的透析机器,其中所述接驳口通道包括具有小于所述第四直径的高度的至少一个突出构件。
118.根据权利要求116所述的透析机器,其中所述接驳口通道被柔性膜覆盖
119.根据权利要求118所述的透析机器,其中所述接驳口通道包括被配置为防止柔性膜塌陷入所述接驳口通道中并且完全地闭塞所述接驳口通道的至少一个突出部。
120.根据权利要求116所述的透析机器,其中所述接驳口通道的横截面区域与所述接驳口的所述横截面区域不同,并且其中所述接驳口通道的横截面区域被配置为保持经过所述接驳口并且进入所述接驳口通道中的流体的实质上恒定的速度。
121.根据权利要求109所述的透析机器,其中所述模塑的一次性塑料歧管由第一节段、第二节段和第三节段界定:
a.其中所述第一节段平行于所述第二节段;
b.其中所述第三节段垂直于并且被附接于所述第一节段和所述第二节段中的每个;并且,
c.其中所述第一节段、所述第二节段和所述第三节段界定与第二流动路径流体地隔离的第一流动路径。
122.根据权利要求121所述的透析机器,其中所述第一节段具有第一多个接驳口并且所述第二节段具有第二多个接驳口,并且其中所述第一多个接驳口和所述第二多个接驳口对准。
123.根据权利要求122所述的透析机器,其中所述第一多个接驳口和所述第二多个接驳口中的至少一个包括具有被中心轴线界定的内部空间的构件。
124.根据权利要求123所述的透析机器,其中所述中心轴线相对于所述第一节段和所述第二节段所处的平面成角度。
125.根据权利要求124所述的透析机器,其中所述角度在5度至15度的范围内。
126.根据权利要求124所述的透析机器,其中所述第一多个接驳口中的至少一个由具有第一直径和第二直径的横截面区域界定,其中所述第一直径的方向平行于所述第一节段的方向且垂直于所述第二直径的方向。
127.根据权利要求126所述的透析机器,其中所述第一多个接驳口中的所述至少一个连接于具有第三直径和第四直径的横截面区域的接驳口通道,其中所述第三直径的方向平行于所述第一节段的方向且垂直于所述第四直径的方向,并且其中所述第三直径大于所述第一直径且所述第四直径小于所述第二直径。
128.根据权利要求127所述的透析机器,其中所述接驳口通道包括具有小于所述第四直径的高度的至少一个突出构件。
129.根据权利要求128所述的透析机器,其中所述接驳口通道被柔性膜覆盖。
130.根据权利要求128所述的透析机器,其中所述接驳口通道包括被配置为防止柔性膜塌陷入所述接驳口通道中的至少一个突出部。
131.根据权利要求127所述的透析机器,其中所述接驳口通道的横截面区域与所述接驳口的所述横截面区域不同,并且其中所述接驳口通道的横截面区域被配置为保持经过所述接驳口并且进入所述接驳口通道中的流体的实质上恒定的雷诺数
132.根据权利要求121所述的透析机器,其中所述第三节段被附接于所述第一节段和所述第二节段的中心。
133.根据权利要求121所述的透析机器,其中所述第三节段不被附接于所述第一节段或所述第二节段的中心。
134.根据权利要求121所述的透析机器,其中所述第一节段具有至少一个接驳口,其中所述接驳口的内部的一部分由平坦的基部界定。
135.根据权利要求121所述的透析机器,其中所述第一节段和所述第二节段具有在4至
7英寸的范围内的长度和在0.5至1.5英寸的范围内的宽度。
136.根据权利要求135所述的透析机器,其中所述第三节段具有在2.5至4.5英寸的范围内的长度。
137.根据权利要求121所述的透析机器,其中所述第一节段具有第一长度和第一宽度,所述第二节段具有第二长度和第二宽度,并且所述第三节段具有第三长度和第三宽度,并且其中所述第一长度和所述第二长度大于所述第三宽度并且所述第一宽度和所述第二宽度小于所述第三长度。
138.根据权利要求121所述的透析机器,其中所述第一节段具有第一长度和第一宽度并且所述第二节段具有第二长度和第二宽度,并且其中所述第一长度等于所述第二长度并且所述第一宽度等于所述第二宽度。
139.根据权利要求138所述的透析机器,包括用于把所述透析器可移除地附接于所述透析机器的外表面的接收器。
140.根据权利要求138所述的透析机器,其中所述管状节段包括具有内部容积的一次性电导探针,其中所述内部容积接收流动经过所述管状节段的流体。
141.根据权利要求140所述的透析机器,其中所述一次性电导探针适于可移除地连接于被定位在所述透析机器的外表面上的匹配的探针。
142.一种用于处理血液的透析机器,其可拆卸地固定于透析器且可连接到血液回路和透析液回路,所述透析机器包括:
a.第一单元,其适于与第二单元数据通信,其中所述第一单元包括:
i.门,其具有被定位在所述门的内部面上的压力板
ii.具有面板的外壳,其中所述外壳和所述面板界定凹陷区域,该凹陷区域被配置为接收所述门的所述内部面,其中所述面板包括有角度的表面,所述有角度的表面被配置成把降落在所述有角度的表面上的水分朝着至少一个湿度传感器引导;以及,iii.对准机构,其被固定地附接于所述面板,其中所述对准机构被配置为把歧管可拆卸地接收在所述面板上并且当所述门被接收在所述凹陷区域中时把所述歧管定位为紧贴所述压力板,其中所述歧管与患者、与吸附剂插盒、与透析器且与袋子储液器连通;以及,iv.控制单元,其用于控制所有的部件的功能;
b.其中所述第二单元包括:
i.平面表面,其用于将水接收在容器中;
ii.称重工具,其与所述平面表面集成;
iii.加热器,其与所述容器热连通;以及,
iv.钠传感器,其紧邻于所述平面表面,
其中所述第一单元还包括歧管接收器,所述歧管接收器被固定地附接于所述面板,且所述歧管接收器适于接收歧管,所述血液通过所述歧管从患者流动经过所述透析器,并且其中所述歧管接收器被配置为接收模塑塑料基板,该模塑塑料基板界定被从第二流动路径流体地隔离的第一流动路径。

说明书全文

便携式透析机器

[0001] 交叉引用
[0002] 本申请是于2008年9月25日提交的美国专利申请第12/237,914号的部分继续申请,其优先权依赖于于2007年9月25日提交的美国专利临时申请第60/975,157号。
[0003] 本申请也是于2009年10月30日提交的美国专利申请第12/610,032号的部分继续申请,其优先权依赖于于2008年10月30日提交的美国专利临时申请第61/109,834号。
[0004] 本申请也是美国专利申请第12/324,924号的部分继续申请,其优先权依赖于于2007年11月29日提交的名称为“System and Method of Changing Fluidic Circuit Between Hemodialysis Protocol and Hemofiltration Protocol”的美国临时专利申请第60/990,959号和于2008年1月18日提交的具有同一个名称的美国临时专利申请第61/
021,962号。
[0005] 本申请也是美国专利申请第12/249,090号的部分继续申请,其优先权依赖于于2007年10月11日提交的名称为“Photo-Acoustic Flow Meter”的美国临时专利申请第60/
979,113号。
[0006] 本申请也是美国专利申请第12/575,449号的部分继续申请,其优先权依赖于于2008年10月7日提交的美国专利临时申请第61/103,271号。
[0007] 本申请也是美国专利申请第12/751,930号的部分继续申请,其优先权依赖于于2009年3月31日提交的美国专利临时申请第61/165,389号。
[0008] 本申请也是美国专利申请第12/705,054号的部分继续申请,其优先权依赖于于2009年2月12日提交的美国专利临时申请第61/151,912号。
[0009] 本申请也是美国专利申请第12/875,888号的部分继续申请,其是美国专利申请第12/238,055号的分案,美国专利申请第12/238,055号的优先权依赖于于2007年9月28日提交的美国专利临时申请第60/975,840号。
[0010] 本申请也是美国专利申请第12/210,080号的部分继续申请,其优先权依赖于于2007年9月13日提交的美国专利临时申请第60/971,937号。
[0011] 本申请也是于2009年1月12日提交的美国专利申请第12/351,969号的部分继续申请。
[0012] 本申请也是美国专利申请第12/713,447号的部分继续申请,其优先权依赖于于2009年2月26日提交的美国专利临时申请第61/155,548号。
[0013] 本申请也是美国专利申请第12/575,450号的部分继续申请,其优先权依赖于于2008年10月7日提交的美国专利临时申请第61/103,274号。
[0014] 上文列出的说明书的全部都以其整体通过引用并入本文。发明领域
[0015] 本发明涉及具有改进的结构特征和功能特征的便携式透析系统。特别地,本发明的透析系统涉及具有改进的模性、使用的容易性和安全性特征的便携式透析系统。
[0016] 背景
[0017] 用于进行血液透析、血液透析滤过或血液滤过的血液净化系统涉及血液的经过具有半渗透膜的交换器的体外循环。这样的系统还包括用于循环血液的液压系统和用于循环置换液或透析液的液压系统,所述置换液或透析液包含浓度接近于健康的受试者的血液的浓度的某些血液电解质。然而,常规地可用的血液净化系统的大多数是在尺寸上非常庞大的并且难以操作。此外,这些系统的设计使它们是笨重的并且不有助于一次性部件的使用和安装。
[0018] 使用医院中的固定的设备的标准的透析治疗,包括两个阶段,即(a)透析,在其中有毒的物质和浮渣(通常为小分子)从血液经过半渗透膜至透析液体,以及(b)超滤,在其中血液回路和透析液回路之间的压差,更精确地在后一个回路中的减压,使血液的含量被减少预确定的量。
[0019] 使用标准的设备的透析程序趋于是繁琐的并且高成本的,并且要求患者被束缚于透析中心长持续时间。虽然便携式透析系统已经被开发,但是常规的便携式透析系统遭受某些缺点。首先,它们不是足够地模块化的,由此防止系统的容易的设置、移动、转运和维护。第二,系统不被简化至足以用于患者的可靠的精确的使用。使用一次性部件的系统的接口和方法经受在患者的使用中的误使用和/或错误。为了使便携式透析系统是真正地有效的,其应当被不是健康护理专业人员的个人容易地并且方便地使用,使一次性的输入和数据输入被足够地束缚以防止不精确的使用。
[0020] 透析系统的一个常规的设计使用单次通过系统。在单次通过系统中,透析液经过透析器中的血液一次并且然后被抛弃。单次通过系统具有来源于大量的水的使用的多个缺点。首先,假设反渗透(反渗透)系统的50%排斥率,需要至少1000至1500ml/min的水。第二,需要用于提供已净化的水的100至800ml/分钟的连续流动的水净化系统。第三,需要至少15安培的电路,以送100至800ml的水/分钟,并且第四,需要地板排水或任何其他的能够容纳至少1500ml/min的使用过的透析液和反渗透排斥水的储液器。
[0021] 常规的系统也是较不可靠的,因为使用包括净化系统的流体回路的大量管子的必要性,从而增加泄漏和断裂的险。在由于其大尺寸难以运输之外,常规的透析机器还遭受灵活性的缺乏。例如,基于吸附剂的血液透析程序具有很多特别的硬件要求,这些硬件没有被血液滤过工艺所共用。因此,将是有益的是,具有共用的硬件部件例如泵送系统,其可以被使用来使得透析系统可以被在血液滤过模式和血液透析模式中操作。
[0022] 此外,具有对可以以安全的成本有效的并且可靠的方式有效地提供透析系统的功能性的便携式系统的需要。特别地,具有对可以满足透析程序的流体递送要求同时在其中集成例如流体加热、流体测量和监视、泄漏探测和断开连接探测等各种其他的关键的功能的紧凑的透析流体储液器系统的需要。
[0023] 特别地关于断开连接探测,对返回管线断开连接的有效的探测是困难的,因为大多数的已知的方法是基于监视和探测静脉返回线管路中的压力的改变。返回管线断开连接通常由于针拉动出来状况发生。因为针典型地提供体外血液回路中的最高的流体阻力,所以返回管线中的由针断开连接导致的压力变化不是显著的并且不能够被容易地探测。压力降在其中导液管从患者的身体断开连接导致返回管线断开连接的情况下也是非常低的。因此,使用压力作为指示物或度量探测返回静脉血液回路中的断开连接是不可靠的并且可以导致严重的损伤。此外,不能够依赖使用空气泡的探测作为断开连接的指示的方法,因为在静脉返回管线中的断开连接不使空气被吸入返回管线管路中。因此,具有对改进的用于探测静脉返回管线中的断开连接的设备和方法的需要。此外,还具有对不需要对例如被放置在针插入部位处的防潮垫等任何额外的元件的设备和方法的需要。
[0024] 此外,在现有技术中没有令人满意的可以被以合理的成本容易地实施的用于在透析过程期间保持体积精确度的机制。用于保持置换液和输出流体的体积精确度的现有技术方法的大多数不适合于用于一次性的装置。一个用于保持体积精确度的现有技术途径涉及称重置换液和输出流体二者。然而,这种方法是在实践中难以实施的。另一个现有技术方法包括使用用于透析系统的体积平衡室。然而,这样的室是在构建上复杂的并且高成本的并且也不适合于一次性的装置。体积流量测量是另一个已知的方法,但是这种方法的精确度未被证明。此外,这种方法对于以一次性的形式的透析系统来说是非常难以实施的。另一个现有技术途径涉及使用两个活塞泵实现体积精确度。然而,这种途径是极端地难以以合理的成本以一次性的形式实施的,并且也不是对于以所需要的泵送体积操作来说经济的,所需要的泵送体积在200ml/min的数量级。因此具有对可以被用于精确地保持被输注入以及被从患者除去的流体的体积并且可以被低成本地实施的方法和系统的需要。
[0025] 此外,具有对相对于常规的系统降低总体的水需要的多次通过的基于吸附剂的透析系统的需要。还具有对可以被在单次通过的基于吸附剂的透析系统中以及在本发明的多次通过系统中使用的歧管的需要,其提供具有模塑的血液和透析液流动路径的轻重量的结构以避免管路的复杂的网格。
[0026] 也是期望的是,具有具备被配置为优化系统的模块性的结构设计由此使系统的容易的设置、移动、转运和维护成为可能的便携式透析系统。也是期望的是具有系统接口,患者通过其输入数据或部署一次性部件,其被配置为防止使用中的错误并且被足够地束缚以防止不精确的使用。
[0027] 概述
[0028] 在一个实施方案中,本说明书公开了一种透析机器,包括:控制器单元,其中所述控制器单元包括:,其具有内部面;具有面板的外壳,其中所述外壳和所述面板界定被配置为接收所述门的所述内部面的凹陷区域;以及歧管接收器,其被固定地附接于所述面板;以及基部单元,其中所述基部单元包括:平面表面,其用于接收流体的容器;秤,其与所述平面表面集成;加热器,其与所述平面表面热连通;以及钠传感器,其与所述平面表面电磁连通。
[0029] 可选择地,所述歧管接收器包括仿形的引导器、钉或闩中的至少一种。所述面板被配置为提供通向多个泵的通路。所述面板被配置为提供通向在实质上平行对准中的四个蠕动泵的通路。所述内部面包括四个泵靴(pump shoe)。当所述门被接收入所述凹陷区域中时,所述四个泵靴中的每个与所述四个蠕动泵中的一个对准。所述泵靴中的至少一个被构件和弹簧可运动地附接于所述门。所述构件是螺栓
[0030] 可选择地,所述控制器单元还包括用于测量所述构件的运动的传感器。所述控制器单元还包括用于接收来自所述传感器的对所述构件的所述运动的测量结果并且基于所述测量结果确定流体压力的控制器。
[0031] 可选择地,所述机器被配置为使用约六升的水进行透析治疗,其中所述水来自非无菌的源。所述歧管接收器被配置为接收界定与第二流动路径流体地隔离的第一流动路径的模塑塑料基板。所述第一流动路径和所述第二流动路径中的每个具有在1.5mm至7.22mm的范围内的水力直径。所述模塑塑料基板结合于多个管路并且其中所述多个管路结合于透析器。所述控制器单元还包括连接于所述外壳的外部的构件,其中所述构件配置为物理地接收所述透析器。
[0032] 可选择地,所述基部单元还包括连接于所述基部单元的外部的构件,其中所述构件配置为物理地接收所述透析器。所述多个管路适于可移除地附接于吸附剂插盒。所述基部单元还包括被连接于所述基部单元的外部表面的构件,其中所述构件被配置为物理地接收所述吸附剂插盒。所述控制器单元包括底部表面,其中所述底部表面包括第一物理接口和第一数据接口。
[0033] 可选择地,所述基部单元具有顶部表面并且其中所述顶部表面包括配置为与所述第一物理接口互补的第二物理接口和能够与所述第一数据接口接驳的第二数据接口。所述秤包括多个挠曲部和霍尔传感器,其中所述挠曲部中的每个与所述平面表面物理连通并且其中所述霍尔传感器中的每个被配置为传感物理位移。所述钠传感器包括电导传感器。
[0034] 可选择地,所述电导传感器包括具有多个的线圈、与所述线圈电连通的电容器、和能量源,其中所述线圈和所述电容器界定所述电路,所述能量源与所述电路电连通。所述电导传感器基于保持跨所述电容器的恒定电压所需要的来自所述能量源的能量输入而输出指示所述流体中的钠浓度的值。
[0035] 可选择地,所述基部单元包括至少一个湿度传感器。所述基部单元包括能够在开放状态中或在关闭状态中的门,并且其中当所述门的所述内部面被接收在所述凹陷区域中时所述门被物理地阻挡以不在所述开放状态中。所述基部单元包括能够在开放状态中或在关闭状态中的门,并且其中当所述门的所述内部面在所述凹陷区域中时所述门被物理地锁定为所述关闭状态。所述控制器单元包括多个传感器,当所述门的所述内部面在所述凹陷区域中时,所述多个传感器与模塑塑料基板连通。所述多个传感器中的至少一个包括压力换能器。所述压力换能器与被集成入所述模塑塑料基板中的柔性膜压力连通。
[0036] 可选择地,所述控制器单元包括与所述模塑塑料基板连通的至少一个门部件。所述控制器单元包括被配置为激活所述阀门部件的多个程序指令,并且其中所述阀门部件的激活使流体流动被引导经过所述模塑塑料基板中的两个分离的流体路径中的一个。所述阀门部件的所述激活取决于所述血液净化系统的操作模式。
[0037] 可选择地,所述阀门部件具有开放位置和关闭位置,并且其中所述阀门部件包括:孔口关闭构件,其毗邻于流体能够流动经过其的孔口;位移构件,其具有第一部分和第二部分,其中当阀门部件在所述开放位置中时所述第一部分毗邻于所述孔口关闭构件;第一磁体和第二磁体,其中所述第一磁体和所述第二磁体紧邻于所述位移构件至足以把磁力施加在所述位移构件上;以及致动器,其用于产生磁场以把所述位移构件朝向所述第一磁体运动,使所述第一部分按压所述孔口关闭构件并且使所述孔口关闭构件关闭所述孔口。
[0038] 可选择地,所述第一部分包括外壳、弹性材料、杆和在所述弹性材料和所述杆之间的缝隙。光学传感器定位为传感所述阀门部件中的缝隙是存在还是不存在。所述第一部分包括杆并且所述位移构件的所述第二部分是具有比所述杆大的直径的金属体。所述杆被结合于柱体。所述第一磁体比所述第二磁体大。所述孔口关闭构件包括膜片、弹性材料和可压缩材料中的至少一种。所述孔口关闭构件压紧阀座以关闭所述孔口。
[0039] 可选择地,所述阀门部件包括:孔口关闭构件,其毗邻于流体能够流动经过其的孔口,其中当所述阀门在关闭位置中时所述孔口关闭构件压紧阀座;可运动构件,其是相对于所述孔口关闭构件物理地可运动的,其中所述可运动构件从当所述阀门在开放位置中时的第一位置运动至当所述阀门在所述关闭位置中时的第二位置,并且其中,在所述第二位置中,所述可运动构件按压所述孔口关闭构件以使所述孔口关闭构件压紧所述阀座;第一磁体和第二磁体,其具有分离部,其中所述第一磁体和所述第二磁体产生在所述分离部中的磁场并且其中所述磁场具有方向;以及致动器,其能够产生电磁力,其中所述电磁力与所述磁场的所述方向相反。
[0040] 可选择地,所述透析机器包括被定位为传感缝隙是存在还是不存在的光学传感器。所述第一磁体和所述第二磁体提供用于所述可运动构件的运动的支承表面。具有第一磁极的所述第一磁体比具有第二磁极的所述第二磁体大。所述第一磁极和所述第二磁极彼此排斥,并且其中所述第一磁体和所述第二磁体被配置为使所述第一磁极和所述第二磁极面向彼此。
[0041] 可选择地,所述控制器单元还包括具有第一稳定状态和第二稳定状态的阀门,其中所述阀门包括磁体,其中向所述阀门中输入能量产生使位移构件在所述控制器单元内运动的磁力,其中所述位移构件的所述运动导致在所述第一状态和所述第二状态之间的改变,并且其中所述第一状态或所述第二状态的保持不需要能量输入。
[0042] 可选择地,所述模塑塑料基板具有孔口,其中当所述阀门在所述第一稳定状态中时所述孔口对流体流动关闭,并且其中当所述阀门在所述第二稳定状态中时所述孔口对流体流动开放。当所述位移构件把材料压缩入所述孔口中时,所述孔口对流体流动关闭。所述多个传感器中的至少一个是流量计。
[0043] 可选择地,所述流量计包括至少两个探针,所述探针中的每个具有主体和被定位在所述模塑塑料基板上的接触表面,其中所述至少两个探针中的第一个响应于第一热信号而产生在流动经过所述模塑塑料基板的流体内的热波,并且所述至少两个探针中的第二个传感在所述流体内的所述热波。所述流量计还包括基准信号发生器,其中所述基准信号发生器输出基准信号。所述流量计还包括热源,其中所述热源接收来自所述基准信号发生器的所述基准信号,被配置为与所述至少两个探针中的第一个热啮合,并且产生具有来源于所述基准信号的相位的所述第一热信号。所述流量计还包括温度传感器,其中所述温度传感器被配置为与所述第二探针热啮合,并且产生具有来源于所述热波的相位的第二热信号。所述流量计还包括倍增器,该倍增器用于接收来自所述基准信号发生器的输入信号、用于接收所述第二热信号并且用于输出第三信号。所述流量计还包括用于接收来源于所述第三信号的信号并且用于接收来自所述基准信号发生器的所述基准信号的低通滤波器,其中所述低通滤波器基于所述基准信号调制其截止频率
[0044] 可选择地,所述第二探针与所述第一探针分隔小于两英寸的距离。所述透析机器还包括用于放大所述第三信号并且产生来源于所述第三信号的信号的放大器。所述至少两个探针中的每个的主体具有在0.03英寸至0.15英寸的范围内的直径。所述至少两个探针中的每个的所述接触表面具有在0.025英寸至0.2英寸的范围内的直径。所述第二探针包括热敏电阻器。所述低通滤波器产生经滤波信号并且其中所述基准信号发生器至少部分地基于所述经滤波信号产生所述基准信号。所述流量计动态地调整所述基准信号以保持恒定频率。所述流量计动态地调整所述基准信号以保持恒定相位。
[0045] 可选择地,所述流量计被配置为把光束投射入在所述模塑塑料基板内的流体中;探测在所述流体中的在上游的第一点处和在下游的第二点处的所得到的声信号;确定在所述流体中的在上游探测到的所述声信号和在下游探测到的所述声信号之间的相位差;以及,从所述被确定的相位差计算所述流体的流量。所述相位差通过将代表在上游和下游探测到的所述声信号相位的信号相减来确定。
[0046] 可选择地,所述流量计包括用于把光束投射入流动经过所述模塑塑料基板的透明片段的流体中的光学系统;用于探测在所述透明片段的上游的第一点处的声信号的第一声波探测器;用于探测在所述透明片段的下游的第二点处的所述声信号的第二声波探测器;以及,用于确定在上游探测到的所述声信号和在下游探测到的所述声信号之间的相位差并且用于从所确定的相位差计算所述模塑塑料基板中的流体的流量的处理器。
[0047] 用于确定所述相位差的处理器包括减法单元。所述光学系统是脉冲激光系统。所述光束被垂直于所述流体的流动的方向投射。所述流量计具有在20ml/min至600ml/min之间的操作性传感范围。所述流量计具有在20ml/min至600ml/min之间的操作性传感范围。所述控制器单元还包括用于探测被内嵌在模塑塑料基板中的识别数据的读取器。所述控制器单元还包括适于当所述门在所述凹陷区域中时与模塑塑料基板热连通的温度传感器。
[0048] 可选择地,所述控制器单元包括用于确定向患者的血液管线连接部是否已经被断开连接的断开连接监视器。所述断开连接监视器包括:压力换能器,其与所述歧管中的血液流动路径压力连通,其中所述压力换能器产生指示所述血液流动路径中的脉冲信号的信号;心脏基准信号发生器,其中所述心脏基准信号发生器探测所述患者的脉搏并且产生指示所述患者的脉搏的信号;压力换能器数据接收器,其中所述压力换能器数据接收器接收指示所述血液流动路径中的所述脉冲信号的所述信号;心脏基准信号接收器,其中所述心脏基准信号接收器接收指示所述患者的脉搏的所述信号;以及处理器,其中所述处理器把指示所述血液流动路径中的所述脉冲信号的所述信号和指示所述患者的脉搏的所述信号交叉相关以产生指示向所述患者的所述血液管线连接部的断开连接的数据。
[0049] 可选择地,所述断开连接监视器还包括控制器,其中所述控制器基于指示向所述患者的所述血液管线连接部的断开连接的所述数据触发警报器。所述断开连接监视器还包括控制器,其中所述控制器基于指示向患者的所述血液管线连接部的断开连接的所述数据把透析泵停机。
[0050] 可选择地,所述压力换能器非侵入地产生指示所述血液流动路径中的脉冲信号的信号。所述处理器通过计算在指定的时间框架内的指示所述血液回路中的所述脉冲信号的所述信号和指示所述患者的脉搏的所述信号的相应的点对的乘积的和来把指示所述血液回路中的所述脉冲信号的所述信号和指示所述患者的脉搏的所述信号交叉相关。
[0051] 可选择地,所述断开连接监视器还包括用于指导患者在启动透析泵之前首先附接所述心脏信号基准发生器的程序指令。所述断开连接监视器还包括用于指导所述系统在启动透析泵之前捕获指示所述血液流动路径中的所述脉冲信号的所述信号的程序指令。
[0052] 可选择地,所述控制器单元还包括:显示器;秤;条形码读取器;以及存储器,其存储多个程序指令,其中,在执行时,所述指令产生:a)用于在所述显示器上呈现的第一图形用户界面,其中所述第一图形用户界面显示需要在透析治疗中使用的每个添加剂;b)用于在所述显示器上呈现的第二图形用户界面,其中所述第二图形用户界面提示所述系统的用户提交多个添加剂来使用所述条形码扫描器进行扫描;以及c)用于在所述显示器上呈现的第三图形用户界面,其中所述第三图形用户界面提示所述系统的用户提交多个添加剂来使用所述秤进行测量。
[0053] 可选择地,所述秤是数字秤。所述条形码扫描器提供成功的读取的视觉指示。所述存储器还包括把多个添加剂名称与多个条形码相关联的表格。所述存储器还包括把多个添加剂与多个重量值相关联的表格。所述第一图形用户界面显示添加剂包装的视觉代表。所述第三图形用户界面仅在添加剂的条形码不被识别时提示所述系统的所述用户提交所述添加剂来使用所述秤进行测量。所述第三图形用户界面仅在用于添加剂的条形码是不可用的时提示所述系统的所述用户提交所述添加剂来使用所述秤进行测量。
[0054] 可选择地,所述控制器单元还包括:显示器;秤,其包括多个磁体;电子读取器;以及存储器,其存储多个程序指令,其中,在执行时,所述指令产生:a)用于在所述显示器上呈现的第一图形用户界面,其中所述第一图形用户界面提示所述系统的用户提交多个添加剂来使用所述条形码扫描器进行扫描;以及b)用于在所述显示器上呈现的第二图形用户界面,其中所述第二图形用户界面提示所述系统的用户提交多个添加剂来使用所述秤进行测量。
[0055] 可选择地,在执行时,所述指令还产生用于在所述显示器上呈现的第三图形用户界面,其中所述第三图形用户界面显示需要在所述透析治疗中使用的每个添加剂。所述秤是数字秤并且其中所述数字秤产生代表被放置在所述数字秤上的物体的重量的数据。所述数字秤还包括至少三个挠曲部。所述挠曲部中的每个包括磁体和相应的霍尔传感器。
[0056] 可选择地,所述透析系统还包括模塑塑料基板,其中所述模塑塑料基板包括被界定在其中的第一流动路径和第二流动路径,并且其中所述第一流动路径和所述第二流动路径被阀门流体地分隔。所述控制器单元还包括存储多个程序指令的存储器,其中所述程序指令被配置为根据所选择的操作模式定义所述阀门的第一状态和所述阀门的第二状态。所述所选择的操作模式是预充模式(priming mode)或治疗模式。所述阀门的所述第一状态把所述第一流动路径置于与所述第二流动路径流体连通。所述阀门的所述第二状态把所述第一流动路径置于与所述第二流动路径流体隔离。所述透析系统还包括模塑塑料基板,其中所述基板包括用于把流体输注入患者中的第一流体回路以及用于从所述患者移除流体的第二流体回路。
[0057] 可选择地,所述控制器单元还包括被配置为在所述第一回路和所述第二回路上交替地操作的第一泵;被配置为在所述第二回路和所述第一回路上交替地操作的第二泵;以及用于使所述第一泵在所述第一回路和所述第二回路上可选择地操作并且用于使所述第二泵在所述第一回路和所述第二回路上可选择地操作的控制器,其中所述第一泵和所述第二泵中的每个在给定的时间在仅一个回路上操作。
[0058] 可选择地,相比于所述第二泵,所述第一泵每单位时间泵送较高量的流体。所述第一泵和所述第二泵在所述第一回路和所述第二回路上交替地操作持续一个时间段,其中所述时间段来源于被所述第一泵和所述第二泵每单位时间泵送的流体的量的可允许的差异。所述第一泵和所述第二泵是蠕动泵。所述透析系统还包括用于均衡化所述第一回路和所述第二回路之间的压力差的限流器。所述限流器是主动式的并且基于来源于所述第一回路中的第一压力传感器和来源于所述第二回路中的第二压力传感器的测量到的压力差均衡化所述压力差。
[0059] 可选择地,所述面板还包括通向通道的被两个成斜坡表面界定的漏斗并且其中所述通道包括至少一个湿度传感器。当所述门被接收入所述凹陷区域中时,所述漏斗被定位在所述歧管下方并且被配置为把从所述歧管泄漏的流体朝向所述湿度传感器引导。
[0060] 可选择地,所述控制器单元的所述底部表面适于被可移除地附接于所述基部单元的顶部表面。所述控制器单元与所述基部单元电连通。所述控制器单元与所述基部单元物理地分离。所述控制器单元与所述基部单元数据通信。所述控制器单元与所述基部单元流体连通。
[0061] 在另一个实施方案中,本发明涉及一种透析机器,包括:第一单元,其中所述第一单元包括:门,其具有第一面;外壳,其被附接于所述门,其中外壳具有第二面;至少一个歧管接收器,其被固定地附接于所述第二面;以及显示器,其用于显示图形用户界面;以及第二单元,其中所述第二单元包括:平面表面,其用于支持流体的容器;称重工具,其与所述平面表面集成;加热器,其与所述平面表面热连通;以及钠传感器,其紧邻于所述平面表面。
[0062] 可选择地,所述歧管接收器被配置为接收模塑塑料基板,该模塑塑料基板界定与第二流动路径流体地隔离的第一流动路径。所述模塑塑料基板包括:第一层;第二层;由所述第一层的第一表面和所述第二层的第一表面界定的第一流动路径;由所述第一层的第一表面和所述第二层的第一表面界定的第二流动路径;以及阀门,其与所述第一流动路径和所述第二流动路径二者都流体连通,其中所述阀门具有第一状态和第二状态,并且其中,当在所述第一状态中时,所述第一流动路径和所述第二流动路径流体隔离,并且当在所述第二状态中时,所述第一流动路径和所述第二流动路径流体连通。
[0063] 可选择地,所述模塑塑料基板包括与第二多个接驳口相对对准的第一多个接驳口。所述第一多个接驳口和所述第二多个接驳口中的至少一个包括具有外部圆柱形外壳的构件,其中所述构件具有被中心轴线界定的内部空间。所述中心轴线相对于所述塑料基板所处的平面成度。所述角度在5度至15度的范围内。所述第一多个接驳口中的至少一个由具有第一直径和垂直于所述第一直径的第二直径的横截面区域界定。所述第一多个接驳口中的所述至少一个被连接于由具有第三直径和垂直于所述第三直径的第四直径的横截面区域界定的接驳口通道,其中所述第三直径大于所述第一直径并且其中所述第四直径小于所述第二直径。所述接驳口通道包括至少一个具有小于所述第四直径的高度的突出构件。所述接驳口通道被柔性膜覆盖。所述接驳口通道包括至少一个被配置为防止柔性膜塌陷入所述接驳口通道中并且完全地闭塞所述接驳口通道的突出部。所述接驳口通道的所述横截面区域是与所述接驳口的所述横截面区域不同的,并且所述接驳口通道的所述横截面区域被配置为保持经过所述接驳口并且进入所述接驳口通道中的流体的实质上恒定的速度。
[0064] 可选择地,所述模塑塑料由第一节段、第二节段和第三节段界定;其中所述第一节段平行于所述第二节段;其中所述第三节段垂直于并且被附接于所述第一节段和所述第二节段中的每个;并且其中所述第一节段、所述第二节段和所述第三节段界定与第二流动路径流体地隔离的第一流动路径。
[0065] 可选择地,所述第一节段具有第一多个接驳口并且所述第二节段具有第二多个接驳口,并且其中所述第一多个接驳口和所述第二多个接驳口对准。所述第一多个接驳口和所述第二多个接驳口中的至少一个包括具有被中心轴线界定的内部空间的构件。所述中心轴线相对于所述第一节段和所述第二节段所处的平面成角度。所述角度在5度至15度的范围内。所述第一多个接驳口中的至少一个由具有平行于所述第一节段的长度的第一直径和垂直于所述第一直径的第二直径的横截面区域界定。所述第一多个接驳口中的所述至少一个连接于具有具备平行于所述第一节段的所述长度的第三直径和垂直于所述第三直径的第四直径的横截面区域的接驳口通道,其中所述第三直径大于所述第一直径并且其中所述第四直径小于所述第二直径。所述接驳口通道包括具有小于所述第四直径的高度的至少一个突出构件。所述接驳口通道被柔性膜覆盖。所述接驳口通道包括被配置为防止柔性膜塌陷入所述接驳口通道中的至少一个突出部。所述接驳口通道的所述横截面区域是与所述接驳口的所述横截面区域不同的,并且所述接驳口通道的所述横截面区域被配置为保持经过所述接驳口并且进入所述接驳口通道中的流体的实质上恒定的雷诺数
[0066] 可选择地,所述第三节段被附接于所述第一节段和所述第二节段的中心。所述第三节段不被附接于所述第一节段或所述第二节段的中心。所述第一节段具有至少一个接驳口,其中所述接驳口的内部的一部分由平坦的基部界定。所述第一节段和所述第二节段具有在4至7英寸的范围内的长度和在0.5至1.5英寸的范围内的宽度。所述第三节段具有在2.5至4.5英寸的范围内的长度。所述第一节段具有第一长度和第一宽度,所述第二节段具有第二长度和第二宽度,并且所述第三节段具有第三长度和第三宽度,并且其中所述第一长度和所述第二长度大于所述第三宽度并且所述第一宽度和所述第二宽度小于所述第三长度。所述第一节段具有第一长度和第一宽度并且所述第二节段具有第二长度和第二宽度,并且其中所述第一长度等于所述第二长度并且所述第一宽度等于所述第二宽度。
[0067] 可选择地,所述歧管接收器被配置为接收模塑塑料基板并且其中管状节段把所述模塑塑料基板连接于透析器。所述透析机器包括用于把所述透析器可移除地附接于所述透析机器的外表面的接收器。所述管状节段包括具有内部容积的一次性电导探针,其中所述内部容积接收流动经过所述管状节段的流体。所述一次性电导探针适于可移除地连接于被定位在所述透析机器的外表面上的匹配的探针。
[0068] 在另一个实施方案中,本发明涉及一种透析机器,包括:第一单元,其与第二单元数据通信,其中所述第一单元包括:门,其具有被定位在所述门的内部面上的压力板;具有面板的外壳,其中所述外壳和所述面板界定被配置为接收所述门的所述内部面的凹陷区域;对准机构,其被固定地附接于所述面板,其中所述对准机构被配置为把歧管可拆卸地接收在所述面板上并且当所述门被接收在所述凹陷区域中时把所述歧管定位为紧贴所述压力板;并且其中所述第二单元包括:平面表面,其用于接收流体的容器;称重工具,其与所述平面表面集成;加热器,其与所述平面表面热连通;以及钠传感器,其紧邻于所述平面表面。
[0069] 在另一个实施方案中,本发明涉及多次通过的基于吸附剂的血液透析滤过系统,有利地在多次通过配置中组合血液滤过和血液透析。
[0070] 在另一个实施方案中,本发明涉及用于血液净化系统的歧管支持部,所述血液净化系统为例如但不限于血液透析滤过和超滤。在一个实施方案中,本发明的歧管包括血液和透析液流动路径被模塑入其中的复合塑料歧管。这种基于塑料的歧管可以与本发明的多次通过的基于吸附剂的血液透析滤过系统共同使用。
[0071] 在另一个实施方案中,血液净化系统部件,例如传感器、泵和一次性用品被集成入被模塑的歧管中。一次性物品,例如但不限于透析器和吸附剂插盒,是可拆卸地可加载至歧管上的或与歧管流体连通。一次性物品,例如但不限于透析器和吸附剂插盒,被固定地附接于被固定地附接于所述歧管并且与所述歧管流体连通的管路。
[0072] 在又一个实施方案中,超滤系统通过把血液和超滤液流动路径模塑在歧管中而被集成入歧管中。在一个实施方案中,本文公开的歧管包括可以通过组合两个塑料基板半部分而制造的单一的复合塑料结构,也被称为基板或外壳。
[0073] 在另一个实施方案中,本发明涉及支持基于电子的封锁系统的透析系统。据此,在一个实施方案中,读取器安装在系统外壳和/或歧管例如但不限于血液透析滤过和超滤歧管上,并且读取被加载至透析外壳和/或歧管上的一次性物品上的识别指示物。读取器通过网络例如公共网络或私人网络与数据库通信以检查一次性物品是否是合法的、精确的或具有足够的完整性以是安全的并且能够使用。这通过基于物品的识别指示物从远程数据库查询一次性物品上的信息而进行。如果一次性物品具有“无效的”或“受损的”状态,(基于从数据库接收的信息)系统“封锁”被加载的一次性用品的使用,并且因此不允许用户继续使用系统用于治疗。
[0074] 这些和其他的实施方案在详细描述部分中描述,详细描述部分应当参照附图阅读。
[0075] 附图简述
[0076] 本发明的这些和其他的特征和优点将被意识到,因为它们通过参照下文的详细描述当被与附图结合地考虑时成为被更好地理解,在附图中:
[0077] 图1是本发明的透析系统的一个实施方案的前视图;
[0078] 图2是透析系统的一个实施方案的视图,示出了系统的模块性;
[0079] 图3是透析系统的一个实施方案的前部的视图,其中门是开放的;
[0080] 图4是便携式透析系统的一个实施方案的俯视图,其中示例性的维度被表示;
[0081] 图5是便携式透析系统的一个实施方案的前视图,其中示例性的维度被表示;
[0082] 图6是透析系统的另一个实施方案的前视图;
[0083] 图7是透析系统的另一个实施方案的视图,表明系统的模块性;
[0084] 图8是透析系统的另一个实施方案的前视图;
[0085] 图9是透析系统的储液器单元的一个实施方案的俯视图;
[0086] 图10是被定位在透析系统的储液器单元的顶部表面上的示例性的部件的示意图;
[0087] 图11是被定位在透析系统的储液器单元的顶部表面上的示例性的附接部件的示意图;
[0088] 图12是被定位在透析系统的储液器单元的顶部表面上的示例性的部件的示意图;
[0089] 图13是被定位在透析系统的控制器单元的底部表面上的示例性的部件的示意图;
[0090] 图14是被定位在透析系统的储液器单元的顶部表面上的示例性的接驳部件的示意图;
[0091] 图15是透析系统的控制器单元的内部框架的一个实施方案的示意图;
[0092] 图16A是本发明的透析系统的一个实施方案的前视/侧视图;
[0093] 图16B是本发明的透析系统的另一个实施方案的前视/侧视图;
[0094] 图16C是本发明的透析系统的另一个实施方案的侧视图;
[0095] 图17A是本发明的透析系统的储液器单元的一个实施方案的内结构的示意图;
[0096] 图17B是本发明的透析系统的储液器单元的一个实施方案的内结构的示意图;
[0097] 图17C是本发明的透析系统的储液器单元的一个实施方案的内结构的示意图;
[0098] 图17D是示例性的电导传感器的电路图;
[0099] 图17E是示例性的在电导传感器中使用的线圈的图解;
[0100] 图18是在本发明的透析系统的储液器单元的一个实施方案中使用的挠曲部的示意图;
[0101] 图19是在本发明的透析系统的控制器单元的一个实施方案中实施的门锁定机构的示意图;
[0102] 图20是在本发明的透析系统的控制器单元的一个实施方案中实施的门锁定机构的示意图;
[0103] 图21是透析系统的一个实施方案的前部的视图,其中门是开放的并且歧管被安装;
[0104] 图22是被定位在透析系统的储液器单元上的湿度传感器的一个实施方案的示意图;
[0105] 图23是被定位在透析系统的储液器单元上的湿度传感器的一个实施方案的近视示意图;
[0106] 图24是透析系统的储液器单元的一个实施方案的前视图,其中门是开放的;
[0107] 图25是用于把吸附剂插盒和/或浓缩液罐附接于透析系统的连接器机构的一个实施方案的示意图;
[0108] 图26是第一示例性的流体回路图解;
[0109] 图27是第二示例性的流体回路图解;
[0110] 图28是第三示例性的流体回路图解;
[0111] 图29是第四示例性的流体回路图解;
[0112] 图30是示例性的歧管的一个实施方案的示意图;
[0113] 图31是示例性的歧管的另一个实施方案的示意图;
[0114] 图32是示例性的歧管的另一个实施方案的示意图,其中显示了与其相关联的维度;
[0115] 图33是示例性的歧管的另一个实施方案的示意图;
[0116] 图34是描绘了第一示例性的经过接驳口的流体流动的图解;
[0117] 图35是描绘了第二示例性的经过接驳口的流体流动的图解;
[0118] 图36是描绘了有角度的歧管接驳口结构的一个实施方案的图解;
[0119] 图37是具有实质上平面的基部的被模塑的流体路径的一个实施方案的图解;
[0120] 图38是第五示例性的流体回路图解;
[0121] 图39是与其他的透析部件相关联地使用的示例性的歧管的另一个实施方案的示意图;
[0122] 图40是示例性的歧管的另一个实施方案的示意图;
[0123] 图41是透析系统的控制器单元的一个实施方案的前视图,其中门是开放的并且歧管被安装;
[0124] 图42是透析系统的控制器单元的一个实施方案的前视图,其中门是开放的并且歧管使用附接引导部被安装;
[0125] 图43是描绘了示例性的光声流量计的电路图;
[0126] 图44描绘了被示例性的光声流量计产生的多个传播信号;
[0127] 图45是描绘了示例性的热流量计的回路图;
[0128] 图46描绘了被示例性的热流量计产生的多个传播信号;
[0129] 图47描绘了定义示例性的热流量计的操作的多个变量;
[0130] 图48描绘了被示例性的热流量计产生的多个传播信号;
[0131] 图49描绘了定义示例性的热流量计的操作的多个变量;
[0132] 图50A描绘了被示例性的热流量计产生的多个传播信号;
[0133] 图50B描绘了被示例性的热流量计产生的多个传播信号;
[0134] 图51描绘了定义示例性的热流量计的操作的多个变量;
[0135] 图52描绘了定义示例性的热流量计的操作的多个变量;
[0136] 图53是描绘了示例性的热流量计的示意图;
[0137] 图54是描绘了示例性的热流量计的示意图;
[0138] 图55描绘了被示例性的热流量计产生的多个传播信号;
[0139] 图56是透析系统的控制器单元的一个实施方案的前视图,其中门是开放的并且歧管被安装;
[0140] 图57是示例性的温度探针的图解;
[0141] 图58是示例性的断开连接监视系统的图解;
[0142] 图59是示例性的断开连接监视器的图解;
[0143] 图60是定义示例性的断开连接探测过程的流程图
[0144] 图61是示出了用于测量CVP的导液管的示例性的放置的图解;
[0145] 图62是示出了示例性的使用CVP测量的透析系统的图解;
[0146] 图63是示出了示例性的导液管的放置和CVP的测量的图解;
[0147] 图64是第六示例性的流体回路图解;
[0148] 图65是第七示例性的流体回路图解;
[0149] 图66是第八示例性的流体回路图解;
[0150] 图67是代表使用泵互换来实现体积精确度的一个实施方案的图表;
[0151] 图68是第九示例性的流体回路图解;
[0152] 图69A是第十示例性的流体回路图解;
[0153] 图69B是第十一示例性的流体回路图解;
[0154] 图69C是第十二示例性的流体回路图解;
[0155] 图70是第十三示例性的流体回路图解;
[0156] 图71A是示例性的磁力阀系统的第一示意图;
[0157] 图71B是示例性的磁力阀系统的第二示意图;
[0158] 图72是示例性的磁力阀系统的部件的示意图;
[0159] 图73是另一个示例性的磁力阀系统的示意图;
[0160] 图74是描绘了示例性的磁力阀系统的操作的图解;
[0161] 图75是针对示例性的磁力阀系统把膜片位移与力相关的图;
[0162] 图76是描绘了示例性的磁力阀系统的操作的图解;
[0163] 图77是描绘了示例性的磁力阀系统的操作的流程图;
[0164] 图78是用于透析系统的一个实施方案的示例性的硬件架构的图解;
[0165] 图79是代表用于在透析系统中的使用的多个添加剂的一个实施方案的图;
[0166] 图80是描绘了用于使用户能够精确地加入添加剂的过程的一个实施方案的流程图;
[0167] 图81是示出了已包装的一次性试剂盒的示意图;
[0168] 图82是示出了包括被附接于多个管子的歧管和透析器的一次性试剂盒的一个实施方案的示意图;
[0169] 图83是示出了被集成入一次性用品中的电子封锁系统的一个实施方案的示意图;
[0170] 图84是第十四示例性的流体回路图解;
[0171] 图85是第十五示例性的流体回路图解,示出了预充操作模式;以及
[0172] 图86是示例性的歧管的另一个实施方案的示意图。
[0173] 详细描述
[0174] 虽然本发明可以以许多不同的形式被实施,但是为了促进对本发明的原理的理解的目的,现在将参考在附图中图示的实施方案并且专用的语言将被用于描述它们。然而将理解,不由此意图限制本发明的范围。在所描述的实施方案中的任何改变和进一步的修改以及如本文描述的本发明的原理的任何进一步的应用被设想,如本发明所涉及的领域的技术人员将正常地想到的。
[0175] “持续时间”和其变体是指规定的治疗的时间进程,从初始至结束,无论治疗是因为病症被解决还是因为治疗由于任何原因被中止而被结束。在治疗的持续时间内,可以规定多个在其期间一个或多个规定的刺激被施用于受试者的治疗时期。
[0176] “时期”是指在其内刺激的一个“剂量”作为规定的治疗计划的一部分被施用于受试者的时间。
[0177] 术语“和/或”意指所列出的要素中的一个或全部或所列出的要素中的任何两个或更多个的组合。
[0178] 术语“包括”和其变体不具有限制性的意思,如果这些术语在说明书和权利要求中出现的话。
[0179] 除非另有指定,否则“一(a)”、“一(an)”、“所述(the)”、“一个或多个”和“至少一个”被可互换地使用并且意指一个或多于一个。
[0180] 对于本文公开的任何包括分立的步骤的方法,步骤可以被以任何可行的顺序进行。并且,如合适的,两个或更多个步骤的任何组合可以被同时地进行。
[0181] 也在本文中,数字范围的使用端点的引用包括所有的被包括在该范围内的数字(例如1至5包括1、1.5、2、2.75、3、3.80、4、5等等)。除非另有指示,否则在说明书和权利要求中使用的所有的表示组成部分的量、分子量等等的数字将被理解为在所有情况下被术语“约”修饰。据此,除非另有指示为相反的,否则在说明书和权利要求中提出的数字参数是近似值,其可以变化,取决于被寻求被本发明获得的期望的性质。至少,并且不作为限制对权利要求的范围的等效物的教导的企图,每个数字参数应当至少根据所报告的有效数字的数字并且通过应用普通的四舍五入技术被构建。
[0182] 虽然提出本发明的宽泛的范围的数字范围和参数是近似值,但是在具体的实施例中提出的数字值被尽可能精确地报告。然而,所有的数字值固有地含有必需地来源于在它们的分别的测试测量中发现的标准偏差的范围。
[0183] 装置结构
[0184] 本说明书公开了是模块化的和便携式的具有改进的安全性和功能性的透析系统的实施方案。参照图1和2,在一个实施方案中,透析系统100、200包括被可拆卸地固定于基部102、202的顶部单元101、201。基部102、202包括用于流体储存、测量和监视的储液器122、222。顶部单元101、201也被称为主要单元或控制器单元,包括图形用户界面114、214、泵送单元和具有功率锁和机械备用机构的门110、210,如下文进一步讨论的。
[0185] 扣子105被用于把透析器103可拆卸地固定于顶部单元101、201的第一侧部。吸附剂插盒锁定基部104、204被用于把吸附剂插盒107可拆卸地固定于顶部单元101、201的相反的第二侧部。应当意识到,扣子105、血液滤器103、315、吸附剂插盒锁定基部104、318和吸附剂插盒107、317可以被定位在顶部单元101的同一个侧部,如图3中所示的。在任一个情况下,底部单元具有相对于顶部单元的足够较大的面积,使得托架被形成在顶部单元的任一个侧部以保持吸附剂插盒,以保持输注液罐,以捕获任何溢出,和/或将任何泄漏引导至泄漏探测器。
[0186] 在透析器103和门110之间的是以注射器泵190的形式的抗凝血剂泵。可选择地,顶部单元101可以包括具有尖的基部以把瓶子上下颠倒地接收在瓶子保持器外壳内的瓶子保持器。输注管线被连接于血液泵的入口、血液泵的出口或透析器的出口(血液侧)。输注管线还可以“穿过”经过空气泡探测器以传感是否/何时抗凝血剂被排空或阻挡。
[0187] 在一个实施方案中,参照图4,顶部单元401包括用户界面和控制器,具有与基部单元402相同的深度但是不同的长度和高度,基部单元402包括与秤集成的储液器。在本示例性的实施方案中,顶部单元401和底部单元402二者具有在10至30英寸的范围内、更优选地约19英寸的深度D。现在同时地参照图4和5,在本示例性的实施方案中,顶部单元401、501具有在6至20英寸的范围内、更优选地约14英寸的长度Lt,并且底部单元402、502具有在14至40英寸的范围内、更优选地27英寸的长度Lb。在本示例性的实施方案中,顶部单元401、501具有在7至21英寸的范围内、更优选地约14.5英寸的高度Ht,并且底部单元402、502具有在3至11英寸的范围内、更优选地7英寸的高度Hb。
[0188] 如图5中所示的,基部单元402、502可以进一步被两个肩部504界定,每个从被定位在中心的顶部单元501的侧部沿着基部单元502的长度向外地延伸。顶部单元优选地被定位在基部单元502的中心中,如在图4中被长度Lb度量的。据此,肩部504可以被定义为具有在4英寸至10英寸的范围内、更优选地约7英寸的长度。从基部单元502的在其处肩部504物理地接触顶部单元501的表面向上地延伸的是唇部503,其界定顶部单元501被在其上对准和放置的表面。唇部503是围绕顶部单元501的基部连续的,具有与顶部单元501相同的长度和深度,具有被定义为Ht2和Ht之间的差的高度。在一个实施方案中,唇部高度在0.1至3.5英寸的范围内,更优选地0.6英寸。系统的总体的高度Ht3在10至35英寸的范围内,更优选地22英寸。
[0189] 界定顶部单元501和基部单元502的外部外壳结构可以以矩形的平行六面体、长方体或盒子为特征,每个具有四个侧部、一个顶部和一个底部。在一个示例性的实施方案中,对于顶部单元501和基部单元502二者来说,四个侧部中的两个(每个具有外部和内部表面)具有相同的高度、长度和深度,并且顶部和底部结构(每个具有外部和内部表面)具有相同的高度、长度和深度。
[0190] 应当意识到,在图1、2、3、4、和5中示出的系统配置是示例性的并且不是限制性的。例如,在图3中示出的,顶部单元301可以被定位在基部单元302的一个侧部(产生不对称的基部),如与被定位在基部单元302的顶部上相对于基部单元302的总的长度在中心(产生对称的基部)相反的。虽然顶部单元301的向基部单元302的一个侧部的放置具有把所有的管路连接部和消耗品放置在系统的同一个侧部的优点,但是吸附剂插盒317和透析器313被不必要地拥挤在一起,使机器更难以使用。
[0191] 参照图6,在另一个实施方案中,顶部单元601包括用户界面和控制器,具有与基部单元602相同的深度和长度但是不同的高度,基部单元602包括与秤604集成的储液器。在本示例性的实施方案中,顶部单元601和底部单元602二者都具有在16.0至20.0英寸的范围内、更优选地小于24英寸并且约17.0英寸的深度。在本示例性的实施方案中,顶部单元601和底部单元602具有在10.0至15.0英寸的范围内、更优选地小于18英寸或约13.0英寸的长度Lt。在本示例性的实施方案中,顶部单元601具有在10.0至14.0英寸的范围内、更优选地小于17英寸并且约12.0英寸的高度Ht,并且底部单元602具有在9.0至11.0英寸的范围内、更优选地小于13英寸并且约9.5英寸的高度Hb。两个单元二者合在一起的总高度由Ht3表示。基部单元602和顶部单元601因此具有相同的表面面积但是不同的高度。应当意识到,基部单元602和顶部单元601也可以具有相同的表面面积和相同的高度。
[0192] 从基部单元602下延伸出来的是平坦化的横向翼610,平坦化的横向翼610包括用于附接吸附剂插盒和输注液容器615的连接器。横向翼610的表面可以包括可以电子地传感水分的存在和/或可以被成角度以把任何水分导向至被策略地放置的传感器的膜。
[0193] 参照图7,在另一个实施方案中,顶部单元701可以与扩展坞705物理地接驳,扩展坞705与位于远程的基部单元702电子地并且流体地接驳715。虽然位于基部单元702中的储液器将仍然必须与控制器701流体连通,但是扩展坞705的使用将允许在改变正在被使用的储液器系统的大小中的更大的灵活性,由此允许一个控制器设计在多重的使用方案下被实施或用于更宽的范围的患者,例如小的患者相对于大的患者。
[0194] 参照图8,在又另一个实施方案中,便携式透析系统800结合有上子系统(泵送和控制单元)801,如上文描述的,与下组件802。系统800的下部分802包括独立的悬挂的透析液的袋子805。即,透析液袋子805不作为下组件802的一部分被结合,如在上文公开的实施方案中的。此外,下组件802被设计为使得其结合有被集成入悬挂独立的透析液的袋子805的结构810中的称重机构。这种排列在透析系统被配置为在血液滤过模式中操作时是合适的,因为在血液滤过模式中,在基于吸附剂的透析中使用的各种传感器,例如、pH和钠传感器,不被需要;因此整个的储液器组件模块可以被移除,并且系统800可以简单地使用透析液的袋子805被操作。下子系统802的模块化的并且紧凑的设计使其移除是容易的,并且通过取走不必需的部件简化在血液滤过模式中操作的系统。这是把在血液透析模式期间使用的透析液回路的主要部件集成入下基部单元802中的另一个优点。
[0195] 本发明的透析系统实现代表相对于现有技术的很大的改进的功能的和操作的参数。参照在图1至6中示出的实施方案,顶部单元在约20-40镑的范围内并且更特别地30镑,并且底部单元在约15-30镑的范围内并且更特别地22镑,由此比现有技术系统轻。顶部单元在约1至4立方英尺的范围内并且更特别地2.3立方英尺,并且底部单元在约1至4立方英尺的范围内并且更特别地2.8立方英尺,由此具有比现有技术系统小的体积。
[0196] 此外,透析系统使用比现有技术系统少的水。常规的系统使用约120升每次治疗,但是在一个实施方案中,本发明的系统使用3至8升之间,并且更特别地5至6升之间。此外,系统不需要家庭排水、供应连接部或分离的出口以处理过度的水。
[0197] 此外,系统设计是更紧凑的,具有低功率要求(在峰值仅300W并且在操作期间50至100W)、没有为了预充或行进所需要的分离的流体袋,并具有集成的泵。装置使用20-600Qb(ml/min)的血液流量范围、50-500Qd(ml/min)的透析液流量操作。体积精确度也是以小于+/-30ml/小时地精确的。
[0198] 如图2中所示的,透析系统是模块化的。在一个实施方案中,顶部单元201可以被从底部单元202物理地分离。顶部单元201容纳系统的主要的电子部件,包括图形用户界面、控制器和泵,其被集成地形成入自足的外壳中。更大的更庞大的底部单元202容纳储液器222。系统电子部件的从储液器的分离允许便携式透析系统被分离为多重的单元以用于安装、维护和行进,其中每个子单元被容易地操纵、包装和携带。设计特别地控制部件的大小以用于通过UPS或其他的门至门运输者运货。其还提供产品生长中的灵活性。例如,如果作出对控制器单元或,分离地,对储液器的改进(例如减少流体体积或体积秤测量的改变),那么现有的顾客仅需要升级两个部件零件中的一个,而不是二者。相似地,如果两个部件中的仅一个故障(例如泵烧坏),那么顾客仅需要提交一个以用于修理或购买两个部件中的一个。
[0199] 为了使上文描述的模块性成为可能,本发明的实施方案采用闩锁机构,闩锁机构在第一配置中把底部单元202牢固地附接于顶部单元201并且可以被操纵以把底部单元202从顶部单元201可移除地拆卸。即使两个系统可以不使用闩锁被简单地堆叠在彼此的顶部,但是闩锁的存在和使用减少意外的断开连接的可能性。此外,当被闩锁在一起时装置更容易运动。闩锁机构优选地不使用工具并且使用在顶部单元的基部和底部单元的顶部表面上存在的阳/阴匹配连接部被简单地实现。进一步优选地,闩锁机构被设计为确保顶部和底部单元之间的牢固的对准,由此使得使用当单元被合适地对准时自动地接触并且完成动力电路的电子部件(例如在顶部单元的底部和底部单元的顶部上的被暴露的电子连接器,如下文进一步描述的)成为可能。这允许单一的电源和简单的连接/断开连接的使用。
[0200] 参照图9,底部单元902具有四个侧部905a、905b、905c、905d、一个基部、一个顶部表面906和经过第一侧部905d可到达的一个储液器922。底部单元902还包括在其顶部表面906上的多个闩锁匹配结构920a、920b。在一个实施方案中,本发明包括两个闩锁匹配结构
920a、920b,两个闩锁匹配结构920a、920b相对于底部单元902的长度被定位在中心以确保均匀的重量分布。第一闩锁匹配结构920a优选地被定位在如从侧部905d测量的、等于底部单元902的宽度的三分之一的距离处。第二闩锁匹配结构920b优选地被定位在如从侧部
905b测量的、等于底部单元902的宽度的三分之一的距离处。
[0201] 闩锁机构,如图10中所示的,包括金属框架1001,金属框架1001被使用例如螺栓、螺钉或其他的固件1002牢固地紧固于底部单元1005的顶部表面。框架1001支撑突出部或长形构件1003,突出部或长形构件1003可以柔性地插入相应的闩锁中以及被从相应的闩锁移除。
[0202] 为了把底部单元牢固地并且可移除地附接于顶部单元,顶部单元包括互补的机械滑动闩锁,该机械滑动闩锁被牢固地附接于顶部单元的基部。在一个实施方案中,顶部单元的基部包括第一闩锁,第一闩锁优选地被相对于顶部单元的长度定位在顶部单元的中心中,并且处在如离第一侧部测量的等于顶部单元的宽度的三分之一的距离处。基部也包括第二闩锁,第二闩锁优选地在相对于顶部单元的长度被定位顶部单元的中心中,并且处于如从与第一侧部相反的并且平行的第二侧部测量的等于顶部单元的宽度的三分之一的距离处。
[0203] 如图11中所示的,顶部单元包括闩锁1100,闩锁1100具有滑动的金属平坦的基部1120。轨道1130与顶部单元的底部表面可滑动地啮合,顶部单元的底部表面具有匹配构件以把轨道1130保持就位。闩锁1100具有两个闩锁凸台1115,闩锁凸台1115适应于滑入和滑出被物理地附接于基部单元的顶部表面的匹配结构。
[0204] 闩锁1100被附接于顶部单元,与底部单元906的顶部表面上的闩锁匹配结构920a、920b匹配。在操作中,当滑动闩锁1100在第一位置中时,顶部单元实际上将不在基部单元的顶部配合或与基部单元对准,因为滑动闩锁1100将不会恰当地与闩锁匹配结构920a、920b物理地匹配。为了准备顶部单元以用于向基部单元906的顶部表面上的牢固的放置,滑动闩锁被在被位在顶部单元的底部上的构件保持结构内移动并且被置于第二位置。在第二位置中,闩锁1111的把手将突出,由此把凸台1115远离闩锁匹配结构920a、920b地运动并且允许顶部单元正确地坐落在基部单元上。
[0205] 参照图12和13,借助在顶部单元1301的底部上的四个小的橡胶足部或立足垫1340,具有滑动闩锁1380的顶部单元1301与底部单元1202对准,四个小的橡胶足部或立足垫1340被配置为或适应于紧密地并且牢固地装配入位于紧邻于底部单元1202的顶部上的每个角落处的四个空腔或凹坑1230中。此外,顶部单元1301可以使用在基部单元1202的顶部表面上的对准钉1260或突出部而与底部单元1202精确地对准,对准钉1260或突出部被配置为或适应于牢固地并且紧密地装配入在顶部单元1301的底部表面上的相应的空腔1390中。底部单元也具有闩锁匹配结构1263,如上文描述的。
[0206] 把橡胶立足部1340对准入空腔1230中以及把钉1260对准入空腔1390中确保顶部单元1301上的闩锁1380可以被容易地对准和闩锁至闩锁匹配结构1263,而没有过度的试错。一旦被对准,闩锁1380通过把闩锁1380滑动入闩锁匹配结构1263中而与闩锁匹配结构1263匹配,由此产生在两个单元之间的紧配合。返回参照图9和11,为了解闩锁,闩锁把手
1111被拉动或以其他方式操纵,由此把凸台1115从基部单元凹槽920a、920b释放,并且允许顶部上单元被抬升离开底部下单元。
[0207] 此外,为了使上文描述的模块性成为可能,本发明的实施方案还采用电和数据通信连接机构,其在第一配置中安全地建立在底部单元和顶部单元之间的电连通和/或数据通信连接并且在第二配置中终结在底部单元和顶部单元之间的电连通和/或数据通信连接。
[0208] 参照图14,顶部和底部单元之间的电连接当顶部单元被放置在底部单元上时被产生。这些连接通过非接触红外通信端口1403和推针功率端口1404作出,它们被集成地形成入板1402中并且使用紧固件1401牢固地附接于底部单元1405的顶部表面。应当意识到,顶部单元的底部表面将然后包括与推针的合适对准的电接触垫。应当进一步意识到,推针和接触垫的位置可以被反转,由此把推针放置在顶部单元的底部表面上并且把接触垫放置在底部单元的顶部表面上。
[0209] 在一个实施方案中,通过把六个被弹簧加压的引脚置于与集成入顶部单元的底部表面中的接触垫的电接触而形成高电流功率连接。三个引脚用于+24伏特直流电流并且三个引脚用于接地。在一个实施方案中,引脚或探针具有以下的特性:a)0.175英寸的最小中心,b)15安培(连续的)的电流额定,c)在0.06英寸至0.067英寸的行程的在6.2oz至9.0oz的范围内的弹簧力,d)小于10mΩ的典型的电阻,e)在0.09至0.1英寸的范围内的最大行程,f)在0.06至0.067英寸的范围内的工作行程,g)由镍/制造并且金的圆筒,h)不锈弹簧(可选择地镀金),i)由全硬铍制造并且镀金的柱塞,以及j)可选择地,不锈钢偏置球。引脚的弹簧力通过吸收弯曲或其他的扭弯而辅助防止断裂。应当意识到,术语电引脚代表任何能够传输电功率的突出部并且电接触垫代表任何能够接收电引脚的表面。
[0210] 非接触红外通信端口1403采用两个LED发射器和两个LED接收器,它们与在顶部单元的底部表面上的两个LED发射器和两个LED接收器对准并且与它们通信。传输端口和接收端口之间的距离小于0.3英寸。在底部单元的顶部表面和顶部单元的底部表面二者上,四个LED单元被分割为两个对,一个控制对(包括一个发射器和一个接收器)和一个安全性对(包括一个发射器和一个接收器)。当顶部和底部单元被合适地对准时,这些端口被置于在数据通信中。
[0211] 在一个实施方案中,LED发射器是由GaAlAs双异质技术制造的870nm高速红外发射二极管。LED发射器是具有以下的特性的高速二极管:a)超高的辐射功率,b)低正向电压,c)适合于高脉冲电流操作,d)约17度的半强度的角,e)约870nm的峰值波长,f)约5V的反向电压,g)约100mA的正向电流,h)约200mA的峰值正向电流,i)约0.8A的浪涌正向电流,j)约190mW的功率耗散,k)约100摄氏度的结温,以及l)-40至85摄氏度的操作温度范围。应当意识到,非接触红外通信端口可以被以任何功能的方式在底部单元的顶部表面或顶部单元的底部表面上分布。应当进一步意识到,任何其他的本领域的技术人员已知的通信端口或结构可以在本文中被实施。
[0212] 在一个实施方案中,LED接收器是高速光电二极管,具有极端快的响应时间、约0.25mm2的辐射敏感区域和约15度的半灵敏度的角度。接收器具有以下的特性:a)约60V的反向电压,b)约75mW的功率耗散,c)约100摄氏度的结温,d)-40至85摄氏度的操作温度范围,e)约1V的正向电压,f)60V的最小击穿电压,以及g)约1.8pF的二极管电容。
[0213] 返回参照图1、2和3,在控制器单元201的顶部的是把手211、311和以可使用的托架112、212的形式的工作空间。把手位于系统的上部泵送部分上,被直接地连接于系统的内结构或框架,并且不简单地是外部塑料模塑、外壳或围绕顶部单元101、201的表皮的延伸部。
向系统的内部框架的直接连接允许使用把手把系统以安全的并且可以可靠地操纵负载的形式再定位系统,特别是当仪器在使用六升的水的操作(加入约40lbs)中时。
[0214] 参照图15,在一个实施方案中,顶部单元1501包括内部金属壳体、框架或外壳1510,电子部件、控制器和其他的顶部单元部件被容纳在其内或安装至其。内部壳体1510包括延伸至顶部单元1501的背部侧的水平突出臂1507。实质上水平的顶部托架1505包括至少一个被一体地形成入顶部托架结构1505中的把手1520、基部支架1530和竖直臂1506,由此产生单一的、连续的金属或模塑塑料件。基部支架1530被牢固地附接于在顶部单元1501的前部的内部壳体1510,并且竖直臂1506被使用螺钉在点1508处牢固地附接于突出臂1507。
通过把托架1505和把手1520结构牢固地附接于顶部单元1501的内部壳体1510,避免了通常将通过把大重量的负载放置在把手和顶部单元的外部或外侧外壳之间的连接点处发生的潜在的破坏或断裂。
[0215] 金属门1562也通过铰链1565被附接于内部框架或壳体1510,其形成门110的内部框架,在图1中示出。门1562被牢固地附接于是内部框架1510的一部分的板1561。结构1563和1572是保持内部达和滑轮组件和/或代表内部马达和滑轮组件的突出部的结构。突出部1583从框架1510的背部延伸,被用于连接各种电子部件,包括功率输入模块和USB连接部1582。控制器单元的顶部或托架1505是平坦的并且具有侧壁,使其是对于供应的存储或暂时的工作表面来说理想的。
[0216] 控制器单元1601的另一个结构特征在图16A中示出。优选地,单元1601具有内置的被暴露的读取器,例如条形码读取器或RFID标签读取器1605,其可以被用于读取一次性部件上的代码或标签。操作性地,用户将优选地使用读取器扫描一次性部件上的代码/标签的全部。通过初始GUI透析设置步骤可以进行对用户的提示,该初始GUI透析设置指示用户把每个一次性部件扫描经过读取器。
[0217] 在进行该操作时,读取器获得关于一次性用品的识别信息,把该识别信息传输至被存储在存储器中的内部表,把识别信息与内部表的内容比较,并且验证(或不验证)正确的一次性部件(特别是在透析液中使用的添加剂)是存在的。内部表的内容可以通过一次性用品的身份和量的手动输入或通过向详细描述一次性用品的身份和量的处方的远距访问而产生。该验证步骤具有至少两个益处。第一个是确保用户在他的或她的占有中具有所需要的组成部分的全部,第二个是确保正确的组成部分正在被使用(不是伪造的或不合适的一次性用品)。该部件可以被用于使多种用户界面成为可能,如下文进一步描述的。
[0218] 在另一个实施方案中,被安装在顶部单元的侧部的读取器1605是专业化的多功能红外照相机,其在一个模式中提供读取条形码的能力并且在另一个模式中探测输注液容器中的水平改变。照相机发射红外信号,该红外信号在液平面上反射。被反射的信号由照相机的红外接收器接收,并且被使用处理器处理,以确定液面的弯液面的地点。在一个实施方案中,照相机可以确定并且监视液面的改变至0.02mm的分辨率。在一个实施方案中,照相机是1.3像素单晶片照相机模块,具有以下的特性中的一个或多个:a)1280W×1024H有源像素,b)3.0μm像素尺寸,c)1/3英寸光学格式,d)RGB Bayer颜色滤波阵列,e)集成10位ADC,f)集成数字图像处理功能,包括缺陷纠正、镜头阴影校正、图像缩放、去马赛克、锐化、伽玛校正和色彩空间转换,g)内嵌的照相机控制器,用于自动曝光控制、自动白平衡控制和背电平补偿,h)可编程速率和输出降额功能,i)高至15fps SXGA逐行扫描,j)低功率30fps VGA逐行扫描,k)8位并行视频接口,l)双线串行控制接口,m)片上PLL,n)2.4至3.0V的模拟电源,o)分离的I/O电源,p)具有电源开关的集成功率管理,以及q)24针屏蔽插座选项。在一个实施方案中,照相机是由ST Microelectronics制造的1.3像素照相机,型号为VL6624/VS6624。
[0219] 透析系统的顶部或底部单元也优选地具有电子接口,例如以太网连接部或USB端口,以使向网络的直接连接成为可能,由此帮助远程处方验证、依从性警戒和其他的远程服务操作。USB端口允许向配件产品例如血压监护器或血细胞比容/饱和化监视器的直接连接。接口被电子地隔离,由此确保患者安全性,而无论接口连接装置的品质。
[0220] 顶部单元的前部具有向系统100提供简单的用户界面的图形用户界面114。在家庭设置中,重要的是装置应当是容易使用的。最大的使用颜色和触摸屏理想地适合于该应用。触摸屏允许多重的用户输入配置,提供多重的语言能力并且可以在晚上被容易地看到(特别是具有亮度控制和夜视颜色)。
[0221] GUI还包括用于门的在操作期间的自动的关闭、打开和锁定的特征。在一个实施方案中,GUI把门打开至第一闩锁位置并且然后用户必须按下物理门打开按钮以完全地打开门。在另一个实施方案中,装置具有允许用户打开门的手动超越控制部(例如通过按下打开门按钮两次或使用额外的力)以手动地打开门。参照图16A,优选地,紧邻于GUI1630的是具有灯光视觉指示的单一的机械按钮1610,单一的机械按钮1610如果被激活的话提供具有一般的功能(例如停止系统)的中央停止按钮,而与操作的状态无关。
[0222] 为了提供进一步的固定性和安全性,系统1600控制基部单元1615中的储液器门1625的打开,而不需要独立于顶部单元1601的门控制系统的门控制器、按钮或机械系统。在一个实施方案中,通过被物理地附接于、连接于顶部单元1601的前部门1635或以其他方式被顶部单元1601的前部门1635控制的突出部1620,储液器门1625被物理地阻挡以不打开。
突出部1620可以从相对于顶部单元1601的任何方向在储液器门1625上延伸,起作用以提供对打开储液器门1625的物理障碍。因此,在本实施方案中,人们不能够在不首先解锁并且打开控制器门1635的情况下打开储液器门1625,控制器门1635被用户界面控制。
[0223] 在透析系统的一个实施方案的另一个视图中,在图16B中示出,透析系统1600包括具有氨传感器1670、GUI1630和用于打开和关闭控制器门1635的单一的机械按钮1610的控制器单元1601,以及具有储液器门1625和内置的被暴露的读取器例如条形码读取器或RFID标签读取器1605的基部单元1615,储液器门1625被突出部1620物理地阻挡以不打开,突出部1620被物理地附接于、连接于顶部单元1601的前部门1635或以其他方式被顶部单元1601的前部门1635控制。控制器单元1601和基部单元1615被定位在单一的连续的实质上平面的基部或分割的平面基部1645的顶部,该平面基部1645具有两个附接机构1675、1695。被用于把吸附剂插盒1680保持就位的第一附接机构1675被定位为毗邻于被用于把浓缩液罐1695保持就位的第二附接机构1695,在透析系统1600的同一个侧部。平面基部1645优选地包括滴水盘或其他的水分捕捉或传感表面。
[0224] 参照图16C,控制器单元1601和基部单元1615被从侧面示出。吸附剂插盒1680被附接机构1675保持就位并且浓缩液罐1690被附接机构1695保持就位。吸附剂插盒1680和浓缩液罐1690二者被放置在平面表面例如滴水盘1668的顶部以确保所有的水分都被捕获。扫描器1605被定位在基部单元1615的侧部并且与浓缩液罐1690直接光学通信。流体从系统1600向和从吸附剂插盒1680以及从浓缩液罐1690流动,经过三个管状的或流体节段1641、1642、1643。管子节段1642把浓缩液罐1690放置为经过浓缩液歧管接驳口与歧管流体连通。管子节段1641把吸附剂插盒1680放置为经过吸附剂流出接驳口与歧管流体连通,由此把需要再生的透析液发送至吸附剂插盒1680。管子节段1643把吸附剂插盒1680放置为经过吸附剂流入接驳口与歧管流体连通,由此接收来自吸附剂插盒1680的已再生的透析液。管子节段
1643使用机构1671被邻近氨传感器1670可移除地附接,机构1671例如为钩子、夹子、夹持器或其他的允许管子节段1643被容易地移除并且被放置为在与吸附剂插盒1680相同的侧部与被定位在控制器单元1601的侧部的氨传感器1670邻面接触。在一个实施方案中,氨传感器1670包括光学传感器,该光学传感器使用比色测量途径确定氨的存在以及这样的氨是否超出预定义的阈值
[0225] 参照图1,储液器系统102具有门118,门118当被拉动并且不被任何突出部阻挡时把储液器122滑动出来或以其他方式使储液器122是用户可到达的,以允许用户插入或改变用于透析的流体。储液器体积被秤系统监视。基于秤的流体天平604在图6中并且更特别地在图17A和17B中描绘,与储液器一体地形成并且提供精确的流体移除数据并且使精确的平衡计算成为可能,由此防止从流体不平衡导致的低血压和其他的疾病。把秤与储液器集成并且包封它们完全地提供更强健的系统。
[0226] 参照图17A,示出了储液器系统的内结构1700。金属内部框架1720包括两个侧部1721、一个背部1722、一个面开放的前部1723和一个基部1724。内结构或框架被示出,没有外部外壳,如作为图1中的元件102描绘的。秤1718被集成入储液器内结构1700中。秤1718的底部表面1715包括金属表面或盘子,金属表面或盘子与秤1718的其余部分共同地通过四个挠曲部1705而从外部储液器外壳悬挂(在图1中作为102示出)。优选地,加热垫位于秤的底部表面1715下方,例如能够导致温度增加并且把被增加的温度作为热传导至表面1715的正方形的、矩形的、圆形的或其他的被成形的表面。能够施加场并且使用该场的改变测量电导的电导线圈1770被集成入基部表面1715中。据此,当储液器袋子(未示出)被放置在底部表面1715上时,其可以被加热垫加热并且,因为其与线圈1770接触,其电导可以被监视。
[0227] 侧部1721的内表面包括多个轨道、长形构件或突出部1719,其起作用以固定、保持、包封或附接于储液器袋子可以被附接于其一次性储液器袋子安装表面,例如塑料片材1710。特别地,被定位在表面1715上的储液器袋子可以具有被附接于被集成入片材1710中的导管1771的出口。被安装在秤表面1718的四个角落中的每个中的是挠曲部1705,其中每一个包括霍尔传感器和磁体。
[0228] 据此,在一个实施方案中,储液器子系统组件的部件包括但不限于透析液储液器,包括一次性储液器管线或袋子,透析液加热器、透析液温度监视器、储液器称重系统,包括磁性挠曲部和倾斜传感器、透析液氨浓度和pH传感器,包括一次性传感器元件和可反复使用的光学读取器,透析液电导传感器(非接触型)、和潮湿或泄漏传感器。
[0229] 本领域的技术人员将意识到,除了上文列出的传感器,透析液回路中的其他的部件,例如泵和传感器例如压力换能器,也可以被包括在储液器模块内。此外,各种传感器例如氨和pH传感器可以作为分别的传感器或作为包括所有的传感器的单一的“传感器子模块”被集成入储液器模块中。
[0230] 这些部件中的每个的采用以使储液器组件模块特别地适合于在再循环的基于吸附剂的透析系统的操作中的使用的形式被设计。此外,模块也被设计为成,使得在透析的其他的形式例如单程血液滤过期间,模块的任何仅专用于基于吸附剂的透析的不必需的元件可以被移除。
[0231] 图17B图示了储液器组件模块的一个实施方案,其中外皮或覆盖物是透明的,由此揭示内部排列。开口1741被设置在储液器子系统模块1700的前部中。储液器子组件的主要的功能是容纳透析液。开口1741允许一次性储液器袋子被插入,一次性储液器袋子可以是具有被容纳在其中的透析液的常规的IV袋子。储液器模块1700还设置有在前部开口内部的用于容纳储液器袋子的盘子1742。在一个实施方案中,平坦膜加热器和温度传感器二者都位于储液器盘子1742的底部下方并且帮助把透析液流体的温度保持在体温或接近于其。在一个实施方案中,透析液流体的温度可以被用户设置。
[0232] 在一个实施方案中,储液器盘子1742被悬挂在秤机构1743中,如下文进一步描述的。秤机构1743可以被用于在透析的开始之前精确地测量储液器袋子中的透析液流体的重量,以及用于在透析期间保持回路中的透析液流体的体积平衡。
[0233] 在储液器组件模块1700的顶部,提供用于向透析系统的泵送单元的附接的特征1744,如上文讨论的。这些特征帮助储液器组件模块容易耦合到泵送单元以及从泵送单元容易移除储液器组件模块,该泵送单元在一个实施方案中可以被安装在储液器组件的顶部。如下文进一步讨论的,储液器组件模块的顶部还在该模块的任一侧配备有泄水沟1745。
分别的潮湿传感器(未示出)被设置在沟中的每个中。如本领域中已知的,潮湿传感器是一种光学装置,其借助于空气和流体之间的折射率的差而导致的由光的向与空气不同的流体中的增加的耦合来传感水分。在泄水沟1745中的潮湿传感器当其被安装在储液器组件的顶部上时保持追踪水分并且指示泵系统中的任何泄漏。通过在任一侧的泄水沟中具有分离的潮湿传感器,泄漏可以被定位并且关于任何可能被需要的校正的特定的引导可以被给予至用户。
[0234] 图17C图示了储液器组件模块的另一个视图,其中模块1700的外覆盖物被完全地移除并且某些内部部件被表现为透明的。参照图17C,储液器盘子1752设置有内部沟1753。沟1753还配备有潮湿传感器,潮湿传感器位于透析液盘子1752的正下方,挠曲部1755被附接于潮湿传感器,使得其可以传感储液器组件1700内部的泄漏。
[0235] 储液器组件模块1700还包括传感器舱1754或子模块,其包括在同一个电路板上一组传感器。传感器板包括专门地关于基于吸附剂的透析的传感器,例如氨和pH传感器。在一个实施方案中,氨传感器包括一次性颜色敏感带条,其由响应于在透析液中存在的氨的水平展示颜色的可见的改变的材料制造。例如,指示物带条的颜色可以从蓝色向黄色逐渐地改变,取决于在该带条周围存在的氨水平。这样的视觉颜色指示使保持追踪氨水平以及识别氨临界点是否发生是更容易的。在一个实施方案中,为了更精确的评估氨指示物带条中的颜色改变,使用光学传感器。光学传感器也位于传感器模块1754中,并且可以用于把一般的可见的颜色读数转换为氨水平的精确的指示。
[0236] 关于透析液钠浓度,应当意识到,为了合适地进行肾脏透析以及导致穿过透析器的正确的扩散,钠的浓度必须被保持在某个范围内。一个常规的确定流体的钠浓度的方法是测量流体的电导率和流体的温度并且然后计算近似的钠浓度。一个改进的用于以非接触的方式测量透析液中的钠浓度的方法和系统使用内置于储液器盘子1752的底部的非接触式电导传感器。
[0237] 在一个实施方案中,非接触电导传感器是利用线圈的电感装置。钠浓度的变化改变透析液溶液的电导,这进而改变线圈的阻抗。通过把电导传感器放置在储液器盘子1752的底部中以及因此放置在储液器中在透析液袋子下方,大的表面区域被呈现给线圈。这确保测量的高精确度,此外不需要传感器与透析液流体物理接触。
[0238] 参照图17D和17E,示出了非接触的电导传感器的部件,包括当被合适地激励时定义磁场的产生的、具有n匝的线圈1788以及当(被电阻元件Rs1786和Rp1785和电感器元件L1787定义的)线圈被电地耦合于电容器1781时产生的所得到的谐振LCR振荡回路1780的图解。
[0239] 线圈1788是与电容器1781共同地作为能量储存装置使用的多层的圆形的扁平线圈。线圈1788具有损耗元件,损耗元件包括线圈线Rs1786和磁场损耗元件Rp1785的电阻、袋子中的流体的电导。
[0240] 线圈1788直径是向流体中的磁场渗透的函数。另一个针对流体渗透的因素是操作频率。低操作频率将更深地渗透入流体中,但是具有较低的损耗的成本。较大的线圈将具有被尺寸公差导致的小的效果。定义方程在以下提供:
[0241]
[0242] 其中a=线圈的以厘米计的平均半径,N=匝的数量,b=以厘米计的绕组厚度,h=以厘米计的绕组高度。在一个实施方案中,线圈的半径在2至6英寸的范围内并且,更特别地,2、3、4、5和6英寸以及在其之间的所有的增量。
[0243] 参照回路1780,物理线圈1788被L1787和Rs1786代表,其中L是线圈的电感并且Rs是线圈线的电阻。被L1787产生的磁场的能量损耗被Rp1785代表。能量损耗Rp来源于紧邻于线圈1788的电导流体并且与紧邻于线圈1788的电导流体直接地相关。因此,如果线圈1788被放置在储液器盘子中,被集成入储液器盘子的表面中,或以其他方式被放置在某距离处,使得被线圈1788产生的磁场可以被袋子内的透析液的存在或,更具体地,袋子内的透析液的电导影响,那么袋子中的钠浓度以及因此电导的改变可以通过追踪被线圈1788产生的磁场的相应的改变被监视和测量。
[0244] 回路1780使精确测量被线圈1788产生的磁场的改变成为可能。当回路1780被以其谐振频率驱动时,能量在电感元件L1787和电容器1781之间往复地传递。在谐振时,能量损耗与RS和RP的I2R损耗成比例。为了保持跨过C1781的恒定的交流电压,能量必须被供应至回路1780并且被供应的能量必须等于RP1785和RS1786的能量损耗。当L1787和C1781元件被放置在具有自动增益控制的皮尔斯振荡器中时,控制电压将与正在被传感的流体的电导率成比例,因为振荡器将需要更多的能量以伴以更高的电阻场损耗来振荡,这主要是由于因钠浓度水平的改变而导致的透析液电导的改变。
[0245] 如上文参照图17B提到的,储液器盘子被悬挂在秤机构中以用于精确的测量重量,并且用于保持在透析期间的回路中的透析液流体的体积平衡。用于秤机构的悬挂点1755在图17C中图示。在一个实施方案中,提供四个悬挂点1755,其中的每个包括一个称重机构,如上文描述的。在四个悬挂点1755之外,储液器组件子系统1700还包括水平传感器。水平传感器允许精确的重量计算,即使储液器袋子不是水平的。图17C还图示了在储液器组件模块1700的顶部上的引脚1756,引脚1756可以被用于提供向控制和/或泵送单元的电连接,控制和/或泵送单元如上文提到的可以被安装在储液器组件的顶部上。
[0246] 参照图18,挠曲部1805包括多个附接点1861,挠曲部在该处被固定于外部储液器外壳。挠曲部还包括磁性体1862,例如两个磁体,以及霍尔传感器1864。挠曲部1805的基部1867被附接于秤1718的顶部表面1715。当秤1718由于重量负载的施加位移时(例如当储液器袋子被透析液填充时袋子压动在表面1715上,由此把秤1718向下拉动),在一个端部被连接于秤并且在另一个端部被连接于外部外壳的挠曲部1805将屈曲,并且被安装在挠曲部
1805的一个端部上的磁体1862将借助于由磁性体1862产生的磁场的改变追踪该改变。霍尔传感器1864探测磁场强度的改变。本领域的技术人员将理解如何把这种被传感到的磁场改变转换为所施加的重量负载的度量。
[0247] 前部门宽地(约100度)打开,以加载一次性歧管。具有宽的开口帮助歧管加载和容易清洁机器的面和门的内侧。使门关闭并且覆盖装置的运动的部分使其是更安全的并且更强健的,这是对于家庭使用来说特别地重要的。此外,使前部门容纳显示器节约空间并且再加强重要的点:装置将不被操作,除非一次性用品就位并且门被关闭。门提供在歧管和其泵节段上的必要的闭合力。门还将触摸屏、音频警报器和手动停止按钮容纳在门的面中。
[0248] 在一个实施方案中,门被电动步进马达保持在完全关闭位置中。该马达通过用户界面操作,并且,特别地,当门已准备好被完全地关闭或打开时,通过用户按下按钮来操作。为了确保合适的压力被门和泵靴置于歧管结构上,优选的是具有这样的电子机构,通过该电子机构,门被关闭,并且足够的关闭门力由该电子机构产生。在一个实施方案中,90至
110lbs的关闭门力被产生。
[0249] 参照图19和20,示出了电动的门关闭机构1900的一个实施方案。步进马达1906与导螺杆1916机械地啮合,使得当被控制器致动时,步进马达1906使导螺杆1916转动,并且因此使杆1918、2018把起动力施加于钩子。钩子位于构件2040下方,起作用以闩锁至U形闩锁部2030上并且,当被拉动、转动或以其他方式朝向步进马达1906向内运动时,把U形闩锁部2030拉动为进一步关闭,由此施加必需的关闭门力。钩子与杆1918、2018物理地啮合,并且可以被操纵以把U形闩锁部2030拉动为紧紧地关闭或被操纵以与U形闩锁部2030松弛地啮合。电动关闭系统通过安装支架1905被以合适的取向安装和保持。
[0250] 参照图21,操作性地,用户把门关闭为足以把门上的U形闩锁部2110与在控制器单元的内部容积内侧的钩子2150啮合。用户然后向便携式透析机器指示关闭门的期望,优选地通过机械按钮或图形用户界面图标,机械按钮或图形用户界面图标当被按下时把信号发送至控制器,控制器进而致动步进马达。步进马达把起动力施加于钩子2150,钩子2150然后把已啮合的U形闩锁部2110拉动为紧地关闭。在一个实施方案中,控制器监视正在被马达施加的扭力并且,当其达到预定义的极限时,停用步进马达。在另一个实施方案中,被定位为紧邻于导螺杆的霍装置传感导螺杆的延伸并且确定导螺杆的运动的程度。如果导螺杆已经在产生更大的关闭门力的方向足够地运动,那么霍尔传感器把信号传输至控制器以停用马达。可选择地,传感器持续地传输指示导螺杆的延伸的信号,信号然后被控制器解释以确定是否足够的起动力已经被施加以及是否步进马达应当被停用。在这些实施方案中的任何中,如果马达超过扭矩,预设置的距离被超出,或门在预确定的时间内不到达其完全关闭位置,那么控制器可以致动马达以停止和反转至完全打开的状态。控制器还可以使视觉和/或听觉警报器发出警报。
[0251] 当用户希望打开门时,机械按钮或图形用户界面图标被激活,把信号发送至控制器,控制器进而把步进马达在反向致动。钩子然后成为与U形状闩锁部松弛地啮合。机械释放按钮然后被按下以把被松弛地啮合的钩子从U形状闩锁部脱啮合。
[0252] 在提供必需的关闭力之外,该动力门关闭机构具有多个重要的特征。第一,其被设计为避免障碍物被捕捉在门中并且经受有力的门关闭力。参照图21,凹陷入门2105中的用于接受歧管2130的区域被四个侧部边缘防护部2107围绕,如果堵塞物,例如人的手指或被不合适地安装的一次性用品,在门2105和顶部单元的基部板之间的话,该四个侧部边缘防护部2107防止门闩锁与顶部单元上的闩锁接收器啮合。门2105包括内表面2106,金属壳体2125被附接于内表面2106。在一个实施方案中,门2105的内表面2106的顶部表面被牢固地附接于壳体2125的外表面。壳体2125是实质上矩形的并且界定具有四个侧部2107和基部
2108的空腔,产生内部容积。空腔朝向透析系统2100的歧管结构2130打开,包围并且围绕歧管结构2130和防护部2140,防护部2140优选地是在歧管结构2130的顶部和侧部围绕歧管结构2130的塑料护罩。泵靴2115和至少一个U形状闩锁部2110被附接于基部2108的表面,至少一个U形状闩锁部2110朝向背部板突出。钩子2150被集成在防护部内并且从防护部延伸出来,钩子2150被配置为牢固地啮合和脱啮合U形状闩锁部2110。如果门被正确地关闭并且没有物体被捕捉在门和防护部之间,那么U形状闩锁部将被动力门锁定钩子机构机械地钩住。
如果障碍物在门路径中,那么金属壳体2125将不能够延伸入顶部单元的内部容积中(以及包围防护部)并且因此,U形状闩锁部将不能够啮合钩子,由此防止当障碍物就位时门的机械钩住和意外的有力关闭。
[0253] 第二,机械按钮释放仅当有力关闭门力已经通过步进马达的反向运动被消散时才能被致动,由此防止门的意外的释放和快速的打开。参照图19和20,当门被关闭和锁定时,按钮轴1907、2007上的轴环2050转动90度,把推针远离动力门锁定钩子地运动。轴环2050借助于杆1921而转动,杆1921在点2045连接于轴环并且与导螺杆1916机械啮合。轴环2050是被弹簧加压的并且被小的针螺线管锁定。如果当在锁定位置中时用户按下按钮,那么按钮将运动入机器中,但是,因为被轴环的转动导致的位移,按钮将不脱啮合钩子,由此防止门打开。
[0254] 如果动力丧失或非意图地终结,那么针螺线管将释放,从而允许轴环返回转动90度并且把推针置于合适的对准中。然后当用户按下按钮时,推针将接触动力门钩子并且释放门闩锁。这种机构提供机械门释放的方便性和安全性后备,而没有对机械门释放可能意外地被激活以使门以巨大的力转动打开的担忧。应当意识到,术语“钩子”或“闩锁”应当被宽泛地定义为任何能够与另一个突出部或构件物理地或机械地啮合的突出部或构件。应当进一步意识到,术语“U形状闩锁部”不是限制性的并且任何闩锁机构或钩子机构,如上文定义的,可以被使用。
[0255] 如上文讨论的,由底部单元形成并且围绕顶部单元的托架空间在装置内部和外部的多重的地点中采用具有流体传感器的排水路径,以使分区的泄漏探测成为可能。特别地,通过把具有光学泄漏传感器的排水路径构建入装置的外部主体中,系统把潜在地从外部部件(例如吸附剂小罐)泄漏的流体捕获和引导至光学泄漏传感器。例如,在一个实施方案中,歧管2130被安装在其上并且壳体2125紧贴其停靠和形成空腔的顶部单元的表面2132包括形成有角度的边缘的有角度的表面2190,有角度的表面2190起作用以捕获从歧管2130和歧管2130周围的区域排放或泄漏的水分并且把水分通过重力导向至被定位在中心的湿度传感器2180。优选地,有角度的表面2190被倾斜至足以使降落在有角度的边缘上的水分向下朝向被定位为接收水分的一个或多个湿度传感器2180运动。在一个实施方案中,一个湿度传感器2180被相对于歧管2130的位置在中心地定位并且是距每个有角度的表面2190的端部等距的。
[0256] 在一个实施方案中,至少三个不同的光学泄漏探测器被集成在底部单元的外部外壳内。参照图22,底部单元2202的顶部表面是略微地成角度的,使中心2280相对于侧部2281和2282被提升。在一个实施方案中,表面从中央区域2280至侧部2281和2282向下倾斜1至10度,优选地3度的角度。通道2287环绕底部单元的顶部表面,围绕外周延伸,延伸经过顶部表面的中心,和/或延伸经过顶部表面的任何其他的部分。借助于底部单元2202的有角度的顶部表面,通道2287还从中心2280至侧部2281、2282成角度。在另一个实施方案中,顶部表面还略微地从背部侧2291至前部表面2290向下成角度。有角度的通道2287使流体被向前地远离系统的中心和/或背部被导向泄漏探测器2288被定位并且与通道2287流体连通的侧部。
[0257] 第一光学泄漏探测器2288被定位在底部单元2202的顶部表面的前右角落。第二光学泄漏探测器2288被定位在底部单元2202的顶部表面的前左角落。每个泄漏探测器被定位在井或空腔内并且包括光学传感器,光学传感器被定位在井的侧部中。光学传感器探测已经被排出和/或被运输至井的流体并且把探测到的信号传输至顶部单元中的控制器。探测到的信号被处理器处理以确定泄漏是否已经发生。探测到的信号然后被存储并且,如果需要的话,处理器使警报或警告在GUI上显示。井或空腔优选地包括被倒圆的基部以允许用户容易地把井擦拭干燥。图23示出了底部单元2302的顶部表面的更详细的视图,其中显示了通道2387,并且泄漏探测器2388被定位在井2397内。
[0258] 参照图24,至少一个附加的泄漏探测器被定位在底部单元2402内并且,更特别地,在储液器2403内部,秤2404被集成在其内。通道2405被集成入储液器结构例如内部外壳或金属袋子保持器中,并且优选地是从一个侧部至另一个侧部或从中心至任一个侧部成角度的。在一个实施方案中,角度在1至10度的范围内并且更特别地3度。容纳泄漏探测器的井2410被集成入储液器外壳中并且在储液器外壳的一个或两个侧部中与通道2405流体连通。
如果泄漏在一次性袋子中发生,那么流体将通过通道2405排至金属盘子或储液器外壳的角落并且被导向入至少一个具有泄漏传感器2410的井中。
[0259] 排水路径服务于两个功能:a)确保流体不进入仪器,以及b)确保泄漏被迅速地限制并且被引导至可以触发警告或警报的传感器。此外,装置优选地还包括引导至在装置的内部的具有光学传感器的井的流体排水通道。所以,例如,如果在内部储液器中有泄漏,那么流体被远离关键的部件地引导并且光学传感器警报泄漏。基于传感器被激活,GUI可以把警报呈现至用户并且可以特别地识别流体泄漏的地点。通过提供多个独立的泄漏探测的区域(多个流体传感器和排水路径),仪器可以引导用户以迅速地发现泄漏。具有多重的通道和传感器允许系统部分地自动地识别泄漏的源并且向用户提供图形辅助来纠正问题。
[0260] 现在参照图25,当吸附剂插盒2580被废物材料填充时,其膨胀并且,如果不被合适地锚固于基部,可以翻倒。在一个实施方案中,吸附剂插盒2580被多个连接器2540锚固于基部2520并且暂时地物理地附接于其。基部2520是具有连接器2510的平面结构,连接器2510被配置为可移除地附接于在透析系统的基部上的匹配的连接器。在一个实施方案中,基部单元2520包括具有在基部单元上的互补的匹配的连接器的两个匹配的连接器2510。连接器2540包括至少两个、优选地三个、或可选择地多于三个L形状的构件。在三连接器配置2540中,连接器被围绕略微地比吸附剂插盒2580的基部的外周大的外周相等地分布。当吸附剂插盒2580被放置在连接器内时,其紧密地装配在其中并且借助插盒2580的重量保持就位。
平面表面2520还包括第二组的连接器2550,第二组的连接器2550包括至少两个、优选地三个、或可选择地多于三个L形状的构件。在三连接器配置2550中,连接器被围绕略微地比浓缩液罐的基部的外周大的外周相等地分布。当浓缩液罐被放置在连接器2550内时,其紧密地装配在其中并且借助罐2550的重量保持就位。
[0261] 示例性的血液和透析液流体路径
[0262] 所公开的实施方案可以被用于向患者提供透析治疗。图26是本发明的多次通过的基于吸附剂的透析系统的一个实施方案的功能框图。在一个实施方案中,透析系统2600采用包括高通量膜以把毒素通过扩散并且通过对流从血液除去的透析器插盒2602。通过允许透析液在一个方向在膜的一侧流动并且同时地允许血液在相反的方向在膜的另一侧流动而建立跨过半渗透膜的浓度梯度,从而实现通过扩散除去毒素。为了增强使用血液透析滤过来除去毒素,置换液被连续地加入血液中,在透析器插盒之前(前稀释)或在透析器插盒之后(后稀释)。量等于被加入的置换液的量的流体被跨过透析器插盒膜“超滤”,随着其携带被加入的溶质。
[0263] 同时地参照图26和27二者,在一个实施方案中,含有毒素的血液被血液泵2601、2701从患者的血管泵送并且被传递以流动经过透析器插盒2602、2702。可选择地,在血液回路中的入口和出口压力传感器2603、2604、2703、2704在血液经过血液入口管2605、2705进入透析器插盒2602、2702之前并且在经过血液出口管2606、2706离开透析器插盒2602、2702之后测量血液的压力。来自传感器2603、2604、2628、2703、2704、2728的压力读数被用作血液流动的监视和控制参数。流量计2621、2721可以被置于血液入口管2605、2705的被定位在距血液泵2601、2701的紧邻的上游的部分中或以其他方式与该部分压力连通。流量计2621、
2721被定位以监视和保持不纯净的血液供应管线中的血液的预确定的流量。置换液2690可以被连续地加入血液中,在透析器插盒之前(前稀释)或在透析器插盒之后(后稀释)。
[0264] 在一个实施方案中,参照图26和27二者,透析器插盒2602、2702包括把透析器2602、2702分割为血液室2609、2709和透析液室2611、2711的半渗透膜2608、2708。当血液经过血液室2609、2709时,尿毒症毒素由于对流力被跨过半渗透膜2608、2708过滤。另外的血液毒素通过扩散被传递穿过半渗透膜2608、2708,主要是被分别地流动经过血液室和透析液室2609、2709和2611、2711的流体的浓度的差异诱导。所使用的透析器插盒可以具有任何适合于血液透析、血液透析滤过、血液滤过或血液浓缩的类型,如本领域中已知的。在一个实施方案中,透析器2602、2702容纳高通量膜。合适的透析器插盒的实例包括但不限于可从肯塔基州的列克星敦的Fresenius Medical Care获得的 F60,F80,可从伊利诺
伊州的迪尔菲尔德的Baxter获得的Baxter CT110,CT190, 160,或可从明尼苏达州的明尼阿波利斯的Minntech获得的Minntech Hemocor 1000, 1350,2000。
[0265] 在本发明的一个实施方案中,透析液泵2607、2707把已消耗的透析液从透析器插盒2602、2702拉动并且强迫透析液进入透析液再生系统2610、2710中并且在多次通过环路中返回2613、2713入透析器插盒2602、2702中,从而产生“再生的”或新鲜的透析液。可选择地,流量计2622、2722被置于在从透析液泵2607、2707的上游的已消耗透析液供应管2612、2712中,流量计2622、2722监视并且保持透析液的预确定的流量。血液泄漏传感器2623、
2723也被置于已消耗透析液供应管2612、2712中。
[0266] 本发明的多次通过透析液再生系统2610、2710包括多个容纳用于再生已消耗的透析液的吸附剂的插盒和/或过滤器。通过使用吸附剂插盒来再生透析液,本发明的透析系统2600、2700仅需要常规的单次通过血液透析装置的透析液的量的一小部分。
[0267] 在一个实施方案中,透析液再生系统2610、2710中的每个吸附剂插盒是容纳不同吸附剂的微型化的插盒。例如,透析液再生系统2610、2710可以采用五个吸附剂插盒,其中每个插盒分离地容纳活性炭、尿素酶、磷酸锆、水合化锆和活性炭。在另一个实施方案中,每个插盒可以包括上文描述的吸附剂的多个层并且在透析液再生系统中可以具有被串联地或并联地连接于彼此的多个这样的分离的分层的插盒。本领域的技术人员将意识到,活性炭、尿素酶、磷酸锆、水合氧化锆和活性炭不是仅有的可以在本发明中被作为吸附剂使用的化学物。实际上,任何数量的另外的或可选择的吸附剂,包括基于聚合物的吸附剂,可以被采用,而不偏离本发明的范围。
[0268] 本发明的基于吸附剂的多次通过的透析系统提供相对于常规的单次通过系统的多个优点。这些包括:
[0269] ●不需要连续的水源、分离的水净化机器或地板排水,因为本发明的系统连续地再生某个体积的透析液。这允许加强的便携性。
[0270] ●本发明的系统需要低电流电源,例如15安培,因为系统通过渗滤程序循环利用同一个小的体积的透析液。因此,不需要用于单次通过透析系统中的大的体积的透析液的额外的透析液泵、浓缩液泵和大的加热器。
[0271] ●本发明的系统可以使用低体积的自来水,在6升的范围内,透析液可以在整个的治疗期间从自来水来制备。
[0272] ●吸附剂系统使用作为水净化器并且作为用于把使用过的透析液再生为新鲜的透析液的手段起作用的吸附剂插盒。
[0273] 虽然目前的实施方案具有用于把血液和透析液泵送经过透析器的分离的泵2601、2701、2607、2707,但是在可选择的实施方案中,把血液和透析液二者推进经过血液透析滤过系统2600、2700的单一的双通道搏动泵可以被采用。此外,离心泵齿轮泵或膜片泵可以被使用。
[0274] 在一个实施方案中,过量的流体废物被使用体积废物微型泵2614、2714从已消耗透析液管2612、2712中的已消耗的透析液除去并且被沉积入废物收集储液器2615、2715中,废物收集储液器2615、2715可以通过出口例如水龙头被周期性地排空。包括微处理器电子控制单元2616监视并且控制系统2600的所有的部件的功能。
[0275] 在一个实施方案中,离开透析器插盒2602、2702的已渗滤的血液被与被从置换液容器2617、2717通过体积微型泵2618、2718泵送入血液出口管2606、2706中的受调节的体积的无菌置换液混合。置换液是典型地作为被容纳在柔性袋中的无菌的/非发热的流体可用的。该流体还可以通过非无菌的透析液的经过合适的滤筒的过滤被在线地生产,使其是无菌的并且非发热的。
[0276] 图28是示出了本发明的超滤治疗系统2800的一个实施方案的功能框图。如图28中所示的,来自患者的血液被泵例如蠕动血液泵2802拉动入血液入口管路2801中,该泵强迫血液经过血液入口接驳口2803进入血液滤器插盒2804中。入口和出口压力换能器2805、2806被在线地紧邻地连接在血液泵2802之前和之后。血液滤器2804包括半渗透膜,该半渗透膜允许过量的流体通过对流被从经过该半渗透膜的血液超滤。已超滤的血液被进一步从血液滤器2804经过血液出口接驳口2807泵送出来,进入血液出口管路2808中,以向患者中输注返回。调节器例如夹持器2809、2810被在管路2801和2808中使用以调节经过其的流体流动。
[0277] 压力换能器2811被连接在血液出口接驳口2807附近,随后是在压力换能器2811下游的空气泡探测器2812。超滤液泵例如蠕动泵2813把超滤液废物从血液滤器2804拉动经过UF(超滤液)出口接驳口2814并且进入UF出口管路2815中。压力换能器2816和血液泄漏探测器2817被置于UF出口管路2815中。超滤液废物最终被泵送入废物收集储液器2818例如烧瓶或软袋子中,废物收集储液器2818被附接于走动的患者的腿部并且配备有排水接驳口以允许间歇的排空。所产生的超滤液废物的量可以使用任何测量技术被监视,包括秤2819或流量计。微控制器2820监视并且管理血液泵和UF泵、压力传感器以及空气和血液泄漏探测器的功能。标准的鲁尔连接部例如鲁尔滑动器和鲁尔锁定器被用于把管路连接于泵、血液滤器并且连接于患者。
[0278] 另一个能够被在透析系统的实施方案中实施或使用的血液和透析液回路在图29中示出。图29描绘了用于进行血液透析和血液滤过的体外血液处理系统2900的流体回路。在本发明的一个实施方案中,系统2900被作为可以被患者用于在家进行透析的便携式透析系统实施。血液透析系统包括两个回路,即一个血液回路2901和一个透析液回路2902。在透析期间的血液处理涉及经过具有半渗透膜-血液透析器或透析器2903的交换器的体外循环。患者的血液被在血液回路2901中在膜(透析器)2903的一侧循环,而透析液,包括以被医师规定的浓度的血液的主要的电解质,被在透析液回路2902中在另一侧循环。透析液的循环因此提供血液中的电解质浓度的调节和调整。
[0279] 从患者的管线2904把不纯净的血液运输至血液回路2901中的透析器2903,设置有闭塞探测器2905,闭塞探测器2905大体上与视觉的或可闻的警报联系以信号通知任何对血液流动的障碍物。为了防止血液的凝结,用于把抗凝剂例如肝素注射入血液中的递送装置2906例如泵、注射器或任何其他的注射装置也被提供。蠕动泵2907也被提供以确保血液的流动在正常的(期望的)方向。
[0280] 压力传感器2908被设置在在其处不纯净的血液进入透析器2903的入口处。其他的压力传感器2909、2910、2911和2912被设置在血液透析系统中的各种位置处以追踪和把在分别的回路内的特定的点处的流体压力保持在期望的水平。
[0281] 血液泄漏传感器2913被设置在在其处来自透析器2903的使用过的透析液流体进入透析液回路2902的点处,以传感和警报血细胞的向透析液回路中的任何泄漏。一对旁通阀2914也被设置在透析液回路的开始点和结束点处,使得在启动的条件下,或在其他的被操作者视为必要的时间,透析器可以被从透析液流体流动绕过,而透析液流体流动可以仍然被保持,即用于冲洗或预充操作。另一个阀门2915被设置为紧邻地在预充/排水接驳口2916之前。接驳口2916被用于初始地使用透析液溶液填充回路并且用于在透析之后以及在某些情况下在透析期间除去使用过的透析液流体。在透析期间,阀门2915可以被用于使用具有合适的浓度的补充流体代替使用过的透析液的具有例如钠的高浓度的部分,使得透析液的总体的组分浓度被保持在期望的水平。
[0282] 透析液回路设置有两个蠕动泵2917和2918。泵2917被用于把透析液流体泵送至排水或废物容器以及用于把已再生的透析液泵送入透析器2903中。泵2918被用于把已消耗的透析液从透析器2903泵送出来,保持经过吸附剂2919的流体压力,并且把透析流体从接驳口2916泵送入以填充系统或保持透析液中的组分浓度。
[0283] 吸附剂插盒2919被设置在透析液回路2902中。吸附剂插盒2919容纳材料的多个层,每个具有在除去杂质例如尿素和肌酸酐中的作用。这些分层的材料的组合允许适合于饮用的水被加载入系统中以用作透析液流体。其还允许闭环透析。即,吸附剂插盒2919使从来自透析器2903的已消耗的透析液再生为新鲜的透析液成为可能。具有合适的容量例如0.5、1、5、8或10升的内衬容器或储液器2920被设置用于新鲜的透析液流体。
[0284] 取决于患者要求并且基于医师的处方,期望的量的输注溶液2921可以被加入透析流体中。输注液2921是含有矿物质和/或葡萄糖的溶液,其帮助在透析液流体中的矿物质例如在被吸附剂的非期望的移除之后对透析液流体补充矿物质到所需水平。蠕动泵2922被提供以把期望的量的输注溶液2921泵送至容器2920。可选择地,输注溶液2921可以被泵送入从储液器2920的流出管线中。照相机2923可以可选择地被提供以监视输注溶液的改变的液面作为输注液流动故障的安全性检查警报和/或作为用于扫描与待被在透析程序中使用的添加剂相关联的条形码的条形码传感器起作用。可选择地,氨传感器2928可以被提供。
[0285] 加热器2924被提供以把容器2920中的透析液流体的温度保持在所需要的水平。透析液流体的温度可以被被定位为紧邻地在流体的向透析器2903中的入口之前的温度传感器2925传感。容器2920还配备有用于保持追踪容器2920中的流体的重量以及因此体积的秤2926以及确定和监视透析液流体的电导的电导传感器2927。电导传感器2927提供透析液中的钠的水平的指示。
[0286] 医用接驳口2929被设置来自患者的血液进入系统以用于透析之前的地方。另一个医用接驳口2930被设置在来自透析器2903的清洁血液被返回至患者之前。空气(或气泡)传感器2931以及弹簧夹2932被在回路中采用以探测并且防止任何空气、气体或气泡被返回至患者。
[0287] 预充套件2933被附接于透析系统2900,预充套件2933通过在血液回路2901被用于透析之前使用无菌的盐水填充血液回路2901帮助准备系统。预充套件可以包括具有被预附接的IV袋子尖刺或IV针或二者的组合的管路的短的节段。
[0288] 应当意识到,虽然上文提到的实施方案中的某些公开了结合和使用接收抗凝剂的注射或施用的接驳口,由此产生空气-血液接口连接,但是这样的接驳口可以被消除,如果装置可以以血液在入口和出口的接驳口处凝结的最小的风险操作的话。如下文进一步讨论的,歧管设计,特别是关于歧管接驳口的内部设计,最小化血液凝结的风险,由此产生消除用于接收抗凝剂的注射或施用的空气-血液接口连接的选项。
[0289] 本领域的技术人员将从上文的讨论推测,示例性的用于血液透析和/或血液滤过系统的流体回路是复杂的。如果被以常规的方式实施,那么系统将作为管路的网操作并且将是对于家庭透析用户配置和使用来说过于复杂化的。因此,为了使系统是对于患者在家使用来说简单的并且容易的,本发明的实施方案实施以紧凑的歧管的形式的流体回路,其中流体回路的大多数的部件被集成为单一的模塑塑料件或被配置为连接在一起以形成单一的操作性歧管结构的多重的模塑塑料件。
[0290] 示例性的歧管
[0291] 应当意识到,被上文描述的血液和透析液回路代表的多次通过透析治疗过程可以在被模塑成一次性歧管中的多个血液和透析液回路内被实施并且以被模塑成一次性歧管中的多个血液和透析液回路实施。如图21中所示的,本文公开的透析系统的实施方案使用界定多个血液和透析液回路并且把流体置于与各种传感器、计量器和泵压力、热和/或光学连通的歧管2130操作。
[0292] 在一个实施方案中,本发明的歧管包括复合塑料歧管,血液和透析液流动路径被模塑入该复合塑料歧管中。血液净化系统部件,例如传感器和泵,被置于与被容纳在被模塑的歧管内的流体流压力、热和/或光学连通。图30图示了根据本发明的一个实施方案的紧凑歧管的结构元件。一次性歧管泵送并且导向流体流动,同时测量关键区域中的压力。这些流体包括血液、透析液、输注液和抗凝剂。此外,歧管提供用于探测从透析器的血液泄漏的特征、探测动脉管路中的闭合的特征和探测静脉管路中的空气的特征。
[0293] 参照图30,在一个实施方案中,紧凑歧管3000包括多个塑料层,部件被牢固地附接在其中。更特别地,歧管3000包括以下的元件:
[0294] ●背部覆盖物3001
[0295] ●压力换能器膜3002
[0296] ●阀门膜3003
[0297] ●中部体3004
[0298] ●前部覆盖物3005
[0299] ●泵管节段(在图30中未示出)
[0300] 中部体层3004含有在一侧的模塑入的通道。这些通道被前部覆盖物层完成,前部覆盖物被通过任何数量的方法包括超声焊接牢固地附接于中部体。这种组合的前部覆盖物-中部体结构形成歧管内的流体路径的主要的部分。在中部体3004的相反的侧具有形成用于阀调和压力传感的表面的特征,该特征连通至在歧管的前部覆盖物侧上的流体路径。歧管包括用于阀调和压力传感的弹性体性的部件。这些弹性体性的部件通过使用超声焊接而被捕获在背部覆盖物层和中部体层之间并且完成经过歧管的流体路径。
[0301] 参照图30,在一个实施方案中,歧管3000包括五个压力换能器膜3002和三个至四个用于二通阀的膜3003。在一个实施方案中,两个覆盖物3001和3005以及歧管3000的中部体3004由聚酸酯材料或ABS(丙烯腈丁二烯苯乙烯)模塑。压力换能器膜3002和阀门膜3003由普通的材料模塑,例如Santoprene或更优选地Sarlink,其是医疗级弹性聚合物。在一个实施方案中,前部和背部覆盖物3005和3001可以由光学上透明的材料模塑,至少是对光的某些预选择的波长透明的,以允许被容纳在其内的流体的光谱分析。
[0302] 此外,歧管优选地包括四个泵送部件。这些泵送部件是挤压成形的PVC管路的节段,被控制成分并且被控制尺寸以具有对于泵使用特别是滚子泵使用来说优化的性质。该管路被结合于被一体地模塑至歧管中部体的倒钩配件。四个泵送部件中的一个用于把血液从患者的动脉拉动并且把其泵送经过透析器并且泵送返回至患者的静脉。两个泵送部件用于透析液流动并且一个用于向透析液流体回路的输注液递送。分离的注射器泵可以被用于在透析器之前把抗凝剂泵送入动脉血路径中。
[0303] 在一个实施方案中,歧管还结合有管路接驳口,优选地在10-14个的范围内并且更优选地12个接驳口,用于把歧管内的所有的流体路径连接于一次性套件中的其他的部件,包括透析器、吸附剂插盒、袋子储液器、输注液容器、患者血液线、抗凝剂、传感器、预充管线和排放管线,如下文进一步讨论的。
[0304] 在一个实施方案中,歧管的形状相似于大写字母“I”,具有平行于彼此的第一节段和第二节段以及连接节段,连接节段a)垂直于第一节段和第二节段并且b)起作用以连接第一节段和第二节段。在一个实施方案中,连接节段把第一节段的中部连接于第二节段的中部,由此使连接节段和第一节段和第二节段的每个端部之间的距离是等距的。应当意识到,连接节段可以被放置在第一和第二节段的端部处,由此制造大写字母“C”或反向的“C”。歧管也可以被相对于透析系统旋转并且不需要被作为大写字母“I”定位,例如其可以被定位在其侧上或以一定角度定位。如图32中所示的,在一个示例性的实施方案中,歧管3200具有如下的尺寸:L1和L2在4至7英寸的范围内,并且优选地约5.7英寸,L3和L4在0.5至1.5英寸的范围内,并且优选地约1英寸,L5在2.5至4.5英寸的范围内,并且优选地约3.5英寸,并且L6在1至3英寸的范围内,并且优选地约1.8英寸。虽然尺寸已经被提供,但是应当意识到,本文公开的本发明不限于任何具体的尺寸或尺寸的集合。
[0305] 在一个实施方案中,歧管3000的组装过程包括把背部覆盖物3001匹配至中部体3004,同时通过使膜的第一侧物理地附接或接触中部体并且使膜的第二侧经过背部覆盖物
3001中的洞、空间或空穴3011把膜3002和3003固定就位。覆盖物3001可以被分割为两个部分,即顶部部分和底部部分,其中顶部部分包括中央竖直部分3082的顶部部分和顶部水平片段3080并且底部部分包括中央竖直部分3084的底部部分和底部水平片段3085。在本实施方案中,覆盖物3001的顶部和底部部分可以被分离地附接于中部体3004并且,相对于连续的覆盖物3001,可以不包括在中央竖直部分的中部片段区域3083中的材料以节约材料成本。优选地,膜的第二侧部具有有层级的结构,有层级的结构允许第一层级经过空穴3011同时第二层级保持在背部覆盖物3001和中部体3004之间。这把膜3002、3003固定入背部覆盖物3001中。此外,优选的是,中部体3004含有膜3002、3003的第一侧部停靠入其中的凹陷部,由此把它们固定于中部体3004。在一个可选择的配置中,膜3002和3003可以在多重模塑过程中被共模塑至背部覆盖物3001。
[0306] 本领域的技术人员将意识到,歧管的各种部件可以使用任何合适的手段被结合或固定在一起。在一个实施方案中,中部体和背部覆盖物之间的密封通过超声焊接或粘合剂被实现。可选择地,激光焊接可以被采用。前部覆盖物被以相似的方式结合于中部体的另一个侧部。泵管路节段被溶剂结合就位,在一个实施方案中,或在可选择的实施方案中,节段可以使用塑料中吸收激光的添加剂来被激光焊接。
[0307] 在一个实施方案中,前部覆盖物由BASF Terlux2802HD,ABS模塑,其是透明的并且将提供向流体路径的可见度。ABS的透明性将还提供用于检查超声焊接的表面的完整性。对于其生物相容性以及向超声焊接的相容性来说,ABS是优选的。此外,前部覆盖物可以包括模塑入的有纹路表面以帮助促进前部覆盖物和中部体之间的更好的结合。这种有纹路表面是本领域的技术人员已知的化学蚀刻工艺。一个优选的纹路深度是0.0045"。其它合适的纹路也可以被激光蚀刻。在前部覆盖物上待被焊接的表面被设计为具有0.003"凹陷部,这意指在模具上的被提升0.003"的表面。这提供精确的用于接收纹路的表面。一旦成纹路(texturing)在模具上发生,那么该0.003"表面的高度被下降。因为0.0045"纹路深度的峰和谷,假设平均值将是该量的一半或0.00225"。结果将使模具在0.00075"的很安全的条件下。覆盖物3005还可以以仅中央竖直部分3090的形式并且不包括顶部和底部水平部分3091、3092。通过把中央竖直部分3090放置在由中部体3004的与面向覆盖物3001的表面相反的表面上的提升的边缘界定的凹陷区域中,并且把部分3090结合在凹陷区域内,可以将中央竖直部分3090附接于中部体3004。
[0308] 在一个实施方案中,前部覆盖物提供在动脉通道和静脉通道二者中的血液流动导向器。这些特征被设计为最小化溶血。血液流动导向器提供贯穿通路的一致的横截面积并且最小化在没有血液流动导向器存在时血液将与其接触的锋利的边缘。在血液流动导向器的相反的侧部的壁已经被减轻以提供在被模塑的塑料部分中的更一致的壁厚度。这将防止在该区域中的下沉,下沉可以影响围绕的焊接表面。在一个实施方案中,前部覆盖物壁厚度是0.075"。
[0309] 可选择地,前部覆盖物具有对准孔,对准孔被提供用于组装目的,以确保前部覆盖物和中部体在超声焊接过程期间被精确地对准。围绕对准孔的提升的凸台帮助最大化与焊接夹具的对准钉的接触,使得塑料不因摩擦而容易地熔融。这些凸台不接触并且不被焊接至中部体以确保洞是开放的。
[0310] 图31提供本发明的紧凑歧管的中部体部件的透视图。如图31中示出的,血液透析/血液滤过系统的完全的血液和透析液流动路径3101被模塑入中部体中。用于血液净化系统的各种功能元件例如泵、阀和传感器的容纳部也被集成入紧凑歧管的中部体片段中。
[0311] 中部体可以由BASF Terlux2802HD,ABS模塑。另一个可选择的ABS是Lustran348,White。ABS由于其生物相容性以及对超声焊接的相容性而被选择。中部体与前部覆盖物共同地提供用于歧管的流体路径通道。中部体容纳用于对接接头型式的超声焊接的能量导向器。在一个实施方案中,能量导向器的尺寸是0.019"高和宽基部0.024"。这导致0.00023平方英寸的横截面积。焊接表面的宽度是0.075",导致约0.003"×0.075"的焊接体积。对接接头型式的能量导向器是相对于其他的型式优选的,例如剪切接头、企口缝、阶式接头,这是由于其简单性和控制模塑零件几何构型的能力。通气孔被设置在焊缝几何构型中以防止寄存气体被推动经过焊缝,导致可以泄漏的差的焊缝。
[0312] 中部体的背部覆盖物侧优选地提供模塑入的有纹路表面以帮助促进背部覆盖物和中部体之间的更好的结合。这种有纹路表面是本领域的技术人员已知的化学蚀刻工艺。优选的纹路深度是0.0045"。其它合适的纹路也可以被激光蚀刻。在中部体上待被焊接的表面被设计为具有0.003"凹陷部,这意指在模具上的被提升0.003"的表面。一旦成纹路在模具上发生,那么该0.003"表面的高度被下降。因为0.0045"纹路深度的峰和谷,假设平均值将是该量的一半或0.00225"。结果将使模具在0.00075"的很安全的条件下。
[0313] 正在被焊接的部件的大小可以具有对超声焊接过程的成功性的主要的影响。如果表面积越大,那么焊接过程成为越困难的。重要的是,焊接表面被精确地控制。前部覆盖物和背部覆盖物中的一致的厚度是比平坦性更重要的,因为略微地不平坦的覆盖物将在焊接过程期间被压制为平坦的。中部体上的平坦性是重要的,这是由于将防止其在焊接过程期间被平坦化的结构设计。由于这些问题,非常重要的是,零件被正确地设计并且不易于遭受异常,例如翘曲、下沉、尺寸偏差等等。此外,模具构造和品质需要匹配零件将需要满足的高标准。之后,模塑过程控制也将要求标准中的最高者。
[0314] 背部覆盖物可以由BASF Terlux2802HD,ABS模塑。背部覆盖物容纳用于对接接头型式的超声焊接的能量导向器。能量导向器的尺寸是0.019"高和0.024"宽基部。这导致0.00023平方英寸的横截面积。焊接表面的宽度是0.075",导致约0.003"×0.075"的焊接体积。该0.003"焊接体积应当在确定被组装的部件的几何构型时被考虑。通气孔被设置在焊缝几何构型中以防止寄存气体被推动经过焊缝,导致可以泄漏的差的焊缝。背部覆盖物中的对准孔被提供用于组装目的,以确保背部覆盖物在超声焊接过程期间被精确地对准至中部体。背部覆盖物中的对准孔还提供当被合适地加载时歧管和仪器的精确的对准。围绕对准孔的提升的凸台被设计为最大化与焊接夹具的对准钉的接触,使得塑料不因摩擦而容易地熔融。这些凸台不接触并且不被焊接以确保洞是开放的。
[0315] 超声焊接被选择作为用于结合歧管三个主要部件的方法,因为这种制造工艺的低成本。相对低的设备成本和用于产生焊缝的周期时间归因于这种较低的制造成本。一旦零件被加载入夹具中,那么具有角行进和移除的焊接循环可以在几秒内被实现。实际的焊接时间是约一秒。其他的结合方法包括热板、激光和UV粘合。
[0316] 参照图31,在一个实施方案中,中部体片段3100具有被集成在其内的三个二通阀3107、五个压力换能器3106、一个闭塞探测器、一个空气泡探测器和一个血液泄漏探测器。
本领域的技术人员将意识到,被集成在中部体片段3100内的功能部件的数量和类型可以根据血液净化系统的要求和应用被变化并且,因此,可以包括1、2、3、4、6、7、8、9、10或更多个压力换能器,1、2、4、5、6或更多个二通阀,0、2、3、4或更多个闭塞探测器,0、2、3、4或更多个空气泡探测器,0、2、3、4或更多个血液泄漏探测器。此外,中部体片段3100包括多个接驳口
3103、3104。
[0317] 接驳口包括内部接驳口3104,流体经过内部接驳口3104经过泵节段(未示出)从并且在歧管3100的第一节段和第二节段之间流动。在一个实施方案中,第一节段具有四个内部接驳口3104,在第一节段和连接节段连接处的点的每侧两个。应当意识到,第一节段可以具有1、2、3、5、6、7或更多个内部接驳口。在一个实施方案中,第二节段具有四个内部接驳口3104,在第二节段和连接节段连接处的点的每侧两个。应当意识到,第二节段可以具有1、2、
3、5、6、7或更多个内部接驳口。此外,优选的是,第一节段的内部接驳口的位置和地点与第二节段的内部接驳口的位置和地点镜像。接驳口还包括对在歧管3100的外部的元件的外部接驳口3103。在一个实施方案中,第一节段具有两个外部接驳口3103。在一个实施方案中,第二节段具有十个外部接驳口3104。在一个实施方案中,第一节段具有1、3、4、5、6、7、8、9、
10、11、12、13、14、15或更多个外部接驳口3103。在一个实施方案中,第二节段具有1、2、3、4、
5、6、7、8、9、11、12、13、14、15或更多个外部接驳口3104。
[0318] 把流体接触元件结合入歧管中,如上文描述的,使以下的系统的设计成为可能,即其中可反复使用的传感器被安装在透析机器中,歧管与其匹配,同时必需地一次性流体接触元件被分离出来并且被放置在歧管中。为了确保合适的读数和测量被作出,流体接触元件和可反复使用的传感器需要被对准。歧管和透析机器之间的匹配和对准对于定位和所施加的压力是关键的。典型地,这样的匹配精确性必须提供在X、Y和Z方向的0.001"至0.010"公差并且施加在10-100PSI的范围内的安装力以与歧管的流体力对抗。这样的严格的定位借助于与透析机器上的互补的定位表面匹配的、在歧管上的特别地设计的定位表面被实现。通过透析机器结构的分析和设计,以在操作期间在歧管内产生的所有的流体压力和机械压力下允许小于约0.001"至0.010"的X和Y位置和Z方向偏转,来递送所需要的力。因为歧管在一个一体的基板上容纳许多结构,所以这样的严格的对准仅需要被进行一次,以把歧管的所有的特征与透析机器的所有的匹配的特征定位。
[0319] 中部体通道大小标称地在0.190"深乘以0.190"宽的范围内,在中部体侧的通道的底部角落处的半径为0.020"。在通道的底部角落的半径应当是最大的以防止下沉在通道壁下方发生。这些通道壁具有在中部体的相反的侧的阀门和压力膜片几何构型,其可以被这些区域中的下沉不利地影响。在一个实施方案中,流体路径是正方形的。一般的用于防止下沉的设计规则是肋部(在这种情况下通道壁)的壁厚度应当不多于其被附接于的毗邻的壁的50-60%。通道壁是0.075"并且毗邻的壁(主要的歧管结构)是0.130",导致58%。0.190"×0.190"透析液通道经过孔过渡至0.155"管路接驳口。这最小化为了把前部覆盖物对准至中部体所需要的精确度,并且最小化被较厚的壁产生的下沉的潜在可能,该下沉可以影响在中部体的相反的侧的密封特征。同一个途径被用于抗凝剂和输注液通道。柔和的曲线被设计入通道中以最大化层流并且最小化紊流。在一个实施方案中,抗凝剂和输注液通道,如下文讨论的,尺寸是0.190"深乘以0.100"宽。
[0320] 在一个实施方案中,中部体具有用于组装目的的对准孔,以确保前部覆盖物和背部覆盖物二者在超声焊接工艺期间被精确地对准至中部体。围绕对准孔的提升的凸台最大化与焊接夹具的对准钉的接触,使得塑料不因摩擦而容易地熔融。这些凸台不接触并且不被焊接以确保洞是开放的。
[0321] 图33是详细描述根据本发明的一个实施方案的用于紧凑歧管的流体回路的图解。流体回路包括与在顶部控制器单元内的泵和在顶部控制器单元门中的泵靴压力连通的四个泵管节段P13301、P23302、P33303和P43304。其还包括五个与压力传感器S13305、S23306、S33307、S43308和S53309压力连通的压力膜以及一个与温度传感器S63310热或光学连通的区域。在图33中图示的实施方案中,三对膜V1A和V1B3311、V2A和V2B3312和V3A和V3B3313被集成入歧管中。膜当它们被来自控制器单元的钉、构件或突出部闭合时作为阀门起作用。
[0322] 六个单向阀的对3311A,B、3312A,B、3313A,B以这种方式被分组,形成三个二通阀组件3311、3312、3313。二通阀提供在控制回路的配置中的更大的灵活性。当常规的二通阀被用于闭合流体路径的一个部分时,它们典型地被配置为使两个不同的流体路径成为可能,一个用于第一阀门状态并且一个用于第二阀门状态。某些阀门实施方案,如下文公开的,与被集成入歧管中的阀门膜或压力点组合地使用,使更精细的控制成为可能,使四个分别地不同的流体流动路径的产生成为可能。
[0323] 泵管节段3301、3302、3303、3304被结合入紧凑歧管中。多个接驳口被设置在歧管中,其连接于在歧管外部的管子以允许各种流体的进和出歧管的流动。这些接驳口被连接于血液净化系统中的各种管子以携带如下的流体:
[0324] 接驳口A3315-向透析器3330的血液;
[0325] 接驳口B3316-透析器输出(使用过的透析液);
[0326] 接驳口C3317-来自患者的血液;
[0327] 接驳口D3318-用于在血液中混合的肝素;
[0328] 接驳口E3319-储液器输出(新鲜的透析液);
[0329] 接驳口F3320-透析器输入(新鲜的透析液);
[0330] 接驳口G3321-透析器输出(血液);
[0331] 接驳口H3322-患者返回(清洁血液);
[0332] 接驳口J3323-连接于主管线和排放管线;
[0333] 接驳口K3324-储液器输注液输入;
[0334] 接驳口M3325-来自输注液储液器的输注液进入;
[0335] 接驳口N3326-向吸附剂中的透析液流动。
[0336] 在一个实施方案中,作为被模塑入歧管结构3300中的路径形成的管子节段把经过接驳口D3318进入的肝素3314的流体流连接于经过接驳口C3317进入的血液的流体流动。被组合的肝素和血液流经过接驳口3317a,经过泵节段3301并且进入歧管3300的接驳口3317b中。压力换能器与被形成在歧管结构3300中的膜3305物理连通,膜3305进而把血液和肝素流体传递经过接驳口A3315。在接驳口A3315从歧管3300出来的流体流动经过透析器3330,透析器3330在歧管3300的外部。透析过的血液经过接驳口G3321传递返回进入歧管3300中并进入节段3307中,该节段3307形成为模塑入歧管结构3300中的路径,该路径与压力换能器物理连通。流体然后从该节段经过接驳口H3322并且进入患者返回管线中。
[0337] 分离地,透析流体从储液器经过接驳口E3319进入歧管3300。储液器中的流体具有在其中的输注液,输注液首先经过接驳口M3325进入歧管3300,经过作为被模塑入歧管结构3300中的路径形成的节段,经过另一个接驳口3325a,经过与泵连通的节段3302,并且经过接驳口3325b返回进入歧管3300中。输注液经过作为被模塑入歧管结构3300中的路径形成的节段,并且在接驳口K3324从歧管3300出来,在接驳口K3324其传递进入储液器中。经过接驳口E3319进入歧管的透析流体经过作为被模塑入歧管结构3300中的路径形成的节段,经过另一个接驳口3319a,经过与泵连通的节段3303,并且经过接驳口3319b返回进入歧管
3300中。
[0338] 透析液流体传递进入与一对阀门3311物理连通的、作为被模塑入歧管结构3300中的路径形成的节段中。作为被模塑入歧管结构3300中的路径形成的节段把透析液流体传递至另一对阀门3313。该节段与压力换能器3308和可选择的温度传感器3310物理连通。透析液流体经过接驳口F3320从歧管3300传递出来并且进入传递进入透析器3330中的管线中。
[0339] 从透析器3330出来的管线把流体经过接驳口B3316传递返回进入歧管3300中并且进入与第一对阀门3311、第二对阀门3312和一个压力换能器3306物理连通的、作为被模塑入歧管结构3300中的路径形成的节段中。使用过的透析液流体从歧管3300传递出来,经过接驳口3326b,经过与泵连通的节段3304并且经过接驳口3326a返回进入歧管中。与接驳口3326a流体连通的节段与压力换能器3309物理连通并且把流体传递经过接驳口N3326并且传递至吸附剂再生系统。
[0340] 接驳口被设计用于回路管路0.268"×0.175"管路或抗凝剂和输注液管路0.161"×0.135"。优选地,管路接驳口被用合适的溶剂结合。
[0341] 应当意识到,在图33中示出的阀门3311、3312、3313可以被定位在歧管内的不同的地点中。参照图86,阀门8611(图33中的阀门3311)可以被定位在毗邻于并且平行于阀门8612(图33中的阀门3312)的歧管8600的中央竖直部分8650中。也在歧管8600的把顶部水平部分8630和底部水平部分8640连接在一起的中央竖直部分8650上的是阀门8613(图33中的阀门3313)。阀门8613在中央竖直部分8650的底部部分上并且被定位为实质上在阀门8611、
8612下方并且在阀门8611、8612之间居中。
[0342] 在一个实施方案中,二通阀通过使被安装在仪器上的阀门致动器把弹性体性的膜片在火山密封部上压缩来操作,以防止透析液流动经过其分别的路径,如在下文更详细地描述的。火山密封部开口是约0.190"直径以匹配通道几何构型。经过阀门的内部的横截面路径在阀门是打开时是至少等效于0.190"直径。当阀门在关闭位置中时,阀门致动器和弹性体性的膜片消耗围绕火山密封部的流体路径空间的大部分,最小化空气滞留的潜在可能。在中部体上具有提升的塑料特征,其最小化流体路径内的死空间并且帮助防止膜片在负压力条件下围绕中心流体路径塌陷。弹性体性的膜片具有围绕其周长的装配入中部体表面上的沟槽中的O型环特征。O型环被压缩在中部体和背部覆盖物之间以形成流体密闭的密封部。该设计提供在O型环上的约30%压缩。二通阀控制经过歧管的透析液流动的方向。
[0343] 歧管容纳通过使用仪器中的传感器而允许监视跨过膜片的流体压力的结构。流体被允许从中部体的前部覆盖物侧上的通道流动经过在背部覆盖物侧上的膜片下方的入口孔和出口孔。经过压力传感结构的内部的横截面路径是至少等效于0.190"。内部路径被设计为最小化空气滞留同时提供与膜片足够的流体接触。弹性体性的膜片具有围绕其周长的装配入中部体表面上的沟槽中的O型环特征。O型环被压缩在中部体和背部覆盖物之间以形成流体密闭的密封部。该设计提供在O型环上的30%压缩。
[0344] 阀门和膜片可以由多种不同的材料以及通过不同的工艺制造。在一个实施方案中,弹性体性的部件由硅树脂制造。在另一个实施方案中,弹性体性的部件由多种热塑性弹性体制造。二次模塑可以用于把阀门和膜片附接于背部覆盖物。阀门和膜片的二次模塑将除去把这些零件分别地组装到歧管中的需要,因此减少人工成本并且改进歧管组件的品质。
[0345] 歧管设计中的泵送部件已经被定义为PVC集管管路。这些集管与仪器的旋转蠕动泵送系统组合地提供血液、透析液和输注液的流动。用于透析液、输注液和抗凝剂的回路管路材料优选地是抗扭结的,例如被Natvar和所有的TEKNIplex公司挤压成型的被称为Colorite,Unichem PTN780,(80A硬度)的管路。用于透析液管线的管路尺寸范围从0.268"×0.189"至0.268"×0.175"。
[0346] 为了使得歧管节段通过弹性膜与一个或多个传感器有效的热、光学或压力连通,重要的是产生流体流向传感设备的足够地紧邻的暴露。进行这的一个方式在图34中示出。歧管节段3400接收流体流3410,该流体流3410由于流体路径3410内的突出部、构件或其他的结构3408的阻挡和再导向位置而被导致向上地运动。流体向上地运动并且在膜3405和结构3408之间集中,由此使改进的传感成为可能。然而,这样的实施方案具有导致血液凝块在弯曲部3401、3415中形成或由负压力导致的膜3405的基部3406向结构3408的顶部3407的附着导致的闭合的潜在可能。
[0347] 现在同时地参照图35A和35B,为了最小化血液凝块或闭合的潜在可能,因此是优选的是,弹性膜3505与一个或多个传感器热、光学或压力连通的歧管节段3500(也被称为传感节段)的结构被设计成避免产生可能增加凝块或闭合的可能性的急转弯、弯曲部或U形状的路径,而仍然提供在流动的流体和被定位在节段上或紧邻处的传感器之间的足够的接触。参照图35A和35B,内部流体路径3515现在被一个顶部表面和一个底部表面界定,顶部表面包括膜3505,传感器可以被置于通过膜3505通过路径3515热、光学或压力连通,底部表面被以下界定:a)沿着壁3525的长度从第一高度至第二高度减小路径3515的高度的第一向上成斜坡壁3525,b)在第二高度保持同一个路径高度3515的平面节段3526,以及c)经过壁3527的长度再次地从第二高度向下至第一高度增加路径3515高度的向下成斜坡的壁3527。
壁3525、3527的有角度的向上倾斜/向下倾斜使流体路径3515变窄。然而,同时地,节段的被有角度的壁3525、3527和平面节段3526界定的宽度在该传感节段之前和之后相对于歧管部分增宽。传感节段的相对于在传感节段之前和之后的歧管节段的高度减小和宽度增加提供流体的实质上恒定的速度,由此避免可能把血液溶血的速度变化,消除死空间以及保持低雷诺数,同时仍然提供用于传感器通过其进行测量的柔性膜3505的必需的接触面积。在一个实施方案中,一个或多个柱子3535被结合入流体路径3515中,在平面表面3526的顶部以及在膜3505下方以防止由负压力导致的膜3505的完全的塌陷。
[0348] 如将从上文的讨论意识到的,歧管的血液回路和透析回路可以被单一的模塑塑料件界定,而不是被焊接在一起的多个塑料部件。然而,当血液回路和透析回路被材料的单一的一体件界定时,某些挑战产生。特别地,图33中的接驳口3317b、3317a、3319b、3319a、3325a、3325b、3326a、和3326b是对于成本有效地并且可靠地模塑来说挑战性的,如果界定每个接驳口的圆柱形形状的突出部从歧管表面直接地垂直地延伸或,换句话说,以距圆柱形的突出部被附接于其的歧管的部分的侧部实质上零度成角度的话。如果接驳口被以完全垂直的配置制造,那么来自模塑机器的销不能够被容易地除去。同时地参照图33和36,将是优选的是,通过使界定接驳口结构3655的圆柱形的突出部被相对于突出部3655附接于其的歧管3645的(如被表面3675界定的)侧部,成角度制造接驳口3317b、3317a、3319b、3319a、
3325a、3325b、3326a、和3326b。因此,在一个实施方案中,内部歧管接驳口将相对于歧管表面成一角度。该角度进一步减少在任何被插入两个成角度的接驳口之间的泵管子节段上的应力。其进一步把泵管子节段定位为在略微地弯曲的、屈曲的或以其他方式非线性的形状中以更好地依从泵集管接触表面。在一个实施方案中,由法向于有角度的接驳口的中心的线和法向于歧管的侧部的线界定的角度小于20度并且优选地小于10度。在一个实施方案中,该角度是约10度。在一个实施方案中,内部歧管接驳口3317b、3317a、3319b、3319a、
3325a、3325b、3326a、和3326b以上文提到的角度制造,同时其余的接驳口以近似地等于零的角度。在另一个实施方案中,突出部3655,虽然被描述为是圆柱形的,具有内部区域或容积3753,在内部区域或容积3753中基部3754是实质上平面的并且不是弯曲的,同时界定容积3753的内结构的其余部分保持是弯曲的3756,如图37中所示的。在另一个实施方案中,所有的接驳口或流体路径具有内部区域或容积3753,在内部区域或容积3753中基部3754是实质上平面的并且不是弯曲的。
[0349] 歧管的另一个实施方案在图38至40中示出,其中血液和透析液流动路径被模塑在单一的紧凑的塑料单元中。在一个实施方案中,歧管3800是容易组装的具有内置的模塑血液和废物流动路径的紧凑的塑料单元。可选择地,传感器、泵和血液滤器插盒也可以通过向单元中的凹形的模塑部中插入而与紧凑的塑料单元集成。在一个实施方案中,本发明的透析系统能够每次处理操作多于8小时并且连续地操作高至72小时。应当意识到,流体经过被界定的入口接驳口和出口接驳口流动进和出歧管,例如向和从外部泵,至废物UF储液器,或至患者返回管线。
[0350] 图39示出了本发明的一个实施方案中的歧管3900的模块化组件。泵送片段3930包括分别的血液泵和废物泵3903、3913。模块3940包括用于血液和超滤液废物的模塑的流动路径3942和包括血液滤器插盒3908的血液滤器模块3950。这种模块化的设计允许各种模块迅速并且容易组装成单一的紧凑的结构。
[0351] 图40示出了图39的中部体模块3940的放大视图。在一个实施方案中,中部体模块4040包括用于携带血液和废物的内置的模塑的流动路径4041。连接部接驳口4042也被模塑入中部体模块中以用于连接(经过鲁尔连接器和管路)于在中部体模块4040的一个端部的泵以及连接于在中部体模块4040的另一个端部的血液滤器插盒。
[0352] 返回参照图38,血液被使用与歧管管子节段压力连通的血液容积泵3803经过血液入口接驳口3801和模塑的流动路径3802拉动入歧管3800中。血液容积泵3803把血液经过模塑的流动路径3804泵送入血液滤器插盒3808中。入口压力传感器区域3806、3807也在模塑的流动路径3802、3804中集成入歧管3800中。
[0353] 返回参照图38,来自渗透区3809的废物被废物容积泵3813经过模塑的流动路径3814拉动出来,模塑的流动路径3814在一个实施方案中具有被定位在流动路径3814在线的集成压力传感器区域3815。废物被泵送经过模塑的流动路径3816,模塑的流动路径3816在一个实施方案中具有与从歧管3800经过废物出口接驳口3819引出的流动路径3816在线的集成的血液泄漏探测器区域3817和废物流量计3818。
[0354] 在一个实施方案中,血液滤器插盒3808是一次性的并且可以被可移除地集成入歧管3800中的相应的模塑凹陷部中以完成超滤回路。歧管3800还提供向冗余的夹管阀的接口连接以防止空气进入患者的血管系统。夹管阀被设计为使得当没有电功率被施加时其在关闭(闭合)位置中。
[0355] 模塑的流动路径3802、3804、3810、3814和3816界定歧管3800的血液和超滤液流动回路。在一个实施方案中,这些流动路径包括一次性管路和多个适合于血液和超滤液接触至少3日的接口连接部件,例如接头。接头优选地被设计为具有至少5lbs.强度和至600mmHg的密封(即,大于血液滤器最大跨膜压力)。在一个实施方案中,相应于流动路径3802、3804和3810的血液套件管路具有对于供应50ml/分钟的血液流动来说合适的长度和内径。在一个实施方案中血液套件管路包括血液滤器的主要容积是小于40ml。血液套件管路与血液容积泵3803接口连接。在一个实施方案中,血液泵3803管路是Tygon牌的,型号-50-HL,大小1/8"内径×3/16"外径×1/32"壁。
[0356] 相似地,在一个实施方案中,相应于流动路径3814和3816的超滤液套件管路能够供应500ml/小时(8.33ml/分钟)的超滤液流动。超滤液套件管路还与废物容积泵3813接口连接。在一个实施方案中,废物泵3813管路是Tygon牌的,型号-50-HL,大小3/32"内径×5/32"外径×1/32"壁。
[0357] 因为本发明的歧管包括用于血液、透析液、废物流体和置换液的模塑的流动路径,所以整个的流动路径可以作为便携式复合歧管被容易地制造。歧管还是容易操纵的,因为所有的在歧管外侧的柔性管路被附接在歧管的一个侧部。具有内置的模塑的流动路径的歧管的使用增强防故障的处理,因为断开连接、不正确装配和泄漏的可能性与使用许多柔性管路的现有技术系统相比被最小化。新颖的歧管的使用还增强使用的容易性,导致加强的便携性。
[0358] 在一个实施方案中,透析歧管是独立的紧凑的单元,使得它们可以被分别地并且分离地用于处理来自患者的血液。在另一个实施方案中,两个歧管是可连接于彼此的以作为二阶段血液处理系统起作用。在一个实施例中,血液被从患者中的动脉部位拉动并且被传递经过透析器,在透析器大量的废物流体被对流出来。歧管被用于把相等的量的流体返回至血液,然后血液被再输注。歧管测量废物流体并且把废物流体倾泻入废物袋子中。
[0359] 如本领域的技术人员已知的,血液滤器或透析器、插盒3808包括中空管子,中空管子还包括其壁作为半渗透膜起作用的多个中空纤维管。所述多个半渗透的中空纤维管把血液滤器插盒3808分割为在中空纤维管内的血液流动区3805和在中空纤维管外的过滤器或渗透区3809。当血液经过血液区3805时,血浆水(plasma water)传递跨过中空纤维管的半渗透膜。血液滤器插盒3808是小的血液滤器。更浓缩的血液经过模塑的流动路径3810从插盒3808流动出来并且经过血液出口接驳口3811从歧管3800流动出来。空气探测器区域3812也被集成入血液返回流动路径3810中。
[0360] 以下是根据本发明的一个实施方案的血液滤器或透析器3808的示例性的物理规格:
[0361]
[0362]
[0363] 在透析治疗期间,患者或护理提供者把上文描述的歧管中的一个安装在透析机器中。参照图41,透析机器4101具有可以被宽地打开以安装一次性部件的前部门4103。为了安装,歧管4104简单地需要被插入被提供用于在透析单元4101中的目的的空间中,如上文讨论的。安装透析器4102还涉及在指定的凹陷部中的简单的插入。前部门4103设置有泵靴4105,泵靴4105使一次性部件的加载是非常容易的,因为没有泵管路需要被在滚动器和靴之间穿过。此外,这种排列允许以确保相对于非一次性部件例如压力读取器、传感器和另一个部件的合适的对准的方式安装透析器4102和歧管4104。这种集成的简单的途径使系统的容易的一次性的加载和清洁成为可能。其还确保流动回路被合适地配置并且易于使用。
[0364] 参照图42,在一个实施方案中,歧管4202被安装在透析系统4201的竖直的前部面板4203上。歧管4202被多个对准机构精确地定位在该面板4203上。第一对准机构包括在面板4203中的啮合歧管4202中的对准孔的多个对准钉。第二对准机构包括至少一个闩锁,至少一个闩锁把歧管4203保持在特定的安装位置中,直到门4206被关闭并且最终的精确的位置被获得。在一个实施方案中,歧管4202的背部覆盖物具有在顶部和底部的两个被设计在内的凸台。在门4206关闭之前,这些凸台把歧管4202闩锁在第一保持位置中,后续将歧管4202放置在精确的位置。凸台使可以被手动地或被要求使用手强制地除去歧管4202的球棘爪释放的闩锁机构成为可能。在另一个实施方案中,闩锁机构包括在背部覆盖物的顶部的被弹簧加压的插入和释放机构。该机构具有在顶部闩锁和底部闩锁之间的连接杆。当在顶部的释放机构被激活时,底部闩锁也被释放。
[0365] 第三对准机构包括引导歧管4202的大体的位置和配置的仿形的引导器4208。仿形的引导器4208优选地被成形以匹配或以其他方式补充歧管4202的物理结构。在一个实施方案中,引导器4208是大体上矩形的并且被配置为装配在被歧管4202的第一节段、第二节段和连接节段约束的空间内部,如上文描述的。第四对准机构包括门4206,门4206具有至少一个被弹簧加压的压力板4205,被弹簧加压的压力板4205把歧管4202捕获在门4206和前部面板4203之间,由此施加对于阀调和压力传感来说足够的压力。门4206还包括四个压力靴,四个压力靴把足够的压力施加于泵送部件以用于流体的旋转蠕动递送。
[0366] 应当意识到,对准机构中的一个或多个可以被使用,单独地或组合地,以实现用于歧管的必需的被对准和加压的位置。应当进一步意识到,对准机构被附接于在透析装置包围部内的凹陷区域的表面。凹陷区域包括前部面板4203,前部面板4203被相对于透析装置外壳凹陷并且被四个壁(第一壁、第二壁、第三壁和第四壁)约束,四个壁从前部面板4203向上地延伸以接触并且牢固地附接于透析装置包围部。凹陷部是足够深的并且被配置为接收门4206。
[0367] 传感系统
[0368] 如上文声明的,透析系统,并且特别地顶部控制器单元,包括传感系统,传感系统与歧管的部分,并且特别地歧管的透明的部分或内嵌在歧管结构中的膜交互以传感某些参数或状态,例如流量、温度、压力、钠的存在、氨的存在、pH水平、泄漏的血液、闭合或空气泡。例如,对于血液泄漏、空气泡和/或闭合的传感通过把附接于并且围绕歧管的预定义的区域的光学传感器包括在透析机器中而实现。歧管可以包括多个管路支持支架,多个管路支持支架帮助当歧管被安装并且门被关闭时把回路管路精确地放置入被分离地安装在仪器中的光学传感器例如Optek传感器中。传感器提供用于探测动脉管线中的闭塞、在透析器的下游的血液管线中的血液泄漏以及静脉血液管线中的空气探测的手段。支架把管路束缚在传感器的一个侧部,同时管路接驳口进行在传感器的另一个侧部的束缚。这些光学传感器是U形状的装置,管路当歧管被安装时被推动入U形状的装置中。管路支持支架提供对管路的支持,使得所有的三个这些传感器以与加载歧管相同的运动来加载,而没有在用户的部分上的额外的努力。用于流量、温度、断开连接、中央静脉压的传感系统以及其他的系统在下文进一步描述。
[0369] 流量
[0370] 在一个实施方案中,透析系统包括非侵入性的或非接触型的声学流量计,其具有在没有物理接触的情况下直接地在待被监视的流体中产生声信号的能力,由此基于声波传送时间的测量提供具有改进的精确度的流动测量。进一步设想,本发明的流量计可以与上文描述的歧管中的一个共同地使用,以非侵入地测量歧管内的流动。
[0371] 图43是描绘了示例性的光声流量计4300的电路图。流量待被测量的流体4304被流体承载通路4305(例如管子、管路或歧管节段)在被箭头4306指示的方向携带。光声脉冲流量计4300包括光发射系统4310。在一个实施方案中,系统4310还包括LED或固态激光器4307,其被信号源4308以正弦曲线的方式激发。在另一个实施方案中,Q开关红宝石激光器可以代替系统4310使用。本领域的技术人员将意识到,本领域中已知的任何其他的合适的光学发生系统可以被用于该目的。
[0372] 光学发生系统4310把光束4309经过被形成在通路4305(即歧管节段)的壁中的光学孔径或光学上透明的片段投射入流体4304中。在一个实施方案中,被投射的光束4309在垂直于流体承载通路4305的轴线4312的方向的方向横贯穿过流体4304。管子4305的光学上透明的片段应当是对光源4310的具体的波长透明的。光源4310的波长必须被选择为使得光被系统意图测量其流量的流体4304容易地吸收。应当进一步意识到,当该系统4300与歧管共同使用时,光学发生系统4310优选地被容纳在一次性歧管被加载入其中的透析机器中并且与歧管对准,使得所产生的光束4309经过歧管的透明片段。
[0373] 当光束4309传递入流体4304中时,与光束相关联的热能被吸收入流体中。热的吸收沿着光束4309的方向发生并且导致流体4304中的热扰动。这些热扰动作为局部的流体加热出现并且导致流体中的热膨胀。作为这种热膨胀的结果,声信号4311被产生。在流体4304中的压力变化的方面,该信号的特性复制了在用于给光学信号发生元件4307供能的信号源4308中产生的波形。这种压力变化在相对于光束4309的在通路4305中的地点的下游和上游二者传播。
[0374] 如本领域的技术人员已知的,被传感器4313和4314在上游和下游接收的声信号分别地将是与彼此不同相的。在上游和下游被接收的声信号之间的相位差的量是与流量成正比例的。应当进一步意识到,当与一次性歧管共同地使用时,传感器4313和4314被定位为紧邻于歧管管路或被内嵌在歧管管路内。
[0375] 据此,在一个实施方案中,声波探测器T14313和T24314被放置为分别地在上游和下游,距光束4309等距离,使得d14313a和d24314a是相等的。在另一个实施方案中,4313和4314的上游和下游放置不需要是距4309等距的。探测器T1和T2可以是压力换能器或声换能器例如麦克风。麦克风插盒例如由Panasonic Corporation制造的型号WM-55A103适合于本应用。
[0376] 探测器T14313和T24314询问流体流动以探测在探测器T14313和T24314被定位在其处的点处的声信号4311。当声信号4311的压力变化(声音)被经过导管4305的壁传递至传感器4313和4314时,询问听觉地发生。
[0377] 第一接收放大器4315被连接于探测器T14313并且第二接收放大器4316被连接以接收来自探测器T24314的输出。第一和第二放大器4315和4316的输出部通过增益控制元件4319和4320被分别地连接于第一和第二相敏探测器4317和4318的输入部。相敏探测器4317和4318的一个实施在本领域中称为“锁定放大器"。在信号被放大器4315、4316和相敏探测器4317、4318处理之后,4317和4318的输出被传递经过低通滤波器4321和4322以消除来自信号的从相敏探测过程4324留下的高频噪声分量或脉动。滤波器4321和4322的结果的输出是代表分别地被4313和4314探测到的声信号的相对于发生器4308的原始信号的相对相位的稳定信号。因此,光声流量计提供对上游和下游声信号的相对于基准信号的相位角的指示。
[0378] 在被相敏探测器元件的处理和相位探测之后,上游和下游相位角信号被供应至加法/减法单元4323。加法/减法单元4323的输出代表被声波探测器T14313在上游和被声波探测器T24314在下游接收的声信号之间的相位差。这些声信号之间的这种相位差与流体的流量成正比例并且,如本领域的技术人员将意识到的,可以被用作用于计算实际的流量或对流量的改变的基础。所有的用于计算流量的手段包括处理器和用于从至少相位差数据导出流量或流量的改变的软件算法。因此,加法/减法单元4323的输出提供对流体4304的流量的测量。
[0379] 因此,如上文描述的,在一个实施方案中,第一和第二低通滤波器4321和4322的输出电压信号被采样并且在单元4323中经受减法以确定指示通路4305中的流体的流量的相位差信号。本领域的技术人员将意识到,任何其他的合适的用于从声波探测器的输出计算相位差的手段可以被采用。所有的这样的手段包括处理器和用于计算相位差的硬编码的或软编码的软件算法。
[0380] 如上文提到的,被源4308产生的信号作为用于上游和下游声换能器T14313和T24314的基准信号起作用。图44描绘了被图43的源4308产生的基准信号4400a。图44描绘了在经受在图43的分别的增益控制放大器4315和4316的输出处的信号处理之后的分别的声波信号4400b和4400c。
[0381] 在一个实施方案中,光声脉冲流量计被利用以非侵入地监视透析系统例如本领域的技术人员已知的血液透析、血液滤过和/或血液透析滤过系统中的流体的流量。在透析期间需要测量其流量的流体主要地是分别地在血液和透析液回路中的血液和透析液;然而,本领域的技术人员将意识到,其他的流体例如输注液或浓缩液的流量也可以被使用本发明的流量计测量。本领域的技术人员将还意识到,本发明的流量计还能够指示何时在导管/通路中不具有流体的流动。
[0382] 因此,返回参照图43,如果低通滤波器4321和4322的信号输出之间的差是零,那么这将暗示没有流体的流动。在透析系统应用中,这种对没有流体的流动的探测是非常有用的,因为其可以指示严重的问题例如被连接于患者的动脉/静脉导管的断开连接。
[0383] 在另一个实施方案中,在歧管内的流动可以被热流量计测量。图56图示了与歧管5602共同地安装在透析机器5610中的本发明的热流体流动测量装置5601。如上文提到的,歧管5602具有被内嵌在其内的流体流动路径或管路回路5603。透析机器5610具有可以被打开以安装一次性歧管5602的前部门5620。此外,前部门5620配备有引脚5621,引脚5621当门
5620被关闭时可以接触歧管5602上的电气点以读取信息或提供电输入。
[0384] 热流体流动测量装置5601还包括一系列的接触部5611、5612和5613。操作性地,当流体(例如血液、透析液或其他的流体)在透析期间流动经过流体流动路径5603时,其经过被内嵌在塑料路径中的第一接触部5611。接触部5611与电力源电接触,电力源在一个实施方案中是在机器前部门5620上的引脚5621。电力源或引脚被透析机器5610中的控制器控制。电力源向接触部5611提供电刺激,电刺激起作用以基于正弦波方法微加热接触部。
[0385] 在一个实施方案中,微加热过程导致在正在被测量的流体中的在0.1至1.0摄氏度之间的温度增加。这借助于位于第一接触部5611处的微加热器被导致,微加热器在接收电刺激时产生热。用于本发明的热流体流动测量装置的微加热器可以使用任何适合于应用的设计被制造。在一个实施方案中,例如,微加热器由被围绕位于第一接触位置5611处的钉缠绕的10匝的30g铜丝制造。
[0386] 当接触部5611被微加热时,所得到的热能起作用以产生热波,热波从第一接触部5611向下游传播。多个接触部(其在一个实施方案中是在数量上两个,5612和5613)位于从第一接触部5611的下游并且被用于测量热波的传播的时间。测量到的波的相位然后被与被第一接触部5611产生的初始波比较。因此确定的相位差提供流量的指示。
[0387] 图45图示了使用可以被用于流动测量的探针的流量计4500a的一个实施方案。通道4501a包围流体例如水或盐水溶液(0.9N)4503a流动经过其的容积4502a。在一个实施方案中,通道具有在1mm至5mm的范围内(优选地3mm)的高度,在3mm至13mm的范围内(优选地2 2
8mm)的宽度,在10mm至100mm的范围内(优选地50mm)的长度,在3mm至65mm的范围内(优选地24mm2)的通道面积,和/或在1.5mm至7.22mm的范围内(优选地4.36mm)的水力直径。
[0388] 流体流动的方向被箭头4504a示出。激发探针4505a被定位为紧邻于接收器探针4506a。探针的相对距离是设计的重要的特征,因为电刺激需要被激发钉或探针4505a递送的激发频率取决于探针4505a和4506a之间的间距。在一个实施方案中,激发探针和接收器探针被定位为距彼此小于2英寸,优选地小于0.8英寸并且更优选地约0.6英寸,或约15mm。
在本实施方案中,激发和测量仅需要两个接触部,每个接触部具有接触表面4507a。本领域的技术人员将意识到,在这样的情况下,仅将需要两个接触点,而不是三个,如上文关于一次性歧管和透析机器示出的。
[0389] 激发钉或探针4505a内嵌在通道4501a中并且起作用以向流动的流体提供热刺激(以热波的形式),热刺激然后被接收探针4506a传感和测量。在一个实施方案中,钉或探针的主体直径在0.03英寸至0.15英寸的范围内(优选地0.08英寸),顶部接触表面的直径在0.025英寸至0.2英寸的范围内(优选地0.125英寸),并且由镀金的黄铜或任何其他的具有约8500kg/m3的密度、约1.09W/mK的热导率和/或约0.38J/KgK的比热的材料制造。
[0390] 在一个实施方案中,激发钉或探针4505a和接收钉或探针4506a二者的主体被模塑入歧管中(使得钉或探针不与流体物理接触并且其顶部接触区域被暴露于歧管的一个表面)。钉或探针的主体在小室的中心并且流体经过其。钉的顶部被暴露,所以来自仪器面板的被弹簧加压的接触部可以进行热接触,由此使热能在被弹簧加压的接触部和钉的接触表面之间的传递成为可能。
[0391] 例如,参照图45,示出了本发明的热流量计4500b的一个实施方案的侧视图,其中接触表面4507b被暴露,使得来自透析机器的仪器面板的被弹簧加压的接触部(在图56中示出的)可以进行热接触并且热能可以被在被弹簧加压的接触部和激发钉或探针4505b之间交换。通道4501b包围流体4503b流动经过其的容积4502b。流体流动的方向被箭头4504b示出。激发探针4505b被定位为紧邻于接收器探针4506b,探针中的每个具有接触表面4507b。
[0392] 图45还示出了来自流动通道4501c的端部的热流量计4500c,流动通道4501c容纳流体4503c流动经过其的容积4502c。在此,仅接收器探针4506c和其的接触表面4507c被示出。在一个实施方案中,接收接触部或钉4506c的结构相似于激发钉4505b的结构并且其顶部4507c也被暴露。在一个实施方案中,接收器钉表面4507c也被设计为低热质量被弹簧加压的接触部。激发4505a以及接收器4506a探针或钉由合适的具有高的热和电传导率的材料制造,其在一个实施方案中是镀金的黄铜。
[0393] 在一个实施方案中,仪器例如透析机器中的低热质量被弹簧加压的接触部使用加热器和热敏电阻器被温度控制。温度控制功能然后产生在探针中的余弦温度波形,其反映在被弹簧加压的接触部中产生的温度波。所得到的作为激发钉的特征的激发信号可以被定义为:
[0394] es=Escos(ωt),其中ωt是激发频率。
[0395] 接收器钉的热响应可以以以下的等式为特征:
[0396] rr=Rrsin(ωt+θ)其中ωt是激发频率并且θ是相位。
[0397] 热波的传播的一个代表在图46中示出。参照图46,箭头4601代表通道中的流体路径4602中的流体的流动的方向(以及因此热波的传播的方向)。测量接触部被4611、4612和4613代表。因为微加热器被定位为紧邻于第一接触部4611,所以热波在第一接触部初始,并且然后朝向位于从第一接触部4611的下游的分别的第二和第三接触部4612和4613传播。第二接触部4612和第三接触部4613之间的距离是4615。
[0398] 图46还图示了在三个接触部4611、4612和4613的示例性的波动测量4620。在第一接触部4611产生的热波被第一曲线4621代表。考虑到流动是从左至右,该热波将略微地在其到达在第三地点处的接触部4613的时间之前到达在第二地点处的接触部4612。第二和第三接触部4612和4613的输出分别地被曲线4622和4623代表。
[0399] 第二信号4622和第三信号4623之间的相移可以通过比较对于每个的零交叉的点被测量。第二接触部4612和第三接触部4613之间的距离4615除以分别的零交叉之间的时间(也被称为渡越时间(time of flight))等于流体的流动速度。此外,把被计算的流动速度乘以流体路径的直径得到体积流量。
[0400] 热波可以通过使用温度传感器被监视,温度传感器在一个实施方案中由热敏电阻器例如Cantherm,零件编号,CWF4B153F3470构建并且被放置为与被定位在第二和第三位置处的接触部物理接触。在一个实施方案中,接触部被使用在透析机器本身中的热测量装置(其与两个金属接触部接触)监视/测量。这消除了对把分离的温度测量装置集成在歧管中的需要。应当意识到,在一个优选的实施方案中,透析机器或非一次性仪器容纳处理器和存储器,该存储器记录:a)被通信至在一次性歧管的安装后与激发探针的接触表面物理地连通的被弹簧加压的接触部的激发频率,以及b)被接收器探针传感并且被经过接收器探针的接触表面通信至透析机器或非一次性仪器中的被弹簧加压的接触部的温度波的频率。处理器实施本文描述的推导以基于上文列出的被存储的数据确定温度水平和改变。应当进一步意识到,该温度信息然后被通信至显示驱动器,显示驱动器使信息被通过用户界面视觉地显示或可闻地通信。
[0401] 在一个实施方案中,探测回路通过混合激发信号和接收器信号、进行比较并且把结果提交至低通滤波器以得到相移信息检查相移。更特别地,在一个实施方案中,相位探测通过把激发频率乘以接收器信号来实现。结果得到具有两个分量的信号,一个以频率的二倍并且一个是与激发基准信号和接收器信号之间的相移成比例的直流信号。这被以下的等式代表:
[0402] 相位探测:
[0403] 其中es是激发信号,rr是接收器信号,ωt是激发频率并且θ是相位。
[0404] 如上文描述的,本发明依赖于用于渡越时间测量的波并且不依赖于热脉冲。这种方法提供显著的优点,因为热脉冲扩散,导致在脉冲边缘开始之处的不确定性,并且实质上增加测量噪声。波也扩散,但是即使在扩散之后,正弦波的相移仍保持为较为明显。因此,依赖于正弦波以进行测量引入更少的噪声。
[0405] 本发明的另一个优点在于把热流量传感器集成在一次性歧管中。在歧管中使用的塑料作为热绝缘体起作用,这有益地实现测量。如上文提到的,在一个实施方案中,被弹簧加压的探针被用于热流动测量装置,这使其是低成本的并且一次性的。
[0406] 本发明的装置的设计根据三个参数来优化:a)热激发(热输入信号的频率),b)预期的流量(较慢的流量需要与较高的流量不同的频率,因为较慢的流量经历更多的扩散),以及c)热扩散的量和程度。在一个实施方案中,为了最小化噪声以及改进探测精确度,人们可以把关键的参数设置为是恒定的,例如恒定的相移、恒定的频率或恒定的流动面积。
[0407] 在一个实施方案中,恒定相移方法通过使用相敏探测器和数字控制的频率发生器被实施。如上文描述的,渡越时间导致激发探针和接收器探针之间的物理延迟。在高流量,物理延迟是小的,而在低流量,物理延迟是大的。因此,为了保持恒定相移,激发频率通过来自相敏探测器的反馈被控制。反馈环路被包括在系统中,使得重要的参数例如激发频率可以被动态地调整,使得相移保持恒定。
[0408] 参照图53,示出了采用恒定相移操作模式的本发明的一个实施方案的示意图。流动经过通道5301的液体5303经过激发探针5305和接收器探针5307,激发探针5305和接收器探针5307被分隔距离5309,如上文描述的。在一个实施方案中,通道5301是被设计为被插入透析机器中并且在透析机器内使用的歧管的一部分。一旦被安装在透析机器内,那么激发探针5305的接触表面热接触加热器驱动器5325并且接收器探针5307的接触表面热接触温度传感器5330。加热器驱动器5325和温度传感器5330与被在透析机器中实施和/或被集成在透析机器内的回路电接触。
[0409] 在激发探针侧,回路包括基准信号源5310,基准信号源5310把具有相位θr的信号传输至加和装置5315,加和装置5315也接收来自低通滤波器的信号输入θm,如下文描述的。两个信号被加和,处理,或以其他方式比较以获得输出,输出被传输至电压控制振荡器
5320。电压控制振荡器5320输出信号Rp,其中Rp=Kp sin(ωt),信号Rp被加热器驱动器5325接收并且被用于驱动加热器驱动器5325以获得激发波,激发波被热地通信至探针5305。
[0410] 热波作为流体5303流量的函数传播经过通道5301。接收器探针5307把被传感到的热波热地通信至温度传感器5330。被传感到的热波可以被作为以下的函数表示:Es=Ks sin(ωt+θc)。
[0411] 如上文声明的,温度传感器5330与在透析机器内实施的或被集成入透析机器中的回路电接触。被传感到的热波(Es)被通信至采用倍增器部件5335的同步相敏探测器,同步相敏探测器把被传感到的热波(Es)与来自电压控制振荡器5320的输入信号(Rn,其中Rn=Kn cos(ωt))相乘,获得输出信号EsRn。输出信号EsRn(其可以被表示为EsRn=(KnKs/2)[sin(2ωt+θc)+sin(θc)])被输入放大器5340中并且被放大常数K1。已放大的信号然后被输入低通滤波器5345中,低通滤波器5345接收来自电压控制振荡器5320的输入信号。来自电压控制振荡器5320的输入信号被用于变化低通滤波器5345的滤波阈值或截止频率。来自低通滤波器5345的输出(θm,其可以被表示为函数KnKsK1θc/2)是指示流体的流量(其可以通过任何本领域的技术人员已知的手段被导出)的信号并且被通信返回至所述加和装置5315,以用于在从电压控制振荡器5320产生基准信号中使用。
[0412] 图47是图示被动态地调整以保持恒定相移的激发频率的范围的表格。参照图47,确定过程把各种参数的值考虑在内,例如流量4701,其在25至600ml/min之间变化,以及流动速度4702,其范围从17.36mm/s至416.67mm/s。使用用于探针分离4703的15mm值,激发频率4705将从~1.16Hz@25ml/min流量至27.78Hz@600ml/min流量变化。行程时间和接收器振幅的相应的值分别地在行4704和4706中详细描述。注意,接收器振幅对于恒定相移被保持在零。
[0413] 图48图示了相敏探测器的输出相对于时间轴4810的曲线图。各种曲线4820代表对于流量的不同的值的相敏探测器的一系列的输出。图48中的图已经被对于在图47的表格中给出的值作图;据此,流量范围从25至600ml/min并且相应的激发频率从~1.16Hz至27.78Hz变化。
[0414] 在另一个实施方案中,相移可以被允许变化,同时频率激发保持恒定。恒定频率激发被与相敏探测器共同地采用,而反馈机理不被使用。图49图示了详细描述当激发频率4906被保持在1.157Hz时的各种参数的值的表格。该值是对于在25至600ml/min之间变化的流量4901以及范围从17.36mm/s至416.67mm/s的流动速度4902。当探针分隔4903被设置在
15mm时,行程时间4904的相应的值范围从0.0360秒(对于1.000的谐波4905值)至0.864秒。
变化相移反映在行4907中详细描述的相应的接收器振幅值中。接收器振幅4907在最后的行中示出。图50A和50B图示了相敏探测器的输出(对于在图49中指定的流量的范围)的两组相对于时间轴的曲线图。
[0415] 参照图54,示出了采用恒定频率操作模式的本发明的一个实施方案的示意图。流动经过通道5401的液体5403经过激发探针5405和接收器探针5407,激发探针5405和接收器探针5407被分隔距离5409,如上文描述的。在一个实施方案中,通道5401是被设计为插入透析机器中并且在透析机器内使用的歧管的一部分。一旦被安装在透析机器内,那么激发探针5405的接触表面热接触加热器驱动器5425并且接收器探针5407的接触表面热接触温度传感器5430。加热器驱动器5425和温度传感器5430与被在透析机器中实施和/或被集成在透析机器内的回路电接触。
[0416] 在激发探针侧,回路包括基准信号源5410,例如正弦发生器,基准信号源5410把具有频率(例如在或约1.17Hz)的信号传输至加热器驱动器5425。正弦发生器5410输出信号Rp,其中Rp=Kp sin(ωt),信号Rp被加热器驱动器5425接收并且被用于驱动加热器驱动器5425以获得激发波,激发波被热地通信至探针5405。优选的是,激发频率是足够低的,所以在低流量相移小于80度。正弦发生器5410也输出信号Rn,其中Rn=Kncos(ωt),信号Rn被倍增器5435和低通滤波器5445接收,如下文进一步描述的。
[0417] 热波作为流体5403流量的函数传播经过通道5401。接收器探针5407把被传感到的热波热地通信至温度传感器5430。被传感到的热波可以被作为以下的函数表示:Es=Ks sin(ωt+θc)。温度传感器5430与在透析机器内实施的或被集成入透析机器中的回路电接触。被传感到的热波(Es)被通信至采用倍增器部件5435的同步相敏探测器,同步相敏探测器把被传感到的热波(Es)与来自正弦发生器5410的输入信号(Rn,其中Rn=Kncos(ωt))相乘,获得输出信号EsRn。输出信号EsRn(其可以被表示为EsRn=(KnKs/2)[sin(2ωt+θc)+sin(θc)])被输入放大器5440中并且被放大常数K1。已放大的信号然后被输入低通滤波器5445中,低通滤波器5445接收来自正弦发生器5410的输入信号。来自正弦发生器5410的输入信号被用于变化低通滤波器5445的滤波阈值或截止频率。来自低通滤波器5445的输出(θm,其可以被表示为KnKsK1θc/2的函数)是指示流体的流量(其可以通过任何本领域的技术人员已知的手段被导出)的信号。应当意识到,低通滤波器的频率截止是激发频率的约1/20。低通滤波器应当把2ωt信号衰减至少80db。
[0418] 图55示出了使用低流量和高流量在恒定频率模式中产生的信号的相对相移。激发信号5530在时间0被产生。在低流量方案中,被传感到的信号5520被从激发信号5530偏移θLF的相移5540,而在高流量方案中,被传感到的信号5510被从激发信号5530偏移θhF的相移5550。
[0419] 与恒定的还是变化的相移方法被采用用于测量无关,使用相移作为流动测量的基础是与使用振幅相比有利的,因为振幅可以被外部因素例如外部温度影响影响,外部因素应当不影响相移。
[0420] 在一个实施方案中,本发明的非侵入性的热流体流量计提供20ml/min至600ml/min的测量范围。在上文列出的因素之外,其他的对于为了最优的性能设计热流量计来说重要的因素包括流动特征例如流态、最大雷诺数和流动速度;以及流动小室的物理特征,例如通道高度、宽度和长度。
[0421] 图51包括列出了被优化为使得流态被保持在层流并且雷诺数5109被保持为低于2000,用于600ml/min的最大流量5101的设计参数的示例性的组的表格。为了把流态保持为层流,通道大小包括通道高度5102、宽度5103、长度5104、面积5105和水力直径5106被优化。
雷诺数5109在把流动速度5107、水力直径5106的值以及水5108的性质例如密度、动态粘度和运动粘度考虑在内之后被计算。
[0422] 在一个实施方案中,流动小室被设计为用于紊流流态,而不是层流。流动小室的这样的设计导致恒定的流动面积,这进而将涉及流动面积被围绕探针增宽(其对于层流来说被围绕探针减少)。当面积在探针增宽时,流体围绕探针在速度上增加并且增加的速度使流态运动为湍流流态。
[0423] 图52是图示了示例性的用于激发和接收器探针的设计参数的另一个组的表格,激发和接收器探针在一个实施方案中被控制大小,以具有为了最优的性能的低于1毫秒的热时间常数5205。为了本目的被考虑在内的因素是材料(其在这种情况下是黄铜)以及其性质5201,例如密度、热导率和比热,以及对流系数5204。据此,探针的大小5202和暴露的表面积
5203被确定。
[0424] 温度传感
[0425] 如上文提到的,用于透析系统的紧凑歧管还包括温度传感器。在一个实施方案中,温度传感器被定位在储液器组件中。然而,温度传感器也可以被定位在储液器组件外部,并且在这样的实施方案中,其可以被集成入歧管中。
[0426] 具有使用可以被集成入歧管中的温度传感的三个主要途径。本领域的技术人员将意识到,每个途径的变化形式是可能的,而不导致在歧管的总体设计中的任何显著的改变。这些途径如下地讨论:
[0427] 高传导性流体接触
[0428] 在高传导性直接流体接触途径中,一个金属盘被内置入歧管的壁中,使热敏电阻器或本领域中已知的任何其他的合适的温度传感器被放置为在透析机器侧与金属盘接触并且在患者侧与流体接触。流体温度可以因此通过金属盘被监视。
[0429] 常规地,温度通过把热敏电阻器直接地放置在流体流中被监视。金属盘的在本发明中的用于监视温度的用途提供降低沾染的风险的优点,并且因此避免对于热敏电阻器的清洁的需要。
[0430] 本领域的技术人员将意识到,任何合适的金属的金属盘,例如316型不锈钢,都可以被用于该目的。此外,任何对于目前的应用合适的材料的热敏电阻器可以被采用。一个示例性的热敏电阻器是由BetaTherm制造的零件编号10K3A1A。
[0431] 在一个实施方案中,金属盘是用于单一患者用途的并且一次性的,并且热敏电阻器是透析机器的一部分并且被反复使用。
[0432] 中等传导性流体接触
[0433] 紧凑歧管的压力换能器膜是相对薄的并且由中等热导率材料构建。通常使用0.040"的厚度并且可以从0.005"至0.050"变化。如果材料越薄以及热导率越高,那么压力换能器膜将越精确地把透析流体的温度传输至被安装在透析机器内的压力换能器。通过设计,它们与在机器侧的压力换能器和在患者侧的流体直接接触。把合适的温度传感器放置在压力换能器内允许流体温度的监视。本领域中已经已知的某些压力换能器包括用于根据温度漂移校正换能器的温度传感器。这样的具有温度传感特征的压力换能器可以被用于本申请的目的。一个示例性的组合压力-温度传感器是由Micron Instruments制造的型号MPT40。采用传感器的这样的组合避免被测量的流体的直接接触并且减少歧管中的部件的数量。这提供对金属盘的替代形式,如在上文的途径中使用的。
[0434] 间接光学温度测量
[0435] 如果歧管流体路径的塑料壁具有有限的厚度,例如约0.020",那么塑料壁将在温度上与在歧管内的流体平衡。在这样的条件下非接触光学温度测量可以从被变薄的壁的外侧进行,并且其内的流体温度可以被测定。一个示例性的非接触光学温度传感器是由Melexis制造的零件编号MLX90614。非接触途径提供优点,即其不需要歧管中的另外的零件。唯一的要求是流体路径壁中的薄的片段。该途径提供低成本并且仍然保持单一患者使用安全性特征。
[0436] 一个可能的用于歧管中的集成电导传感器的实施是作为具有接触透析液流体的电引脚的电导电池。一个示例性的电导电池的技术细节在图57中示出。参照图57,电导电池5700包括用于把小的恒定的电流施加于流体的偏置引脚5701。传感引脚5702探测流体中的电压,其中探测到的电压的量级取决于流体的电导和温度。温度使用被放置为紧邻于电导电池5700的热敏电阻器5703来测量。可选择地,温度可以通过上文公开的手段中的一个被测定。因为已知在传感引脚5702的被测量的温度和电压的值,所以流体的电导可以被测定。
[0437] 通过偏置引脚5701施加的电流可以是直流或交流信号并且通常在50-100kHz频率范围内。在一个实施方案中,所施加的电流的量级具有10mA的数量级。传感引脚5702通常在电导电池的制造期间被按深度定位,典型地至+/-0.001英寸的深度,使计算过的溶液在电池中。热敏电阻器5703具有典型的0.5摄氏度的精确度。电导电池可以通过把传导性引脚(偏置引脚和传感引脚)驱动或模塑就位入歧管主体中使得它们与透析液接触但是不允许透析液从歧管泄漏出来而被内置入紧凑歧管的透析液流体路径中。
[0438] 断开连接探测
[0439] 所公开的透析系统的实施方案还结合用于探测在正在被用于任何血液处理治疗程序的体外血液回路中的断开连接的设备和方法。血液处理治疗程序的实例包括血液透析、血液滤过、超滤或血浆分离置换。用于建立体外血液回路的血管通路典型地通过使用透皮针或鲁尔连接的导液管来获得。断开连接设备和方法使用被患者的正在跳动的心脏产生的压力脉冲作为向脉管系统的完整的针或导液管连接的指示物。被患者的心脏产生的压力脉冲是小的;在体外血液回路的静脉回流线中更是如此。为了探测小的压力脉冲,本发明使用交叉相关方法,其中基准心脏信号被与压力脉冲信号交叉相关。
[0440] 图58是根据本发明的一个实施方案的用于探测患者的从体外血液回路的断开连接的系统5800的框图。系统5800包括到来的动脉血液回路5802、透析器5804、透析液回路5806、患者脉搏压力换能器5808、用于基准的患者心脏信号发生器5815、断开连接监视器
5820、控制器5825和返回静脉血液回路5810。在本发明的各种实施方案中,被从患者拉动的血液被经过动脉血液回路5802传递经过透析器5804并且来自透析器5804的已清洁的血液被经过静脉血液回路5810返回至患者。被从透析器5804排除的被沾染的透析液被在透析液回路5806内净化或再生并且被泵送返回入透析器5804中。在本发明的各种实施方案中,已清洁的血液被经过透皮针或鲁尔连接的导液管返回至患者的身体。返回静脉血液回路5810中的血液流量典型地在300-400ml/min的范围内。应当意识到,任何合适的透析回路可以被采用。
[0441] 压力换能器5808测量经受血液处理治疗程序的患者的压力脉冲并且把脉搏压实质上连续地通信至断开连接监视器5820。在一个实施方案中,换能器5808是被定位在透析血液管线(到来的动脉血液回路5802或返回静脉血液回路5810)中的任何地点的侵入性的或非侵入性的静脉压力传感器。在另一个实施方案中,换能器5808是特别地被定位在透析器5804和患者之间的透析血液管线中(即在返回静脉血液回路5810中)的侵入性的或非侵入性的静脉压力传感器。非侵入性的空气泡探测器和/或夹管阀(未示出)可选择地被定位在换能器5808和向患者的鲁尔连接部之间。在本发明的一个实施方案中,压力换能器5808被定位为紧邻于被插入患者的身体中的用于提供相应于返回静脉血液回路5810的血管通路的针或导液管。压力换能器5808被定位为紧邻于针或导液管以维持波形保真度。在其他的实施方案中,压力换能器5808可以被连接在返回静脉血液回路5810中的任何地点。在本发明的一个实施方案中,被压力换能器5808产生的压力信号是交流(AC)信号,该交流(AC)信号不是血管压力的精确的测量。因此,压力换能器5808不是高精确度换能器。
[0442] 基准信号发生器5815把患者的心脏信号实质上连续地通信至断开连接监视器5820用于参考。在本发明的一个实施方案中,基准心脏信号从被连接于把处理过的血液供应至患者的针或导液管被连接于其的同一个身体部分(例如臂)的体积描记器获得。在本发明的另一个实施方案中,基准心脏信号从手指脉搏传感器/血氧计获得。在本发明的各种其他的实施方案中,基准心脏信号可以通过心电图(ECG)信号、实时血液压力信号、听诊器、来自血液抽出管线的动脉压力信号、血氧计脉冲信号、可变部位体积描记器信号、透射性和/或反射性体积描记器信号、声学心脏信号、腕脉搏获得或从任何其他的本领域的技术人员已知的心脏信号源获得。
[0443] 断开连接监视器5820探测返回静脉血液回路5810中被针或导液管从经受血液处理治疗的患者的身体的断开连接导致的中断。为了探测断开连接,监视器5820处理患者脉搏压力换能器信号和心脏基准信号。本领域的技术人员将意识到,这样的断开连接可以被针或导液管由于任何原因例如患者的突然运动被从患者的身体拉动出来导致。断开连接监视器5808参照图59详细地描述。控制器5825是任何本领域的技术人员已知的微处理器。控制器5825的功能是接收来自监视器5820的处理过的输入并且据此当需要时触发合适的动作。
[0444] 本领域的技术人员应当意识到,压力换能器和基准信号通过被结合入基准信号发生器和压力换能器中的发射器被通信至断开连接监视器5820。发射器可以使向相应的接收器的有线的或无线的通信成为可能。相似地,来自断开连接监视器5820的数据被通过有线的或无线的连接部通信至控制器5825。在一个实施方案中,这样的信号通信使用合适的有线的或无线的公共和/或私人网络例如LAN、WAN、MAN、蓝牙网络和/或国际互联网被使能。此外,在一个实施方案中,断开连接监视器5820和控制器5825被定位为紧邻于彼此并且紧邻于压力换能器5808和心脏基准信号发生器5815。在一个可选择的实施方案中,断开连接监视器5820和控制器5825中的一个或两个被定位在距彼此和/或距系统5800的其余部件远距离处。
[0445] 图59是根据本发明的一个实施方案的用于探测返回静脉血液回路中的断开连接的设备5900的框图图示。断开连接监视器5900包括压力换能器接收器5902、基准信号接收器5904和交叉相关处理器5906。换能器接收器5902和基准信号接收器5904接收来自图58的分别的压力换能器5808和心脏基准信号发生器5815的输入信号。
[0446] 被压力换能器接收器5902获得的压力脉冲信号和被基准信号接收器5904获得的基准心脏信号被存储在本地存储器中并且还被供入至交叉相关处理器5906,交叉相关处理器5906进而计算两个信号之间的相关性。处理器5906的输出被供入图58的控制器5825中。如果被交叉相关处理器5906产生的输出指示两个输入信号之间的相关性,那么推论返回静脉血液回路是完整的。如果被交叉相关处理器5906产生的输出不指示两个输入信号之间的相关性,那么推论返回静脉血液回路由于针或导液管拉动出来被中断,并且图58的控制器
5825触发合适的动作,例如发出指示性的警报和/或把透析系统完全地或部分地停机。
[0447] 本领域的技术人员应当注意,本发明设想任何联系、相应或以其他方式产生在压力换能器信号和基准信号之间的可测量的、可量化的和/或可预测的关系的交叉相关处理器。在本发明的一个实施方案中,交叉相关通过使用锁定放大器来进行,例如由加利福尼亚州的Stanford Research Systems制造的SR810锁定放大器。各种已知的用于非常低的信噪比系统和心脏信号的交叉相关探测的技术可以被结合在交叉相关处理器5906中。
[0448] 在本发明的各种实施方案中,由交叉相关处理器5906计算的交叉相关函数被用于测量两个输入信号即基准心脏信号和压力脉冲信号之间的相似度。交叉相关函数的计算包括在指定的时间框架或时间窗内两个输入信号的相应的点对的乘积的和的计算。计算还通过包括首项或后项把两个输入信号之间的任何潜在的相位差考虑在内。相应于交叉相关函数的数学公式被表达为:
[0449]
[0450] 其中N代表样本的数量,j代表滞后系数,并且x1和x2分别地代表两个输入信号。
[0451] 图60是示出了根据本发明的一个实施方案的确定患者的从体外血液回路的断开连接的方法的示例性的步骤的流程图。在操作中,包括多个指令并且在处理器上执行的透析系统软件提示患者首先附接心脏信号发生器(例如手指脉搏血氧计)以获得6005基准信号。在该点,患者可以或可以不被连接于透析系统。在捕获心脏基准信号的之后或同时,包括多个指令并且在处理器上执行的透析系统软件提示患者连接于图58的系统5800,作为这的结果患者脉搏压力换能器信号也被获得6010。然后,交叉相关处理器试图相关6015基准信号和换能器信号。如果没有相关性可以在启动时被实现,那么在一个实施方案中,患者被提示关闭6020所有的或某些部件或,在另一个实施方案中,图58的系统5800的控制器5825自动地进行这些操作以降低噪声水平。例如,把透析系统的泵停机可以降低噪声并且使捕获和相关两个信号是更容易的。在另一个实施方案中,交叉相关被尝试,然后产生噪声的系统部件,例如泵,被开启。因此,先尝试锁定相关性,然后完全的系统启动可以被完成。在一个实施方案中,如果没有相关性被锁定,那么警报被触发,指示患者透析系统可能具有异常。
[0452] 然而,如果相关性被获得,那么该相关性被实质上持续地监视6025。如果具有在该相关性中的任何偏离,那么警报被触发6030,指示可能的泄漏或,可选择地,系统被停机(完全地或部分地)并且为了再建立被相关的信号的尝试被再次地尝试。在一个实施方案中,如果相关性的本质改变或偏离超出预定义的阈值或在预定义的阈值内,那么某些系统部件例如泵被停机并且交叉相关处理器尝试再建立相关性。如果相关性不能够被再建立,那么警报被触发。在另一个实施方案中,如果相关性的本质改变或偏离超出预定义的阈值的范围或在预定义的阈值的范围外,那么某些系统部件例如泵被停机并且在任何另外的为了再建立相关性的尝试之前,警报被立即地触发。
[0453] 这种用于监视断开连接的途径提供相对于现有技术的某些明显的改进。首先,不相似于现有技术,本发明是对针是仅被略微地拉动出来还是其被从插入部位移除并且拉动非常多的距离响应性的。第二,本发明不需要任何额外的设备被放置在插入部位,例如防潮垫。第三,通过交叉相关患者的自己的心脏信号,假阴性被很大地消除。第四,压力脉冲传感和交叉相关的组合使本发明是独特的并且能够探测低信噪比信号。第五,连续地监视交叉相关状态使系统能够探测可能潜在地指示断开连接的小的信号偏离。因此,用于正在被用于任何血液处理治疗程序的体外血液回路中的断开连接的探测的设备和方法被本发明提供。
[0454] 中央静脉压监视
[0455] 本文公开的透析系统的实施方案还结合用于监视和控制超滤(UF)速率使得经受透析/超滤的患者内的流体的体积保持在期望的范围内的方法和系统。本发明把中央静脉压(CVP)监视集成入透析系统中并且使用CVP测量控制超滤(UF)的速率。CVP反馈数据帮助作为安全性手段防止流体的过度移除并且提供用于为了改进疗法滴定UF速率的手段。
[0456] CVP测量要求测量在用于透析的中心静脉导管中存在的平均压力,由此把CVP测量与透析集成。为了测量CVP,合适的导液管需要被插入患者的身体中,使得导液管的端头被胸廓内地放置。图61描绘了为了血液滤过和CVP测量的中心静脉导管的示例性的部位。参照图61,中心静脉导管(CVC)6110被用于提供用于UF的血管通路。在本具体的实施方案中,被选择用于CVC6110的进入部位6120在锁骨(锁骨)6130下方在锁骨下静脉6140处。本领域的技术人员将意识到,患者的身体中的任何其他的大的静脉可以被选择作为可选择的用于插入CVC的部位,同时保持其端头在胸廓内。CVC6110经过皮下通道6150并且使用夹持器6160和标准鲁尔锁定器6170的帮助被固定。在CVC的端头处在出口部位6180处的压力等于中央静脉压。
[0457] 在本发明的一个实施方案中,CVC6110被用于在血液滤过期间到达血液,并且中央静脉压可以使用在血液滤过机器内的传感器来测量。在这种情况下,进行CVP测量不需要另外的设备。在另一个实施方案中,二管腔CVC被用于血液滤过。在这种情况下,近端管腔可以被用于血液抽出并且远端管腔(在端头处)可以被用于返回血液。管腔或接驳口可以提供CVP测量。在两种情况下,当CVC被用于血液到达时,本发明的系统提供在进行CVP测量之前血液流动被暂时地停止以使压力的精确的测量成为可能。因此,在一个实施方案中,本发明集成入常规的透析机器程序控制,以用于基于预确定的CVP测量速率停止经过装置的血液流动。
[0458] 图62是图示了本发明的透析控制系统的框图。参照图62,提供从用户(临床医师)接收指示CVP测量的优选的频率和CVP值的优选的范围的输入的用户界面6210。这些输入被提供至中央透析控制器6220。中央透析控制器6220是可以被用于调节CVP监视并且基于被监视的CVP调节血液透析/超滤的速率的可编程系统。取决于被用户测定的CVP测量的频率,中央透析控制器6220在CVP测量待被记录时把信号通信至透析系统6230中的血液泵以停止血液流动。接着,透析系统6230中的CVP传感器进行测量并且把其通信至中央透析控制器6220,中央透析控制器6220可以把其传输至用户界面6210以进行显示。在CVP测量完成之后,中央透析控制器6220把另一个信号通信至透析系统6230,使血液流动恢复。中央透析控制器6220也保持追踪测量到的CVP值以确定它们是否在用户定义的范围内。CVP减小至低于被定义的范围将指示血容量减少。在这样的情况下,中央透析控制器6220中止超滤的过程,使得没有另外的流体可以被除去,直到CVP被恢复至期望的范围。在一个实施方案中,中央透析控制器6220把超滤液移除滴定至2-6mmHg的范围,这把CVP保持在期望的范围内。
[0459] CVP监视和UF调节系统设想与常规的透析机器集成的宽范围的CVP测量系统。测量CVP可以被以多种方式实现。在一个实施方案中,CVP可以使用被定位在合适的导液管的端头处的传感器来测量。在另一个实施方案中,CVP可以使用被定位在距导液管远距离处的专用压力换能器来测量,使换能器被保持在与心脏相同的水平处。图63是后一个实施方案的示例性的图示。参照图63,示出了用于到达血液的导液管6310。导液管6310被放置在中央腔静脉6320中。压力换能器6330在心脏水平测量中央静脉压。在这种情况下,CVP测量被用于以与当CVC被使用时的相同的方式控制血液滤过的速率。
[0460] 在另一个实施方案中,CVP使用在血液滤过机器内的远程传感器来测量。参照图64,图示了具有CVP测量的设置的示例性的血液回路6400。当血液从患者进入回路6400中时,抗凝剂被使用注射器6401注射入血液中以防止凝结。提供了用于中央静脉压的测量的压力传感器PBIP6410。血液泵6420把来自患者的血液推动入透析器6430中。两个其他的压力传感器PBI6411和PBO6412被分别地设置在透析器6430的入口和出口处。压力传感器PBI6411和PBO6412帮助保持追踪和保持在血液透析系统中的优势点处的流体压力。一对旁通阀B6413和A6414也随透析器设置,这确保流体流动在闭环透析回路中的期望的方向。用户可以在接驳口6417处除去空气,如果空气泡已经被传感器6418探测到的话。血液温度传感器6416被设置在空气消除接驳口6417之前。AIL/PAD传感器6418和夹管阀6419被在回路中采用以确保清洁的血液的向患者的平稳的并且无阻碍的流动。帮助在系统被用于透析之前准备系统的预充套件6421被预附接于血液透析系统。
[0461] 为了进行CVP测量,通过停止血液泵6420,回路6400中的血液流动被停止。在这点,用于到达血液的导管(未示出)中的压力将平衡,并且在血液滤过机器中的压力传感器PBIP6410测量的压力将等于在导管端头处的压力。该测量到的压力(CVP)然后被用于调节超滤的速率以及从患者移除的流体的体积。
[0462] 因此,操作性地,本发明的系统修改常规的透析系统,使得超滤被以被医师预设置的速率进行。周期性地,血液流动被停止并且平均CVP使用上文描述的各种测量方法中的一个被测量。在一个实施方案中,提供安全模式,其中如果CVP下降至低于预设置的极限,那么血液滤过被中断并且警报发出。
[0463] 在另一个应用中,高血容量患者,例如患有充血性心力衰竭(CHF)的患者可以被给予超滤以移除流体。本领域中已知的是,虽然超滤过程从血液移除流体,但是意图被移除的流体被定位在组织间隙中。此外,从组织间隙向血液中的流体流动的速率是未知的。如果没有本发明的系统,那么医师仅能够猜测将把从血流的流体移除与从组织间隙向血液中返回的流体流动平衡的组织液移除速率,并且设置透析机器用于该速率。在这样的情形中,要求在医师一方的持续的监视以确保流体移除速率不过度地或不足地水化患者。如果使用本发明的系统,那么医师可以预设置他想要移除的流体的总的量(典型地从患者重量计算的),以及被允许的最小的平均CVP。系统然后以自动地保持期望的CVP的最大的速率移除流体。即,本发明的系统自动地把流体移除速率与从组织间隙向血液中的流体流量平衡。
[0464] 应当意识到,正常的CVP水平在2至6mmHg之间。升高的CVP指示水分过多,而减小的CVP指示血容量减少。使用本发明,患者可以以高于正常的CVP例如7-8mmHg开始超滤过程,并且经过例如6小时治疗过程以3mmHg的最终的CVP目标结束过程。然而,如果在治疗过程的中途,CVP已经下降的量多于期望下降的量的50%,而被移除的流体仅已经达到对于移除的最终的目标的50%,那么系统可以被改编程序以减少流体移除的目标或减少流体移除的速率。其他的动作可以基于更复杂的算法来进行。净结果是,通过监视CVP的速率和实际值,避免了血容量减少。应当意识到,该途径也可以是在控制流体移除速率中有用的,不仅在血液滤过期间,而且用于所有的类型的肾脏替代疗法。
[0465] 监视和保持体积精确度
[0466] 本文公开的透析系统的实施方案还结合用于保持血液透析系统中的置换液和输出流体的体积精确度的方法和系统。在一个实施方案中,方法涉及交换在置换液侧和在输出侧使用的泵,使得相等的量的流体被在每个侧泵送。本发明的泵交换系统提供用于在透析程序期间保持流体体积的精确的手段,并且可以被低成本地实施,以用于可反复使用的以及一次性的装置。
[0467] 图65图示了示例性的泵交换回路,如在一个实施方案中采用的。用于血液滤过的泵交换回路6500包括两个泵,泵A6545和泵B6555。这两个泵与置换液回路R6560和输出流体回路O6570流体连通。流体连通借助于两对二通阀6505和6507实现。对于置换液回路R6560,置换液源6510经过限流器6517向该对二通阀6505提供流体。然后,取决于所述对6505中的两个阀门中的哪个是开放的,置换液被泵A6545或泵B6555泵送至第二组的二通阀6507。二通阀6507的这种设置将置换液引导至更换回路R6560,更换回路R6560与透析器6540的输出部6542流体连通。在本实施方案中,与透析器6540的输出部6542的连通是透析器输注后配置。在本领域中已知的另一个配置中,代替地是与透析器的输入部6544连通。本领域的技术人员将意识到,任一个配置可以被使用,而不影响本发明的范围。
[0468] 所述对的二通阀6505可以被配置为可选择地打开,使得可以建立以下的流体连通路径中的任何流体连通路径:
[0469] ●在输出流体回路O6570和泵A6545之间;
[0470] ●在置换液回路R6560和泵B6555之间;
[0471] ●在置换液回路R6560和泵A6545之间;以及,
[0472] ●在输出流体回路O6570和泵B6555之间。
[0473] 系统6500还包括两个压力传感器6515和6516。传感器6516被定位在输出回路O6570上,并且传感器6515被定位为紧邻于置换液源6510。压力传感器6515和6516被用于监视压力。来自这些传感器的压力数据被经过差分放大器6525提供至主动限流器6517。取决于压力测量,限流器6517按需要可变地约束置换液的流动。
[0474] 在透析期间,另外的流体可以被从患者以超滤液(UF)的形式移除,如果需要的话。为了本目的,提供UF泵6535,其把UF泵送至袋子或排放部6530。因为UF流体在输出流体子回路O6570中的压力测量的点之前被移除,所以体积精确度被保持,与UF的被移除的体积的多少无关。
[0475] 操作性地,通过交换在置换液侧上和在输出侧上使用的泵6545和6555,使得在偶数次数的交换之后在每个点处泵送了相同的量的流体,从而实现本发明的血液透析系统中的体积精确度。两对二通阀6505和6507帮助泵中的每个可选择地用于置换液回路R6560和输出流体回路O6570。
[0476] 在一个实施方案中,所使用的泵是蠕动泵。本领域的技术人员将意识到,其他的类型的泵也可以被使用,因为肾脏透析中的体积平衡通过泵交换技术的使用来实现,并且不取决于泵的类型。在一个实施方案中,泵A6545比泵B6555递送每单位时间更多的流体。因此,这将导致在任何给定的时间时期中比输出流体多的置换液被泵送。
[0477] 本领域的技术人员将意识到,包括一次性元件的泵可以具有泵速率差,因为跨越一次性元件的体积不是相等的,即使它们具有相同的尺寸和类型。例如,被插入两个注射器-泵组件内的两个具有标称地同一个尺寸的一次性注射器的容积将不是精确地相同的。本领域的技术人员将还意识到,两个不具有一次性元件的泵可以通常被调节,所以在二者之间将不具有泵送速率上的差别。可以使用本发明被实施的使用一次性元件的泵的实例包括但不限于旋转或线性蠕动泵、注射器泵、转动叶片泵、离心泵和膜片泵。
[0478] 为了实现置换液和输出流体之间的体积平衡,泵6545和6555被每T分钟交换。在第一个‘T’分钟间隔的结束时,由于泵的特定的特征,泵A6545将递送比泵B6555多的体积。被泵A6545递送的流体体积被称为‘Q’。因此,如果在第一泵送间隔‘T’期间,置换液被引导经过泵A6545并且输出流体被引导经过泵B6555,那么在时间区间T的结束时,置换液回路R6560相比回路O6570中的输出流体,更多的‘Q’置换液将已经被泵送。
[0479] 然后,泵A6545和B6555在下一个时间区间中被交换并且回路O6570中的输出流体被泵A6545泵送并且回路R6560中的置换液被泵B6555泵送。在该间隔中,相比O6570中的输出流体,R6560中的少的‘Q’置换液将被泵送。因此,在第二间隔的结束时(并且在偶数数量的交换的结束时),在每个间隔期间被泵送的体积的差将是:Q-Q=0。因此,在偶数次数的交换之后净体积差是零,由此实现被输注的置换液和从患者经过透析器返回的输出流体之间的体积平衡。本领域的技术人员将意识到,可以具有随时间推移的经过泵的流量的以及因此每单位时间被递送的体积的略微的改变。在这种情况下,净体积差可以不精确地是零,而是非常接近于零。
[0480] 被蠕动泵泵送的体积取决于压头。用于泵的压头是子回路的功能而不是泵的功能,并且是在置换液回路R6560中相对于输出回路O6570系统地不同的。因此是必要的是,均衡化被泵A6545和泵B6555经历的压头。
[0481] 在一个实施方案中,通过调制在从置换液源6510的输入回路上的限流器6517来均衡化压头。基于差分放大器6525的输出实现限流器调制,差分放大器6525计算由位于泵6545和6555之间的压头传感器6515和6516测量的压力值之间的压力差。所需要的补偿的量将取决于泵如何被置换液回路R6560和输出流体回路O6570中的压头影响。回路O6570中的压头将典型地是负的。如果置换液袋子(源)6510被升高至高于泵的水平的话,回路R6560中的压头将是正的,如果袋子竖直地被定位为低于泵的水平的话,回路R6560中的压头将是负的。对于利用重载泵管节段的泵,差可以是相对小的。
[0482] 如提到的,通过测量子回路R6560和O6570中的压力,把这些压力作为输入提供至差分放大器6525,以及使用子回路R6560中被差分放大器6525的输出调节的可变限流器6517来调制从置换液袋子6510的流入量来均衡化压头。因为压头是子回路的功能而不是泵的功能,因此,必需的是调节在非调节状态中的两个子回路的压头之间的平均差。可以初始地以及在操作期间在期望的间隔通过简单地关闭调节来测量在非调节状态中的压力。这种再校准不要求停止泵送。
[0483] 在一个实施方案中,泵压头可以从零至超过几百mmHg变化,取决于所结合的透析器、置换液的相对于透析机器的高度以及透析液流量设置。例如,对于200ml/min的透析液流动以及被悬挂在透析机器上方5-10英寸的置换液袋子,压力差在10mmHg的范围内。通常,当更换回路R6560中的压力比回路O6570中的压力高时,限流器6517将约束从置换液源6510的流动以补偿压力差。
[0484] 对于使用在其处透析液流体正在被持续地再循环经过吸附剂插盒的闭环透析液回路的透析系统,图66示出了可选择的泵交换回路。用于血液滤过的泵交换回路6600包括两个泵,泵A6645和泵B6655。这两个泵与返回流体回路R6660和吸附剂流体回路S6670流体连通。流体连通借助于两对二通阀6605和6607来实现。对于返回流体回路R6660,储液器流体源6610提供经过限流器6617至该对的二通阀6605的流体。然后,取决于所述对6605中的两个阀门中的哪个是开放的,置换液被泵A6645或泵B6655泵送至第二组的二通阀6607。二通阀6607的这种设置将流体经过吸附剂插盒6608以及经过储液器6610引导到至返回回路R6660,返回回路R6660与透析器6640的输入接驳口6642流体连通。
[0485] 所述对的二通阀6605可以被配置为可选择地打开,使得可以建立以下的流体连通路径中的任何流体连通路径:
[0486] ●在吸附剂流体回路S6670和泵A6645之间;
[0487] ●在返回流体回路R6660和泵B6655之间;
[0488] ●在返回流体回路R6660和泵A6645之间;以及,
[0489] ●在吸附剂流体回路S6670和泵B6655之间。
[0490] 系统6600还包括两个压力传感器6615和6616。传感器6616被定位在吸附剂回路S6670上,并且传感器6615被定位为紧邻于储液器流体源6610。压力传感器6615和6616被用于监视压力。来自这些传感器的压力数据经过差分放大器6625提供至主动限流器6617。取决于压力测量,限流器6617按需要可变地约束储液器流体的流动。
[0491] 如在上文的实施方案中的,本实施方案具有用于UF(超滤液)泵6635的设置,使得以(UF)的形式的另外的流体可以在透析期间被从患者移除,如果需要的话。UF泵6635把超滤液泵送至袋子或排放部6630。因为UF流体在吸附剂流体子回路S6670中的压力测量的点之前被移除,所以体积精确度被保持,与UF的被移除的体积多少无关。
[0492] 操作性地,通过交换在返回流体侧上和在吸附剂侧上使用的泵6645和6655,使得相同的量的流体在偶数次数的交换之后在每个点处被泵送,实现本发明的血液透析系统中的体积精确度。两对二通阀6605和6607帮助泵中的每个可选择地用于返回流体回路R6660和吸附剂流体回路S6670。
[0493] 在一个实施方案中,所使用的泵是蠕动泵。本领域的技术人员将意识到,其他的类型的泵也可以被使用,因为肾脏透析中的体积平衡通过泵交换技术的使用来实现,并且不取决于泵的类型。在一个实施方案中,泵A6645比泵B6655递送每单位时间更多的流体。因此,这将导致在任何给定的时间时期中比吸附剂流体多的返回流体被泵送。
[0494] 本领域的技术人员将意识到,包括一次性元件的泵可以具有泵速率差,因为跨越一次性元件的体积不是相等的,即使它们具有相同的尺寸和类型。本领域的技术人员将还意识到,两个不具有一次性元件的泵可以通常被调节,所以在二者之间将不具有泵送速率上的差别。
[0495] 为了实现返回流体和吸附剂流体之间的体积平衡,泵6645和6655被每T分钟交换。在第一个‘T’分钟间隔的结束时,由于泵的特定的特征,泵A6645将递送比泵B6655多的体积。被泵A6645递送的流体体积被称为‘Q’。因此,如果在第一泵送间隔‘T’期间,储液器流体被引导经过泵A6645并且吸附剂流体被引导经过泵B6655,那么在时间区间T的结束时,相比回路S6670中的吸附剂流体,在返回流体回路R6660中,更多的‘Q’储液器流体将已经被泵送。然后,泵A6645和B6655在下一个时间区间中被交换并且回路S6670中的吸附剂流体被泵A6645泵送而回路R6660中的返回流体被泵B6655泵送。在该间隔中,相比S6670中的吸附剂流体,少的‘Q’R6660中的储液器流体将被泵送。因此,在第二间隔的结束时(并且在偶数数量的交换的结束时),在每个间隔期间被泵送的体积的差将是:Q-Q=0。因此,在偶数次数的交换之后净体积差是零,由此实现被输注的返回流体和从患者经过透析器返回的吸附剂流体之间的体积平衡。再次地,因为随时间推移可以具有经过泵的流量的某些通常小的改变,使得每单位时间被递送的体积改变,所以净体积差可以有时不精确地是零,而是实质上接近于零。
[0496] 如对于在图65中示出的实施方案成立的,被在图66中图示的实施方案中的蠕动泵泵送的体积取决于压头。此外,因为用于泵的压头是子回路的功能而不是泵的功能,并且是在返回流体回路R6660中相对于吸附剂回路S6670系统地不同的,所以必需的是均衡化被泵A6645和泵B6655经历的压头。
[0497] 在一个实施方案中,通过调制在从储液器流体源6610的输入回路上的限流器6617,来均衡化压头。限流器调制以与图65的实施方案相似的方式被实现,并且基于差分放大器6625的输出。差分放大器6625计算被位于泵6645和6655之间的压头传感器6615和6616测量的压力值之间的压力差。所需要的补偿的量将取决于泵如何被返回流体回路R6660和吸附剂流体回路S6670中的压头影响。回路S6670中的压头将典型地是负的。如果储液器
6610被升高至高于泵的水平的话,回路R6660中的压头将是正的,而如果储液器竖直地被定位为低于泵的水平的话,回路R6660中的压头将是负的。对于利用重载泵管节段的泵,差可以是相对小的。
[0498] 如提到的,通过测量子回路R6660和S6670中的压力,把这些压力作为输入提供至差分放大器6625,以及使用子回路R6660中的被差分放大器6625的输出调节的可变限流器6617调制从储液器6610的流入量来均衡化压头。因为压头是子回路的功能而不是泵的功能,因此,必需的是调节在非调节状态中的两个子回路的压头之间的平均差。在非调节状态中的压力可以被初始地测量并且在操作期间在期望的间隔通过简单地关闭调节被测量。这种再校准不要求停止泵送。
[0499] 在一个实施方案中,泵压头可以从零至超过几百mmHg变化,取决于所结合的透析器、储液器的相对于透析机器的高度以及透析液流量设置。例如,对于200ml/min的透析液流量且其中储液器被定位在透析机器的泵上方5-10英寸的情况,压力差在10mmHg的范围内。当回路R(返回)6660中的压力比回路S6670(从透析器)中的压力高时,限流器6617约束从储液器6610的流动以补偿。
[0500] 在图65中的配置或图66中的配置中,有时可以具有由增加的透析器跨膜压力(TMP)导致的向透析液回路节段(分别地O6570或S6670)中的增加的流出。例如可能因为透析器(分别地6540或6640)的流出障碍而发生这种情况。在这样的情况下,可能具有限流器(分别地6517或6617)不能够足够地打开以调节的可能性,例如如果置换液源6510或储液器6610被定位为低于泵的水平的话。为了对抗这种情况,增压泵可以在置换液源6510或储液器6610之后被插入回路中。增压泵可以被配置为在差分放大器(分别地6525或6625)和/或限流器(分别地6517或6617)不能够调节系统的情况下自动地被打开。
[0501] 因为在泵交换期间产生时间间隙,所以必需的是计算交换之间的时间区间。该计算是在任何给定的时间的被泵送的流体的量的最大的可允许的差的函数,如被两个函数决定的。然而,计算必须补偿向用于来自置换液容器的流体的泵以及用于从患者经过透析器返回的流体的泵呈现的压头的差。
[0502] 泵以其被交换的频率取决于在持续任何给定的间隔T在透析过程期间,患者中的流体体积的最大的可接受的增加或减小。例如,如果可允许的净增益或损失是200ml并且置换液正在被以200ml/min的速率输入,那么用于两个泵的泵送速率的差的各种水平的泵交换频率在图67中的表格6700中详细描述。
[0503] 以下的描述涉及在图65中示出的实施方案中的部件,但是还以相同的方式适用于在图66中图示的实施方案。参照图67,表格的第一行6701图示了当两个泵泵A6545和泵B6555的泵送速率的百分数差是1%(这相当于2ml的流体体积差(对于200ml的可允许的净增益或损失))时,那么以200ml/2ml=100分钟的时间区间交换泵将实现零体积差。相似地,对于2%的泵送速率差,以200ml/4ml=50分钟的间隔交换泵将实现体积平衡,等等。这在表格6700的后续的行中图示。
[0504] 即使更严格的限制将被置于可以被输注入患者中或从患者移除的流体的最大的体积,例如±30ml,如与上文的实施例中的±200ml不同的,用于当泵送差是5%的情况的交换间隔将是30ml/10ml=3分钟。因为交换泵仅需要切换二通阀(在图65中作为6505示出的),而不需要开始和停止泵,所以甚至3分钟(或更短的)的短的间隔是在实践上可实施的。
[0505] 更频繁地交换泵还可以缓和泵管子性能中的任何分歧。因为在本发明的系统中两个泵二者的管子经受相同的数量的影响,所以泵的性能趋于不偏差。
[0506] 当使用泵交换途径时,如果过程不在偶数数量的交换停止,那么其可以导致置换液和输出流体的体积平衡中的差别错误。因此,在一个实施方案中,系统被配置为仅当偶数数量的交换被完成时停止,除非系统被覆写。在净差别错误中导致的问题的潜在的影响也可以通过更频繁地交换泵来减少。在任何情况下,可以保证,任何净差将不在对于最大的可允许的净流体损失或增益的最初设置的边界外,例如±200ml。因此,在一个实施方案中,本发明包括与所有的操作性泵数据通信的控制器。控制器包括具有通过递增来追踪泵交换的数量的计数器的软件。如果泵交换的数量是不偶数的,那么控制器实施防止系统被停机的闭锁信号。控制器当计数器是偶数数量时释放闭锁信号,由此允许系统的停机。控制器还负责传输交换信号,交换信号使合适的阀门打开和关闭,由此导致泵交换。
[0507] 在泵交换的过程期间,将具有少量残留的流体从一个子回路迁移至另一个。例如,如果蠕动泵管路是0.8ml/英寸并且泵-管子节段长度是3英寸,那么残留物将是每时间时期2.4ml(3英寸×0.8ml/英寸=2.4ml)。在50分钟的示例性的时间时期内并且使用200ml/min的泵送速率,10升的流体(50min×200ml/min=10,000ml)将被泵送。因此,以升计的残留物与总的被泵送的流体的百分数是仅0.024%(2.4ml/10,000ml=0.024%)。甚至残留物的这种小的百分数的影响将被消除,因为在子回路之间的迁移由于泵交换发生,这抵消净效果。
[0508] 相对于残留的流体从一个子回路进入另一个子回路中的问题,从透析器出来的流体仅来自患者,并且因此,把该流体与无菌的置换液共同地推动返回入患者中是完美地安全的。
[0509] 如上文提到的,在透析期间,如果需要的话,另外的流体可以以超滤液(UF)的形式从患者移除,并且为了本目的,在本发明的系统中提供UF泵。此外,体积精确度被保持,与UF被移除的体积的多少无关。
[0510] 当泵送出超滤液以从患者移除过量的流体时,如果系统具有较低的泵速率,例如具有10ml/min的数量级,如与高速率例如200ml/min不同的,那么实现被限定的总体的体积精确度是更容易的。例如如果所需要的精确度是±30ml,那么经过60分钟的时间时期,600ml将按10ml/min的泵速率泵送。这暗示所实现的百分数精确度是30ml/600ml=.05或5%,这是合理地获得的。然而,本领域的技术人员将意识到,本发明的系统能够实现期望的体积精确度,与透析装置中的UF泵的泵速率无关。
[0511] 一次性电导传感器
[0512] 图86描绘了,除了其他的元件,一次性电导传感器8690,一次性电导传感器8690包括具有用于接收第一一次性管路节段的第一端部和用于接收第二一次性管路节段的第二端部的管状片段。管状片段包括第一多个探针,该第一多个探针延伸入被管状片段界定的内部体积中并且构成流体流动路径。在一个实施方案中,至少采用三个分离的长形的探针。在另一个实施方案中,至少采用四个分离的长形的探针。
[0513] 一次性电导传感器8690适应于附接于被固定地和/或永久地附接于控制单元的外侧的互补的匹配的第二多个探针。优选地,附接的部位包括控制单元的外部表面的紧邻于透析器的或在与透析器相同侧的部分,如上文参照图1描述的。操作性地,一次性电导传感器8690被扣接入与互补的匹配的非一次性的多个探针的暂时的但是被附接的关系。因此,第二多个探针被接收入第一多个探针中并且被定位为与第一多个探针连通。探针然后通过以下操作:发射并且探测在被第一一次性管路节段、电导传感器的管状片段以及第二一次性管路节段界定的流体流动路径内的信号,如在本文中在上文讨论的,并且然后把探测到的信号传输至控制单元内的存储器和处理器以用于在监视和控制透析系统中的使用。
[0514] 阀门系统
[0515] 为了允许经过血液和透析液回路的控制流动并且以选择期望的操作模式(血液透析或血液滤过),在一个实施方案中,系统设置有二通阀,如上文描述的。这些阀门可以被用户致动以在一个操作模式中把透析液流动导向经过透析器或以在第二操作模式中把输注液级别的透析液流动直接地递送至患者。这些二通阀也可以与透析回路的紧凑歧管集成。这在图68中图示。还应当注意的是,在图68至70中,为了清楚性的目的,相应的元件具有相同的数字。
[0516] 参照图68,体外血液处理系统6800包括塑料模塑紧凑歧管6810,塑料模塑紧凑歧管6810包封多个模塑血液和透析液流体路径以及多个传感器区域、阀门和流体泵节段。透析器6805当被连接于歧管6810的动脉血管子6801和静脉血管子6802时完成系统6800的血液回路。在一个实施方案中,透析器6805是一次性的。两个管线6803和6804被用于分别地循环已消耗的透析液和新鲜的透析液。为了在两个模式(血液透析和血液滤过)的任一个中操作系统6800,二通阀6845和备用二通阀6846被提供。
[0517] 备用阀门6846被采用,因为在血液透析中使用的透析液不是无菌的并且不是输注级别的,而在血液滤过中使用的流体是。如果在血液透析模式中操作或如果具有阀门6845的泄漏或其他的故障,那么阀门6846提供抵抗该流体被泵送入患者血流中的二重的保护。备用阀门6846的采用允许一个歧管安全地用于血液透析和血液滤过二者。如上文提出的,二通阀例如备用阀门6846由两个单一的阀门组成。在这种情况下两个单向阀二者是串联的,这样通过关闭二通阀6846的两个接驳口二者,给予二重的保护,防止透析液进入血流。
在一个可选择的实施方案中,歧管可以被制造为仅意图用于血液透析,不具有在透析流体回路和血液回路之间的连接,由此允许阀门6846被安全地消除。
[0518] 图69A更详细地图示了根据本发明的一个实施方案的用于血液透析/血液滤过系统的回路。已消耗的透析液管子和新鲜的透析液管子6903和6904分别地被连接于透析液再生系统6906,由此完成系统6900的透析液回路。透析液再生系统6906还包括一次性的吸附剂插盒6915以及用于保持被插盒6915清洁的透析液的储液器6934。在图69A中示出的系统的其他的部件参照图69B解释,图69B示出了被配置为在血液透析模式中操作的体外血液处理系统6900的分解图。图69A、69B和69C中的相应的元件具有相同的数字。
[0519] 血液回路6920包括蠕动血液泵6921,其把患者的动脉的不纯的血液沿着管子6901拉动并且把血液泵送经过透析器6905。注射器装置6907把抗凝剂例如肝素注射入被拉动的不纯的血流。压力传感器6908被放置在血液泵6921的入口处,并且压力传感器6909和6911被放置在透析器6905的上游和下游以监视在这些优势点处的压力。
[0520] 当已净化的血液从透析器6905向下游流动并且返回至患者时,血液温度传感器6912被设置在管线中以保持追踪已净化的血液的温度。空气消除器6913也被设置以从透析器移除清洁血液中的已积聚的气泡。一对空气(气泡)传感器(或可选择地单一的传感器)
6914和夹管阀6916被在回路中采用以防止已积聚的气体被返回至患者。
[0521] 透析液回路6925包括两个二通道脉动透析液泵6926、6927。透析液泵6926、6927分别地从透析器6905拉动已消耗的透析液溶液以及从储液器6934拉动已再生的透析液溶液。在来自透析器6905的使用过的透析液流体进入透析液回路6925的点处,血液泄漏传感器
6928被设置以传感并且防止血液向透析液回路中的任何泄漏。来自透析器6905的出口的已消耗的透析液然后经过旁通阀6929以到达二通阀6930。压力传感器6931被放置在阀门6929和6930之间。超滤液泵6932被设置在透析液回路中,超滤液泵6932被周期性地操作以从已消耗的透析液拉动超滤液废物并且把其储存在超滤液袋子6933中,超滤液袋子6933被周期性地排空。
[0522] 如上文提到的,已消耗的透析液使用吸附剂插盒再生。借助于吸附剂插盒6915再生的透析液被收集在储液器6934中。储液器6934包括分别的电导传感器和氨传感器6961和6962。从储液器6934,已再生的透析液经过限流器6935和压力传感器6936以到达二通阀
6937。取决于患者要求,期望的量的来自储液器6950的输注溶液和/或来自储液器6951的浓缩溶液可以被加入透析流体中。输注液和浓缩液是含有帮助把透析液流体中的矿物质例如钾和钙保持在被医师处方的水平的矿物质和/或葡萄糖的无菌溶液。旁通阀6941和蠕动泵
6942被设置以选择输注液和/或浓缩溶液的期望的量以及以确保该溶液向从储液器6934发出的已清洁的透析液中的合适的流动。
[0523] 透析液回路包括两个二通阀6930和6937。阀门6930把已消耗的透析液的一个流导向至透析液泵6926的第一通道并且把已消耗的透析液的另一个流导向至透析液泵6927的第一通道。相似地,阀门6937把已再生的透析液的一个流导向至透析液泵6926的第二通道并且把已再生的透析液的另一个流导向至透析液泵6927的第二通道。
[0524] 来自泵6926和6927的已消耗的透析液的流被二通阀6938收集,并且来自泵6926和6927的已再生的透析液的流被二通阀6939收集。阀门6938把已消耗的透析液的两个流组合为一个单一的流,单一的流被泵送经过压力传感器6940并且经过吸附剂插盒6915,在吸附剂插盒6915已消耗的透析液被清洁和过滤,然后被收集在储液器6934中。阀门6939把已再生的透析液的两个流组合为一个单一的流,单一的流经过旁通阀6947流动至二通阀6945。
压力传感器6943和透析液温度传感器6944被设置在向二通阀6945的透析液流动流上。
[0525] 通过反转二通阀6930、6937、6938和6939的状态,两个泵6926和6927就它们的一个从透析器6905抽出透析流体并且另一个把透析流体供应至透析器6905的动作而言反转。这样的反转,当被周期性地进行经过相对于透析过程短的时间时期时,确保在整个的透析过程的较长的时期,被泵送入透析器中的透析液流体体积等于被泵送出的流体的量并且被透析回路6925损失的唯一的总的流体体积是被超滤液泵6932移除的体积,如上文讨论的。
[0526] 在血液透析模式中,二通阀6945允许已再生的透析液进入透析器6905以使患者的血液的正常的血液透析成为可能。阀门6945通往患者的血液返回管线的一侧被关闭。另一个二通阀6946作为备用起作用,保持透析液远离患者的血液管线,使阀门6946的两个接驳口二者都被关闭,即使阀门6945泄漏或故障。
[0527] 参照图69C,在血液滤过模式中,二通阀6945可以被致动以把新鲜的超高纯的透析液的流从储液器6952引导经过阀门6946,现在使两个接驳口二者打开以直接地输入从透析器发出已净化的血液的流并且流动返回至患者。
[0528] 本领域的技术人员应当注意,备用二通阀6946是冗余的安全阀以确保在血液透析模式中一个阀门6945的故障不导致已再生的透析液的直接地向患者中的输注。即,两个阀门6945和6946二者能够被系统致动以允许流体被导向至患者的静脉血管线,作为安全性考虑。在一个实施方案中,双向的备用阀门6946是单一的阀门以允许或停止流体流动。
[0529] 本领域的技术人员应当进一步注意,如在上文的说明书中描述的阀门被称为‘旁通’或‘双向的’,取决于它们的用途。因此,阀门当它们绕过部件例如透析器时被称为‘旁通阀’。否则它们被称为‘二通阀’并且简单地把流动在至少两个方向导向。然而,旁通阀和二通阀可以是在构造上相同的。
[0530] 在一个实施方案中,在本发明中使用的二通阀被制造为弹性体性的膜,弹性体性的膜被被容纳在透析机器内的机构压紧在孔口上,以停止流动流与流体回路的其余部分的流体接触,如下文进一步讨论的。
[0531] 二通阀6945和6946可以被用于改变用于血液处理系统的操作模式。参照图69C,描绘了血液和透析液回路6920和6925中的流体流动。因为系统正在血液滤过模式中操作,所以已消耗透析液管6903被连接于排放部,并且新鲜的透析液管子6904被连接于新鲜的超纯的并且可注射级别的透析液储液器6952。经过球阀滴室6953的新鲜的透析液经过加热器袋子6954以流动入新鲜的透析液管子6904中。血液和透析液回路6920、6925的元件和流体路径的其余部分相似于图69B的那些,除了在血液滤过中,新鲜的透析液或置换液被引入透析液回路6925中,因为已消耗的透析液被排放并且不被反复使用。此外,在输注液子系统中,部件6942、6950、6941和6951不被使用。
[0532] 血液回路6920包括把患者的动脉的不纯的血液沿着管子6901拉动并且把血液泵送经过透析器6905的蠕动血液泵6921。可选择的泵6907把抗凝剂例如肝素注射入被拉动的不纯的血流中。压力传感器6908被放置在血液泵6921的入口处,并且压力传感器6909和6911被放置在透析器6905的上游和下游。来自透析器6905的已净化的血液被泵送经过管子
6902经过血液温度传感器6912、空气消除器6913和空气(气泡)传感器6914并且返回至患者的静脉。夹管阀6916也被放置为完全地停止血液流动,如果空气被在管线中在夹管阀6916的上游的气泡传感器6914传感到的话,由此防止空气到达患者。
[0533] 透析液回路6925包括两个二通道透析液泵6926、6927。透析液泵6926、6927分别地从透析器6905拉动已消耗的透析液溶液以及从储液器6952拉动新鲜的透析液溶液。来自透析器6905的出口的已消耗的透析液被拉动经过血液泄漏传感器6928和旁通阀6929以到达二通阀6930。压力传感器6931被放置在阀门6929和6930之间。超滤液泵6932被周期性地操作以从已消耗的透析液拉动超滤液废物并且把其储存在超滤液袋子6933(其被周期性地排空)中。来自储液器6952的新鲜的透析液经过限流器6935和压力传感器6936以到达二通阀6937。本领域的技术人员将意识到,在本方案中,输注液和浓缩液不被需要,并且与这些功能相关联的元件6941、6942、6950、6951可以不被使用。
[0534] 加热器袋子6954足够地抬升新鲜的透析液的温度,使得从透析器6905运动返回至患者的已超滤的血液的温度或来自透析器6905的已超滤的血液和通过致动阀门6945、6946被直接地输注入已净化的血液中的新鲜的透析液的混合物的总体的温度等效于患者的体温,由此防止任何热冲击。
[0535] 图70示出了流体回路的可选择的实施方案,其中不使用备用二通阀6946。血液回路包括蠕动血液泵,该蠕动血液泵把患者的动脉的不纯的血液沿着管子7001拉动并且把血液泵送经过透析器7005。注射器或泵7007把抗凝剂例如肝素注射入被拉动的不纯的血流中。压力传感器7008被放置在血液泵的入口处,并且压力传感器7009和7011被放置在歧管节段的上游和下游。来自透析器7005的已净化的血液被泵送经过管子7002经过血液温度传感器7012、空气消除器7013和空气(气泡)传感器7014并且返回至患者的静脉。夹管阀7016也被放置在向患者的回路连接之前,以在空气被在管线中在夹管阀7016的上游的空气(气泡)传感器7014传感到时完全地停止血液流动,由此防止空气到达患者。
[0536] 透析液回路7010包括与泵压力连通的两个透析液泵节段7026、7027。透析液泵节段7026、7027分别地从透析器7005拉动已消耗的透析液溶液以及从储液器7034拉动已再生的透析液溶液。来自透析器7005的出口的已消耗的透析液被拉动经过血液泄漏传感器7028以到达旁通阀7029。流量传感器7020是确定流动经过回路的透析液的体积的两个流量传感器中的一个(另一个是流量传感器7046)。阀门7030是在构造上与二通阀相似的并且被用于绕过透析液泵7026。阀门7030通常被在绕过的方向关闭。在透析液泵7026被停止的情况下,阀门7030被打开以将流体流导向绕过泵7026。压力传感器7031被放置在流量传感器7020和阀门7030之间。在正常的流动期间,已消耗的透析液被泵送经过压力传感器7040、管子7003和吸附剂插盒7015,在吸附剂插盒7015已消耗的透析液被清洁和过滤。已清洁的/已过滤的透析液然后进入储液器7034。超滤液泵7032被周期性地操作以从已消耗的透析液拉动超滤液废物并且储存在超滤液袋子(未示出)中,超滤液袋子被周期性地排空。
[0537] 来自储液器7034的已再生的透析液经过管子7004、限流器7035、透析液温度传感器7044、流量传感器7046和压力传感器7036以经过旁通阀7041到达二通阀7045。当旁通阀7029、7045和7041的分别的流动路径被激活时,它们引导已再生的透析液以绕过透析器
7005。来自输注液和浓缩液储液器7050、7051的输注液流和浓缩液流分别地被输注液泵节段和浓缩液泵节段7042、7043导入经过管子7037从储液器7034发出的已清洁的透析液和在流量传感器7020的下游的已消耗的透析液。
[0538] 二通阀7045决定系统正在在什么模式中操作。因此,在一个操作模式中,二通阀7045允许已再生的透析液经过管子7060进入透析器以使患者的血液的正常的血液透析成为可能。在另一个操作模式中,二通阀7045被致动以把超纯的输注液级别的透析流体的流体流动导入静脉血管线中并且直接地导向至患者。据此,这种多用途阀门使操作模式能够在血液滤过和血液透析之间切换。例如,在图69C中示出的血液滤过中,可输注级别的流体被引导经过三个阀门直接地进入阀门6946连接于后透析器处的血流中。在该模式中,阀门
6945防止透析液流体进入透析器的下接驳口。在血液透析中,在图69B中示出的,阀门6946被关闭并且阀门6947和6945把透析液流体引导至透析器。应当注意,图69B的实施方案使用泵交换和多个阀门控制流体体积,而图70的实施方案使用流量传感器7020和7046控制流体体积。
[0539] 如上文讨论的,优选地通过使用在如需要的从歧管机器延伸的突出部、针或其他的构件选择性地闭塞的流动控制点处的弹性膜,阀门在歧管中实施。在一个实施方案中,流体闭塞使用安全的低能量的磁力阀来实现。
[0540] 阀门系统包括是轻重量的并且消耗最小功率的磁位移系统,使其是理想的,甚至当便携式肾脏透析系统使用用于流体回路的一次性歧管时也是理想的。该系统可以结合任何结构中的孔口共同地使用。特别地,孔口是在任何类型的材料中的任何孔、开口、空穴或分隔部。这包括在管路、歧管、一次性歧管、通道中的路径以及其他的路径。本领域的技术人员将意识到,通过把位移构件和磁体,如下文进一步讨论的,定位在歧管外部在期望的阀门地点处,将使用一次性歧管来实施目前公开的阀门系统。致动器也是从一次性歧管分离的并且分立的并且通常是肾脏透析系统的非一次性的部分的一部分。
[0541] 在功能上,本发明的阀门具有两个稳定状态:打开的和关闭的。其通过使用磁力操作以把位移构件运动为紧贴膜片并且由此产生足够的力以按压膜片紧贴阀座并且使膜片关闭孔口。孔口的关闭将关闭流体流动。反转过程,即,使用磁力把位移构件远离膜片地运动并且由此把膜片从紧贴阀座的压缩释放,打开孔口并且允许流体流动。
[0542] 应当意识到,虽然本发明应当被在图71A和71B中描绘的优选的实施方案和在图73中描绘的非优选的实施方案的方面讨论,但是本发明大体上涉及阀门的在具有以下的属性的肾脏透析系统中的任何使用:a)两个稳定状态,打开的和关闭的,b)改变状态需要能量输入,c)保持状态不需要能量输入,d)状态通过使用磁力修改位移构件的位置被改变,位移构件当被修改时使阀门打开或关闭。
[0543] 在一个实施方案中,参照图71A和71B,本发明的阀门系统7100被用于控制经过流体流动通道7102的流体流动,流体流动通道7102被阀座7104约束,以由此产生阀门环形孔口7103。孔口7103是在任何类型的材料,特别地,歧管、一次性歧管、通道和其他的路径7110,中的任何孔、开口、空穴或分隔部。示出了在开放状态中的阀门7100。阀门系统的部件包括孔口关闭构件、位移构件、用于移动位移构件的机构、可选择的光学传感器、线圈驱动器回路和具有线圈的致动器。
[0544] 在一个实施方案中,孔口关闭构件包括膜片7106,膜片7106当被位移构件压缩时,如下文讨论的,紧贴阀座7104,由此使阀门环形孔口7103关闭。在开放状态中,膜片7106的主体从阀座7104分隔缝隙7198。在一个实施方案中,膜片7106由软材料例如硅橡胶制造。膜片7106必须随时间推移、温度和致动保持其形状。阀门7100依赖于膜片材料7106以当位移构件(压缩力)在所述开放状态中被移除时返回至其不被压缩的形状。
[0545] 本领域的技术人员应当意识到,孔口关闭构件可以包括弹簧、可压缩的或不可压缩的结构的任何组合,该组合当被位移构件推动时关闭孔口。在一个实施方案中,阀座7104可以被模塑到歧管中。对于阀座合适的材料是聚碳酸酯、ABS和相似的塑料。在优选的实施方案中,阀门孔口7103范围在直径上从0.1至0.3英寸(并且更特别地0.190英寸)。孔口尺寸可以被增加以增加流动以用于本发明的可选择的应用或,可选择地,减小以减小流动以用于可选择的应用。
[0546] 在一个实施方案中,位移构件包括柱塞帽或外壳7110,柱塞帽或外壳7110当阀门在开放状态中时被紧贴膜片7106对准,但是不实质上压缩膜片7106。被定位在柱塞帽7110内的是依从性的部件,例如弹簧7112和柱塞的头部7199,这二者被空隙7114分隔。柱塞帽7110在外侧被流体密封部7120包围,流体密封部7120在一个实施方案中是薄的软硅橡胶垫片。在一个实施方案中,柱塞帽7110被推动紧贴硅橡胶垫片并且压缩垫片以形成流体密封部7120。当在关闭位置中时,柱塞帽7110不被推动紧贴垫片,垫片因此不被压缩并且对于端部帽7130被松散地定位。弹簧7112是任何弹性的或依从性的材料并且在一个实施方案中包括波形弹簧。
[0547] 柱塞帽7110、内部弹簧7112、空气缝隙7198、柱塞头7199、柱塞体7140和芯部7142是本发明的优选的位移构件的部件。在一个实施方案中,柱塞体7140具有在0.1至0.2英寸的范围内的外径(更特别地0.122英寸)并且是约0.5至2.5英寸长的。应当意识到,取决于应用,柱塞体7140是具有任何长度的任何杆结构。柱塞体7140被定位在环形芯部7142(其具有一个较大的端部和一个较小的端部)内,并且被通过任何本领域的技术人员已知的方法附接于芯部,包括环氧树脂、螺钉附接、销钉或焊接。芯部7142的较大的端部的外径在0.3英寸至0.5英寸的范围内(并且更特别地0.395英寸),厚度在0.03至0.15英寸的范围内(并且更特别地0.05至0.10英寸),并且长度在0.50至1.75英寸长的范围内(并且更特别地1.05英寸)。芯部7142的小的端部具有0.1至0.4英寸的直径,并且更特别地0.25英寸。
[0548] 至少部分地包围芯部的小的端部的是绕线管7195,绕线管7195把线圈7148保持就位并且向线圈7148提供尺寸稳定性。缝隙优选地在绕线管7195和芯部7142之间存在。缝隙的尺寸是约0.01至0.03英寸(并且更特别地0.02英寸)。绕线管7195在一个实施方案中是玻璃填充尼龙结构,玻璃填充尼龙结构应当是非金属的并且非磁的。绕线管7195是环形结构,其外径具有足以提供向外壳孔中的紧密配合的尺寸且其内径足以包封芯部,使得其具有用于运动和经受某个程度的热膨胀的空间。两个端帽7130、7160把绕线管7195楔入就位并且防止其运动或滑动,特别是当被暴露于电磁力时。
[0549] 柱塞体由金属或非金属材料例如黄铜或玻璃纤维制造,并且芯部也由金属特别是钢制造。优选地,柱塞体是非磁性的并且芯部体是铁磁性的。如下文进一步讨论的,柱塞体7140和芯部7142被用于移动位移构件的机构移动。
[0550] 用于移动位移构件的机构包括大磁体部件、小磁体部件以及磁体和位移构件的一个部分即柱塞体7140和芯部7142被容纳在其内的外壳。更具体地,参照图71A和71B,用于移动位移构件的机构包括用于保持和对准大磁体的大磁体端帽7130、大磁体7132、弹性材料7134、缝隙7197、线圈7148、小磁体部件7162、小磁体安装部和端帽7160、和弹性材料7164。
[0551] 大磁体端帽7130把大磁体部件7132和绕线管7195在外壳7170内保持和对准就位,被称为致动器主体,其具有本文描述的部件被放置穿过其的孔。大磁体部件7132需要被与芯部7142、柱塞体7140和小磁性部件7162合适地对准以确保位移构件的合适的运动。端帽7130和7160二者把绕线管7195和线圈7148固定在位置中。
[0552] 此外,安装板可以被用于捕获和保持端帽7130。在一个实施方案中,安装板被定位为竖直地并且紧贴端帽的侧齐平并且在端帽和钻孔之间。安装板具有在其中的孔,近似地与端帽的较小的直径相同的尺寸。夹持机构把主体保持为紧贴该板;可选择地,所述板可以使用任何本领域的技术人员已知的结合技术被永久地固定。不相似于现有技术例如美国专利第6,836,201号,在一个优选的实施方案中,磁体被定位在钻孔内侧而不是外侧并且提供用于柱塞的轴承,如下文讨论的。
[0553] 大磁体部件7132通过缝隙7197和弹性材料7134例如硅树脂垫片与芯部7142分隔,硅树脂垫片在一个实施方案中具有0.3至0.5英寸(并且更特别地0.37英寸)的外径、0.1至0.3英寸(并且更特别地0.188英寸)的内径、0.005至0.015英寸(并且更特别地0.01英寸)的厚度、以及35至45(并且更特别地40)的硬度。小磁体部件7162通过弹性材料7164例如硅树脂垫片从芯部分隔,硅树脂垫片在一个实施方案中具有0.1至0.4英寸(并且更特别地0.24英寸)的外径、0.1至0.3英寸(并且更特别地0.188英寸)的内径、0.005至0.015英寸(并且更特别地0.01英寸)的厚度、以及35至45(并且更特别地40)的硬度。小磁性部件7162被小磁体安装部和端帽7160容纳和保持为合适地在外壳7170内对准。小磁体端帽螺钉7172也起作用以捕获和把小磁体端帽7160保持就位。
[0554] 参照图71A,本发明的阀门系统还包括线圈驱动器回路板7150、线圈驱动器连接器7154和光学传感器7152,线圈驱动器回路板7150驱动包括线圈7148的致动器,并且优选地被经过小的螺钉安装于致动器主体7170,光学传感器7152传感芯部7196的大的端部的位置。线圈7148起作用以导致磁场的改变,以使芯部7142和柱塞体7140产生运动。在一个实施方案中,线圈是约0.05至1.5英寸长(并且更特别地1英寸长),具有0.35至0.55英寸(并且更特别地0.46英寸)的外径,以及0.15至0.35英寸(并且更特别地0.26英寸)的内径,具有六层的线29AWG线。
[0555] 在位移构件和用于运动位移构件的机构中使用的各种弹性材料提供当阀门打开或关闭时的对杆7140的运动的“软”停止。特别地,其起作用以确保芯部的运动不破坏磁体。
[0556] 大磁体部件7132可以是一个单一的磁体或,在一个优选的实施方案中,包括多个磁体,例如三个。小磁体部件7162也可以是单一的或包括多个磁体。在一个实施方案中,磁体优选地由磁钢、钐钴、钕、稀土或陶瓷磁体制造。在一个实施方案中,大磁体7132是钕环形磁体,具有0.2至0.5英寸(并且更特别地0.375英寸)的外径、0.05至0.3英寸(并且更特别地0.125英寸)的内径、和0.2至0.5英寸(并且更特别地0.375英寸)的长度。在一个实施方案中,小磁体7162由钕环形磁体制造,具有0.15至0.4英寸(并且更特别地0.25英寸)的外径、
0.05至0.3英寸(并且更特别地0.125英寸)的内径、和0.15至0.4英寸(并且更特别地0.25英寸)的长度。较大的磁体7132被更靠近于孔口关闭构件地使用,因为该尺寸是产生足够的与阀座相反的力所必须的。此外,被致动线圈导致的致动力是实质上相等的,即使磁体具有不同的尺寸,由此导致简单的线圈驱动器回路。
[0557] 在一个实施方案中,杆、柱塞或其他的长形的构件7140使用磁体的中心孔作为直线轴承。据此,磁体的中心孔应当优选地具有支承表面,例如铬或任何具有最小的摩擦的平滑的硬表面。缝隙被设置在绕线管7195和芯部7142之间,因为存在绕线管的热膨胀、随时间推移的绕线管蠕变、以及绕线管、芯部和磁体公差。然而,在所有的操作条件下,缝隙应当是足够的,使得柱塞体7140可以自由地运动并且不在磁体和线圈的开口中受牵制。在一个优选的实施方案中,缝隙是在室温约0.01至0.06英寸(并且更特别地0.02英寸)。
[0558] 当阀门被关闭时,参照图71B,本发明的阀门系统7100通过压缩孔口关闭构件例如膜片7106并且由此阻碍阀门环形孔口7103来控制经过被阀座7104约束的流体流动通道7102的流体流动。在关闭状态中,膜片7106的主体被紧贴阀座7104并且,据此,实质上消除缝隙7198(在图71A中看到的)。
[0559] 一旦紧邻地毗邻于膜片7106,那么位移构件现在压缩膜片7106。特别地,柱塞帽7110已经运动以压缩膜片7106。柱塞帽7110已经运动,因为磁场的改变使芯部体7142朝向大磁体部件7132运动。当芯部头部7196经过了缝隙7197时(在图71A中),芯部体7142停止运动并且在被定位为毗邻于大磁体部件7132的弹性材料7134处停止。芯部7142的运动使芯部
7142被结合于其的柱塞体7140也运动。柱塞体7140的运动使柱塞头7199在柱塞帽7110内运动,经过缝隙7114(在图71A中),并且压缩弹簧7112。在某个量的压缩之后,柱塞帽7110运动并且压缩膜片7106。柱塞帽7110的运动产生在帽主体7110和被定位为毗邻于大磁体端帽
7130的弹性材料7120之间的新的缝隙7192。
[0560] 如图71B中所示的,阀门的其他的部件保持是相同的,包括致动器主体7170、线圈驱动器回路7150、线圈连接器7154、线圈7148、绕线管7193、小端帽螺钉7172、光学传感器7152和小磁体端帽7160。然而,应当意识到,借助于芯部7142运动,缝隙7195在芯部7194的较小的端部和弹性材料7164之间产生,弹性材料7164被定位为毗邻于小磁性部件7162。
[0561] 应当意识到,为了关闭阀门,位移构件把力施加于孔口关闭构件,例如膜片7106。来自位移构件的为了把膜片变形至在其处膜片接触阀座的点所需要的力是实质上线性的并且可以被建模为线性弹簧。然而,当膜片被压缩入阀座中时,力需要指数地增加。因此,用于位移构件的力曲线成为非线性的并且更复杂的。据此,具有与阀门的设计和在位移构件的各种部件、孔口关闭构件以及位移机构的硬停止部之间的公差相关联的某些独特的挑战。位移机构必须能够递送非线性力曲线,而不永久地变形膜片。这意味着机构必须递送正好正确的量的力。
[0562] 如上文讨论的,位移构件包括被结合于被称为芯部的另一个结构的杆、柱塞或其他的长形的构件,芯部具有更大的直径并且可以作为当被向上紧贴另一个结构例如磁体面推动时的停止器起作用。本领域的技术人员应当意识到,位移构件或可运动构件不限于杆和圆筒配置。相反地,其可以包括非圆柱形的结构、单一的件、或被焊接或以任何其他的方式结合在一起的多个部件。总之,位移构件可以包括许多不同的结构,只要构件的运动可以把必需的力施加在孔口上,以可靠的和一致的方式压缩构件。
[0563] 例如,参照图73,示出了可选择的较不优选的实施方案。对于肾脏透析应用,本实施方案并不通常可靠地把阀门保持在关闭状态中。位移构件7300包括外壳7305,其包括具有实质上圆柱形的结构的电磁体7310和延伸穿过其的钻孔7315。电磁体7310被非磁性的间隔器7320固定地居中定位在外壳7305内,非磁性的间隔器7320在一个实施方案中是端帽。端帽具有两个目的,把磁体保持就位并且把线圈夹住就位。在一个实施方案中,元件7331和
7320包括第一一体的件并且7305和7320包括第二一体的件。圆柱形形状的铁磁芯部7325具有第一面7323和第二面7324,被定位为允许芯部7325在第一面7323和第二面7324之间的一个部分具有与钻孔7315的线性地可滑动装配。第二面7324足够地比钻孔7315大,由此约束芯部7325的线性运动。在一个实施方案中,第二面被相对于第一面不同地控制大小,以产生足够的磁力以把阀门保持在关闭位置中。芯部7325能够在钻孔7315内进行左和右线性滑动运动。
[0564] 两个不同的尺寸的磁体7330、7335也被固定在外壳7305内并且被固定在外壳7305的两个端帽7331、7332处。芯部7325的第一面7323与第一磁体7330接触以形成位移系统7300的第一稳定状态,并且芯部7325的第二面7324与较大的磁体7335接触以形成位移系统
7300的第二稳定状态。永磁体7330、7335的放置被设计为在外壳7305的直径内,因为其减少位移系统7300的尺寸。被连接于芯部7325的第一面7323的第一杆7340穿过第一磁体7330,由此在一个端部从外壳7305突出,并且被连接于芯部7325的第二面7324的第二杆7345穿过第二磁体7335,由此在另一个端部从外壳7305突出。杆7340、7345可以由本领域中已知的非腐蚀性的非磁性的材料例如但不限于黄铜制造。虽然一个实施方案具有被连接于芯部的两个面的两个杆,但是在一个可选择的实施方案中,具有被连接于往复移动装置的面中的一个的唯一的一个杆。
[0565] 本领域的技术人员将意识到,被电磁体7310施加在芯部7325上的磁力高至足以克服永磁体7330、7335的滞留力,使得位移系统7300可以被从第一稳定状态改变至第二稳定状态。此外,本领域的技术人员将意识到,杆/柱塞7345随着芯部7325运动,由此产生起动力以压缩或解压缩孔口关闭构件。然而,本实施方案已经被确定为劣于第一实施方案,因为其不能够足够地保持关闭状态。
[0566] 与位移构件和机构共同地操作的孔口关闭构件的某些设计特征应当被意识到。第一,参照图74,并且如上文参照图71A和71B讨论的,缝隙7408在柱塞帽7404和孔口关闭构件7405(特别是第一膜片面7405)之间存在。缝隙7408在0.040至0.070英寸的范围内并且更特别地约0.055英寸。膜片包含硅树脂,优选地具有0.040英寸的厚度,并且可以被建模为具有
270lbf/in的弹簧常数的弹簧(KV2)。第二膜片面7406被从阀座7407分隔并且被建模为具有约22.5lbf/in的弹簧常数和约0.047英寸的厚度的弹簧KV1的磁力作用。
[0567] 杆7404把被芯部7401的磁吸引产生的力过渡至建模为弹簧KP的磁体7403,弹簧KP在关闭状态中被垫片例如0.010英寸的硅树脂从芯部头部7401分隔并且在开放状态中被从芯部头部7401分隔约0.110英寸。该硅树脂垫片提供被建模为弹簧KSL的力。芯部7401被结合于杆7404。当阀门被致动时,杆7404在阀座7407的方向运动,因为杆被结合于其的芯部在大磁体7403的方向运动。
[0568] 参照图74,Kv2和KSL相应于被建模为刚性弹簧的弹性材料,例如硅树脂。应当意识到,当阀门在关闭状态中时,具有两个重要的位置。第一个是杆紧贴膜片的位置并且第二个是芯部面紧贴大磁体的位置。当阀门被关闭时,杆正在使用足够的力压在阀门膜片上,以抵抗在肾脏透析系统的流体通路内产生的至少600mmHg背压。在本实施方案中,流体压力可以达到2600mmHg并且该系统7400被设计为把膜片保持为牢固地紧贴阀座以密封孔口高至并且包括2600mmHg。
[0569] 此外,当阀门被关闭时,芯部的大的面被拉动为接近于或直接地紧贴大磁体。芯部的向大磁体的磁吸引产生杆施加于孔口关闭构件例如膜片的力。为了产生一致的并且可靠的力,芯部面和大磁体的面之间的间距必须是一致的。因此,优选的是,把弹性材料7402放置在芯部面7401和磁体面7404之间。弹性材料具有非线性的弹簧常数,并且将压缩,直到用于弹性材料的合力等于磁力。当杆把力经过芯部施加于膜片时,芯部将经历该合力。为了静态条件发生,在芯部上的这些力的和必须等于零。此外,弹性材料起作用以保护磁体面不在致动期间剥落或断裂。
[0570] 参照图76,当阀门7600在关闭状态中时芯部头部7605、7602已经运动远离小磁体面7601(从位置7602a至位置7602)。当在位置7602中时,芯部头部被弹性材料7617例如具有约0.015英寸的厚度的硅树脂垫片从小磁体7601分隔。当在位置7605中时,芯部头部将已经运动约0.140+/-0.20英寸,包括0.45+/-0.005英寸的距离,在这期间杆7608不运动并且被紧贴弹性材料7616(例如具有约0.015英寸的厚度的硅树脂垫片)停止,弹性材料7616把芯部头部7605从大磁体面7606分隔。大磁体7606进而被从杆头部7607分隔。
[0571] 当阀门在开放状态中时,大磁体7606被弹性材料7615例如具有约0.015英寸的厚度的硅树脂垫片从杆头部7607分隔。当阀门在关闭状态中时,大磁体7606被弹性材料7615例如具有约0.015英寸的厚度的硅树脂垫片从杆头部7607分隔并且分隔约0.055+/-0.10英寸的距离。当阀门被关闭时,杆头部7607已经从紧邻于大磁体7606和弹性材料7615运动至紧邻于阀座7610。特别地,杆头部7607运动以压缩膜片7608并且由此紧贴弹性材料7609(例如具有约0.040英寸的厚度的硅树脂),弹性材料7609进而紧贴阀座7610。这使用约14N的力使阀门关闭。
[0572] 应当意识到,位移构件和机构的相对于本文描述的孔口关闭构件和公差的配置提供膜片位移曲线7500,如图75中所示的,膜片位移曲线7500适合于需要抵抗至少600mmHg背压的应用,例如肾脏透析系统。参照图75,提供示例性的膜片位移曲线7501,其中被位移构件施加的力7502被设置在y轴上并且相应的膜片位移被设置在x轴上。该曲线7503上的拐点指示何时膜片开始被压缩紧贴阀座。在拐点7503的左侧,膜片正在被推动以朝向阀座折曲,但是不具有紧贴阀座的实质的压缩。在拐点7503的右侧,膜片被紧贴阀座折曲,变形膜片材料并且产生抵抗流体压力的良好的密封。
[0573] 位移机构系统的另一个重要的部件是在图72中描绘的致动器系统7200。在致动过程期间,线圈7205被激励并且磁场构建,因此产生与小磁体吸引力相反的磁力。当力构建时,上文讨论的芯部开始运动至关闭位置(大磁体)。一旦芯部运动经过不可返回点,那么大磁体的芯部上的吸引力已经克服小磁体的吸引力。为了确保被阀门膜片导致的相反的力不克服大磁体的吸引力,缝隙被提供,如上文讨论的。
[0574] 线圈设计由线圈形式和磁线7210制造。线圈形式尺寸的尺寸优选地基于可商购获得的线圈形式、电源的脉冲电流容量以及特别地所需要的致动力和电源电压。致动力与线圈的安培-匝额定成比例。在一个实施方案中,优选的是把线圈电流限制于6安培或更少的。
[0575] 在线圈设计中重要的因素包括层的数量、装填系数、线直径和线圈电阻。在一个实施方案中,本发明使用一绕线管,其具有6层的线和在绕线管凸缘直径和最后的层之间的约0.010英寸空间。使用重聚合尼龙的绝缘要求和3.5+/-0.5欧姆的线圈电阻,线号是约
29AWG。任何尺寸线圈形式可以被使用。
[0576] 用于驱动线圈的电路是H桥接电路,其使电流能够为了打开和关闭操作被反转。H桥接电路通过独特的脉冲宽度调制(PWM)信号被驱动。PWM信号被用于产生经过线圈的余弦电流脉冲。余弦脉冲的周期与芯部的质量和相反的力相关。优选的实施方案不使用双极直流功率开关或传感开关;而是,光学传感器操作以确定芯部的位置,推断阀门状态,并且产生电子驱动余弦波形以把柱塞在期望的方向运动,由此改变阀门的状态。
[0577] 可选择地,如图71A和71B中所示的,阀门系统7100使用作为元件7152的传感器,优选地光学传感器7152,以确定阀门的状态(打开或关闭)。这可以通过把光学传感器7152定位在具有在阀门打开状态和阀门关闭状态之间的反射性或其他的光学性质上的足够的差异的地点中来实现。例如,当阀门被关闭时,在一个实施方案中,芯部7196的大的端部被定位为紧贴弹性材料7134和大磁体部件7132。芯部7196的大的端部具有宽至足以被反射性光学传感器7152传感到的宽度,但是不过于宽,所以光学传感器7152具有位置分辨率。光学传感器7152将被放置在位移构件/机构的外侧并且通过其主体进行观测,该主体优选地由透明的聚碳酸酯制造。光学传感器7152的波长将在近红外范围(NIR)内从而具有穿过聚碳酸酯主体的良好的透射。本领域的技术人员将意识到,传感器可以被选择以适合任何材料结构,只要其包括合适的滤波器。在此,光学传感器7152优选地具有被内置入其中的用于NIR响应性的长通滤光器。
[0578] 在功能上,当芯部在开放位置中时,如图71A中所示的,芯部7196的大的端部移动出光学传感器7152的视野,因此几乎没有反射将被光学传感器看到。当芯部7196的大的端部在视野中时,如图71B中所示的,将具有传感器7152将看到的反射,从而指示芯部在关闭位置中。本领域的技术人员将意识到,传感器7152可以被定位为使得当阀门7100在开放位置中时其传感来自芯部的大量的反射性,并且当阀门7100在关闭位置中时其传感更少的反射性(因为芯部移动出了视野)。此外,本领域的技术人员将意识到,传感器7152可以被定位为紧邻于缝隙以传感何时缝隙存在以及何时缝隙不存在,由此指示阀门7100的状态。
[0579] 操作性地,如参照图77,阀门初始地在两个状态(打开或关闭)中的一个中。假设阀门在开放状态7701中,在关闭阀门中的第一个步骤是激励线圈驱动器回路7702并且由此使被线圈产生的磁场穿过芯部,产生在芯部和小磁体之间的相反的磁力,并且产生在大磁体和芯部的大的端部之间的弱的吸引力。当位移构件开始运动7703时,小磁体吸引力减小,同时大磁体吸引力增加。位移构件运动7703,直到不可返回点,然后位移构件7704关闭缝隙7704并且把孔口关闭构件即膜片7705压缩为紧贴阀座7706。膜片7706的压缩使膜片关闭孔口7707并且关闭阀门7708。
[0580] 假设阀门在关闭状态7709中,在打开阀门中的第一个步骤是激励线圈驱动器回路7710并且由此使被线圈产生的磁场穿过芯部,产生在芯部和大磁体之间的相反的磁力,并且产生在小磁体和芯部的小的端部之间的弱的吸引力。当位移构件开始运动7711时,大磁体吸引力减小,同时小磁体吸引力增加。位移构件运动7711,直到不可返回点,然后位移构件把膜片7712解压缩远离阀座7713。孔口借助于不再被膜片7714覆盖打开。位移构件返回至其最初的位置并且再产生缝隙7715,由此返回至打开状态7716。
[0581] 因为即使当向电磁体的功率被切断时芯部的第一和第二稳定状态也被保持,所以位移系统能够具有相对于现有技术致动器的低功率消耗和低热产生,在现有技术致动器中连续功率供应被需要以保持状态,此外导致高热产生。
[0582] 盐水反漂洗
[0583] 参照图86,示出了用于安全地并且高效率地进行盐水反漂洗的方法和系统。常规地,通过拆卸把透析血液回路在连接部8651处连接于患者的管状节段8658并且把管状节段8658经过连接点8652和8653附接于盐水源8602,来进行盐水反漂洗,其用于使用盐水冲洗系统。然而,这种常规的方法具有缺点,包括无菌的连接的破坏。应当意识到,连接点可以是任何形式的连接,包括鲁尔连接、搭扣配合、无针插入、阀门或任何其他的形式的流体连接。
[0584] 另一个用于盐水反漂洗的途径包括把盐水源8602经过连接点8652连接于连接点8653,同时保持向患者的连接。虽然其避免破坏无菌的连接,但是其把患者暴露于可能含有空气泡的盐水流体流动。因为没有空气泡探测器典型地在盐水连接部8653的点和向患者
8651的连接点之间的管状节段8658中存在,所以具有如下风险:过度地大的空气泡将形成并且,因为不具有用于探测这样的空气泡并且告知患者的机构,进入患者的血流导致实质的损伤。
[0585] 可选择地,一个优选的用于进行盐水反漂洗的途径是保持经过管状节段8658的在患者和透析系统之间的血液回路连接,管状节段8658在接驳口C8605处连接于歧管8600并且在连接点8651处连接于患者;并且把盐水源8602在接驳口D8606处流体地连接于歧管8600。当患者仍然被流体地连接于透析系统时,盐水被允许通过重力或外加压力经过毗邻于接驳口C8605的接驳口D8606流动入歧管8600中。盐水流动起作用以使用盐水冲洗歧管
8600并且,特别地,起作用以经过接驳口C8605从歧管8600流动出来,经过管状节段8658,并且经过连接部8651进入患者中。因为空气泡探测器在区8654中存在,紧邻于接驳口C8605,所以当歧管8600被安装在控制器单元中并且因此适应于探测在离开接驳口C8605的流体流动中的空气泡时,离开歧管8600并且朝向患者的盐水将通过区8654中的空气泡探测器被监视空气泡。如果空气泡被探测到,那么警报将发出,由此向患者信号发送他或她应当从系统断开连接或使用注射器从进入点8610抽出空气泡。据此,这种用于进行盐水反漂洗的方法和系统保持无菌的连接,同时仍然监视并且警报空气泡的存在。
[0586] 改进的硬件架构
[0587] 本文公开的透析系统的实施方案可以还包括提供更快速的终结系统操作的方法的硬件架构。常规地,当警报状态在透析操作期间被遇到或如果用户希望终结操作,在较高的应用层发出的指令必须前进经过多重的较低的层以主动地终结硬件操作。这种构造使用户经受延迟停机的不必要的风险,延迟停机在关键的应用中可以是不可接受的。
[0588] 参照图78,透析系统包括至少一个处理器和用于存储当被执行时与软件应用层7805通信的程序指令的存储器。软件应用层7805与主控制器7810接口连接,主控制器7810与负责控制各种泵、传感器和阀门的多个现场可编程门阵列7815(控制FPGA)数据通信并且与负责监视各种泵、传感器和阀门的操作中超出接受的操作参数的一个或多个故障状态的多个现场可编程门阵列7820(安全性FPGA)数据通信。
[0589] 控制FPGA7815执行用于控制包括泵、传感器和阀门的所有的系统部件的操作的硬件指令,并且把部件的状态信息传输至控制器7810和安全性FPGA7820二者,控制器7810进而处理信息并且把某些用于进一步处理和/或显示的数据传递至应用层7805,安全性FPGA7820监视用于警报条件的状态信息,例如操作参数超出或不满足一个或多个预定义的阈值。
[0590] 如果控制FPGA7815产生指示警报条件或大体上指示终结或中止操作的需要的数据,那么控制器7810或应用层7805可以发出一个或多个命令以终结操作。然而,独立地,安全性FPGA7820接收数据并且可以直接地发出命令,或以其他方式使一个或多个阀门、泵或传感器的操作终结、中止或以其他方式改变状态。安全性FPGA7820可以在从控制FPGA7815直接地接收数据之后进行此操作,或者,如果被控制器7810直接地指令或被应用层7805直接地指令的话,安全性FPGA7820可以独立地进行此操作。通过使安全性FPGA直接地从控制FPGA7815接收数据以及从应用层7805和控制器7810接收指令,而没有在其之间的中介层,系统可以响应于警报条件或用户指令更快速地并且可靠地导致停机、中止或状态的其他的修改。
[0591] 图形用户界面
[0592] 透析系统的实施方案还包括用户通过其与系统交互的界面。如上文讨论的,控制器单元包括用于把图形用户界面呈现于用户的显示器。界面使用户能够精确地测量和验证处方添加剂并且提供功能性以检查在系统中采用的一次性用品的以及处方添加剂的完整性和可靠性。
[0593] 如上文讨论的,透析系统包括秤,秤可以被集成在控制器单元的顶部的托架上,在便携式透析系统的储液器单元内,在底部单元的紧邻于用于吸附剂插盒或输注液的保持器的一侧,或在任何其他的地点中。被数字秤取得的测量读数通过在集成入顶部控制器单元中的显示器上显示的图形用户界面(GUI)显示。
[0594] 在一个实施方案中,控制器单元根据用户的处方被编程。这可以借助于初始设置被进行,在初始设置中用户把处方添加剂的所有的包一个接一个地放置在秤托盘上。数字秤进行的测量结果被记录并且存储在内部存储器中。控制器因此能够获取关于添加剂的名称和处方的重量的数据。因此,当在开始透析过程之前任何处方添加剂的包被放置在用于测量的秤上时,控制器把测量到的重量与被存储在内部存储器中的处方的重量比较。在测量到的重量和正确的或处方的重量之间有任何差异的情况下,控制器指导GUI显示警报或指导音频产生单元产生听觉警报。因此,这样的警报可以是视觉的,例如在GUI屏幕上的闪烁错误消息,并且也可以伴随有听觉警报。可选择地,用户不被允许继续透析设置过程。
[0595] 图79图示了示例性的可以作为文件、平面文件或表格存储在便携式透析系统的内部存储器中的处方添加剂的数据的表格。列7901描述了包内容物并且列7902示出了相应的重量。如可以从列7902看到的,不同的包装之间的重量差是几克,其可以被数字秤读取。在一个实施方案中,本发明的数字秤被设计为具有0.1gm的数量级的重量分辨率,考虑到添加剂的重量,这提供大于5倍分辨率优点以及,更优选地,10倍分辨率优点。这个分辨率足以区分典型地使用的添加剂。
[0596] 可选择地,数字秤的结构被设计为使得称重过程不受用户把处方添加剂的包放置在秤上的方式影响。这是因为本发明中的秤的结构包括在多重的悬挂点处的多重的重量敏感构件。例如,在一个实施方案中,秤包括在三点悬挂部上的三个传感器。总的重量被秤系统计算,作为被所有的传感器测量到的重量的和。使用这种计算方案的优点是包重量不需要被均匀地分布在秤平台上。因此,即使包被放置在秤托盘上,略微地偏向一个侧,平坦的或团状的,将不影响被秤进行的重量测量的精确度。即,用户不受其把包放置在秤上的方式束缚。
[0597] 应当进一步意识到,传感器重量可以使用任何本领域中已知的计算方法被确定。在一个实施方案中,与秤数据通信的处理器从秤接收数据读数并且如下地确定重量:
[0598] 传感器_重量(i)=K1(i)*ADC(读数)+K0(i)
[0599] 袋子_重量=(传感器_重量(0)+传感器_重量(1)+传感器_重量(2)+传感器_重量(3))/4
[0600] 如上文关于图16讨论的,便携式透析系统具有暴露的读取器1605,例如条形码读取器或RFID标签读取器,其可以被用于读取处方的添加剂的包上的编码或标签。对于初始设置,用户将优选地使用读取器1605扫过处方添加剂的包上的所有的编码/标签。可以通过提示用户把处方添加剂的每个包扫过读取器1605的初始的GUI消息来辅助用户。在进行这种操作时,读取器获得关于添加剂的识别信息并且把该识别信息传输至被存储在存储器中的内部表。在该初始设置之后,在开始透析之前无论何时处方添加剂待被加入透析液中,所涉及的包的识别信息(被读取器1605读取)被与在初始设置期间已经被存储在内部表中的用于该添加剂的识别信息比较。这帮助验证正确的添加剂已经为了与透析液共同使用被选择并且帮助排除任何伪造的添加剂。可以通过手动输入关于添加剂的身份和重量的数据或通过向详细描述添加剂的身份和量的处方的远距访问来产生内部表的内容。
[0601] 在一个实施方案中,本发明的GUI由驻留在控制器单元中的处理器存储和执行的多个程序指令产生。程序指令的一个组被设计为使用户经过用于验证待被使用的添加剂的身份和量的过程。第一GUI屏幕提示用户把添加剂袋子上的条形码暴露于条形码读取器。本领域的技术人员将意识到,该识别机构可以是条形码、RFID标签或其他的电子标签,并且读取器可以是条形码读取器、RFID标签读取器或其他的电子标签读取器。读取器读取被编码的信息,使用处理器处理该信息,并且把处理过的信息传输至存储器。存储器具有把处理过的信息翻译为添加剂的身份的程序例程。在一个实施方案中,借助把各种识别符与具体的添加剂名称匹配的表格来帮助实现上述翻译。该表格可以在程序之前被手动地输入,或从服务器通过向控制器的有线的或无线的连接下载。
[0602] 一旦获得了添加剂身份,那么GUI把添加剂的身份通信至用户并且指令用户把添加剂放置在秤上。数字秤称重添加剂并且把测量到的重量通信至第二表格。第二表格将添加剂身份与预期的重量进行映射。该第二表格可以在程序之前被手动地输入,或从服务器通过向控制器的有线的或无线的连接下载。如果添加剂身份和测量到的重量匹配,那么用户被指令打开包并且把内容物倾倒入合适的地点中。这个过程被对于所有的添加剂重复。在一个实施方案中,如果具有在包的身份和其重量之间的差异的话或如果包的被编码的身份不能够被读取或是未知的的话,不允许用户继续该过程。因此,该系统提供一步骤或二步骤验证机制:a)单独地使用数字秤,或b)与条形码或标签读取器组合地使用数字秤,这确保用户在他的或她的占有中具有所需要的添加剂的全部并且正确的添加剂正在被使用并且不是伪造的或不合适的。
[0603] 参照图80,显示示出了另一个用于初始化透析治疗的过程8000的流程图。在一个实施方案中,控制器单元8001包括至少一个处理器和存储多个程序指令的存储器。当被处理器执行时,程序指令产生被显示在控制器显示器上的多个图形用户界面,图形用户界面指导用户经过一系列的设计为可靠地获取并且测量为了在透析治疗中的使用所需要的添加剂的动作。第一图形用户界面被产生,通过第一图形用户界面用户可以提示系统初始化添加剂会计过程8001。初始的提示可以通过特定的用于初始化过程的图标或可以作为较大的系统设置的一部分发生。
[0604] 第二图形用户界面然后被产生8003,其以文本或图形形式显示所需要的添加剂,优选地包括实际的添加剂包装的视觉图像以允许用户视觉地比较所需要的添加剂与用户已经得到的产品。用户然后被提示8005以指示他是否希望使用条形码扫描或通过重量验证添加剂。如果用户通过例如按下图标指示他希望使用条形码扫描,那么第三图形用户界面被产生8007,提示用户把第一添加剂传递经过条形码扫描器。用户然后把添加剂传递经过条形码扫描器,优选地以任何顺序,记录读取结果。应当意识到,条形码扫描器可以包括灯,例如红灯,其在成功的读取时改变颜色,例如改变至绿。
[0605] 如果系统成功地读取条形码,那么其通过相对于被存储在存储器中的表格检查代码处理8009该代码。被存储在存储器中的表格把条形码与特定的添加剂相关联。一旦特定的添加剂被识别,那么使用复选标记或高亮来更新8011如上文描述的第二图形用户界面,以指示哪个添加剂已经被成功地扫描并且用户被指令以把该添加剂放在一边。这个过程对于所有的添加剂重复8019。在一个实施方案中,一旦所有的添加剂被高亮或复选,那么系统自动地前进至透析设置或初始化过程中的下一个步骤。在另一个实施方案中,一旦所有的添加剂被高亮或复选,系统呈现图形用户界面,该图形用户界面告知用户所有的添加剂已经被注册,之后用户手动地使系统前进至透析设置或初始化过程中的下一个步骤。应当意识到,虽然术语条形码被使用,但是任何电子标签或标记系统可以被使用。
[0606] 如果对于任何扫描步骤8009条形码不被识别,添加剂不具有条形码,或用户偏好使用称重验证添加剂,如与扫描相反的,那么图形用户界面被呈现至用户,该图形用户界面提示8013用户把第一添加剂放置在秤上。秤测量添加剂包装重量8015并且把测量到的重量与与特定的添加剂相关联的重量值的表格比较以识别添加剂。一旦被识别,那么使用复选标记或高亮更新8017如上文描述的第二图形用户界面,以指示哪个添加剂已经被成功地扫描,并且用户被指令以把添加剂放在一边。这个过程被对于所有的添加剂重复8019。在一个实施方案中,一旦所有的添加剂被高亮或复选,那么系统自动地前进至透析设置或初始化过程中的下一个步骤。在另一个实施方案中,一旦所有的添加剂被高亮或复选,系统呈现图形用户界面,该图形用户界面告知用户所有的添加剂已经被注册,之后用户手动地使系统前进至透析设置或初始化过程中的下一个步骤。应当意识到,虽然术语条形码被使用,但是任何电子标签或标记系统可以被使用。
[0607] 如果添加剂不被识别,那么用户被告知添加剂不是治疗过程的一部分并且被提示称重合适的添加剂。在另一个实施方案中,如果用户不能够扫描或称重已识别的添加剂,那么用户不被允许继续初始化或设置过程。
[0608] 本领域的技术人员将意识到,虽然上文提到的验证程序已经对于处方添加剂描述,但是同一个程序也可以被扩展至与透析系统共同使用的一次性部件,例如吸附剂插盒和其他的一次性用品。
[0609] 应当进一步意识到,扫描和称重添加剂的过程可以被一体化和自动化。如上文讨论的,用户可以被提示以初始化添加剂称重过程并且为了治疗所需要的项目的显示可以被显示。用户把添加剂放置在秤上,该秤具有紧邻于或被一体化在其中的条形码读取器。在一个实施方案中,用户被提示以把添加剂放置在特定的位置或配置中以确保条形码可以被合适地读取。当把添加剂放置在具有一体化的或组合的条形码读取器的秤上时,条形码读取器扫描添加剂,尝试识别条形码,并且,如果被识别,通过在显示器上复选或高亮被识别的添加剂来处理项目。如果条形码读取器不能够识别添加剂,如果系统需要另外的补充的检查,或如果系统希望获得或以其他方式记录重量信息,那么秤测量重量并且尝试相对于被存储的值识别添加剂。如果被识别,那么系统通过在显示器上复选或高亮被识别的添加剂来处理项目。秤测量和条形码读取器可以因此发生,而不必须把添加剂从一个地点或位置运动至另一个。
[0610] 应当进一步意识到,添加剂可以被插入将自动地把每个添加剂放下、放置或以其他方式定位入秤/条形码读取器上的合适的位置中的容纳容器、滑槽、圆筒、盒子、桶或暂存区域中。据此,用户可以把所有的添加剂放置入单一的容器中,激活系统,并且使每个添加剂依次地被定位在秤上并且被自动地识别。用户可以被提示以在每个添加剂被识别之后移除每个添加剂或可以被提示以允许所有的添加剂被首先处理。
[0611] 应当进一步意识到,添加剂可以在识别之后自动地,在识别之后手动地,以及在血液滤器和/或吸附剂插盒被安装之前或之后被加入系统中。在一个实施方案中,便携式透析系统的顶部单元或底部单元也优选地具有电子接口,例如以太网连接部或USB端口,以使向网络的直接连接成为可能,由此帮助远程处方验证、依从性警戒和其他的远程服务操作。USB端口也允许向配件产品例如血压监护器或血细胞比容/饱和化监视器的直接连接。接口被电子地隔离,由此确保患者安全性,而与接口连接装置的品质无关。
[0612] 在另一个实施方案中,透析机器包括可以被操纵以使被加载歧管的透析机器以治疗模式或预充模式开始操作的界面,其以具有触摸屏按钮、物理键盘鼠标的图形用户界面的形式。当被指示以治疗模式操作时,控制器产生信号(响应于该治疗模式命令)以使歧管阀门从打开、预充状态切换至关闭治疗状态。当被指示以预充模式操作时,控制器产生信号(响应于该预充模式命令)以使歧管阀门从关闭治疗状态切换至打开预充状态。本领域的技术人员将意识到,上文提到的控制和用户命令功能的全部通过结合一个或多个执行实施上文提到的指令(其被存储在本地存储器中)的编程的处理器来实现。
[0613] 当被合适地致动时,系统可以至少以预充模式和治疗模式操作,其可以包括其他的操作模式(例如血液透析、血液滤过或,简单地,非预充模式)。关于示例性的治疗模式并且参照图84,以透析模式操作的透析系统8400包括透析器8402、吸附剂再生系统(例如插盒)8412、歧管8410、经过端口进入歧管8410中的输注液源8416、以及新鲜的透析液从其被经过端口输入返回入歧管8410中的储液器8415。在操作中,血液进入血液管线8401,经过端口进入歧管8410中,经过在第一位置中的二通阀8421,并且进入透析器8402中。已净化的血液经过出口8403离开透析器8402,经过在第一位置中的二通阀8422,并且经过端口进入歧管8410中。血液经过歧管,经过多个阀门8417,如上文关于歧管8410描述的,并且从端口出来并且进入进入患者的血液管线8423中。
[0614] 同时地,输注液从源8416经过端口进入歧管8410中,经过歧管8410,经过另一个端口出来,并且进入储液器8415中,从储液器8415透析液被递送经过透析液管线8424并且进入透析器8402中。在经过透析器8402之后,透析液经过外管线8425并且返回经过端口进入歧管8410中,在歧管8410其被经过端口引导至基于吸附剂的透析液再生系统8412。已再生的透析液经过端口返回经过歧管8410,并且与新的透析液(如果并且当需要时)一起再循环经过的透析器8402。为了管理透析液流体流动,储液器8415被用于储存已再生的透析液,如果并且当需要时。在一个实施方案中,储液器容纳5升的透析液并且具有容纳高至10升的来自患者的透析液和流出物的容量。
[0615] 关于示例性的预充模式并且参照图85,以预充模式操作的透析系统8500包括透析器8502、吸附剂再生系统(例如插盒)8512、歧管8510、输注液源8516和储液器8515。在操作中,从患者(例如图84中的8401)向歧管8510中的血液管线不被连接,并且因此没有血液正在流动或能够流动入歧管8510中。而是,从源8515输送的透析液经过多个接驳口进入歧管8510中并且经过透析液管线8524,透析液管线8524被连接于二通阀接驳口8522。
[0616] 在一个优选的实施方案中,单一的二通阀8517被结合入歧管8510的物理主体中,并且被操纵以在治疗操作模式和预充操作模式之间切换,如上文讨论的。在本实施方案中,歧管8510包括二通阀8517,二通阀8517如果被激活或被从第一位置(例如关闭的)切换至第二位置(例如打开的)导致歧管内的液体的内部流动路径的改变。作为这种流动路径改变的结果,当阀门被关闭时被从彼此流体地隔离的血液和透析液回路现在被置于与彼此流体连通。优选地,没有另外的阀门或开关需要被操纵以实现这种状态改变,即,以使分离的血液和透析液回路成为被流体地连接。
[0617] 阀门切换可以用任何本领域中已知的手段实现,包括通过物理地操纵在歧管的表面上的机械控制部,或电子地通过在具有用于根据用户选择的操作模式控制阀门的状态的透析机器和被集成入歧管的表面中的阀门接口之间的接口来操作透析机器,以导致阀门状态的改变。
[0618] 在预充模式中,阀门8517将被打开,由此使透析液流体流动经过泵以经过歧管8510,经过管子8524、8503和二通阀接驳口8522进入透析器8502中,从透析器出来,返回经过二通阀接驳口8521和管子8525进入歧管8510中,并且从歧管8510出来。据此,在预充模式中,阀门8517确保透析液循环经过血液回路,由此把血液和透析液回路置于流体连通。在功能上,通过操纵二通阀8517的状态,将歧管8510置于预充模式中。
[0619] 在透析液的指定的体积被泵送入血液回路中并且经过血液回路之后,二通阀被关闭。透析液的泵送可以或可以不继续。如果被继续,那么新鲜的透析液仅循环经过透析液回路。残留的透析液保持在血液回路中。为了从血液回路清除透析液,患者被连接于“来自患者管线”8401,其在图84中示出并且典型地被称为动脉进入管线。“向患者管线”8423典型地被称为静脉返回管线,被保持在废物容器上或被连接于患者。
[0620] 通过把系统置于治疗模式中,来自患者的血液被拉动入血液回路中,经过歧管,经过泵,从歧管出来,经过透析器,返回入歧管中,并且返回从歧管出来。血液由此使残留的预充流体被‘驱逐’经过血液回路,在该过程中移除任何其余的气穴,并且进入废物容器或患者中,取决于静脉返回管线的被连接的状态。在血液已经完全地填充血液回路之后,系统停止血液泵或用户手动地停止泵。如果尚未被连接,那么静脉返回管线然后被连接于患者并且治疗继续。
[0621] 在另一个实施方案中,过滤器,例如0.22μ过滤器,可以被用于帮助移除任何其余的非期望的物质,如果吸附剂罐不足以生产基本上无菌的透析液的话。在一个实施方案中,过滤器被定位为与储液器输入管线共线,紧邻于歧管的接驳口E,并且在预充和操作二者期间被使用。
[0622] 通过使用这种预充系统,避免了必须使用另外的并且分离的一次性用品套件来以仅预充回路的血液侧。特别地,这种途径消除了对于分离的盐水源例如1升袋子的盐水的需要,并且据此也消除了对于用于分离的盐水源的连接器和管路的需要,包括用于把血液管线连接于盐水的二管腔尖刺或单管腔尖刺。
[0623] 一次性试剂盒
[0624] 本文公开的透析系统的实施方案被设计为使用多个一次性部件。参照图81,在一个实施方案中,用于在系统中的使用的一次性用品8106被在在托盘8105上预组装的包装状态中运货。托盘8105被放置在控制器单元8101工作空间的顶部,由此允许所需要的一次性用品的容易的访问和管理,这是对于家庭用户特别重要的。控制器单元8101是防水的,使得在液体溢出的情况下,其应当不渗漏入并且破坏顶部控制器单元8101。
[0625] 在一个实施方案中,试剂盒8200容纳歧管8202、透析器8201和管路8203,其全部被预附接。参照图82,一次性试剂盒8200包括透析器8201、歧管8202、管路8203、阀门8204(作为歧管的一部分)、储液器袋子8205,其全部被预附接并且被配置为用于用户的向透析机器中的直接安装。
[0626] 更特别地,一次性部件,特别是完全地一次性的血液和透析液回路,被预包装在试剂盒(其包括透析器、歧管、管路、储液器袋子、氨传感器和其他的部件)中,并且然后被用户通过打开顶部单元的前部门(如上文讨论的),安装透析器并且以确保相对于非一次性部件例如压力传感器和其他的部件的对准的方式安装歧管。被集成入前部门的内表面中的多个泵靴使一次性部件的加载是容易的。歧管仅需要被插入,并且没有泵管路需要被螺纹连接在滚动器和靴之间。这种集成的简单的途径使容易加载一次性用品和容易清洁系统成为可能。其还确保流动回路被合适地配置并且易于使用。在操作中,顶部单元被附接于具有储液器的底部单元。
[0627] 可选择地,一次性部件,并且特别是歧管,包括基于电子的封锁(“e封锁”)系统。图83是示出了本发明的电子封锁系统的一个实施方案的功能框图。在一个实施方案中,电子封锁系统8300包括读取器8301,该读取器8301探测并且读取被内嵌在一次性物品8302,例如一次性歧管、在透析液再生中使用的一次性吸附剂和/或透析器中的识别数据8306。识别数据8306可以通过条型码、RFID标签、EEPROM、微芯片或任何其他的唯一地识别待被在透析系统8303中使用的一次性物品8302的识别手段被存储在一次性物品8302上。读取器8301相应地是条型码读取器、RFID读取器、微芯片读取器或任何其他的相应于所采用的识别技术的读取器,如本领域的技术人员已知的。在一个实施方案中,读取器8301被连接于收发器,该收发器用于通过网络8304无线地连接于远程数据库8305,例如国际互联网或本领域的技术人员已知的任何其他的公共的或私人的网络。在另一个实施方案中,读取器8301与识别数据8306直接地对准。
[0628] 被定位为距透析系统远程的数据库8305存储多个关于可以被在系统8303中使用的一次性物品8302的信息。信息包括独特的识别数据8306以及用于相应的一次性物品的信息,例如可靠性、就项目是否可能在工作条件中而言的可使用性、或项目是否已经由于缺陷被制造商召回、其失效期,如果有的话,和/或任何其他的将有利地对于本领域的技术人员证实的这样的附加值信息的方面。
[0629] 在操作中,当一次性物品8302例如透析器、歧管或血液滤器插盒被加载入系统8303中时,读取器8301通过被内嵌在项目8302上的识别数据8306探测一次性物品8302。该识别数据8306被读取器8301读取,读取器8301进而有线地或无线地与数据库8305通信以基于识别数据8306请求更多的关于被存储在其中的项目8302的信息,或基于识别数据8306证实项目8302的有效性或完整性。
[0630] 例如,在一个实施方案中,被读取器8301识别的透析器插盒8302可能已经由于某个缺陷被制造商召回。这种召回信息被存储在数据库8305上并且作为被读取器8301通过网络8304发送至数据库8305的请求信号的结果被返回至读取器8301。作为从数据库8305接收的召回信息的结果,控制被系统8303支持的血液净化系统的微处理器不允许用户继续治疗。在一个实施方案中,这通过中止把流体推进经过血液净化系统8303的流体回路的泵的功能被实现。此外,音频/视觉警报也可以被对于这种效果显示。
[0631] 在另一个实施例中,被读取器8301识别的透析器插盒8302可能不是可信的。作为其结果,微处理器将不允许系统8303的血液净化系统的功能。因此,本发明的电子封锁系统8300在被附接于歧管8303的一次性物品8302在受损的状态中的情况下防止系统8303的使用。
[0632] 虽然已经图示和描述了目前被认为是本发明的优选的实施方案的内容,但是本领域的技术人员将理解,可以作出各种改变和修改,并且等效物可以代替其要素,而不偏离本发明的真正的范围。此外,可以作出许多修改以使具体的条件或材料适应于本发明的教导内容,而不偏离其中心范围。因此,意图的是,本发明不限于作为用于实施本发明所设想的最好的模式公开的具体的实施方案,而是本发明将包括所有的落入所附的权利要求的范围内的实施方案。
相关专利内容
标题 发布/更新时间 阅读量
一种血液透析用透析器 2020-05-11 113
透析器称重装置 2020-05-12 419
眼球清洗透析器 2020-05-12 642
用于透析的容器 2020-05-12 27
透析器复用装置 2020-05-12 686
一种血液透析器及血液透析装置 2020-05-13 24
用于透析的容器 2020-05-12 623
MECS透析器 2020-05-11 438
便携式透析机器 2020-05-11 467
用于透析的容器 2020-05-11 994
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈