首页 / 专利库 / 疗法 / 免疫吸附 / 具有扫描光源的基于波导的检测系统

具有扫描光源的基于波导的检测系统

阅读:926发布:2021-08-11

专利汇可以提供具有扫描光源的基于波导的检测系统专利检索,专利查询,专利分析的服务。并且本 发明 提供使用空间扫描 光源 在一个或多个 波导 中产生光学脉冲的方法和装置。本发明还提供用于检测 生物 活性分析物分子的检测系统、其使用方法和套件。所述系统包括扫描光源;衬底,其包括多个波导和与衬底的一个或多个波导光学通信的多个光学传感 位置 ;检测器,其与衬底耦合并光学通信;和装置,其用于使从所述扫描光源发射的光束空间地转移以致光束在沿着它的扫描路径的某一点与衬底的波导耦合并光学通信。扫描光源的使用允许光以简单而成本有效的方式耦合到衬底的波导中。,下面是具有扫描光源的基于波导的检测系统专利的具体信息内容。

1.一种用于在光学波导中产生光学脉冲的方法,其包括:
提供光学波导,其具有配置成携带光学信号的内部部分和与所述内部部分接触的第一端;
提供光束;
使所述光束相对于所述光学波导空间地转移,有效使得所述光束短暂接触所述光学波导的所述第一端,
由此在所述波导中产生光学脉冲。
2.根据权利要求1所述的方法,其中所述光束具有光学模式,
其中所述光学波导具有光学模式,且
其中当所述光束短暂接触所述光学波导时,所述光束光学模式与所述光学波导光学模式短暂重叠,有效使得来自所述光束的光进入所述光学波导并在其内部通行。
3.根据权利要求1所述的方法,其进一步包括提供能够发射光束的光源
4.根据权利要求3所述的方法,其中所述光束是从所述光源发射的。
5.根据权利要求4所述的方法,其中所述光源是激光。
6.根据权利要求4所述的方法,其中所述光源是发光二极管(LED)。
7.根据权利要求3所述的方法,其中所述光束在接触所述光学波导之前经过反射。
8.根据权利要求3所述的方法,其中所述光束在接触所述光学波导之前经过折射。
9.根据权利要求3所述的方法,其中所述光源是可以移动的,并且其中通过所述光源的移动来实现所述光束的所述空间转移。
10.根据权利要求3所述的方法,其中所述波导是可以移动的,并且其中通过所述波导的移动来实现所述光束的所述空间转移。
11.根据权利要求9所述的方法,其中所述光源的所述移动选自由旋转的、竖直的、平的、横向的或纵向的组成的移动群组。
12.根据权利要求10所述的方法,其中所述波导的所述移动选自由旋转的、竖直的、水平的、横向的或纵向的组成的移动群组。
13.根据权利要求9所述的方法,其中所述光源以可操作方式连接到促动器。
14.根据权利要求10所述的方法,其中所述波导以可操作方式连接到促动器。
15.根据权利要求13或14所述的方法,其中所述促动器选自基于压电的达、步进马达、电马达、磁促动器、“记忆金属”促动器、螺线管和液压促动器。
16.根据权利要求13或14所述的方法,其中向所述促动器施加电引起它移动。
17.根据权利要求13或14所述的方法,其中所述促动器是压电弯曲促动器。
18.根据权利要求9所述的方法,其中把所述光源安装在旋转圆盘的外缘,有效使得从所述光源发射的光束短暂接触设置在所述旋转圆盘附近的光学波导。
19.根据权利要求8所述的方法,其中利用透镜使所述光源的所述发射光束空间转移。
20.根据权利要求8所述的方法,其中利用棱镜使所述光源的所述发射光束空间转移。
21.根据权利要求7所述的方法,其中利用反射镜使所述光源的所述发射光束空间转移。
22.根据权利要求21所述的方法,其中所述反射镜是动反射镜。
23.根据权利要求1所述的方法,其进一步包括
提供用于使所述光束沿着扫描路径空间地转移的装置;
提供多个光学波导,每一个具有配置成携带光学信号的内部部分和与所述内部部分接触的端面;其中所述多个光学波导沿着所述光束的所述扫描路径设置;
使所述光束空间地转移,有效使得当所述光束空间地转移时使所述光束依次短暂接触所述多个光学波导中的每一波导的所述端面,
由此在所述多个光学波导中的每一波导中产生光学脉冲。
24.根据权利要求1所述的方法,其进一步包括
提供多个光源,其每一个发射具有不同波长的光束,其中所述光源以可操作方式连接,有效使得可以利用常见装置使所述光束空间地转移;
提供用于使所述光源空间地转移的装置;和
使所述多个光源空间地转移,有效使得所述发射光束中的每一光束依次与所述光学波导的所述端面进行短暂接触,
由此每个光束在所述光学波导中产生光学脉冲,从而在光学波导中产生多波长光学脉冲串。
25.一种用于在光学波导中产生光学脉冲的设备,其包括
用于发射光束的光源,
具有第一端的光学波导;和
装置,其用于使来自所述光源的光束空间地转移以致所述光源的光学模式短暂接触所述光学波导的所述第一端,有效使得在所述波导中提供光学脉冲。
26.根据权利要求25所述的设备,其进一步包括一个或多个额外的光源。
27.根据权利要求25所述的设备,其进一步包括一个或多个额外的光学波导。
28.根据权利要求26所述的设备,其进一步包括一个或多个额外的光学波导。
29.根据权利要求26所述的设备,其中每一个所述光源发射具有不同波长的光束。
30.根据权利要求25所述的设备,其中所述装置包括选自旋转圆盘、马达、螺线管、液压机构、压电机构和“记忆金属”机构的机构。
31.根据权利要求27所述的设备,其中把所述光源安装在旋转圆盘的外缘,其中所述光源经过设置,有效使得由所述光源发射的光束从所述旋转圆盘向外引导,并且在所述圆盘旋转时由所述光源发射的所述光束被引导,有效使得短暂接触光学波导的第一端。
32.根据权利要求25所述的设备,其中把所述光源安装在促动器上,有效使得在所述促动器移动时由所述光源发射的光束被引导,有效使得短暂接触光学波导的第一端。
33.根据权利要求25所述的设备,其进一步包括安装在促动器上的扫描透镜,其中所述扫描透镜设置在所述光源与所述光学波导之间,有效使得所述促动器的移动引起由所述光源发射的光束被所述透镜引导,有效使得短暂接触光学波导的第一端。
34.根据权利要求25所述的设备,其进一步包括动反射镜,其中所述动反射镜设置在所述光源与所述光学波导之间,有效使得所述动反射镜的移动引起由所述光源发射的光束被所述动反射镜引导,有效使得短暂接触光学波导的第一端。
35.一种光学检测系统,其包括根据权利要求25所述的设备。
36.一种用于检测生物标志物的方法,其使用根据权利要求35所述的光学检测系统。
37.一种用于检测化学或生物战剂的方法,其使用根据权利要求35所述的光学检测系统。
38.一种用于检测或诊断病毒或细菌感染性疾病的方法,其使用根据权利要求35所述的光学检测系统。
39.一种用于诊断遗传病症或癌症的方法,其使用根据权利要求35所述的光学检测系统。
40.一种用于核酸测序的方法,其使用根据权利要求35所述的光学检测系统。
41.一种用于检测蛋白质-蛋白质、蛋白质-配体或蛋白质-药物相互作用的方法,其使用根据权利要求35所述的光学检测系统。
42.一种用于空气、水、土壤或食物样品的环境监测的方法,其使用根据权利要求35所述的光学检测系统。
43.一种用于检测生物活性分析物分子的检测系统,其包括
扫描光源;
衬底,其包括多个波导和与所述衬底的一个或多个波导光学通信的多个光学传感位置
检测器,其与所述衬底耦合并光学通信;和
装置,其用于使从所述扫描光源发射的光束相对于所述衬底空间地转移,以致所述光束在沿着它的扫描路径的某一点与所述衬底的所述波导耦合并光学通信。
44.根据权利要求43所述的系统,其中所述扫描光源是包括光产生元件的扫描光源芯片。
45.根据权利要求43所述的系统,其中所述扫描光源是进一步与外部光源耦合并光学通信的扫描光源芯片。
46.根据权利要求45所述的系统,其中所述外部光源通过光学纤维与所述扫描光源芯片耦合。
47.根据权利要求44、45和46中任一项所述的系统,其中所述扫描光源芯片进一步包括多个波导。
48.根据前述权利要求中任一项所述的系统,其中所述衬底包括多个大致上平行的激发波导,和多个大致上平行的收集波导,所述激发波导与收集波导交叉形成相交区域的二维阵列,在其中激发波导和收集波导交叉并提供在每一交叉处与相交区域的光学通信;和多个光学传感位置,其每一个与相交区域光学通信;
其中所述扫描光源在所述衬底的第一边,在沿着它的扫描路径的某一点与所述激发波导中的一个或多个激发波导耦合并光学通信;和
其中所述检测器在所述衬底的第二边,与所述收集波导中的一个或多个收集波导耦合并光学通信。
49.根据权利要求43所述的系统,其中所述衬底包括多个入耦合波导和多个出耦合波导,以及每一个与入耦合和出耦合波导光学通信的多个光学传感位置,并且其中所述扫描光源在所述衬底的第一边,在沿着它的扫描路径的某一点与所述入耦合波导中的一个或多个入耦合波导耦合并光学通信,并且其中所述检测器与所述衬底的所述出耦合波导中的一个或多个出耦合波导耦合并光学通信。
50.根据权利要求43所述的系统,其中所述扫描光源进一步包括检测器,并且其中在所述光源与和所述光学传感位置光学通信的所述多个波导中的一个或多个波导耦合并光学通信的点,所述检测器也与所述一个或多个波导耦合并光学通信。
51.根据权利要求50所述的系统,其中所述衬底包括多个入耦合波导和多个出耦合波导,并且其中在所述光源与所述入耦合波导中的一个或多个入耦合波导耦合并光学通信的点,所述检测器与所述出耦合波导中的一个或多个出耦合波导耦合并光学通信。
52.根据权利要求50或权利要求51所述的系统,其中所述扫描光源是包括光产生元件和检测器元件的扫描光源/检测器芯片。
53.根据权利要求50或权利要求51所述的系统,其中所述扫描光源是进一步与外部光源和外部检测器耦合并光学通信的扫描光源/检测器芯片。
54.根据权利要求53所述的系统,其中所述耦合是经由光学纤维。
55.根据权利要求52、53或54中任一项所述的系统,其中所述扫描光源/检测器芯片进一步包括入耦合波导与出耦合波导。
56.根据权利要求52至55中任一项所述的系统,其中所述扫描光源/检测器芯片进一步包括至少一个合成器。
57.根据权利要求43所述的系统,其中所述光学传感位置进一步包括传感器,其配置成转换波导中由所述光源产生的第一光波,从而在不同波导中产生第二光波,所述第二光波可由所述检测器检测。
58.根据权利要求43所述的系统,其中所述光学传感位置进一步包括传感器,其配置成转换波导中由所述光源产生的第一光波,从而在同一波导中产生第二光波,所述第二光波可由所述检测器检测。
59.根据权利要求43所述的系统,其中所述光源是宽谱源。
60.根据权利要求43所述的系统,其中所述光源是可调谐源。
61.根据权利要求44或权利要求45所述的系统,其中所述光源元件提供可变波长的光。
62.根据权利要求44或权利要求45所述的系统,其中所述光源元件是发光二极管激光二极管
63.根据权利要求43所述的系统,其中所述检测器或所述扫描光源包括检测器元件,并且其中所述检测器元件是PIN二极管、离子光电二极管或者作为电荷耦合器件阵列的一部分的一组像素
64.根据权利要求43所述的系统,其中所述检测器是光电二极管阵列
65.根据权利要求43所述的系统,其中所述整个扫描光源或它的任一部分是可以移动的,并且其中通过所述整个扫描光源或它的任一部分的移动来实现所述光束的所述空间转移。
66.根据权利要求43所述的系统,其中所述衬底是可以移动的,并且其中通过所述衬底的移动来实现所述光束的所述空间转移。
67.根据权利要求65或权利要求66所述的系统,其中用于使从所述扫描光源发射的光束相对于所述衬底空间地转移的所述装置是基于压电的马达、步进马达、电马达、磁促动器、记忆金属促动器、螺线管或液压促动器。
68.根据权利要求67所述的系统,其中用于使从所述扫描光源发射的光束相对于所述衬底空间地转移的所述装置是压电弯曲促动器。
69.一种检测方法,其包括:
把疑似含有待检测的生物活性分析物分子的样品传递到检测系统的衬底上的光学传感位置;
使扫描光源空间地转移到所述光源与所述衬底的多个波导中的一个或多个波导耦合并光学通信的点,其中所述波导与所述光学传感位置光学通信,由此在所述一个或多个波导内产生第一光波,其中所述第一光波由与所述光学传感位置相关联的传感器可转换到第二光波;和
使用与所述衬底光学通信的检测器检测所述第二光波中的可测变化,其中当所述传感器与所述生物活性分析物分子相互作用时所述第二光波中发生可测变化。
70.根据权利要求69所述的方法,其中所述衬底包括与所述光学传感位置光学通信的多个大致上平行的激发波导,其中所述第一光波由与所述光学传感位置相关联的传感器可转换到与所述光学传感位置光学通信并与所述激发波导交叉的多个大致上平行的收集波导中的一个或多个收集波导所携带的第二光波;和
其中使用与所述收集波导光学通信的检测器检测所述第二光波的可测变化,其中当所述传感器与所述生物活性分析物分子相互作用时所述第二光波中发生可测变化。
71.根据权利要求69所述的方法,其中所述扫描光源进一步包括检测器,并且其中在所述光源与和所述光学传感位置光学通信的一个或多个波导耦合并光学通信的点,所述检测器也与所述一个或多个波导耦合并光学通信。
72.根据权利要求69或权利要求71所述的方法,其中所述衬底包括与所述光学传感位置光学通信的多个入耦合波导和多个出耦合波导,并且其中在所述光源与所述入耦合波导中的一个或多个入耦合波导耦合并光学通信的点,所述检测器与一个或多个出耦合波导耦合并光学通信。
73.根据权利要求69所述的方法,其中所述生物活性分析物选自由核酸、蛋白质、抗原抗体微生物、气体、化学试剂和污染物组成的群组。
74.根据权利要求73所述的方法,其中所述生物活性分析物是蛋白质。
75.根据权利要求69所述的方法,其中在所述生物活性分析物中检测SNP。
76.根据权利要求69所述的方法,其中在检测到所述生物活性分析物时检测基因的表达。
77.根据权利要求69所述的方法,其中所述传感器适于支持免疫试验,并且其中与所述生物活性分析物相互作用的所述传感器包括免疫试验的结果。
78.根据权利要求77所述的方法,其中所支持的所述免疫试验是酶联免疫吸附试验(ELISA)。
79.根据权利要求77所述的方法,其中所支持的所述免疫试验是荧光免疫试验。
80.根据权利要求69所述的方法,其中检测所述第二光波中的可测变化提供诊断结果。
81.根据权利要求69所述的方法,其进一步包括在所述光学传感位置执行实时PCR反应。

说明书全文

具有扫描光源的基于波导的检测系统

技术领域

[0001] 本发明涉及使用空间扫描光源在一个或多个波导中产生光学脉冲的方法和装置,以及用于检测生物活性分析物分子的检测系统、其使用方法和套件。

背景技术

[0002] 基于光学装置的生物学物质分析方法的普及率在最近二十年已得到提高。所有这些方法的共同点在于生物分子之间的化学相互作用产生影响某些可测光学性质的改变,所述可测光学性质诸如发射光谱、吸收光谱或折射率。光学性质的改变可发生于分析物自身或经由诸如发生相互作用的表面等的介体而发生。然后使用入射光束(通常是激光)来监测这些改变,该入射光束依次改变出射光谱(例如荧光)、强度(例如,吸收)或相位(例如,表面等离子体激元(plasmon)共振和任何种类的干涉测量方法)。
[0003] 虽然这些光学生物分析方法中的大多数方法已经有了利基(niche)应用和市场,但是普及程度较高、有影响的一种方法是微阵列光学荧光扫描。此种光学扫描已能实现在相对短的时期内,在数以万计的微型样品上进行测试。这种方法的主要优点包括:a)性能(灵敏度和信号噪音比(SNR));b)速度;和c)取样的分析物的微型化。这些参数限定了方法的效率和优越性。
[0004] 当前的微阵列元件是点样在通常由玻璃、塑料或环树脂制成的平坦衬底芯片之上。随后,使用共焦扫描系统来扫描芯片,这种情况下,激发光和所产生的荧光都照射在芯片上并从上面收集,并使用单光倍增管(PMT)检测器来分析。这种布置遭受若干固有的限制,包括生物样品与光(通常是单个单层)之间的极短的相互作用长度。这会限制信号强度并因此限制SNR。另一个限制是,归结于背面反射光和发射的荧光在相同方向上行进的高的背景或噪音。另一个限制是,对需要维持在焦点上的芯片的平面度和位置两者的高灵敏度。再一个限制是,归结于对每个样品中足够大量的‘像素’(扫描光点)和足够长的积分时间的需要的缓慢操作。又一个限制是,对要求庞大和昂贵系统的复杂光学和机械结构的需要。
[0005] 另一种光学生物分析方法是基于波导的生物传感器。基于波导的生物传感已问世了一段时间。这些生物传感器可分成三个主要种类。第一种方法涉及利用从芯片上方或下方收集的光的平板波导荧光激发。在这种布置中,生物分析点位于含有单个平板波导的芯片的表面上。使用透镜或光栅把光耦合到波导中,从而激发整个芯片并同时激发它的所有生物分析点。使用光学成像系统和电荷耦合器件(CCD)检测器从芯片上方或下方来收集荧光。这种系统的一个缺点是,归结于光激发以及收集的均匀性的相对差的性能。这会导致不可重复的结果。另一个缺点是,归结于不同点之间的串扰的高噪音平。又一个缺点是,需要大的点和相对少量的元件来产生足够大的用于由CCD来有效成像的信号。再一个缺点是克服SNR问题的长的积分时间。上述方法的实例描述于美国专利第5,814,565号;第6,911,344号和第6,395,558号中。
[0006] 第二种基于波导的生物传感器利用干涉型光学器件。在这种情况下,通道波导是与诸如赫曾德干涉仪(Mach Zehnder interferometers,MZI)或环形共振器的干涉型装置一起使用。这些灵敏的干涉型装置感测归结于生物分子在波导表面附近结合的折射率改变。与这类系统相关的主要问题包括,归结于不能识别可能由于其它材料的沉积而发生的折射率改变以及温度改变的确切原因的非特异性。另一个问题是对不同元件定址中的极慢的速度,从而使这种方法不适于运行大量的元件阵列。上述方法的实例描述于美国专利第5,494,798号、第4,515,430号、第5,623,561号和第6,618,536号中。
[0007] 第三种基于波导的生物传感器是利用表面等离子体激元共振(SPR)。此处,在一个实例中,将薄的金层沉积在玻璃衬底之上。金之上的生物分析的样品引起金层上方的折射率的改变,因此改变用于沿金层产生表面等离子体激元的共振度。等离子体激元产生被检测为反射束中的增强峰。例如,美国专利第6,956,651B2号中涵盖了SPR方法的实例。其它类型的光学生物传感器和阵列扫描器存在,诸如在美国专利第6,396,995B1号中描述的。
[0008] 所有这些基于波导的传感器的一个共同方面是需要在最初把光耦合到波导中。因为所有这些光学波导具有从100微米降至1微米的一部分的微型横截面范围,所以把光耦合到波导中涉及用于聚焦光的专用光学元件、用于将光源相对于波导准确放置的精密机械对准和将所有组件结合在适当位置而不干扰光的专用胶。在大多数这些情况下,这种方法会对整个系统增加可观的成本和复杂性。
[0009] 在大量这些光学波导应用中,光在波导中是以短脉冲形式行进。这些脉冲可短达-12 -3皮(10 )秒和长达几毫(10 )秒。此外,这些脉冲可全部具有相同波长或可为许多不同波长的组合。这些脉冲是通过调节最初与光学波导耦合的一个或多个光源来产生。如果需要处于一种以上波长的脉冲,那么必须对系统增加合成器,例如阵列波导光栅(AWG)。
[0010] 在例如生物分析或检测系统的各种应用中,光学波导可以是低价、可消耗芯片的一部分。基于波导的光学探测系统公开于,例如,2007年9月13日公布的美国专利公开案第20070211985号和2009年3月12日公布的美国专利公开案第20090068668号中,两个公开案在此以引用的方式结合其全部。在利用此类可消耗芯片的系统中,光需要反复耦合到新的芯片。在此类情况下,本领域中已知的光耦合技术的成本和复杂性(参见例如,美国专利第4,881,789号、第5,734,768号、第5,600,744号、第5,581,646号、第5,444,805号、第5,217,568号、第5,121,457号、第5,077,878号、第4,744,623号和第4,478,485号)是无法容忍的。

发明内容

[0011] 本发明提供允许光以简单而成本有效的方式耦合到一个或多个光学波导中的方法和装置。本发明进一步提供用于将多波长脉冲串简单耦合到光学波导中的方法和装置。本发明进一步提供用于将具有一个或多个波长的相关联脉冲串耦合到多个光学波导中的方法和装置。
[0012] 在一个方面,本发明提供用于在光学波导中产生光学脉冲的方法,所述方法包括提供光学波导,其具有配置成携带光学信号的内部部分和与所述内部部分接触的第一端面;提供光束;和使光束相对于光学波导空间地转移(translation),有效使得光束短暂接触光学波导的第一端面,由此在波导中产生光学脉冲。
[0013] 在另一实施方案中,本发明提供一种用于在光学波导中产生光学脉冲的方法,其中光束具有光学模式,其中光学波导具有光学模式,并且其中在光束短暂接触光学波导时,光束光学模式与波导光学模式短暂重叠,有效使得来自光束的光进入光学波导并在其内部通行。
[0014] 在本发明的实施方案中,所述方法进一步包括提供能够发射光束的光源。在一些实施方案中,光源是激光。在一些实施方案中,光源是发光二极管(LED)。在一些实施方案中,光束在接触光学波导之前经过反射。在一些实施方案中,光束在接触光学波导之前经过折射。
[0015] 在本发明的实施方案中,光源是可以移动的,并且通过光源的移动来实现从光源发射的光束的空间转移。在各种实施方案中,光源的移动是旋转的、竖直的、水平的、横向的或纵向的。在本发明的其它实施方案中,波导是可以移动的,并且通过波导的移动来实现从光源发射的光束的空间转移。在各种实施方案中,波导的移动是旋转的、竖直的、水平的、横向的或纵向的。
[0016] 在本发明的实施方案中,光源以可操作方式连接到促动器。在其它实施方案中,波导以可操作方式连接到促动器。促动器的移动可以利用电动力、热动力、磁动力甚至机械动力(即,手动)来实现。在各种实施方案中,促动器是基于压电的马达、步进马达、电马达、磁促动器、“记忆金属”促动器、螺线管或液压促动器。
[0017] 在一个实施方案中,把光源安装在压电弯曲促动器上。向促动器施加电力引起促动器上下移动,由此在空间中扫描一条线。沿着这条线的任何光学波导的光学模式将会在某一点与光源的某个光学模式重叠,并且光的脉冲将被注入光学波导中。
[0018] 在进一步的实施方案中,把多个光源安装在压电弯曲促动器上。每当促动器扫描它的路径,数个光学脉冲就被注入光学波导中。在一些实施方案中,多个光源各自发射具有不同波长的光束。每当促动器扫描它的路径,数个光学脉冲就被注入光学波导中,每一个处于不同的波长。
[0019] 在进一步的实施方案中,多个光学波导沿着一个或多个光源的扫描路径布置。
[0020] 在本发明的一个实施方案中,把光源安装在旋转圆盘的外缘,该旋转圆盘经过布置,有效使得从光源发射的光束自圆盘向外引导并且在圆盘旋转时短暂接触光学波导。在进一步的实施方案中,把多个光源安装在旋转圆盘上。在进一步的实施方案中,多个光学波导围绕旋转圆盘安装,它们的光学模式面向内(朝着圆盘的中心)。利用圆盘的每次旋转,每一个光源的光学模式都将与每一个光学波导的光学模式重叠一次。因此,在每个光学波导中产生的脉冲总数将等于在圆盘上安装的光源总数。
[0021] 在本发明的进一步的实施方案中,使从光源发射的光束空间地转移。在各种实施方案中,利用透镜、棱镜、反射镜或其组合使发射的光束空间地转移。在一些实施方案中,反射镜是动(stirring)反射镜。
[0022] 在一个实施方案中,使放在光源前面的透镜在空间中转移,引起由光源发射的光束在空间中扫描直到它的光学模式与光学波导的光学模式重叠。
[0023] 在另一实施方案中,放在光源前面的动反射镜使发射的光束在空间中移动直到它的光学模式与光学波导的光学模式重叠。
[0024] 在进一步的方面,本发明提供一种用于在光学波导中产生光学脉冲的设备,所述设备包括用于发射光束的光源;具有第一端的光学波导;和装置,其用于使来自所述光源的光束空间地转移以致光源的光学模式短暂接触光学波导的所述第一端,有效使得在波导中提供光学脉冲。
[0025] 在本发明的实施方案中,设备进一步包括一个或多个额外光源,和/或一个或多个额外光学波导。在一些实施方案中,设备包括各自发射具有不同波长的光束的多个光源。
[0026] 在各种实施方案中,用于使来自光源的光束相对于光学波导空间地转移的装置包括选自旋转圆盘、马达、螺线管、液压机构、压电机构和“记忆金属”机构的机构。
[0027] 在一个实施方案中,把光源安装在旋转圆盘的外缘,其中所述光源经过布置,有效使得由所述光源发射的光束从所述旋转圆盘被向外引导,并且在所述圆盘旋转时,由所述光源发射的所述光束被引导,有效使得短暂接触光学波导的第一端。
[0028] 在进一步的实施方案中,把光源安装在促动器上,有效使得在所述促动器移动时,由所述光源发射的光束被引导,有效使得短暂接触光学波导的第一端。
[0029] 在进一步的实施方案中,设备进一步包括安装在促动器上的扫描透镜,其中所述扫描透镜布置在光源与光学波导之间,有效使得促动器的移动引起由所述光源发射的光束被透镜引导,有效使得短暂接触光学波导的第一端。
[0030] 在进一步的实施方案中,设备进一步包括动反射镜,其中所述动反射镜布置在光源与光学波导之间,有效使得动反射镜的移动引起由所述光源发射的光束被动反射镜引导,有效使得短暂接触光学波导的第一端。
[0031] 在进一步的方面,本发明提供光学检测系统,其利用上述用于把光耦合到光学波导中的任一方法或装置。本发明进一步提供检测系统在以下应用上的用途,所述应用包括但不限于生物标志物的检测、化学或生物战剂的检测、病毒或细菌感染性疾病的检测或诊断、遗传病症或癌症的诊断、蛋白质-蛋白质、蛋白质-配体或蛋白质-小分子相互作用的检测、核酸测序,和空气、水、土壤以及食物样品的环境监测。
[0032] 本发明进一步提供检测系统和其使用方法,所述检测系统包括扫描光源、检测器和衬底,所述衬底包括多个波导和多个光学传感位置(sites)。使光源相对于衬底空间地转移以致从光源发射的光在沿着它的扫描路径的某一点与衬底的波导耦合并光学通信。扫描光源的使用允许光以简单而成本有效的方式耦合到衬底的波导中。
[0033] 大体来说,本发明特写一种检测系统和其使用方法,所述检测系统包括扫描光源;衬底,其包括多个波导和与衬底的一个或多个波导光学通信的多个光学传感位置;检测器,其与衬底耦合并光学通信;和装置,其用于使从所述扫描光源发射的光束空间地转移以致光束在沿着它的扫描路径的某一点与衬底的一个或多个波导耦合并光学通信。
[0034] 在本发明的一些实施方案中,扫描光源是包括光产生元件的芯片。在进一步地实施方案中,扫描光源芯片进一步包括波导。在替代实施方案中,扫描光源是进一步与外部光源耦合并光学通信的芯片。在一些实施方案中,外部光源通过光学纤维与扫描光源芯片耦合。在一些实施方案中,扫描光源芯片进一步包括波导。
[0035] 在一些实施方案中,衬底包括多个大致上平行的激发波导,和多个大致上平行的收集波导,所述激发波导与收集波导交叉形成相交区域的二维阵列,在其中激发波导和收集波导交叉并提供与在每一交叉处的相交区域的光学通信;和多个光学传感位置,其每一个与相交区域光学通信。所述系统进一步包括扫描光源,其在衬底第一边在沿着它的扫描路径的某一点与一个或多个激发波导耦合并光学通信,和检测器,其在衬底第二边与收集波导中的一个或多个收集波导耦合并光学通信。在一些实施方案中,两个或更多个检测器在衬底的不同边与一个或多个收集波导耦合并光学通信。
[0036] 在其它实施方案中,衬底包括多个大致上平行的波导,和多个光学传感位置,其每一个与波导光学通信。所述系统进一步包括扫描光源,其在衬底第一边在沿着它的扫描路径的某一点与一个或多个波导耦合并光学通信,和检测器,其在衬底相同或相对边与所述波导耦合并光学通信。在一些实施方案中,衬底包括多个入耦合波导(in-coupling)和多个出耦合波导(out-coupling),以及每个与入耦合和出耦合波导光学通信的多个光学传感位置。所述系统进一步包括扫描光源,其在衬底第一边在沿着它的扫描路径的某一点与入耦合波导中的一个或多个入耦合波导耦合并光学通信,和检测器,其与衬底的出耦合波导中的一个或多个出耦合波导耦合并光学通信。
[0037] 在一些实施方案中,扫描光源进一步包括检测器,其中在光源与和光学传感位置光学通信的所述多个波导中的一个或多个波导耦合并光学通信的点,检测器也与所述一个或多个波导耦合并光学通信。在一些实施方案中,衬底包括多个入耦合波导和多个出耦合波导,其中在光源与入耦合波导中的一个或多个入耦合波导耦合并光学通信的点,检测器与出耦合波导中的一个或多个出耦合波导耦合并光学通信。
[0038] 在本发明的一些实施方案中,扫描光源是包括光产生元件和检测器元件的芯片。在进一步的实施方案中,扫描光源芯片进一步包括入耦合和出耦合波导。在进一步的实施方案中,扫描光源芯片进一步包括至少一个合成器。在替代实施方案中,扫描光源是进一步与外部光源和外部检测器源耦合并光学通信的芯片。在一些实施方案中,外部光源通过光学纤维与扫描光源芯片耦合。在一些实施方案中,扫描光源芯片进一步包括入耦合和出耦合波导。在进一步的实施方案中,扫描光源芯片进一步包括至少一个合成器。
[0039] 在本发明的一些实施方案中,光学传感位置进一步包括传感器,其配置成转换(transduce)在波导中由光源产生的第一光波,从而在不同波导中产生第二光波,所述第二光波可由检测器检测。在其它实施方案中,光学传感位置进一步包括传感器,其配置成转换在波导中由光源产生的第一光波,从而在同一波导中产生第二光波,所述第二光波可由检测器检测。
[0040] 在一些实施方案中,光源元件可以提供可变波长的光。在一些实施方案中,光源是宽谱(broad-band)源。在其它实施方案中,光源是可调谐源。在各种实施方案中,光源元件可以是发光二极管(LED)或激光二极管(LD)。在各种实施方案中,检测器或扫描光源芯片的检测器元件可以是PIN二极管、离子光电二极管或者作为电荷耦合器件(charge coupled device;CCD)阵列的一部分的一组像素。在一些实施方案中,检测器是光电二极管阵列
[0041] 在本发明的实施方案中,扫描光源是可以移动的,并且通过扫描光源的移动来实现从光源发射的光束的空间转移。在进一步的实施方案中,从光源发射的光束的空间转移通过扫描光源的部件的移动来实现,所述部件诸如为一个或多个反射镜、透镜或棱镜。在替代实施方案中,衬底是可以移动的,并且通过衬底的移动来实现从光源发射的光束的空间转移。在各种实施方案中,用于使来自光源的光束相对于衬底的光学波导空间地转移的装置包括选自旋转圆盘、马达、螺线管、液压机构、压电机构和记忆金属机构的机构。在本发明的实施方案中,扫描光源以可操作方式连接到促动器。促动器的移动可以利用电动力、热动力、磁动力甚至机械动力(即,手动)来实现。在各种实施方案中,促动器是基于压电的马达、步进马达、电马达、磁促动器、记忆金属促动器、螺线管或液压促动器。在一些实施方案中,促动器是压电弯曲促动器。
[0042] 大体来说,在又一方面,本发明提供一种检测方法,所述方法包括把疑似含有待检测的生物活性分析物分子的样品传递到检测系统的衬底上的光学传感位置,和使扫描光源空间地转移到该光源与和该光学传感位置光学通信的多个波导中的一个或多个波导耦合并光学通信的点,由此在所述波导内产生第一光波,其中第一光波可以由与光学传感位置相关联的传感器转换到第二光波。此外,方法包括使用与衬底光学通信的检测器检测第二光波中的可测变化,其中当传感器与生物活性分析物分子相互作用时在第二光波中发生可测变化。
[0043] 在一些实施方案中,衬底包括与光学传感位置光学通信的多个大致上平行的激发波导,其中第一光波可以由与光学传感位置相关联的传感器转换到与光学传感位置光学通信并与激发波导交叉的多个大致上平行的收集波导中的一个或多个收集波导中所携带的第二光波,并且其中使用与收集波导光学通信的检测器检测在第二光波中的可测变化,其中当传感器与生物活性分析物分子相互作用时在第二光波中发生可测变化。
[0044] 在其它实施方案中,衬底包括与光学传感位置光学通信的多个入耦合波导与出耦合波导,并且在光源与和光学传感位置光学通信的多个入耦合波导中的一个或多个波导耦合并光学通信的点,检测器与一个或多个出耦合波导耦合并光学通信。
[0045] 在其它实施方案中,扫描光源进一步包括检测器,并且在光源与和光学传感位置光学通信的一个或多个波导耦合并光学通信的点,检测器也与所述一个或多个波导耦合并光学通信。在进一步的实施方案中,衬底包括与光学传感位置光学通信的多个入耦合波导与出耦合波导,扫描光源进一步包括检测器,并且在光源与和光学传感位置光学通信的多个入耦合波导中的一个或多个入耦合波导耦合并光学通信的点,检测器与一个或多个出耦合波导耦合并光学通信。
[0046] 在本发明方法的各种实施方案中,生物活性分析物选自由核酸、蛋白质、抗原抗体微生物、气体、化学试剂和污染物组成的群组。在一些实施方案中,检测在第二光波中的可测变化提供诊断结果。
[0047] 在本发明的一些实施方案中,在生物活性分析物中检测SNP。在本发明的其它实施方案中,在检测到生物活性分析物时检测基因的表达。在一些实施方案中,所述方法进一步包括在光学传感位置执行实时PCR反应。
[0048] 在本发明的一些实施方案中,传感器适于支持免疫试验,其中与生物活性分析物相互作用的传感器包括免疫试验的结果。在进一步的实施方案中,所支持的免疫试验是酶联免疫吸附试验(enzyme-linked immunosorbent assay;ELISA)。在其它实施方案中,所支持的免疫试验是荧光免疫试验。
[0049] 本发明进一步提供所述检测系统在以下应用上的用途,所述应用包括但不限于生物标志物的检测、化学或生物战剂的检测、病毒和细菌感染性疾病的检测或诊断、遗传病症或癌症的诊断、蛋白质-蛋白质、蛋白质-配体或蛋白质-小分子相互作用的检测、核酸测序,和空气、水、土壤以及食物样品的环境监测。
[0050] 以引用的方式结合
[0051] 本说明书中提及的所有出版物和专利申请案通过引用其相同内容结合于此,如同每个单独的出版物或专利申请案被具体和单独地说明以通过引用被结合。附图说明
[0052] 利用特殊性在所附权利要求书中陈述本发明的新颖特点。通过参考陈述说明性实施方案的以下详细描述可以获得对本发明方法和组合物的特点与优点的更好理解,在详细描述中利用了本发明方法、组合物、装置和设备的原理,并且在其附图中:
[0053] 图1是光学波导的示意图。
[0054] 图2A是说明用于本发明中的光源的一个可能配置的示意图。
[0055] 图2B是说明典型的光源光学模式的图。
[0056] 图3A是根据本发明的扫描-耦合系统的实施方案的示意图。
[0057] 图3B是根据本发明的扫描-耦合系统的第二实施方案的示意图,其包括多个光学波导。
[0058] 图3C是根据本发明的扫描-耦合系统的第三实施方案的示意图,其包括多个光源和多个光学波导。
[0059] 图4A是根据本发明的扫描-耦合系统的第四实施方案的示意图,其包括旋转圆盘。
[0060] 图4B是根据本发明的扫描-耦合系统的第五实施方案的示意图,其包括旋转圆盘、多个光源和多个光学波导。
[0061] 图5是根据本发明的扫描-耦合系统的第六实施方案的示意图,其包括扫描透镜。
[0062] 图6是根据本发明的扫描-耦合系统的第七实施方案的示意图,其包括动反射镜。
[0063] 图7A是根据本发明的一个实施方案的检测系统的示意图,其包括主动式(active)扫描光源芯片、衬底、检测器和光学传感位置。
[0064] 图7B是根据本发明的另一实施方案的检测系统的示意图,其包括主动式扫描光源/检测器芯片、衬底和光学传感位置。
[0065] 图7C是根据本发明的另一实施方案的检测系统的示意图,其包括光源、纤维、被动式扫描光源芯片、衬底、光学传感位置和检测器。
[0066] 图7D是根据本发明的另一实施方案的检测系统的示意图,其包括光源、检测器、纤维、被动式光源/检测器芯片、衬底和光学传感位置。
[0067] 图7E是根据本发明的实施方案的检测系统的示意性侧视图,其包括扫描光源/检测器芯片、压电弯曲促动器和衬底。
[0068] 图8是示出在外壳中作为工作系统一部分的本发明检测系统的代表性实例的框图
[0069] 图9A是根据一个实施方案的本发明衬底的示意图,其包括与光学传感位置和阻挡层(barrier)相结合的光学波导。
[0070] 图9B是根据另一实施方案的本发明衬底的示意图,其包括与光学传感位置和阻挡层相结合的光学波导和合成器。
[0071] 图9C是根据一个实施方案的本发明衬底的示意性横截面图,其包括与光学传感位置相结合的光学波导。
[0072] 图9D是根据另一实施方案的本发明衬底的示意图,其包括与光学传感位置和阻挡层相结合的激发光学波导和收集光学波导。
[0073] 图9E是图9D中所示的本发明实施方案的衬底的透视图,其包括与光学传感位置相结合的激发光学波导和收集光学波导。
[0074] 图9F是图9D和9E中所示的衬底的两个横截面视图(AA和BB)的示意图。
[0075] 图9G是和热电冷却器有关系的本发明一个实施方案的衬底的示意性侧视图。
[0076] 图9H是本发明衬底的一个实施方案的示意图,其说明包括加热器和热敏电阻器的光学传感位置的细节。
[0077] 图9I是本发明衬底的另一实施方案的示意图,其说明包括加热器和热敏电阻器的光学传感位置的细节。
[0078] 图9J是本发明衬底的一个实施方案的示意图,其包括和光学传感位置有关系的贮存器和微通道。
[0079] 图9K是本发明衬底的另一实施方案的示意图,其包括和光学传感位置有关系的贮存器和微通道。
[0080] 图10A是本发明衬底的示意图,其包括与光学传感位置、阻挡层和漏斗(funnel)相结合的激发光学波导和收集光学波导。
[0081] 图10B是示出根据如图10A中所示的实施方案的衬底特点的放大视图的示意图。
[0082] 图10C是根据一个实施方案的衬底的示意性横截面视图。
[0083] 图11A是本发明衬底的一个实施方案的示意图,其包括与光学传感位置、阻挡层和分支相结合的激发光学波导和收集光学波导。
[0084] 图11B是显示根据如图11A中所示的实施方案的衬底特点的放大视图的示意图。
[0085] 图11C是根据一个实施方案的衬底在平面(AA)中的示意性横截面视图。
[0086] 图11D是根据一个实施方案的衬底在平面(BB)中的示意性横截面视图。
[0087] 图12A是根据一个实施方案的本发明的被动式扫描光源芯片的示意图,其包括光学入耦合波导。
[0088] 图12B是根据一个实施方案的本发明的被动式扫描光源/检测器芯片的示意图,其包括光学入耦合波导与光学出耦合波导和光学合成器。
[0089] 图12C是根据另一实施方案的本发明的被动式扫描光源/检测器芯片的示意图,其包括入耦合波导与出耦合波导。
[0090] 图13A是一般性衬底的示意图,其包括代表本发明的层和波导的典型的层和波导。
[0091] 图13B是代表本发明波导的波导和二氧化硅层的显微图像。
[0092] 图13C是波导和相关联的衬底层的透视图。
[0093] 图14A是根据一个实施方案的本发明的主动式扫描光源芯片的示意图,其包括光源元件和光学入耦合波导。
[0094] 图14B是根据一个实施方案的本发明的主动式扫描光源/检测器芯片的示意图,其包括光源元件、检测器元件、光学入耦合波导与光学出耦合波导和光学合成器。
[0095] 图15是显示和与本发明检测系统一起使用的设备通信的代表性实例逻辑装置的框图。
[0096] 图16是显示套件的代表性实例的框图。
[0097] 图17A-D是说明用于本发明的衬底和波导的代表性制造过程的示意图。
[0098] 图18是显示用于衬底的代表性制造过程的流程图
[0099] 图19是关于结合于对卵白蛋白特异的固定化抗体的荧光标记卵白蛋白的数据图。
[0100] 图20是关于如使用本发明的检测系统的一个实施方案所检测,在引物(primer)延伸反应期间Cy5.5标记的胞嘧啶并入DNA分子中的数据图。
[0101] 图21是显示使用本发明的检测系统在10通道芯片上血清中艰难梭菌(Clostridium difficile)毒素A的实时检测的图。
[0102] 图22是显示使用本发明的检测系统在一系列十个10通道芯片上所测定的艰难梭菌毒素A的标准曲线图。

具体实施方式

[0103] 本发明提供用于把具有一个或多个波长的光以简单而成本有效的方式耦合进入一个或多个光学波导中的方法和装置。还提供使用包括扫描光源、检测器、衬底和多个波导与光学传感位置的检测系统进行光学检测的设备、方法和套件。本发明系统的一种衬底包括多个大致平行的激发波导和多个大致平行的收集波导。激发波导与收集波导交叉形成相交区域和二维阵列。本发明系统的其它衬底包括多个大致平行的波导和多个传感位置。光学传感位置包括传感器,并与一个或多个波导光学通信。可以使用本文所述的设备、方法和套件实现各种各样的环境与生物样品的检测。光波引导和渐逝(evanescent)场荧光激发的一般性理论原理适用于本文中公开的实施方案。
[0104] 本文中和所附权利要求中所使用的单数形式“一”和“所述”包括复数的提及物,除非上下文另有明确说明。
[0105] 除非另外定义,否则本文中使用的所有科技术语具有与本文所述发明所属领域的技术人员通常所理解的相同含义。尽管在本文所述的发明的实践或测试中可以使用与本文所述类似或等效的任何方法、装置和材料,但现在要描述优选的方法、装置和材料。
[0106] 定义
[0107] 本文中所用的术语“生物活性分析物”表示会影响生物有机体的任何物理或生化性质的任何物质,所述生物有机体包括但不限于病毒、细菌、真菌植物、动物和人。具体来说,如本文所用,根据本发明的生物活性分析物包括但不限于药物、药物前体、药剂、药物代谢物、诸如表达蛋白和细胞标志物等的生物标志物、抗体、血清蛋白、胆固醇、多糖、核酸、生物分析物、基因、蛋白质或激素,或其任何组合。生物活性分析物可进一步包括天然或人造物质,包括但不限于气体、化学试剂或污染物,或其组合(例如,来源于环境)。在分子水平上,生物活性分析物可以是多肽、糖蛋白、多糖、脂质、核酸或其组合。
[0108] 特别关注的是与特殊疾病或与特定疾病阶段有关联的生物标志物。
[0109] 这些生物活性分析物包括但不限于与自身免疫疾病、肥胖症高血压、糖尿病、神经和/或肌肉退化性疾病、心脏疾病、内分泌病症和其任何组合相关联的生物活性分析物。
[0110] 还关注在一种或多种身体组织中以变化丰度存在的生物标志物,所述身体组织包括心脏、肝脏、前列腺、脏、肾脏、骨髓、血液、皮肤、膀胱、大脑、肌肉、神经和受各种疾病影响的选定组织,所述疾病诸如为不同类型的癌症(恶性或非转移性)、自身免疫疾病、炎症性或退化性疾病。
[0111] 还关注指示微生物的生物活性分析物。示范性微生物包括但不限于细菌、病毒、真菌和原生动物。可以利用本主题方法检测的生物活性分析物还包括选自由以下各项组成的非限制性群组的血源性病原体:表皮葡萄球菌(Staphylococcus epidermidis)、大肠杆菌(Escherichia coli)、耐甲氧西林金黄色葡萄球菌(methicillin-resistant Staphylococcus aureus;MSRA)、金黄色葡萄球菌(Staphylococcus aureus)、人葡萄球菌(Staphylococcus hominis)、粪肠球菌(Enterococcus faecalis)、绿脓假单胞菌(Pseudomonas aeruginosa)、头状葡萄球菌(Staphylococcus capitis)、沃氏葡萄球菌(Staphylococcus warneri)、肺炎克雷伯氏菌(Klebsiellapneumoniae)、流感嗜血杆菌(Haemophilusinflunzae)、模仿葡萄球菌(Staphylococcus simulans)、肺炎链球菌(Streptococcus pneumoniae)和白色念珠菌(Candida albicans)。
[0112] 可以利用本主题装置和方法检测的生物活性分析物还包含选自下列的各种各样的性传播疾病:淋病(淋病奈瑟氏菌(Neisseria gorrhoeae))、梅毒(梅毒密螺旋体(Treponena pallidum))、衣原体疾病(沙眼衣原体(Chlamydia tracomitis))、非淋球菌尿道炎(解脲尿枝原体(Ureaplasma urealyticum))、酵母感染(白色念珠菌(Candida albicans))、软下疳(杜克雷嗜血杆菌(Haemophilus ducreyi))、毛滴虫病(阴道毛滴虫(Trichomonas vaginalis))、生殖器疱疹(HSV I型和II型)、HIV I、HIV II和甲型、乙型、丙型、丁型肝炎,以及由TTV引起的肝炎。
[0113] 可以利用本发明设备和方法检测的其它生物活性分析物涵盖各种各样的呼吸道病原体,其包括但不限于绿脓假单胞菌、耐甲氧西林金黄色葡萄球菌(MSRA)、肺炎克雷伯氏菌、流感嗜血杆菌、金黄色葡萄球菌、嗜麦芽糖寡养单胞菌(Stenotrophomonas maltophilia)、副流感嗜血杆菌(Haemophilis parainfluenzae)、大肠杆菌、粪肠球菌、粘质沙雷氏菌(Serratia marcescens)、副溶血嗜血杆菌(Haemophilis parahaemolyticus)、阴沟肠球菌(Enterococcus cloacae)、白色念珠菌、粘膜炎莫拉氏菌(Moraxiella catarrhalis)、肺炎链球菌、弗氏柠檬酸杆菌(Citrobacter freundii)、屎肠球菌(Enterococcus faecium)、产酸克雷伯氏菌(Klebsiella oxytoca)、荧光假单胞菌(Pseudomonas fluorsecens)、脑膜炎奈瑟氏菌(Neisseria meningitidis)、酿脓链球菌(Streptococcus pyogenes)、卡氏肺囊虫(Pneumocystis carinii)、肺炎克雷伯氏菌、嗜肺军团菌(Legionella pneumophila)、肺炎支原体(Mycoplasma pneumoniae)和结核分枝杆菌(Mycobacterium tuberculosis)。
[0114] 下面所列的是根据本发明的其它示范性标志物:茶(Theophylline)、CRP、CKMB、PSA、肌红蛋白、CA125、孕、TxB2、6-酮-PGF-1-α,和茶碱、雌二醇、黄体生成素(Lutenizing hormone)、高敏感C反应蛋白(High sensitivity CRP)、甘油三酯、类胰蛋白酶(Tryptase)、低密度脂蛋白胆固醇、高密度脂蛋白胆固醇、胆固醇、IGFR。
[0115] 示范性肝脏标志物包括但不限于LDH、(LD5)、(ALT)、精酸酶1(肝脏型)、甲胎蛋白(Alphafetoprotein;AFP)、碱性磷酸酶、丙氨酸转氨酶、乳酸脱氢酶,和胆红素。
[0116] 示范性肾脏标志物包括但不限于TNFa受体、半胱氨酸蛋白酶抑制剂C、Lipocalin型尿前列腺素D、合成酶(LPGDS)、肝细胞生长因子受体、多囊蛋白(Polycystin)2、多囊蛋白1、Fibrocystin、尿调制蛋白(Uromodulin)、丙氨酸、氨肽酶、N-乙酰基-B-D-氨基葡糖苷酶、白蛋白,和视黄醇结合蛋白(Retinol-binding protein;RBP)。
[0117] 示范性心脏标志物包括但不限于肌蛋白(Troponin I;TnI)、肌钙蛋白T(TnT)、CK、CKMB、肌红蛋白、脂肪酸结合蛋白(Fatty acid binding protein;FABP)、CRP、D-二聚体、S-100蛋白、BNP、NT-proBNP、PAPP-A、髓过氧化物酶(Myeloperoxidase;MPO)、糖原磷酸化酶同工酶BB(Glycogen phosphorylase isoenzyme BB;GPBB)、凝血酶激活的纤溶抑制剂(Thrombin Activatable Fibrinolysis Inhibitor;TAFI)、纤维蛋白原(Fibrinogen)、缺血修饰白蛋白(Ischemia modified albumin;IMA)、心肌营养素-1(Cardiotrophin-1),和肌球蛋白轻链-I(Myosin Light Chain-I;MLC-I)。
[0118] 示 范 性 胰 脏 标 志 物 包 括 但 不 限 于 淀 粉 酶、胰 腺 炎 相 关 蛋 白(Pancreatitis-Associated protein;PAP-1)和 再 生 蛋白 (Regeneratein proteins;REG)。
[0119] 示范性肌肉组织标志物包括但不限于肌抑素(Myostatin)。
[0120] 示范性血液标志物包括但不限于红细胞生成素(Erythopoeitin;EPO)。
[0121] 示范性骨骼标志物包括但不限于骨1型胶原交联氨基端肽(Cross-linked N-telopeptides of bone type I collagen;NTx)、骨 胶 原 交 联 羧 基 末 端 肽(Carboxyterminal cross-linking telopeptide of bone collagen)、赖氨酰吡啶啉(Lysyl-pyridinoline)(脱氧吡啶啉(deoxypyridinoline))、吡啶啉、抗酒石酸酸性磷酸酶(Tartrate-resistant acid phosphatase)、I型前胶原C端前肽(Procollagen type I C propeptide)、I型前胶原N端前肽(Procollagen type I N propeptide)、骨钙蛋白(Osteocalcin/bone gla-protein)、碱性磷酸酶、组织蛋白酶K(Cathepsin K)、软骨寡聚基质蛋白(Cartilage Oligomeric Matrix Protein;COMP)、骨织素(Osteocrin)、骨保护素(Osteoprotegerin;OPG)、RANKL、sRANK、TRAP 5(TRACP 5)、成骨细胞特异性因子1(Osteoblast Specific Factor 1/OSF-1;多营养因子(Pleiotrophin))、可溶性细胞粘附分子、sTfR、sCD4、sCD8、sCD44,和成骨细胞特异性因子2(OSF-2,Periostin)。
[0122] 在一些实施方案中,根据本发明的标志物是疾病特异性的。示范性癌症标志物包括但不限于总前列腺特异性抗原(total prostate specific antigen;PSA)、肌酸酐、前列腺酸性磷酸酶、PSA复合体、前列腺特异性基因1(Prostrate-specific gene-1)、CA 12-5、癌胚抗原(Carcinoembryonic Antigen;CEA)、甲胎蛋白(Alpha feto protein;AFP)、人绒毛膜促性腺素(Human chorionic gonadotropin;hCG)、抑制素(Inhibin)、CAA卵巢C1824、CA27.29、CA 15-3、CAA乳腺C1924、Her-2、胰脏、CA 19-9、癌胚抗原、CAA胰脏、神经元特异性烯醇化酶、血管抑素(Angiostatin)、可溶性诱骗受体3(Soluble decoy receptor 3;DcR3)、内皮抑素(Endostatin)、Ep-CAM(MK-1)、免疫球蛋白游离轻链κ、免疫球蛋白游离轻链λ、Herstatin、嗜铬粒蛋白A(Chromogranin A)、肾上腺髓质素(Adrenomedullin)、整联蛋白(Integrin)、表皮生长因子受体、表皮生长因子受体-酪氨酸激酶、肾上腺髓质素前体N末端20肽(Pro-adrenomedullin N-terminal 20peptide)、血管内皮生长因子、血管内皮生长因子受体、干细胞因子受体、c-kit/KDR、KDR,和中期因子(Midkine)。
[0123] 示范性传染病标志物包括但不限于病毒血症、菌血症、败血症、PMN弹性蛋白酶、PMN弹性蛋白酶/α1-PI复合体、表面活性蛋白D(Surfactant Protein D;DSP-D)、HBVc抗原、HBVs抗原、抗-HBVc、抗-HIV、T抑制细胞抗原(T-suppressor cell antigen)、T细胞抗原比率(T-cell antigen ratio)、T辅助细胞抗原(T-helper cell antigen)、抗-HCV、热原(Pyrogens)、p24抗原,和胞壁酰二肽(Muramyldipeptide)。
[0124] 示范性糖尿病标志物包括但不限于C-肽、血红蛋白A1c、糖化白蛋白、渐进性糖基化终产物(Advanced glycosylation end products;AGEs)、1,5-脱水葡萄糖醇(1,5-anhydroglucitol)、胃抑制性多肽、葡萄糖、血红蛋白、ANGPTL3,和ANGPTL 4。
[0125] 示范性炎症标志物包括但不限于类湿因子(Rheumatoid factor;RF)、抗核抗体(Antinuclear Antibody;ANA)、C-反应蛋白(C-reactive protein;CRP),和克拉拉细胞蛋白(Clara Cell Protein)(子宫珠蛋白(Uteroglobin))。
[0126] 示范性过敏反应标志物包括但不限于总IgE和特异性IgE。
[0127] 示范性自闭症标志物包括但不限于血浆蓝蛋白(Ceruloplasmin)、金属硫蛋白(Metalothioneine)、锌、铜、B6、B12、谷胱甘肽、碱性磷酸酶,和载脂蛋白-碱性磷酸酶(apo-alkaline phosphatase)的激活。
[0128] 示范性凝血障碍标志物包括但不限于b-血小板球蛋白、血小板因子4和血管性血友病因子(Von Willebrand factor)。
[0129] 在一些实施方案中,标志物可能是治疗特异性的。COX抑制剂包括但不限于TxB2(Cox-1)、6-酮-PGF-1-α(Cox 2)和11-脱氢-TxB-1a(Cox-1)。
[0130] 本发明的其它标志物包括但不限于瘦蛋白、瘦蛋白受体、原降钙素(Procalcitonin)、脑S100蛋白、物质P和8-Iso-PGF-2a。
[0131] 示范性老人病标志物包括但不限于神经元特异性烯醇化酶、GFAP和S100B。
[0132] 营养状态的示范性标志物包括但不限于前白蛋白(Prealbumin)、白蛋白、视黄醇结合蛋白(RBP)、转蛋白(Transferrin)、酰化刺激蛋白(Acylation-Stimulating Protein;ASP)、脂联素(Adiponectin)、刺鼠相关蛋白(Agouti-Related Protein;AgRP)、血管生成素样蛋白4(Angiopoietin-like Protein 4ANGPTL4;FIAF)、C-肽、脂肪细胞型脂肪酸结合蛋白(Adipocyte Fatty Acid Binding Protein/AFABP;FABP4)、酰化刺激蛋白(ASP)、表皮型脂肪酸结合蛋白(Epidermal Fatty Acid Binding Protein/EFABP;FABP5)、肠高血糖素(Glicentin)、胰高血糖素(Glucagon)、胰高血糖素样肽-1、胰高血糖素样肽-2、生长素释放肽(Ghrelin)、胰岛素、瘦蛋白、瘦蛋白受体、PYY、RELMs、抵抗素(Resistin),和可溶性转铁蛋白受体(soluble Transferrin Receptor;sTfR)。
[0133] 脂质代谢的示范性标志物包括但不限于载脂蛋白-脂蛋白(Apo-lipoproteins)(几种)、Apo-A1、Apo-B、Apo-C-CII、Apo-D和Apo-E。
[0134] 示范性凝血状态标志物包括但不限于因子I:纤维蛋白原,因子II:凝血酶原(Prothrombin),因子III:组织因子,因子IV:钙,因子V:前加速素(Proaccelerin),因子VI,因子VII:前转化素(Proconvertin),因子III:抗溶血因子,因子IX:克雷司马斯因子(Christmas factor),因子X:斯图亚特因子(Stuart-Prower factor),因子XI:血浆促凝血酶原激酶前体(Plasma thromboplastin antecedent),因子XII:哈格曼因子(Hageman factor),因子XIII:纤维蛋白稳定因子(Fibrin-stabilizing factor)、前激肽释放酶(Prekallikrein)、高分子量激肽原(kininogen)、蛋白C、蛋白S、D-二聚体、组织纤溶酶原激活剂(Tissue plasminogen activator)、纤溶酶原、a2-抗纤溶酶(a2-Antiplasmin)和纤溶酶原激活物抑制剂(Plasminogen activator inhibitor 1;PAI1)。
[0135] 示范性单克隆抗体标志物包括对于EGFR、ErbB2和IGF1R的标志物。
[0136] 示范性酪氨酸激酶抑制剂标志物包括但不限于Ab1、Kit、PDGFR、Src、ErbB2、ErbB4、EGFR、EphB、VEGFR1-4、PDGFRb、FLt3、FGFR、PKC、Met、Tie2、RAF,和TrkA。
[0137] 示范性丝氨酸/苏氨酸激酶抑制剂标志物包括但不限于AKT、Aurora A/B/B、CDK、CDK(pan)、CDK1-2、VEGFR2、PDGFRb、CDK4/6、MEK1-2、mTOR,和PKC-β。
[0138] GPCR靶点标志物包括但不限于组胺受体、血清素受体、血管紧张素受体、肾上腺素受体、毒蕈碱乙酰胆碱受体、GnRH受体、多巴胺受体、前列腺素受体,和ADP受体。
[0139] 就本发明的目的来说,希望“治疗剂”包括具有治疗效用和/或潜力的任何物质。这些物质包括但不限于生物或化学化合物,诸如简单或复杂的有机或无机分子、肽、蛋白质(例如,抗体)或多核苷酸(例如,反义多核苷酸)。可以基于各种核心结构来合成大量化合物,例如,诸如多肽和多核苷酸等的聚合物,和合成的有机化合物,并且术语“治疗剂”内也包括这些化合物。另外,各种天然来源也可以提供用于筛选的化合物,诸如植物或动物提取物等。应理解,虽然不总是明确说明,但所述试剂可以单独使用或者与另一试剂组合使用,所述另一试剂具有与本发明筛选所鉴定的试剂相同或不同的生物活性。也希望所述试剂和方法与其它疗法组合。
[0140] 根据本发明的药物动力学(Pharmacodynamic;PD)参数包括但不限于诸如体温、心率/脉搏、血压和呼吸率等的物理参数,和诸如蛋白质、细胞和细胞标志物的生物标志物。生物标志物可以指示疾病或者可以是药物作用的结果。根据本发明的药代动力学(Pharmacokinetic;PK)参数包括但不限于药物和药物代谢物浓度。从样品体积快速鉴定和定量PK参数是药物的适当安全性和功效所极度需要的。如果药物和代谢物浓度在所需范围之外和/或由于针对药物的非预料反应而产生非预料代谢物,那么可能有必要立即采取措施来确保患者的安全性。类似地,如果PD参数中的任何参数在治疗方案期间落在所需范围之外,那么也可能必须立即采取措施。
[0141] 在优选的实施方案中,将物理参数数据存储到生物信息系统中并与其中所存储的物理参数曲线相比较,所述生物信息系统可以是在把药物基因组学和药代动力学数据并入到它的模型中用于确定毒性和给药的外部装置上。这不仅确实产生用于当前过程之前数年的临床试验的数据,而且能够消除当前在整个实时连续监测期间药物的明显功效与实际毒性之间的不相称。在临床研究中的推进/不推进决策(go/no go decision)过程期间,可以利用存储在数据库上的数据执行大规模对比性群体研究。数据与实时监测的这一汇集允许更多患者比当前所允许的更早地以安全方式进入临床试验。在另一实施方案中,可以通过所述检测系统靶向在人组织研究中发现的生物标志物从而提高癌症研究中确定药物途径和功效的准确性。
[0142] 本文中所用的术语“核酸”是指脱氧核糖核苷酸、脱氧核糖核苷、核糖核苷或核糖核苷酸和其呈单链或双链形式的聚合物。除非具体限定,否则本术语涵盖含有天然核苷酸的已知类似物的核酸,所述类似物具有与参照核酸类似的结合性质并且以与天然发生核苷酸类似的方式代谢。除非另外具体限定,否则本术语还指代寡核苷酸类似物,包括肽核酸(peptidonucleic acid;PNA),反义技术中使用的DNA的类似物(硫代磷酸酯类、氨基磷酸酯类和诸如此类)。除非另有说明,否则特定核酸序列不但涵盖明确说明的序列,而且还暗含其保守修饰变体(包括但不限于简并密码子取代)和互补序列。具体来说,可以通过产生其中一个或多个选定的(或全部)密码子的第三位由混合碱基和/或脱氧肌苷残基取代的序列来实现简并密码子取代(Batzer等人,Nucleic Acid Res.19:5081(1991);Ohtsuka等人,J.Biol.Chem.260:2605-2608(1985);和Rossolini等人,Mol.Cell.Probes
8:91-98(1994))。
[0143] 本文中所用的术语“微生物”是指细菌、放线菌目、蓝细菌(单细胞藻类)、真菌、原生动物、动物细胞或植物细胞或病毒。微生物的实例包括但不限于病原体。
[0144] 术语“多肽”、“肽”和“蛋白质”在本文中可以交换使用,指代氨基酸残基的聚合物。也就是说,针对多肽的描述同样适合肽的描述和蛋白质的描述,反之亦然。所述术语适合天然发生的氨基酸聚合物,也适合其中一个或多个氨基酸残基是非天然氨基酸的氨基酸聚合物。如本文中所用,术语涵盖任何长度的氨基酸链,包括全长蛋白质(即,抗原),其中氨基酸残基通过共价肽键相连接。另外,本文中所用的“蛋白质”还涵盖含有经共价和/或非共价相互作用缔合的多个多肽链的蛋白质。
[0145] 本文中所用的术语“多态性”指代在群体中发生两个或两个以上遗传决定的替代序列或等位基因。多态标志物或位置是分歧发生所在的位置。优选的标志物具有至少两个等位基因,各自的发生频率大于选定群体的1%,更优选地,大于10%或20%。多态性可以包括一个或多个碱基变化、插入、重复或缺失。多态位点可小至一个碱基对。多态标志物包括限制性片段长度多态性、可变数目串联重复序列(variable number of tandem repeats;VNTR)、超变区、小卫星序列、二核苷酸重复序列、三核苷酸重复序列、四核苷酸重复序列、简单重复序列和诸如Alu等的插入元件。将首先鉴定的等位基因形式任意命名为参照形式,并将其它等位基因形式命名为替代或变体等位基因。在选定群体中最常发生的等位基因形式有时称为野生型形式。二倍体生物就等位基因形式来说可以是纯合的或杂合的。二对等位基因的多态性具有两种形式。三对等位基因的多态性具有三种形式。
[0146] 单核苷酸多态性(single nucleotide polymorphism;SNP)发生于单一核苷酸所占据的多态位置,其是等位基因序列之间变异的位置。该位置之前或之后通常是等位基因的高保守序列(例如,在小于群体的1/100或1/1000成员内变化的序列)。
[0147] 单核苷酸多态性通常是因一个核苷酸对多态位置处的另一核苷酸的取代所致。转换是一个嘌呤被另一个嘌呤替代或者一个嘧啶被另一个嘧啶替代。颠换是嘌呤被嘧啶替代或相反情况。单核苷酸多态性也可以由相对于参照等位基因核苷酸的缺失或核苷酸的插入而引起。
[0148] 本文中所用的术语“个体”不限于人类,而是也可以包括其它生物体,包括但不限于哺乳动物、植物、细菌或来源于以上任一者的细胞。
[0149] 本发明的诸个方面可以包括一个或多个下列有利特点。可以使用平面光波电路技术(planar lightwave circuit technology)来实现光学操纵元件的致密而准确的整合。如本文中所述的关于平面光波电路的应用包括新药发现与开发、疾病研究、生物标志发现、化学或生物战剂的检测、环境监测、包括毒物学和疾病易感性的SNP相关性研究,以及包括鉴定易患疾病的患者和鉴定具有特殊药物敏感性的患者的诊断。
[0150] 只要两个元件的“光学模式”之间存在部分重叠,就会发生由一个元件到另一元件(例如,光发射器到光学波导)的“光学耦合”。如本文中所定义的元件的“光学模式”代表由该元件发射的或接受的光的空间和时间特性。
[0151] 在本发明中,一个或多个光源或者替代地,它们的发射光束相对于一个或多个光学波导空间地转移,光源的光学模式在空间中扫描以在某一任意时间和任意地点与一个或多个光学波导的部分光学模式重叠。在所述重叠期间,光由光源的重叠光学模式耦合到光学波导的重叠光学模式,由此在该光学波导内产生光脉冲,该脉冲的持续时间等于重叠时间,波长等于重叠光源的波长。
[0152] “相对于光学波导空间的转移”意思是光源通过空间物理转移,或者它们的发射光束使用光学装置(例如,透镜、棱镜、反射镜等)转移,或者光学波导通过空间物理转移,直到光学模式发生重叠。
[0153] 利用使用空间扫描光束来产生光学脉冲的这一方法的设备在本文中称为本发明的“扫描-耦合系统”。
[0154] 图1中描绘一般性光学波导101。它由两个主要区域组成,核心区域111和披覆区域110。在核心区域中,光受到约束并沿着波导传播。最常见的是通过把核心区域设计成折射率高于披覆区域来实现这一约束。因此,“试图逃离”核心区域的光经历“全内反射”并仍被拦截在核心区域中。只有具有某些性质(例如,传播角)的光被拦截在核心区域内。每一光学波导都有具有那些性质并因此能够沿着该波导传播的离散集“模式”。把这些模式称为波导112的“光学模式”。
[0155] 图2A中示意性地显示代表性光源202。光源由激光芯片223和用于驱动它的电引线221组成。虽然激光是用于将光耦合到波导中的最常用光源,但在一些情况下可以使用发光二极管(LED)。图中的透镜222代表可以用来操纵(即,准直、聚焦、过滤、偏转等)发射光的各种各样的光学部件。这些部件都可以按紧凑的方式组装在单个或多个衬底224上。
[0156] 把这一光源连接到它的驱动电子器件,其控制它运转的方式来产生光或脉冲的连续波(continuous wave;CW)。光源产生一种波长或几种不同波长的光。在一些情况下,可以通过改变光源的温度或者通过在光源前面放置过滤器来从发射的光谱中挑选一种波长来调谐由光源所发射的光的波长。由光源发射的并通过透镜(和/或其它光学部件)的光具有某一强度分布和传播角,在本文中称之为光源“光学模式”。图2B显示光源光学模式213的实例,它在给定距离(Z)的强度分布214、它的Y分布215和它的X分布216。
[0157] 在本发明的实施方案中,通过使一者相对于另一者移动经过两者的光学模式之间有部分重叠的点来使来自光源的光的脉冲与光学波导耦合,由此在光学波导内产生光学脉冲。利用相同光源和光学波导重复相同过程产生一串相同的光脉冲。利用不同光源重复相同过程产生由光源发射的光在波长和/或持续时间和/或任何其它性质上(例如,强度、时间相关性(coherence)、空间相关性(coherence)或振幅调制)不同的一串脉冲。利用多个光源和多个光学波导重复扫描过程在全部或部分光学波导中产生相关联的脉冲串。
[0158] 所产生的脉冲将会是光源和光学波导的两个光学模式在空间中的卷积(convolution)。此卷积受光学模式二者和它们的空间与时间重叠所影响。所得脉冲也受两个束的大小所影响。扫描速度也通过移动光学模式的时间相依性影响产生的脉冲。如果波导具有不止一个模式,那么所得脉冲将是所有重叠的总和。
[0159] 可以通过取光源和波导的有效束直径更简单地计算脉冲持续时间。近似的脉冲持续时间是这两个束直径的总和除以扫描振幅、乘以扫描周期。
[0160] 有许多可能的装置来用于实现一个或多个光源或它们的发射光束关于一个或多个光学波导的相对移动。这些装置可以包括诸如旋转圆盘、马达、螺线管、液压机构、压电机构和“记忆金属”机构的机构。另外,可以通过简单的人力驱动促动器来产生所述相对运动。可以使光源或光学波导中的任一者通过空间物理转移。替代地,光源可以静止不动,而使用光学装置(例如,透镜、棱镜、反射镜等)使从光源发射的光束转移。光学装置的空间转移可以使用上述任一种装置实现。
[0161] 下文描述本发明光学耦合方法和装置的各种非限制性实施方案。
[0162] 在本发明的一个实施方案中,把光源302安装在压电弯曲促动器305上,如图3A中所示。扫描-耦合系统300进一步包括光学波导301。压电弯曲促动器驱动器(未示出)经由电线306接合到促动器。驱动器产生所需要的电压来运转促动器。此电压可以呈“锯齿”波、“正弦”波、“方形”波的形式或能引起压电弯曲促动器上和/或下弯曲由此使光源相对于光学波导移动的电波的任何其它形式。在沿着光源路径的某处,重叠发生在光源的光学模式与光学波导的光学模式之间,由此产生在光学波导中行进的光的脉冲。
[0163] 脉冲的持续时间等于两个光学模式的重叠时间。脉冲的持续时间可以通过改变其中一个光学模式或者通过调整扫描速度来控制。举例来说,光源的光学模式可以通过使透镜在发射器前面(见图2A)移远或移近,由此扩展或会聚所发射的光束(即,光学模式)来控制。
[0164] 例如,在包括具有宽10微米的高斯形状光学模式的光源和具有宽1微米的高斯形状光学模式的光学波导的系统中,两个光学模式的重叠的宽度将是两者的卷积,从而产生宽~10微米的高斯形状光学模式。如果压电弯曲促动器是利用具有扫描振幅为300微米的频率为100Hz的周期性“锯齿”波驱动,那么结果是每5毫秒一次在光学波导中产生167微秒的脉冲。
[0165] 与任何其它机械系统一样,压电弯曲促动器在它的扫描速度上有限制。因此,选择或设计本发明扫描-耦合系统的部件以能够满足用于特定应用的所需扫描速度。在所涉及-6光脉冲的持续时间是1微(10 )秒或更久的规律的应用中,本发明可能特别有利。
[0166] 图3B中显示本发明的另一实施方案,其中扫描-耦合系统300由压电弯曲促动器305和它的电线306、光源302以及多个光学波导301组成。扫描光源此时将基于所选的扫描路径在部分或全部光学波导中产生脉冲串。
[0167] 图3C中显示本发明的进一步的实施方案。扫描-耦合系统300包括多个光源302、多个光学波导301、压电弯曲促动器305和它的电线306。通过选择不同光源的性质(例如,它们的波长或光学模式),有可能在每一个光学波导中产生处于许多不同波长并具有变化的持续时间的脉冲串。
[0168] 在图4A描绘的另一实施方案中,把光源402安装在旋转圆盘403上来产生扫描-耦合系统400。该系统进一步包括光学波导401。旋转圆盘由电子驱动器(未示出)驱动,引起光源光学模式经过它与光学波导的光学模式重叠的点扫描圆盘的外周。在此重叠期间,在光学波导中产生光脉冲,其持续时间等于重叠的持续时间。在此情况下,脉冲持续时间受两个光学模式的形状和圆盘的旋转速度所控制。
[0169] 图4B中显示扫描-耦合系统400的另一实施方案。把多个光源402面朝外安装在圆盘403上,而多个光学波导401面向内围绕圆盘放置。同一光学波导中两个相邻脉冲之间的时间受光源之间的间隔以及圆盘的旋转速度所控制。在所有光学波导中的脉冲串之间也存在很明确的时间关联。
[0170] 在图5中示意性显示的又一实施方案中,扫描-耦合系统500由压电弯曲促动器505和它的安装有扫描透镜507的电线506组成。在本发明的这一实施方案中,光源502和光学波导501是固定的。利用使透镜在光源前面移动来实现光源所发射的光束的扫描。
透镜设置在光源与光学波导之间,有效使得促动器的移动引起光源所发射的光束被透镜引导,有效使得引起光束和光学波导的光学模式之间的重叠。
[0171] 图6显示扫描-耦合系统600的又一非限制性实施例,其中动反射镜608用于使来自光源602的光束偏转以便扫描空间直到它与光学波导601的“光学模式”重叠。还显示了在一个特定瞬间的光路径609。动反射镜的移动可以利用本文所公开的任何装置实现,包括,例如,旋转圆盘、马达、螺线管、液压机构、压电机构、“记忆金属”机构或人力驱动促动器。
[0172] 在所有以上实施方案中,可以通过在所选时间段把光源“开启”和“关闭”来控制光源,由此控制光源扫描经过光学波导时实际上产生的潜在脉冲的“开启”和“关闭”。此外,应理解,光源或它的发射光束的扫描可以是周期性的(通过使扫描器以周期性方式不断地运转),或者它可以“根据请求”来操作,从而产生从单一脉冲到大量脉冲的任何脉冲。
[0173] 本发明进一步包括利用上述任何扫描-耦合装置和方法的光学检测系统。这些光学检测系统的额外部件可以包括例如,用于样品结合和/或加工的衬底、传热元件、热敏电阻器、微通道、贮存器、电子控制板、样品处理系统、接口面板,和外罩或外壳。图8是代表其中可以使用本发明扫描-耦合系统的一种可能系统的检测系统的框图。在2007年9月13日公布的美国专利公开案第20070211985号和2009年3月12日公布的美国专利公开案第20090068668号中描述了本发明的扫描-耦合系统尤其适用的特殊光学扫描系统。
[0174] 在各种实施方案中,本发明的检测系统包括扫描光源和包括多个波导的衬底。扫描光源发射一个或多个光束,所述光束相对于衬底的波导空间地转移以致光束在沿着它的扫描路径的某一点与衬底的波导耦合并光学通信。“相对于衬底的波导空间地转移”意思是扫描光源在空间中物理转移,或者包括波导的衬底在空间中物理转移。
[0175] 在各种实施方案中,扫描光源是芯片,在本文中称之为“扫描光源芯片”。在扫描光源进一步包括检测器元件的实施方案中,可能在本文中将它称为“扫描光源/检测器”或“扫描光源/检测器芯片”。在光产生元件(检测器元件当存在时)是芯片的组成部分的实施方案中,进一步在本文中把本发明的扫描光源芯片和扫描光源/检测器芯片称为“主动式扫描”芯片,而在光产生元件(检测器元件当存在时)是在芯片外部的实施方案中,称为“被动式扫描”芯片。在本文中可以使用一般性术语“扫描光源”来涵盖扫描光源芯片和扫描光源/检测器芯片的这些实施方案中的任一实施方案或全部实施方案。下文描述包括这些扫描光源类型中每一种类型的本发明系统的示例性实施方案。
[0176] 图7A说明本发明的示例性检测系统700,其包括主动式扫描光源芯片702、衬底704、光学传感位置712和检测器706。衬底包括激发波导708和收集波导710,它们在相交区域714交叉或相交。
[0177] 在一个实施方案中,如图7A中所示,主动式扫描光源芯片702在衬底704的第一边,在沿着它的扫描路径的某一点与激发波导708中的一个或多个波导耦合并光学通信。另外,检测器706在衬底704的第二边,与收集波导710中的一个或多个波导耦合并光学通信。尽管显示在衬底一边的单个检测器,但设想可以使两个或两个以上检测器在衬底的不同边,与一个或多个收集波导或激发波导耦合并光学通信(未示出)。例如,在一个实施方案中,在将主动式扫描光源芯片耦合到衬底的第一边时,可以使第一检测器耦合到相邻边并与收集波导的第一端光学通信,而可以使第二检测器耦合到另一相邻边并与收集波导的第二端光学通信。可以使第三检测器耦合到与和主动式扫描光源芯片耦合的边相对的边并与激发波导的所述第二端光学通信(未示出)。
[0178] 如图7A中所示,在一个实施方案中,系统700可以大致上是平面。例如,主动式扫描光源芯片702可以是平面芯片。可将这耦合到作为第二芯片的平面衬底704,所述平面衬底704进一步耦合到作为第三芯片的平面检测器706。在特定实施方案中,如7A中所示,系统700是包括三个耦合芯片的平面光波电路。在一个实施方案中,把两个芯片整合成单个芯片(例如,衬底芯片和检测器芯片)。在衬底芯片可以重复使用并且可以长时间有效使用的情况下,这种配置是有用的。这种配置的一个应用是在用于检测生物战相关试剂的系统中。在这种应用中,系统长时间运转而不需要更换芯片将是有利的。此外,把两个芯片整合在单个衬底上解决了保持两个芯片相对对准的问题。
[0179] 在生物应用中(包括但不限于检测生物活性分析物,包括核酸、蛋白质或微生物)使用本系统时,衬底可以是多元件生物分析芯片。
[0180] 在图7A和7C的实施方案中,设想激发波导与收集波导的交叉或相交可以是直接物理交叉或相交,例如,在激发波导和收集波导以单层或多层嵌入衬底内时。替代地,设想交叉或相交涉及激发波导与收集波导之间的物理空间或距离,例如,在激发波导和收集波导以分开的层嵌入衬底内时。系统700的光学传感位置712通常与相交区域714有关联。
[0181] 通常有一个光学传感位置712与每个相交区域714有关联。如所说明的,在一个实施方案中,相交区域714和光学传感位置712的数目是100个相交区域714和100个光学传感位置712的布置。设想相交区域和衬底芯片上光学传感区域的数目可以是大于10、大于100、大于1,000或大于10,000。进一步设想相交区域的密度可以是大于10/cm2、大于100/cm2、大于1,000/cm2或大于10,000/cm2。在一个实施方案中,相交区域的密度是大于
2,000/cm2。
[0182] 如图7A和7C中进一步显示,激发波导708与收集波导710的交叉或相交可以大致上垂直,例如,成90角。替代地,在某些实施方案中,交叉或相交可以形成小于或大于90°的角。
[0183] 还设想在图7A和7C的实施方案中,在激发波导中由主动式扫描光源芯片产生的第一光波引起传感器转换光学信号,从而导致在收集波导中的第二光波,所述第二光波可以由检测器检测。
[0184] 如图7A中所说明,在一个有利实施方案中,系统700是平面二维检测系统。在此实施方案中的系统700包括平面主动式扫描光源芯片702,其包括多个光源元件718,例如可切换激光的阵列,其垂直于衬底的平面扫描以在沿着它的扫描路径的某一点耦合一个或多个光脉冲到衬底704的平面,例如,生物分析芯片平面。此外,主动式扫描光源芯片702可以提供动态光源以用于关于个别激发波导708的选择性和程序性激发,从而提供沿着该激发波导708对所有光学传感位置712的激发。动态光源包括但不限于可调谐波长和/或可调谐谱宽光源。另外,此实施方案的系统700提供在收集波导710中(具体地说,在衬底704的平面中)对来自所有受激发传感位置712的发射光的平面收集,以致光收集大致上垂直于激发波导708中产生的光的方向。
[0185] 在图7B和7D的实施方案中,设想光学传感位置712可以与每个波导708有关联。设想衬底芯片上光学传感位置的数目可以是大于10、大于100、大于200、大于1,000、大于5,000或大于10,000。进一步设想光学传感位置的密度可以是大于10/cm2、大于100/cm2、大于1,000/cm2或大于10,000/cm2。在一个实施方案中,光学传感位置的密度是大于2,000/cm2。
[0186] 在图7B和7D的实施方案中,设想在入耦合波导中由扫描光源/检测器芯片产生的第一光脉冲引起传感器转换光学信号,从而导致在出耦合波导中的第二光脉冲,所述第二光脉冲可以由检测器检测。
[0187] 图7B说明本发明的示例性检测系统700,其包括主动式扫描光源/检测器芯片702、衬底704和光学传感位置712。设想光源元件(718)可以是包括但不限于可切换光源或被动式光源的许多光源类型中的任一种类型。主动式扫描光源/检测器芯片可以包括入耦合波导728、出耦合波导726和组合入耦合波导与出耦合波导的合成器730。所述合成器730在本领域中众所周知。衬底704可以包括波导708和与波导708有关系的传感位置
712。例如,传感位置712可以在波导708之上并与其光学通信。主动式扫描光源/检测器芯片可以包括一个或多个检测器元件706。
[0188] 在第二个实施方案中,如图7B中所示,使光源元件718与主动式扫描光源/检测器芯片上的入耦合波导728耦合并光学通信。光源产生的光沿着入耦合波导728行进并被合成器730组合进出耦合波导726中。主动式扫描光源/检测器芯片垂直于衬底的平面空间地扫描,经过波导726中每一者与衬底704上它的对应波导708耦合并光学通信的点。在此点,在波导708中产生从左向右行进的光脉冲。该光脉冲与充当变换器的传感区域712相互作用从而产生在波导708中从右到左行进的第二光脉冲。此第二脉冲与主动式扫描光源/检测器芯片上的出耦合波导726耦合。第二光脉冲在波导726中行进到达主动式扫描光源/检测器芯片上的检测器元件。
[0189] 图7C说明本发明的示例性检测系统700,其包括被动式扫描光源702,其经由光学纤维720连接到包括光源元件718的外部光源;衬底704;光学传感位置712;和检测器706。被动式光源芯片702可以包括入耦合波导或者简单地保持纤维的末端。衬底704包括激发波导708、收集波导710和在激发波导708与收集波导710之上并与其光学通信的传感位置712。检测器706可以包括如本文所述的一个或多个元件716。
[0190] 在第三个实施方案中,如图7C中所示,使光源元件718经由一组光学纤维720与被动式扫描光源芯片702的入耦合波导耦合并光学通信。被动式扫描光源芯片702在衬底704的一边在沿着它的扫描路径的某一点进一步与激发波导708中的每一者耦合并光学通信。另外,检测器706在衬底704的第二边与收集波导710耦合并光学通信。
[0191] 图7D说明本发明的示例性检测系统700,其包括被动式扫描光源/检测器芯片702、两组光学纤维720、包括光源元件718的光源、检测器706、衬底704、入耦合波导708与
728、出耦合波导710与726,和光学传感位置712。
[0192] 在第四个实施方案中,如图7D中所示,使光源元件718经由一组光学纤维720与被动式扫描光源/检测器芯片702上的入耦合波导728连接并光学通信。另外,检测器106经由第二组光学纤维720与被动式扫描光源/检测器芯片上的出耦合波导726连接并光学通信。被动式扫描光源/检测器芯片在沿着它的扫描路径的某一点与衬底704上的入耦合波导708耦合并光学通信。在沿着所述扫描路径的该同一点,衬底704上的出耦合波导710与被动式扫描光源/检测器芯片上的出耦合波导726光学通信。
[0193] 图7E说明本发明的示例性检测系统700的侧视图,其包括扫描光源/检测器芯片702、衬底704和压电弯曲促动器705。
[0194] 在图7E所示的侧视图中,使用压电弯曲促动器来使扫描光源/检测器芯片上下移动由此沿着扫描路径扫描经过一个点,在该处扫描光源/检测器芯片与衬底704上的波导耦合并光学通信。在该点,在衬底704的入耦合波导中产生第一光脉冲。在同一点,第二光脉冲从衬底704的出耦合波导耦合回到扫描光源/检测器芯片上的出耦合波导。虽然图7E说明图7D中所示检测系统的特定实施方案,但此特定实施方案代表了本发明检测系统的任何其它实施方案。类似地,压电弯曲促动器代表了用于使从光源发射的光相对于衬底空间地转移的各种各样的可能装置。在各种实施方案中,用于产生从光源发射的光相对于衬底的相对运动的装置可以包括基于压电的马达、步进马达、电马达、磁促动器、记忆金属促动器、螺线管或液压促动器。促动器的移动可以利用电动力、热动力、磁动力甚至机械动力(即,手动)来实现。
[0195] 虽然本文中具体公开了本发明检测系统的四个示例性实施方案,但设想将本文公开的不同部件/芯片耦合在部件/芯片的不同边的许多其它组合中的任何组合都是有可能的。例如,在一个实施方案中,将第一扫描光源/检测器芯片耦合到衬底的第一边并将第二扫描光源/检测器芯片耦合在衬底的第二边(未示出)。因此可以理解,虽然光脉冲在本文所述装置和系统内的通行用“左”和“右”的术语来描述,但其可以基于本文所提供部件的灵活布置而按各种各样的方向和取向来实践。此外,设想不同扫描芯片与不同衬底的额外组合。例如,图7A和7C中所示的扫描光源芯片可以与图7B和7D中所示的衬底组合,并连同与衬底的相对端光学通信的检测器使用。另外,在图7B和7D中所说明的实施方案中,扫描芯片或衬底中的任一者可包括至少一个合成器。
[0196] 虽然在所有以上实施方案中,扫描光源相对于衬底空间地转移,但进一步设想也可以通过使衬底相对于光源空间地转移,或者通过使用本文公开的任何装置使扫描光源的任何部分或部件(诸如,一个或多个反射镜、透镜或棱镜)空间地转移,来实现发射光相对于衬底的波导的扫描。
[0197] 设想光学传感位置712可以与每个波导708有关联。设想衬底芯片上光学传感位置的数目可以是大于10、大于100、大于200、大于1,000、大于5,000或大于10,000。进一步设想光学传感位置的密度可以是大于10/cm2、大于100/cm2、大于1,000/cm2或大于10,000/cm2。在一个实施方案中,光学传感位置的密度是大于2,000/cm2。
[0198] 设想在本文所述的任何实施方案中,在入耦合或激发波导中由扫描光源芯片产生的第一光脉冲引导传感器转换光学信号,从而导致在出耦合或收集波导中的第二光波,所述第二光波可以由检测器检测。
[0199] 图8是本发明检测系统的示例性说明,其是作为外壳809中工作系统801的一部分。虽然图7A-7E中说明的检测系统是本发明的核心,但为了促进该系统的操作,可以在包括本发明检测系统部件的工作系统中包括一个或多个其它模
[0200] 图8说明用于工作系统801的一种可能配置,其可以包括外壳809,其用于封装工作系统801的各个模块,包括但不限于衬底804、机器人系统803、扫描光源芯片802、多元件检测器806、电子板807和接口面板805。下面详细讨论衬底804、扫描光源芯片802和多元件检测器806。
[0201] 关于外壳809,如图8中所示,在一个实施方案中,外罩或外壳809把两个固定的芯片(例如,3芯片体系结构的两个固定的芯片),即,扫描光源芯片802和多元件检测器806保持在适当的位置。因此,在此实施方案中,衬底芯片804相对于扫描光源芯片802和多元件检测器806可移动。外壳809可以包括许多本文中所述的精加工部分和/或部件,从而允许(例如)3个光学芯片的相对对准,以及扫描光源芯片垂直于衬底平面的移动。工作系统外壳可以任选地包括用于工作系统的温度控制和振动隔离(未示出)。
[0202] 如图8中所示,工作系统801可以进一步包括用于将衬底804按需要定位在工作系统801内的X、Y、Z、θ机器人系统803。X、Y、Z、θ机器人系统803可以是具有几个自由度的转移台,用于接收或接受衬底804、把它保持在适当的位置,和使它相对于工作系统801的其余部分对准。如果需要,那么在运行结束时,X、Y、Z、θ机器人系统803可以把衬底804从工作系统801弹出去。
[0203] 设想工作系统可以进一步包括对准系统(未示出)。对准系统可以包括一个或多个光源、一个或多个检测器和一个或多个照相机以用于本发明衬底位置的主动检测。基于检测的位置,对准系统可以使衬底与工作系统模块的其余部分对准,(例如)以提供衬底与扫描光源/检测器芯片之间对准的光学通信。
[0204] 如图8中所示,工作系统801可以进一步包括一个或多个电子板807,例如,电子驱动板和控制板。设想一个或多个电子板可以控制工作系统的所有不同部分。电子板807可以控制扫描光源802和系统中存在的任何其它光源。电子板807可以适于读取工作系统801中任何的或全部的检测器和照相机。电子板807可以进一步适于驱动机器人系统803并控制它的运动,从而控制扫描光源芯片的运动,以及任选地监测和控制系统中不同区域的温度。电子板可以包括逻辑元件和处理器(未示出)。设想电子板可以进一步包括嵌入式软件以用于控制工作系统和用于对接外部世界,例如借助于可以包括键盘(key-pad)或任何其它输入/输出端口的接口面板805。
[0205] 如图8中所示,工作系统801可以另外包括一个或多个接口面板805。预期该系统将具有一个或多个接口面板805来使用户与系统对接并操作它。接口面板可以包括本领域中众所周知的用于把所述系统连接到其它系统或连接到外部控制台(未示出)的许多输入和输出端口。
[0206] 图9A说明本发明检测系统的第二实施方案(如图7B中所示)的示例性衬底904,其进一步包括阻挡层(barriers)911,意在阻断衬底内的杂散光并减少衬底的不同元件之间的串扰。阻挡层911可以是光吸收的或光反射的。阻挡层911可以呈各种大小、形状和以许多取向中的任一取向在波导908之间的各种定位来实现所需光学效应。如图9A中所示,阻挡层911可以布置在两个相邻波导之间并接近光学传感位置912。使用波导908引导初级光波(激发光;见虚线箭头)从衬底904的左边到光学传感位置912。接着波导908引导次级光波(在光学传感位置912处收集;见虚线箭头)从光学传感位置912回到衬底904的左边。
[0207] 图9B说明本发明检测系统的第四实施方案(如图7D中所示)的示例性衬底904,其进一步包括入耦合波导908和合成器926。初级光波(激发光;见虚线箭头)在衬底904的左边处经由入耦合波导908耦合到衬底904。从左向右行进的激发光由合成器926组合进出耦合波导910,其进一步将它引导到光学传感位置912。接着使用出耦合波导910引导次级光波(在传感位置912处收集;见虚线箭头)从光学传感位置912回到衬底904的左边。阻挡层911与以上在图9A中所述相同的目的。
[0208] 图9C示意性地说明本发明一个实施方案的衬底904的横截面。在所说明的例子中,内/出耦合波导908嵌入衬底904的表面以下。光学传感位置912可以蚀刻进表面,例如,衬底904的上覆层,并位于(例如)邻近波导908并在波导908上方从而便于它们之间的光学通信。设想在不同实施方案中,光学传感位置还可以位于衬底904的表面上或者仅部分路径(way)蚀刻进上覆层,或者整个路径经过波导(未示出)。还设想波导可以是单模式波导、多模式波导或两者的任何组合,即竖直尺寸上的单模式和横向尺寸上的多模式。
[0209] 图9D说明本发明检测系统的第一和第三实施方案(如图7A和7C中所示)的示例性衬底904,其进一步包括阻挡层911,意在阻断衬底内的杂散光并减少衬底的不同元件之间的串扰。阻挡层911可以是吸收光的或反射光的。阻挡层911可以呈各种大小、形状和以许多取向中的任一取向在收集波导910和/或激发波导908之间的各种定位来实现所需光学效应。如图9D中所示,阻挡层911可以成一排地布置在两个相邻收集波导之间并接近光学传感位置912和相交区域914。
[0210] 如图9E中所示,(在此视图中未示出上覆层)在一个实施方案中,衬底904可以包括以多个层嵌入衬底904的表面以下的激发波导908和收集波导910。如所显示,激发波导908在相交区域914与收集波导910交叉,物理相交,并光学通信。在图9E中所示的实施方案中,光学传感位置912定位在相交区域914处位于激发波导908上方并与激发波导908光学通信。如图9E中进一步显示,衬底904包括多个层,包括硅层920和二氧化硅(SiO2)层922,其中激发波导908和收集波导910嵌入二氧化硅(SiO2)层922内。
[0211] 如图9F中所示,在另一实施方案中,衬底可以包括以单个层嵌入衬底904的表面以下的激发波导908和收集波导910。如所显示,激发波导908与收集波导910交叉,物理相交,并光学通信。与图9E中所示的实施方案相比而言,这里激发波导908与收集波导910之间的相交发生于收集波导910内部。如图9F中进一步显示,衬底904包括多个层,包括硅层920、二氧化硅(SiO2)层922和覆层924。如所显示,激发波导908和收集波导910可以嵌入二氧化硅(SiO2)层922内。另外,光学传感位置912可以嵌入覆层924和二氧化硅(SiO2)层922二者内。任选地,光学传感位置可以只是嵌入覆层内(未示出)。
[0212] 设想激发波导和收集波导可以是单模式或多模式波导。在一个实施方案中,激发波导是单模式而收集波导是多模式。设想波导配置可以包括在波导内在竖直或横向取向中的单模式或多模式配置。例如,在一个特定的非限制性实施方案中,激发波导908可以支持竖直尺寸中的单模式和横向尺寸中的多模式。任选地,如图9D中所示,激发波导908和收集波导910可以跨过整个衬底从一边到另一边。
[0213] 如图9F中所示,衬底904部件和光学传感位置912可以包括多尺寸。图9F显示衬底904的两个横截面视图。视图AA是如图9D和图9E中所指示在平面A中的横截面视图。视图BB是如图9D和图9E中所指示在平面B中的横截面视图。如图9F中所示,在激发波导上方的覆层924的厚度可以是约0.1μm至约20μm。在一个实施方案中,覆层924的厚度是约1μm至约2μm。通过非限制性实施例,如图9F中所示,光学传感位置912的开口可以包括以下尺寸:约20μm乘约2μm。收集波导910之间的距离可以在约1μm至约1000μm的范围内。例如,如图9F中所示,收集波导910之间的距离可以为约100μm。收集波导910与硅层920之间的距离可以为约1μm至约100μm。例如,如图9F中所示,收集波导910与硅层920之间的距离可以为约10μm至约20μm。
[0214] 如图9E和9F中所示,激发波导908和收集波导910可以是通道波导。关于图9E和9F中所示的实施方案中波导尺寸的示例性范围包括约0.1μm至约10μm的厚度和约1μm至约100μm的宽度。通过仅作为非限制性实施例,激发波导908可以包括约0.1μm乘约100μm的横截面尺寸,而收集波导910可以包括约0.2μm乘约100μm的横截面尺寸。
[0215] 图9G在侧视图中说明和传热元件903,例如热电冷却器(thermoelectric cooler;TEC)有关系的本发明衬底904的另一实施方案。传热元件903是对于加热或冷却芯片有用的温度控制系统,芯片例如衬底904。尽管传热元件在本文中可以称为冷却元件,但应理解在传热元件被配置为增加和降低芯片的温度的情况下,该部件取决于电流的感应方向而主要起加热与冷却元件的作用。传热元件可以提供某一范围的有用的温度。例如,传热元件可以按需要配置成提供范围介于约-40℃至约120℃之间的温度。传热元件903可以适于接收本发明的衬底904。传热元件903可以适于接触本发明衬底904的部分或全部表面。
[0216] 提供与本发明的衬底904结合的传热元件903对(例如)经由诸如本文所述的聚合酶链反应(polymerase chain reaction;PCR)等的过程来扩增受测试样品分子是有用的。使用中,关于图9G所述的实施方案提供控制整个衬底的温度的能力,以致当整个衬底的温度循环时,同时通过PCR可以扩增在任何光学传感位置处的样品。
[0217] 图9H说明本发明衬底904的另一实施方案,其中光学传感位置912包括加热器905和热敏电阻器907。在此实施方案中,衬底904的光学传感位置912可以在每个传感位置912的附近包括加热器905,例如薄膜加热器。加热器905可以适于能够使对每个传感位置912的单独温度控制。除加热器905之外,热敏电阻器907可以位于每个传感位置912处或在其附近,由此提供对局部温度的测定。使用中,此实施方案提供对于每一个传感位置运行相同或任何所需不同数目的循环和相同或任何所需不同温度分布图的能力。
[0218] 图9I说明本发明衬底904的又一实施方案,其中光学传感位置912包括加热器905和热敏电阻器907。在此实施方案中,衬底904的光学传感位置912可以在一个或多个传感位置912的附近包括加热器905,例如薄膜加热器。加热器905可以能够使对每个传感位置912的单独温度控制。除加热器905之外,热敏电阻器907也可以位于一个或多个传感位置912处或在其附近,由此提供对局部温度的测定。使用中,此实施方案提供对于每一个传感位置运行相同或任何所需不同数目的循环和相同或任何所需不同温度分布图的能力。
[0219] 有利的是,关于图9G、9H和9I所述的实施方案可以支持实时PCR。如本文中所述,由于光学检测是从衬底内进行,所以这些实施方案(见图9G、9H和9I)中的信号检测都可以在样品处于扩增循环的过程中时进行,由此使PCR过程的实时分析能够。
[0220] 图9J说明本发明衬底904的又一实施方案,其中衬底904另外包括和光学传感位置912有关系的贮存器913和微通道909。因而,在此实施方案中,微流体被并入衬底中。微流体可以适于使用跨衬底的毛细管效应驱动液体(在此情况中的受测试样品)。如图9J中所说明,这可以通过布置任选地具有变化宽度的微通道909来实现,所述微通道迫使样品从一个或多个贮存器913到光学传感位置912,光学传感位置912可以包括蚀刻孔来接收样品。微通道可以蚀刻在芯片自身的面上或者可以作为外部结构添加在衬底的表面上。
[0221] 图9K说明本发明衬底904的又一实施方案,其中衬底904另外包括和光学传感位置912有关系的贮存器913和微通道909。因而,在此实施方案中,微流体被并入衬底中。微流体可以适于使用跨衬底的毛细管效应驱动液体(在此情况中的受测试样品)。如图9K中所说明,这可以通过布置任选地具有变化宽度的微通道909来实现,所述微通道迫使样品从一个或多个贮存器913到光学传感位置912,光学传感位置912可以包括蚀刻孔来接收样品。微通道可以蚀刻在芯片自身的面上或者可以作为外部结构添加在衬底904的表面上。
[0222] 使用中,设想可以待测试的样品可以用移夜管吸取进在衬底一端的贮存器中。接着可以使用微流体系统把样品分配到光学传感位置和传感孔,在那里允许它结合到预点样(pre-spotted)的探针并且随后可以进行光学检测和分析。可以使用几个贮存器来分开不同的样品/患者或者用于运行几个平行测试。
[0223] 系统的衬底可以用一个或多个探针浸渍涂布,所述探针配置成与所需的生物活性分析物分子有生物化学相互作用。实施例1描述用于抗体或寡核苷酸附着物的芯片涂布实验方案。
[0224] 另外,设想可以使用打印头(print head)将一个或多个探针施加到光学传感位置的传感器。此外,设想样品到系统的光学传感位置的传递包括使用试验头(assay head)传递样品。2005年9月30日提出申请的美国专利申请第11/241,060号和2005年7月6日提出申请的美国专利申请第11/632,086号中描述了一种可能的打印头技术。
[0225] 图10A在俯视图中说明本发明系统的示例性衬底1004,其中收集波导1010包括用于收集光的漏斗1017(图10B中详细显示)。
[0226] 如图10A的实施例中所示,衬底1004可以包括10×10阵列,其由以下组成:10个激发波导1008(例如,约5μm宽乘约2μm深);10个收集波导1010(例如,约30μm宽乘约10μm深);100个光学传感位置1012(例如,约30μm长乘约5μm宽乘约10μm深的孔);
100个漏斗1017,用于收集来自光学传感位置1012和阻挡层1011(例如,光吸收通道)的光以减少光学传感位置1012之间的串扰。虽然图10A中所示的实施例包括激发波导1008和收集波导1010的10×10阵列,但设想衬底可以包括大于10、大于100或大于1,000个激发波导1008和收集波导1010。
[0227] 在图10A所示的实施方案中,激发光可以从(例如)扫描光源芯片在衬底1004的左手侧耦合进一个或多个激发波导1008中。激发光可以沿着激发波导1008行进并经由渐逝场(evanescent)尾耦合进光学传感位置(例如,孔)。可以沿着光学传感位置1012的长刻面(facet)将光学传感位置1012中产生的受激发荧光收集进漏斗1017中。漏斗1017可以把光引入收集波导1010。收集波导1010中的光可以在衬底1004的“底部”耦合出来进入检测器阵列(未示出)。散射到光学传感位置1012外面的光可以由一系列阻挡层1011(例如,光吸收剂)阻断以避免平行的收集波导1010之间的串扰。
[0228] 在一个实施方案中,图10A中所示的衬底包括两个波导层。如图10C的横截面视图中所说明,约2μm厚的底层可以包括激发波导1008。底层可以具有较高折射率以便增加光学传感位置中渐逝场尾的存在。约10μm厚的上层可以包含光学传感位置和光收集结构(漏斗和波导)。上层的折射率可以低于下层以便最小化光从衬底中耦合出来到检测器时的光损失。
[0229] 在上述的特定实施方案中,激发波导和收集波导都是多模式的。
[0230] 如图10C的横截面视图中所示,为了最小化由光从收集波导1010耦合进激发波导1008中所引起的波导交叉点处的光损失,激发波导1008可以比收集波导1010薄。例如,如图10B和10C中所示,激发波导1008的宽度可以为约5μm(见图10B),高度为约2μm(见图10C)。如进一步显示,收集波导1010的宽度可以为约30μm(见图10A和10B),高度为约10μm(见图10C)。
[0231] 设想在激发波导与收集波导之间的波导交叉点耦合的光可以直接照射进光学传感位置,由此增加光激发而非被损失。
[0232] 如图10B中所示,光学传感位置可以是窄(约5μm)而长(约30μm)的孔,其中光可沿着长刻面收集。这一配置增加光收集的效率。另外,耦合到孔中的光激发可以因长3
的耦合长度而增加。孔的尺寸(5×30×10μm)产生1.5皮升(pico-liter)的容积。还可设想呈各种各样大小的较大的孔,产生在约0.1皮升到约100微升范围内的容积。
[0233] 漏斗可以具有某一半径以用于把光收集、约束和耦合到收集波导中。半径适用范围可以包括约100μm到约1000μm。
[0234] 如图10A和10B中所说明的阻挡层1011可以是填充有光吸收材料(例如,诸如金等的金属)的沟槽。在阻挡层1011是沟槽的情况下,沟槽可以包括在激发波导1008上方的开口以避免交叉点处的损失(未示出)。
[0235] 图10A中所说明的衬底的总尺寸可以为约1.2乘约1.2mm2。在衬底周围可以任选地包括边缘以便按需要调整总尺寸。
[0236] 图11A说明本发明系统的示例性衬底1104,其中激发波导1108包括多个分支1121(图11B中详细显示)以用于分接来自激发波导的光并将它耦合进传感孔中。
[0237] 在图11A所示的实施方案中,衬底1104可以由几个波导层(例如,三个波导层)构成。这一配置可以(例如)在最小化损失和串扰的同时对优化激发和荧光收集是有用的。图11C和11D是衬底1104经分别如图11B中所指示(AA)和(BB)处的平面的示意性横截面视图。
[0238] 在一个实施方案中,衬底由三个波导层组成,所述层的核心折射率为1.7,覆层反射率为1.4。有用的核心折射率值在约1.45到约2.1的范围内,而适用的覆层折射率值在约1.4到约1.5的范围内。
[0239] 如图11C和11D中所示,在衬底1104包括三个波导层的一个实施方案中,第一底层可以是约10μm厚并且包括收集波导1110。在图11A所说明的实施方案中,收集波导1110可以是约30μm宽、多模式的并且大致上从边到边横贯衬底1104。第二中间波导层可以是约0.5μm到约1μm厚并且包括耦合波导分支1121(见图10A和10B)。分支1121可以将受激发光耦合进光学传感位置中,所述光学传感位置可以是孔。第三顶层可以是约
2μm厚,包括单模式激发波导1108并且大致上从边到边横贯衬底1104。
[0240] 图14A说明本发明检测系统的第一实施方案(见图7A)的主动式扫描光源芯片1402。主动式扫描光源芯片1402包括光源元件1418和入耦合波导1440。由光源元件产生的初级光波从左边耦合进入耦合波导1440中。波导1440引导初级光波到主动式扫描光源芯片1402的右边并将它耦合出来到衬底(未示出)。
[0241] 图14B说明本发明检测系统的第二实施方案(见图7B)的主动式扫描光源/检测器芯片1402。主动式扫描光源/检测器芯片1402包括光源元件1418、检测器元件1416、入耦合波导1440、出耦合波导1438和合成器1436。由光源1418产生的初级光波(激发光)从左边耦合进入耦合波导1440中。接着激发光由合成器1436组合进出耦合波导1438中,接着出耦合波导1438引导它到主动式扫描光源/检测器芯片1402的右边并将它耦合出来到衬底(未示出)。衬底(未示出)将次级光波(在光学传感位置处收集-未示出)耦合回到出耦合波导1438,在主动式扫描光源/检测器芯片1402的右边。次级光波被出耦合波导1438引导到主动式扫描光源/检测器芯片上的检测器元件1416。
[0242] 图12A说明本发明检测系统的第三实施方案(见图7C)的被动式扫描光源芯片1202。被动式扫描光源芯片1202包括入耦合波导1228。初级光波(激发光)从左边经由一组光学纤维(未示出)耦合进入耦合波导1228中。波导1228引导初级光波到被动式扫描光源芯片1202的右边并将它耦合出来到衬底(未示出)。
[0243] 图12B说明本发明检测系统的第四实施方案(见图7D)的被动式扫描光源/检测器芯片1202。被动式扫描光源/检测器芯片1202包括入耦合波导1228、出耦合波导1226和合成器1230。初级光波(激发光)从左边经由一组光学纤维(未示出)耦合进入耦合波导1228中。接着激发光由合成器1230组合进出耦合波导1226中,接着出耦合波导1226引导它到被动式扫描光源/检测器芯片1202的右边并将它耦合出来到衬底(未示出)。衬底(未示出)将次级光波(在光学传感位置处收集-未示出)耦合回到出耦合波导1226,在被动式扫描光源/检测器芯片1202的右边。次级光波被波导1226从右向左引导并从被动式扫描光源/检测器芯片1202耦合出来,在它的左边经由一组纤维(未示出)到检测器(未示出)。
[0244] 图12C说明本发明检测系统的第四实施方案(见图7D)的被动式扫描光源/检测器芯片1202的第二种可能方案。被动式扫描光源/检测器芯片1202包括入耦合波导1228和出耦合波导1226。初级光波(激发光)从左边经由一组光学纤维(未示出)耦合进入耦合波导1228中。接着激发光被引导到被动式扫描光源/检测器芯片1202的右边,在那里它被耦合出来到衬底(未示出)。衬底(未示出)将次级光波(在光学传感位置处收集-未示出)耦合回到出耦合波导1226,在被动式扫描光源/检测器芯片1202的右边。次级光波被波导1226从右向左引导并从被动式扫描光源/检测器芯片1202耦合出来,在它的左边经由一组光学纤维(未示出)到检测器(未示出)。
[0245] 设想图7A-1D中的光源元件718(或图14A和14B中的1418)可以包括动态光源,以允许在一个或多个单独元件中初级光波的选择性和程序性产生。
[0246] 在一些实施方案中,光源元件718可以提供可变波长的光。在一个实施方案中,光源元件是宽谱源。在另一实施方案中,光源元件是可调谐源。
[0247] 在一些实施方案中,光源元件718的数目将等于系统的衬底中激发波导的数目。扫描光源输出之间的接口在节距(pitch)方面应当与衬底中的激发波导匹配,以允许这两个元件在沿着扫描路径的某一点将光从扫描光源芯片高效地耦合并转移到激发波导或到衬底的入耦合波导。
[0248] 图7A-D以及图14A和14B中描绘的光源元件可以包括不同类型的光产生元件。在一些实施方案中,光产生器元件是发光二极管(LED)。在其它实施方案中,光产生器元件是激光二极管(LD)。每个单独的光产生器元件分开控制并且可以按需要开启或关闭。在一个实施方案中,扫描光源芯片包括10个或更多个光产生器元件。在另一实施方案中,扫描光源芯片包括100个或更多个光产生器元件。在又一实施方案中,扫描光源芯片包括1000个或更多个光产生器元件。在再一实施方案中,扫描光源芯片包括10个与100个之间的光产生器元件。
[0249] 图7A-D以及图14A和14B中描绘的检测器元件可以包括不同类型的检测器元件。在一些实施方案中,检测器元件是PIN二极管。在一些实施方案中,检测器元件是离子雪崩光电二极管(avalanche photo-diodes;APD)。在一些实施方案中,检测器元件是作为CCD阵列的一部分的一组像素。每个单独检测器元件分开控制和读取。在一个实施方案中,扫描光源芯片包括10个或更多个检测器元件。在另一实施方案中,扫描光源芯片包括100个或更多个检测器元件。在又一实施方案中,扫描光源芯片包括1000个或更多个检测器元件。
在再一实施方案中,扫描光源芯片包括10个与100个之间的检测器元件。
[0250] 在一个非限制性实施例中,检测器元件具有400nm至1000nm之间的光谱范围、>2
0.3的光敏度(A/W)、0.005mm 的有效面积/元件、128个元件,和<0.1mm的节距。
[0251] 在一个实施方案中,检测器是硅光电二极管(PN、PIN、CCD或APD)阵列。适合的检测器阵列的例子是Hamamatsu 64×2048CCD芯片(PN-S10420-1106)。
[0252] 在一些实施方案中,扫描光源芯片上的光源元件和检测器元件可以整合在单个芯片上,所述芯片包括两个或两个以上光源元件的阵列、两个或两个以上检测器元件的阵列、两个或两个以上入耦合波导的阵列、两个或两个以上出耦合波导的阵列和两个或两个以上合成器的阵列。在一个实施方案中,每个光源元件光学地耦合到一个入耦合波导并适于以使得由该光产生器元件发射的光大部分沿着该波导传播。波导可以延伸到芯片的边,在那里可以使它们在沿着芯片的扫描路径的某一点将在其内传播的光耦合到衬底。在一个实施方案中,每一个可选地以不同波长发射的两个光源元件可以耦合到单个入耦合波导。在另一实施方案中,每一个可选地以不同波长发射的多于两个光源元件可以耦合到单个入耦合波导。
[0253] 在其它实施方案中,扫描光源芯片上的光源元件可以整合到单个芯片上,所述芯片包括两个或多个光源元件的阵列和两个或多个波导的阵列。在一个实施方案中,每个光源元件光学地耦合到一个波导并适于由该光源元件发射的大部分光沿着该波导传播。波导可以延伸到芯片的边,在那里可以使它们将在其内传播的光耦合到衬底。在一个实施方案中,每一个可选地以不同波长发射的两个光源元件可以耦合到单个波导。在另一实施方案中,每一个可选地以不同波长发射的多于两个光源元件可以耦合到单个波导。
[0254] 除光源元件、检测器元件和波导之外,扫描光源芯片还可以包括光操纵构件,诸如透镜、滤光器、开关调制器、分光器、合成器、反射镜和循环器。
[0255] 扫描光源芯片的控制可以整合到与光源元件、检测器元件和波导相同的芯片上,或者替代地可以在芯片的外部。扫描光源芯片可以具有到外部驱动器或外部控制器的电接口或者到外部控制系统的逻辑接口。光源元件和检测器元件的控制允许分开地驱动每个光源元件与每个检测器元件。它还进一步允许对扫描光源芯片上存在的其它构件(例如,调制器和开关)的控制。
[0256] 设想在平面光波电路中有用的额外元件,包括但不限于耦合器、滤光器、反射镜、循环器、分光器、调制器、开关和沟槽,作为本文中所述系统的一部分(未示出)。这些元件在整合进衬底或整合进扫描光源芯片中时可以用来操纵入耦合波导中入射的第一光波或者出耦合波导中出射的第二光波。在其它实施方案中,这些元件在整合进衬底或整合进扫描光源芯片中时可以用来操纵激发波导中入射的第一光波或者收集波导中出射的第二光波。
[0257] 本文所述的各种构件的尺寸范围包括:波导厚度-约20nm至约50μm;波导宽度-约1μm至约500μm;波导长度-约1mm至约100mm;光学传感位置长度-约100μm至约100mm;光学传感位置宽度-约1μm至约500μm;光学传感位置深度-约0μm至约20μm;波导节距-约10μm至约10mm;衬底厚度-约100μm至约5mm;上覆层厚度-约
0μm至约20μm;和下覆层厚度-约0.1μm至约20μm。
[0258] 检测系统的衬底可以由适用于平面光波电路中的许多众所周知材料中的任何材料构成。例如,适用的衬底材料包括但不限于二氧化硅(SiO2)、玻璃、环氧树脂、铌酸锂和磷化铟以及其组合。本文公开的波导可以由硅、二氧化硅(SiO2)和其衍生物、氧氮化硅(SiON)和其衍生物、氮化硅(SiN)和其衍生物、氧化钽(TaOx)和它的衍生物、聚合物、铌酸锂和磷化铟以及其组合构成。在一个实施方案中,使用紫外光(UV light)来改变波导材料在沉积之后的折射率。
[0259] 图13A说明衬底1304的示例性硅层1326。例如,硅层1326可以由厚度为约0.1mm至约10mm的晶片硅片构成。在另一个例子中,硅片可以具有从约0.3mm至约1mm的厚度。在图13A所说明的特定实施例中,晶片硅片的厚度为0.65mm。如图13A所示,在一个实施方案中,二氧化硅(SiO2)层1322是二氧化硅(SiO2)的14μm热氧化层,是通过把硅放入高温炉内部的富氧环境中而产生的。顶部硅层随时间(数小时)氧化,产生SiO2层。另外,如图13A中所示,在一个实施方案中,覆层1324厚15μm并且通过在蚀刻后的等离子体增强化学气相沉积(Plasma-Enhanced Chemical Vapor Deposition;PECVD)工艺进行沉积来产生波导1308。
[0260] 设想衬底的各个层可以包括不同的折射率性质。例如,波导层(例如,SiN)的折射率高于其上所沉积的二氧化硅覆层。
[0261] 如图13B中所示(利用覆层沉积之前的显微照片说明),在一些实施方案中,衬底1304可以包括经布置用于在二氧化硅(SiO2)层1322上的光波耦合的两个波导1308。替代地,如图13C中所示,两个波导1308可以经布置用于在二氧化硅(SiO2)层1322上引导非耦合光波,并上覆有覆层1324。
[0262] 在一个实施方案中的光学传感位置呈孔的形式,例如蚀刻孔(见图9C的横截面视图)。在光学传感位置是孔的情况下,它可以充当用于液体样品的器皿。在另一实施方案中,光学传感位置是衬底表面上(例如在波导上方)的区域。在另一实施方案中,光学传感位置是生物化学相互作用位置。例如,在光学传感位置是含有附接了荧光标签的传感器单链DNA寡核苷酸的孔时,添加到孔中的含有靶点(target)互补单链DNA的溶液可以通过碱基配对(base-pairing)与光学传感位置(未示出)内的传感器发生生物化学相互作用。在另一实施例中,光学传感位置是含有用于执行如本文所述的免疫测定的一种或多种免疫测定试剂的位置或孔。
[0263] 在特定实施方案中,光学传感位置包括光学变换器(未示出)。将光学变换器定义为对入射的初级光波产生可测变化(波长、振幅或相位)因此可以在出射的次级光波中监测入射的初级光波的任何装置。在一个实施方案中,光学变换器是包括荧光或发光化合物的荧光孔,其中由波导引导的光波在靶点存在下激发孔中的荧光或发光化合物,并且相同的波导收集和引导从孔中发射的光到检测器(可能通过适配器芯片),例如在芯片的边(未示出)。
[0264] 系统的光学传感位置的传感器可以是辨别例如来自生物、人工或环境来源的样品中的靶点(例如,生物活性分析物)或与之相互作用的传感器。如上所讨论,第一光波可以引起传感器转换光学信号到第二光波。在传感器能够辨别样品中的靶点或与之相互作用的一个实施方案中,在传感器辨别该靶点或与之相互作用时第二光波可以发生可测变化。一旦使用本系统的检测器检测到第二光波的变化,就指示样品中靶点的存在。
[0265] 许多传感器中的任何传感器可以与检测系统一起使用来测定与样品中靶点的传感相关的现象。适合的传感器的实例包括但不限于荧光孔或池、吸收池、干涉型传感器、衍射型传感器或表面等离子体共振(SPR)检测器。对于荧光孔或池来说,可测的现象可以是从发光或荧光分子标签的光发射。例如,可以测得在变化波长下的发射光。在吸收池的情况下,样品光学密度(optical density;OD)的变化可以可测地影响通过样品的光的强度。对于干涉型传感器,波导的有效折射率的变化产生两个光波之间的相位差,从而导致在检测器处可测为强度差异的不同干涉图样。对于衍射型传感器,衍射元件(例如,光栅)的表面处有效折射率的变化影响光对于给定波长的衍射角或者替代地,影响给定衍射角下的波长。在SPR传感器的情况下,在金属-电介质界面处有效折射率的变化影响用于产生表面等离子体的共振条件。
[0266] 设想用于管理操作检测系统的不同步骤的控制系统。
[0267] 除了切换来自光源的光输出、读取检测器阵列和报告所检测的结果之外,控制系统还管理诸如对准和驱动扫描光源芯片以扫描衬底的边等的步骤。
[0268] 大体来说,在一个方面,提供使用本文所述的系统和装置来检测样品中单个生物活性分析物分子的存在的方法。在此情境中的生物活性分析物分子包括本文所公开的任何生物活性分析物分子。
[0269] 在实践本发明的方法时,任选地利用分子生物学中的许多常规技术。这些技术众所周知并且在例如以下文献中进行阐述:Ausubel等人.(编)Current Protocols in Molecular Biology,第I、II和III卷,(1997),Ausubel等人.(编),Short Protocols in Molecular Biology:A Compendium of Methods from Current Protocols in Molecular Biology,第5版,John Wiley&Sons,Inc.(2002),Sambrook等人,Molecular Cloning:A Laboratory Manual,第3版,Cold Spring Harbor Laboratory Press(2000),和Innis等人(编)PCR Protocols:A Guide to Methods and Applications,Elsevier Science&Technology Books(1990),所有上述文献以引用的方式并入本文。
[0270] 适合与本文所述的系统和方法一起使用的样品准备可以包括许多众所周知的用于生物和/或环境样品的收集与分析的方法中的任何方法。在生物样品的情况下,样品可以(例如)经过操纵、处理或提取以关于所关注的靶点达到任何所需纯度水平。
[0271] 样品可以是疑似含有生物活性分析物的体液。通常采用的体液包括但不限于血液、血清、唾液、尿液、胃消化分泌液、泪液、粪便、精液、阴道液、来源于肿瘤性组织的间质液,和脑脊髓液。
[0272] 预期本文所述的系统可以用于筛选各种各样的样品。在所研究的受试者是活体动物的情况下,样品可以源自所讨论的体液。获得样品的方法包括但不限于脸颊拭样法、鼻子拭样法、直肠拭样法、皮肤脂肪提取法或用于获得生物或化学物质的其它收集策略。当所测试的受试者是非活体或环境主体时,样品可以源自呈固相、液相或气相的任何物质。可以把样品收集并放置在衬底上或者可以使衬底直接暴露给所研究的样品源(例如,水库、自由空气)并与它相互作用。
[0273] 在一些实施方案中,体液不经过进一步加工而直接用于检测其中存在的一种或多种生物活性分析物。但是,需要时,可以在利用检测系统执行分析之前对体液进行预处理。预处理方法的选择将取决于所用体液的类型和/或所研究的生物活性分析物的性质。例如,在生物活性分析物以低水平存在于体液样品中时,可以经由任何常规方式浓缩样品以富集生物活性分析物。浓缩生物活性分析物的方法包括但不限于干燥、蒸发、离心、沉降、沉淀和扩增。在生物活性分析物是核酸的情况下,根据Sambrook等人(“Molecular Cloning:
A Laboratory Manual”)中陈述的程序使用各种分解(lytic)酶或者化学溶液,或者按照制造商提供的附带说明书使用核酸结合树脂,对它进行提取。在生物活性分析物是细胞上或细胞内存在的分子的情况下,可以使用分解剂执行提取,所述分解剂包括但不限于诸如SDS等的变性洗涤剂,或诸如thesit(2-十二烷乙醇(2-dodecoxyethanol))、脱氧酸钠(sodium deoxylate)、 X-100和 20等的非变性洗涤剂。
[0274] 在一些实施方案中,预处理可以包括稀释和/或混合样品,以及过滤样品以便(例如)从血液样品中去除血红细胞。
[0275] 可使用检测系统检测的靶点包括但不限于包含核酸、蛋白质、抗原、抗体、微生物、气体、化学试剂和污染物的生物活性分析物。
[0276] 在一个实施方案中,靶点是DNA形式的核酸,例如cDNA。在相关实施方案中,DNA靶点是经由扩增反应产生,例如,经由聚合酶链反应(PCR)。在本发明的另一实施方案中,所检测的生物活性分析物是代表关于所研究生物体的疾病或特定状态的已知生物标志物的蛋白质。在另一实施方案中,几种不同的生物活性分析物可以是作为一组生物标志物提供的蛋白质,其中生物标志物的相对浓度指示所研究生物体的疾病或其它状态。在又一实施方案中,靶点是作为病原体的微生物。在另一实施方案中,靶点是化学试剂,例如毒性化学试剂。
[0277] 在靶点是核酸的情况下,它可以是单链、双链或更高阶的,并且可以是线性或环形的。示例性单链靶点核酸包括mRNA、rRNA、tRNA、hnRNA、ssRNA或ssDNA病毒基因组,尽管这些核酸可以含有内部互补序列和重要的二级结构。示例性双链靶点核酸包括基因组DNA、线粒体DNA、叶绿体DNA、dsRNA或dsDNA病毒基因组、质粒、噬菌体和类病毒。靶点核酸可以用合成法制备或者可以从生物源纯化。靶点核酸可以经过纯化来去除或减少样品中的一种或多种非所需组分,或者来浓缩靶点核酸。相反,当靶点核酸对于特定试验过浓的情况下,可以对靶点核酸进行稀释。
[0278] 在样品收集和任选的核酸提取之后,可以使包含靶点核酸的样品的核酸部分经受一种或多种预备反应(preparative reaction)。这些预备反应可以包括体外转录(in vitro transcription;IVT)、加标记、分片、扩增和其它反应。在检测和/或扩增之前可以首先用逆转录酶和引物(primer)处理mRNA来产生cDNA;这可以在体外利用纯化的mRNA或者在原位置处(例如在附加到载玻片的细胞或组织中)进行。核酸扩增增加诸如靶点核酸等的所关注序列的拷贝数。各种各样的扩增方法适合使用,包括聚合酶链反应方法(PCR)、连接酶链反应(ligase chain reaction;LCR)、自持续序列复制(self sustained sequence replication;3SR)、基于核酸序列的扩增法(nucleic acid sequence-based amplification;NASBA)、Qβ复制酶(Q-beta replicase)的使用、逆转录作用、切口转移法(nick translation)等。
[0279] 在靶点核酸是单链时,扩增的第一周期形成与靶点核酸互补的引物延伸产物。如果靶点核酸是单链RNA,那么在首次扩增中使用具有逆转录酶活性的聚合酶来将RNA逆转录成DNA,并且可以执行额外的扩增循环来拷贝引物延伸产物。当然,用于PCR的引物必须经过设计以与它们的对应模板中将产生可扩增区段的区域杂交;因此,每个引物必须杂交使得它的3′核苷酸与它的互补模板链中的某一核苷酸成对,所述核苷酸位于用来在PCR中复制该互补模板链的引物的3′核苷酸的3′。
[0280] 靶点核酸可以通过使靶点核酸的一个或多个链与引物和具有适当活性的聚合酶接触来扩增,以延伸引物并拷贝靶点核酸以产生全长互补核酸或其较小部分。具有可以拷贝靶点核酸的聚合酶活性的任何酶都可以使用,包括DNA聚合酶、RNA聚合酶、逆转录酶,和具有不止一种聚合酶活性类型的酶,并且所述酶可以是不耐热的或耐热的。也可以使用酶的混合物。示例性酶包括:DNA聚合酶,诸如DNA聚合酶I(“Pol I”)、Pol I的克列诺(Klenow)片段、T4、T7、 T7、 Version 2.0T7、Tub、Tag、Tth、Pfx、Pfu、Tsp、Tfl、Tli和热球菌属(Pyrococcus sp)GB D DNA聚合酶;RNA聚合酶,诸如大肠杆菌(E.coli)、SP6、T3和T7RNA聚合酶;和逆转录酶,诸如AMV、M MuLV、MMLV、RNAse H′MMLV II、 HIV 1和RAV2逆转录酶。
这些酶全部可以购得。具有多特异性的示例性聚合酶包括RAV2和Tli(exo)聚合酶。示例性耐热酶包括Tub、Taq、Tth、Pfx、Pfu、Tsp、Tfl、Tli和热球菌属GB D DNA聚合酶。
[0281] 选择适合的反应条件以允许靶点核酸的扩增,这些条件包括pH、缓冲剂、离子强度、一种或多种盐的存在与浓度、反应物和辅因子诸如核苷酸和镁和/或其它金属离子(例如,锰)的存在与浓度、任选使用的助溶剂、温度,和用于包括聚合酶链反应的扩增方案的热循环分布图,并且适合的反应条件部分上取决于所使用的聚合酶以及样品的性质。助溶剂包括甲酰胺(通常在约2%至约10%)、甘油(通常在约5%至约10%),和DMSO(通常在约0.9%至约10%)。可以在扩增方案中使用多种技术以便将扩增期间假阳性的产生或者产生的人为现象最小化。这些技术包括“降落(touchdown)”PCR、热启动技术、使用巢式引物,或者设计PCR引物使得如果引物二聚体形成,它们形成茎-环结构并因此不被扩增。可以使用加速PCR的技术,例如,离心式PCR,其允许样品内更高的对流,并且包括用于样品的快速加热与冷却的红外加热步骤。可以执行一个或多个扩增循环。可以使用过量的一种引物来在PCR期间产生过量的一种引物延伸产物;优选地,过量产生的引物延伸产物是待检测的扩增产物。可以使用多种不同的引物扩增样品内不同的靶点核酸或者特定靶点核酸的不同区域。
[0282] 经扩增的靶点核酸可以经受扩增后处理。例如,在一些情况下,在杂交之前将靶点核酸分片以便提供更容易接近的区段可能是较为理想的。可以利用产生大小适用于所执行的试验的片段的任何方法来执行核酸的分片;适合的物理、化学和酶方法在本领域中众所周知。
[0283] 扩增反应可以在允许与光学传感位置相关联的核酸在扩增循环的至少一部分期间与扩增产物杂交的条件下执行。当试验以此方式执行时,可以通过对扩增期间的光发射进行监测来实现此杂交事件的实时检测。
[0284] 实时PCR产物分析(和相关的实时逆转录PCR)提供已经在各种各样的情景中使用的用于实时PCR监测的众所周知的技术,其可以适于和本文所述的方法一起使用(参见,Laurendeau等人(1999)“TaqMan PCR-based gene dosage assay for predictive testing in individuals from a cancer family with INK4locus haploinsufficiency”Clin Chem 45(7):982-6;Bièche等人(1999)“Quantitation of MYC gene expression in sporadic breast tumors with a real-time reverse transcription-PCR assay”Cancer Res 59(12):2759-65;和 Kreuzer 等 人 (1999)“LightCycler technology for the quantitation of bcr/abl fusion transcripts”Cancer Res 59(13):3171-4,所有上述文献以引用的方式并入)。此外,线性PCR和指数后线性(Linear-After-The Exponential;LATE)-PCR可以适于和本文所述的方法一起使用。
[0285] 可以在本发明的检测系统上执行免疫试验,例如,在系统的一个或多个光学传感位置处。适合的免疫试验系统包括但不限于竞争性与非竞争性试验系统。这些试验系统通常与以下的技术一起使用,诸如:western印迹法、放射性免疫试验、EIA(enzyme immunoassay;酶免疫试验)、ELISA(酶联免疫吸附试验)、“夹心式(sandwich)”免疫试验,免疫沉淀反应试验、沉淀素反应、凝胶扩散沉淀素反应、免疫扩散试验、凝集试验、补体固定(complement-fixation)实验、免疫放射试验、荧光免疫试验、蛋白质A免疫试验,和细胞免疫染色(immunostaining)(固定的或自然的)试验,等。这些试验是常规的并且在本领域中众所周知(例如参见Ausubel等人,同上)。特别适合与本文所述的检测系统一起使用的免疫试验技术包括但不限于ELISA、“夹心式”免疫试验和荧光免疫试验。下面简要描述示例性免疫试验(但目的不在于加以限制)。
[0286] ELISA一般涉及制备抗原、用抗原涂覆孔(例如,检测系统的光学传感位置)、向孔中添加与诸如酶基质(例如,辣根过氧化物酶或碱性磷酸酶)等的可检测化合物结合的所关注抗体并培养一段时间,和检测所述抗原的存在。在ELISA中,所关注抗体并非必须要与可检测化合物结合;相反,可以向孔中添加与可检测化合物结合的第二种抗体(其识别所关注抗体)。此外,可以将抗体涂覆到孔中,代替用抗原涂覆孔。在此情况下,可以在向被涂覆的孔中添加所关注抗原之后添加与可检测化合物结合的第二种抗体。关于可以经过修改来增加检测信号的参数以及本领域中已知的其它ELISA变量,本领域的技术人员知之甚多。
[0287] 在一个示例性免疫试验中,样品含有未知量的待测定的生物活性分析物,其可以是例如蛋白质。该分析物还可以称作抗原。可以用已知或固定量的加标记分析物对样品加标。然后将加标样品与和分析物结合的抗体一起培养,使得样品中的分析物与添加到样品中的加标记分析物竞争结合到可用的抗体结合位置。取决于样品中存在的未标记分析物的相对浓度,加标记分析物或多或少将能够结合到抗体结合位置。因此,当测得与抗体结合的加标记分析物的量时,它与样品中未标记分析物的量成反比。那么,可以使用本领域中的标准技术,基于测得的加标记分析物的量计算原有样品中分析物的量。
[0288] 在一个示例性竞争性免疫试验中,可以将结合到生物活性分析物的抗体与配体偶联或接合,其中配体与添加到所测试样品中的另一抗体结合。此种配体的一个实例包括荧光素。可以将所述另一抗体结合到固体载体(例如,检测系统的光学传感位置)。该另一抗体结合到和抗体偶联的配体,所述抗体又转而结合到分析物或替代地加标记分析物,从而形成大块复合体(mass complex),其允许分离和测定由与加标记分析物偶联的标记所产生的信号。
[0289] 在另一个类型的示例性竞争性免疫试验中,可以将待测定的生物活性分析物结合到固体载体(例如,检测系统的光学传感位置),并与结合到分析物的抗体和含有待测定的分析物的样品一起培养。抗体结合到与固体载体结合的分析物或者结合到样品中的分析物,相对比例取决于样品中分析物的浓度。然后,使结合到与固体载体结合的分析物的抗体结合到另一抗体,诸如抗小鼠IgG,其偶联到标记。接着检测由该标记产生的信号的量以测定结合到与固体载体结合的分析物的抗体的量。这一测定值与样品中存在的分析物的量成反比。这一试验可以用在本发明的检测系统中。
[0290] 本领域中有广泛多样的标记可以用于执行本主题的试验。在一些实施方案中,标记可以利用光谱学、光化学、生物化学、免疫化学或者化学方式检测。例如,适用的核酸标记包括荧光染料、酶、生物素、地高辛(dioxigenin)或有抗血清或单克隆抗体可用的半抗原和蛋白质。已知适用于标记生物组分的各种各样的标记并且在科学与专利文献中有广泛报道,一般都可应用于本发明来为生物组分加标记。适合的标记包括酶、底物、辅因子、抑制剂、荧光部分、化学发光部分或生物发光标记。标记试剂任选地包括,例如,单克隆抗体、多克隆抗体、蛋白质或诸如亲和基质、水化合物或脂质等的其它聚合物。检测利用本文所述的任何方法进行,例如,通过检测光学波导中的光学信号。可检测的部分可以是具有可检测的物理或化学性质的任何材料。这些可检测的标记在凝胶电泳、柱色谱法、固体载体、光谱技术等领域中已经得到充分开发,一般来说,适用于这些方法中的标记都可以应用到本发明中。优选的标记包括产生光学信号的标记。因此,标记包括但不限于可以利用光谱学、光化学、生物化学、免疫化学、电学、光学、热学或化学方式检测的任何成分。
[0291] 在一些实施方案中,可以根据本领域中众所周知的方法将标记直接或间接偶联到诸如产物、底物或酶等的待检测分子。如上文所说明,使用广泛多种的标记,标记的选择取决于所需要的灵敏度、化合物结合的容易性、稳定性要求、可用仪表以及处置规定。非放射性标记常常利用间接方式附接。一般来说,使配体分子共价结合到聚合物。配体接着与抗配体分子结合,该抗配体分子具有固有可检测性或者共价结合到信号系统,诸如可检测酶、荧光化合物或化学发光化合物。许多配体和抗配体可以使用。在配体具有天然抗配体时(例如生物素、甲状腺素和皮质醇),它可以与加标记的抗配体结合使用。替代地,任何半抗原或抗原性化合物可以与抗体组合使用。
[0292] 在一些实施方案中,也可以直接将标记与产生化合物的信号结合,例如,通过与酶或荧光团接合。作为标记的所关注酶将主要是水解酶,特别是磷酸酶,酯酶和糖苷酶,或氧化还原酶,特别是过氧化物酶。荧光化合物包括荧光素和它的衍生物、若丹明和它的衍生物、丹酰和伞形酮。化学发光化合物包括虫荧光素(luciferin),和2,3-二氢酞嗪二酮(dihydrophthalazinediones),诸如鲁米诺(luminol)。
[0293] 检测标记的方法是本领域的技术人员众所周知的。因此,举例来说,在标记是荧光标记时,可以通过用具有适当波长的光激发荧光染料并例如利用如本文所述的检测系统检测所产生的荧光来检测它。类似地,酶标记是通过提供适合于该酶的底物并检测所产生的反应产物(例如,能够产生可检测的光学信号的反应产物)来进行检测。
[0294] 在一些实施方案中,所述可检测的信号可以由发光源提供。“发光(Luminescence)”是通常用来指代一种物质因为除它的温度上升以外的原因而发射光的术语。一般来说,当原子或分子从“激发态”迁移到低能态(通常是基态)时,它们发射具有电磁能的光子(例如,光),此过程常被称作“放射性衰变”。激发的原因有许多。如果激发原因是光子,那么将发光过程称为“光致发光”。如果激发原因是电子,那么将发光过程称为“电致发光”。更具体来说,电致发光是由电子的直接注入与去除以形成电子-电洞对,和电子-电洞对随后重组以发射光子所引起。由化学反应所引起的发光通常称作“化学发光”。
由活生物体产生的发光通常称作“生物发光”。如果光致发光是自旋容许跃迁(例如,单重态-单重态跃迁,三重态-三重态跃迁)的结果,那么该光致发光过程通常称作“荧光”。通常,在去除激发原因之后,荧光发射不会持续,因为短期的激发态可能经由所述自旋容许跃迁而快速松弛。如果光致发光是自旋禁阻跃迁(例如,三重态-单重态跃迁)的结果,那么该光致发光过程通常称作“磷光”。通常,在去除激发原因之后磷光发射持续很久,因为长期的激发态可能仅经由所述自旋禁阻跃迁而松弛。“发光标记”可以具有上述性质中的任何一种。
[0295] 适合的化学发光源包括利用化学反应变成电子激发并接着可以发射光的化合物,所述光充当可检测信号或者向荧光受体贡献能量。已经发现许多各种各样的化合物家族可以在各种不同的条件下提供化学发光。一个化合物家族是2,3-二氢-1,4-酞嗪二酮(phthalazinedione)。经常使用的化合物是鲁米诺,其是5-氨基化合物。其它家族成员包括5-氨基-6,7,8-三甲氧基-与二甲基氨基[ca]苯并类似物(dimethylamino[ca]benz analog)。可以利用碱性过氧化氢或次氯酸钙和碱使得这些化合物发光。另一个化合物家族是2,4,5-三苯基咪唑(triphenylimidazoles),以洛酚碱作为母体产物的通用名。化学发光类似物包括对-二甲基氨基(para-odimethylamino)和-甲氧基取代基。也可以利用草酸盐(通常是草酰活性酯,例如对硝基苯基(p-nitrophenyl))和过氧化物(诸如过氧化氢等)在碱性条件下获得化学发光。还已知的其它适用的化学发光化合物包括-N-烷基吖啶酯(-N-alkyl acridinum)和二氧环丁烷(dioxetanes)。替代地,可以结合虫荧光素酶(luciferase)或亮光素(lucigenins)使用虫荧光素来提供生物发光。
[0296] 在独立的实施方案中,本发明提供一种监测适用于评定治疗剂的功效和/或毒性的一种或多种药理学参数(例如,药效学(PD)和/或药动学(PK)参数)的方法。所述方法包括使来自施用治疗剂的受试者的体液样品经受用于监测所述一种或多种药理学参数的检测装置;使用如本文所述的检测装置产生可检测信号,其指示来自样品的所述一种以上药理学参数的值;和检测由所述体液样品产生的所述可检测信号。
[0297] 在一个实施方案中,所测试的样品可以包括在研究新药时所关注的许多各种不同的小分子(例如,筛选库)。因此,本文所述的检测系统适用于小分子筛选库以研究它们与某些生物活性分析物相互作用的能力从而揭露潜在新药。对部分或全部候选小分子的进一步筛选可以揭露药物副作用和毒性。
[0298] 在一个实施方案中,样品可以包括进行毒性测试的分子。
[0299] 大体来说,在另一方面,提供使用本文所述的检测系统的方法。
[0300] 在一个实施方案中,扫描光源移动经过它的扫描路径到达一点,在该处它与一个或多个入耦合或激发波导耦合并光学通信,由此在波导内产生光的脉冲。光沿着波导行进,到达光学传感位置并经由传感器(例如,光学变换器)相互作用。将样品定位在波导处或附近。接着,离开传感器的次级光耦合进出耦合或收集波导中并沿着波导向下行进到它在衬底一边的末端,例如芯片刻面。离开出耦合或收集波导的光随后由检测器的不同元件检测,所述检测器的不同元件可以是检测器阵列。在一些实施方案中,衬底包括充当入/出耦合波导的多个波导,而光源和检测器与波导的相对端耦合并光学通信。在其它实施方案中,入/出耦合波导收集来自光源的光并引导次级光经由一个或多个适配器到检测器。
[0301] 在另一实施方案中,扫描光源/检测器移动经过它的扫描路径到达一点,在该处光源与一个或多个入耦合波导耦合并光学通信,由此在波导内产生光的脉冲。同时,检测器与一个或多个出耦合波导耦合并光学通信。光沿着波导行进,到达光学传感位置并经由传感器(例如,光学变换器)相互作用。将样品定位在波导处或附近。接着,离开传感器的次级光耦合进出耦合波导中并沿着波导向下行进到它在衬底一边的末端,例如芯片刻面。离开出耦合波导的光随后由检测器的不同元件检测,所述检测器的不同元件可以是检测器阵列。在一些实施方案中,衬底包括充当内/出耦合波导的多个波导,而光源/检测器芯片包括经由至少一个合成器耦合的入耦合波导与出耦合波导。将由光源元件产生的光波耦合进光源/检测器芯片的入耦合波导,接着由合成器组合进出耦合波导,所述出耦合波导将此初级光耦合到衬底的波导。离开传感器的次级光波行进经过衬底的相同波导到光源/检测器芯片的出耦合波导,所述出耦合波导引导光波到检测器元件。
[0302] 在另一实施方案中,样品的检测包括将疑似含有待检测的靶点的样品传递到检测系统的光学传感位置。将样品传递到系统可以包括用移液管把流体移入光学传感位置。其它传递方式可以包括但不限于机器人流体传递系统,或者以手工或借助于工具或机器人操纵系统将非流体或半流体样品物理沉积在光学传感位置。接着,将扫描光源所产生的第一光波提供到与光学传感位置光学通信的多个波导中的一个或多个波导。由与光学传感位置相关联的传感器转换(例如,可测地改变)第一光波,从而形成在与光学传感位置光学通信的多个出耦合或收集波导中的一个或多个波导中携带回来的第二光波。接着使用与出耦合或收集波导光学通信的检测器检测第二光波的可测变化。检测到第二光波的可测变化表明检测器已经与靶点相互作用。设想在各种实施方案中,本文所述的波导可以如附图中普遍说明的大致上平行地布置。
[0303] 在另一实施方案中,检测方法包括由扫描光源产生一个或多个光波,所述扫描光源在沿着它的扫描路径的某一点耦合进衬底从而以受控方式在所述波导中的一个或多个波导中产生第一光波。
[0304] 在另一实施方案中,可以同时切换扫描光源的不同光源元件以产生一个或多个输入光波。所述多个光波可以耦合进衬底从而在所述波导中的一个或多个波导中可控地产生第一光波。
[0305] 在一个实施方案中,对所有入耦合波导提供第一光波,并且使用光电检测器阵列作为检测器实现每个出耦合波导处第二光波的同时检测。
[0306] 利用不同光源元件的受控切换,每个波导可以利用第一光波单独寻址。波导的寻址顺序可以是顺次的、交错的、随机的或者按所需的任何顺序。光学传感位置的整个阵列的快速扫描可以借助于光电检测器阵列实现,因为与每个出耦合波导相关联的任何第二光波可以同时得到检测。
[0307] 在另一实施方案中,对单个激发波导提供第一光波,并且使用光电检测器阵列作为检测器实现每个收集波导处第二光波的同时检测。例如,在把二维波导阵列配置为128个激发波导与128个收集波导的阵列的情况下,那么将有可能在第一激发波导中提供单个第一光波之后同时检测由128个光学传感位置产生的第二光波(如果有的话)。因此,可以同时对128个光学传感位置询问靶点的存在或不存在。接着,可以提供第二激发波导,由此触发对第二组128个光学传感位置的询问。可以快速重复该过程,直到每一个激发波导被激发并且光学传感位置的整个阵列被询问。
[0308] 在各种实施方案中,使用检测系统的方法涉及对物质的检测,所述物质包括但不限于生物活性分析物,所述生物活性分析物包括核酸、蛋白质、抗原、抗体、蛋白质组、微生物、气体、化学试剂和污染物。在特定实施方案中,在靶点中检测单核苷酸多态性(SNP)。在一个实施方案中,在检测到靶点时检测基因的表达。
[0309] 前面已经描述了使用平面波导用于SNP的光学检测的系统。例如,Herron和Tolley在2004年11月8日提出申请的题为“Single Base Extension”的美国专利申请第10/984,629号中描述了利用平面波导荧光生物传感器技术来检测SNP的单碱基延伸法(single base extension;“SBEX”)。简要地说,可以使用平面波导技术在用于SNP检测的实时检测条件下与SBEX组合使用全内反射荧光测定法(total internal reflectance fluorometry;TIRF)。在波导衬底中产生的渐逝波将仅激发与固定不动的捕获寡核苷酸结合的荧光标记分析物DNA分子。Herron发现,适用于测定的渐逝波的深度在传感器表面的约300nm以内。SBEX方法使用DNA聚合酶来并入(例如)Cy5标记的双脱氧核苷三磷酸(dideoxynucleotriphosphates;ddNTP)。本文中在别处讨论额外的标记。
[0310] 添加到探针分子的3′端的单碱基的鉴定(“呼叫”)可以按三种方式中的一种进行:用于四种碱基中每种碱基的平行通道,在每个通道中使用不同的经标记ddNTP;顺次的SBEX反应,在每个反应中使用不同的经标记ddNTP;或四种可能性的波长分辨,对每种ddNTP使用不同的荧光标记。这些方法中的第一种方法可能是优选的。SBEX可以用在寡核苷酸基因分型和SNP检测系统中,并且优于传统杂交试验,例如原因在于更高的碱基特异性、经标记的ddNTP与探针之间共价键的产生,以及多个碱基的同时检测。
[0311] 利用在波导上使用SBEX,几种不同多态性的同时检测可以容易地进行。通过利用不同的捕获序列对波导图案化,可以测定序列中的不同点,例如,基因组、染色体和/或基因。由于SBEX只需要在所用ddNTP单体上的荧光标记,所以将会检测特定碱基的所有情形。为了利用传统的DNA杂交试验做同样的事情,用于每个捕获序列的每个探针DNA都必须进行荧光标记。
[0312] 酶催化的反应有两个明显优势。首先,在固定相与经标记的单体(例如,Cy5标记的单体)之间形成稳定的共价键。这增加了试验灵敏性,相比之下在传统杂交试验中,荧光标记经由非共价相互作用(双链体的形成)被固定相捕获。任选地,可以采用严格的洗涤步骤。其次,聚合酶以高保真度并入双脱氧核苷酸-由于聚合酶的复制准确性,一般来说,只有与靶点碱基互补的碱基才会反应。SBEX特别适合于平面波导技术,这得益于免洗试验的速度增加和由动力学数据提供的灵敏性增加。
[0313] 在波导平台上使用SBEX使得可以执行快速试验(<5min),这些试验能够在低于50℃的温度下区分单核苷酸多态性序列与野生型序列。
[0314] 荧光成像对速度、灵敏性、噪音和分辨率敏感,并且可以各自进行优化以用于本发明中;例如,可以增加速度来减少试验时间。可以使用CCD照相机、条纹照相机、荧光分光计、荧光扫描仪或其它已知的荧光检测装置来检测碱基延伸,所述装置一般包括四个元件:激发源;荧光团;过滤器,用来分离发射与激发光子;和检测器,用来寄存发射光子并产生可记录输出,通常是电输出或照相输出。
[0315] 适用于本发明的聚合酶在本领域中是已知的并且包括但不限于耐热聚合酶,诸如pfu、Taq、Bst、Tfl、Tgo和Tth聚合酶,DNA聚合酶I,克列诺片段和/或T4DNA聚合酶。取决于所使用的模板、引物和NTP,所述聚合酶可以是DNA依赖性DNA聚合酶、DNA依赖性RNA聚合酶、RNA依赖性RNA聚合酶、RNA依赖性DNA聚合酶或其混合物。聚合酶可以具有或者不具有校对活性(3′核酸外切酶活性)和/或5′核酸外切酶活性)。
[0316] 本发明的捕获分子和/或分析物分子可以是任何核酸,包括但不限于DNA和/或RNA和本领域中已知的其修饰体,并且可以并入5′-O-(1-硫代)核苷类似物三磷酸酯、α-硫代三磷酸酯、7-脱氮-α-硫代三磷酸酯、N6-Me-α-硫代三磷酸酯、2′-O-甲基-三磷酸酯、N-吗啉代(morpholino)、PNA、氨基烷基类似物,和/或硫代磷酸酯(phosphorotioate)。
[0317] 在一个实施方案中,可以与使用所述检测系统的本方法一起使用免疫试验。本发明检测系统的光学传感位置可以经过改造来支持免疫试验,例如通过在光学传感位置处或内包括一种或多种免疫试验试剂。在此实施方案中,光学传感位置与进行生物活性分析物测试的样品之间的相互作用可以包括在光学传感位置处执行的免疫试验。因而,与生物活性分析物相互作用的光学传感位置可以包括免疫试验的结果。以此方式,可以确定分析物的存在或不存在。另外,可以量化分析物的量。在一个实施方案中,所支持的免疫试验是荧光试验。设想免疫试验可以是竞争性或非竞争性免疫试验。在一个实施方案中,所支持的免疫试验是ELISA。
[0318] 设想与生物或环境样品的制备、处理和分析有关的各种各样的仪表可以与本文所述的系统和方法结合使用。所述仪表的实例包括但不限于细胞分选仪、DNA扩增热循环仪或色谱仪(例如,GC或HPLC)。所述仪表是本领域的技术人员众所周知的。设想可以在本发明的检测系统和与生物或环境样品的制备、处理和分析有关的各种仪表之间使用机器人界面。
[0319] 光学检测系统可以在一系列应用中使用,所述应用包括生物医学与遗传研究以及临床诊断。可以针对与诸如互补核苷酸等的靶点的特异性结合来筛选诸如核酸等的聚合物阵列,例如,在用于结合亲和性测定的筛选研究中和在诊断试验中。在一个实施方案中,可以如美国专利第5,547,839号中所公开,来执行多核苷酸的测序。核酸阵列可以用在许多其它应用中,包括诸如囊性纤维化等遗传疾病的检测或诸如HIV等疾病的诊断,如美国专利第6,027,880号和美国专利第5,861,242号中所公开。可以利用测序或利用杂交来检测遗传突变。在一个实施方案中,可以如美国专利第5,710,000号中所公开,使用IIs型限制性核酸内切酶来对遗传标志物进行测序和基因定位(mapping)。
[0320] 其它应用包括基于芯片的基因分型、物种鉴定和表型表征,如美国专利第6,228,575号中所述。美国专利第5,800,992号中还描述了其它应用,包括诊断癌状况或者诊断病毒、细菌和其它病理性或非病理性感染。又一应用包括如美国专利第6,361,947号中所述的基于芯片的单核苷酸多态性(SNP)检测。
[0321] 可以在细胞中(诸如在酵母等的微生物中)使用高密度核酸阵列平行进行大量mRNA的杂交来监测基因表达,如Lockhart等人,Nature Biotechnology,14:1675-1680(1996)中所述。可以如Saizieu等人,Nature Biotechnology,16:45-48(1998)中所述,来执行利用总RNA与核酸阵列的杂交进行的细菌转录成像。Chee,Science 274:
610-614(1996)中进一步描述了使用高密度DNA阵列来取得遗传信息。
[0322] 除了上文讨论的核酸阵列之外,本发明的光学检测系统还可以与蛋白质和化学微阵列(包括蛋白质、抗体、小分子化合物、肽和碳水化合物的阵列)或者细胞或组织阵列组合使用,例如,如Xu,Q.和Lam,K.S.,J.Biomed.Biotechnol.5:257-266(2003)中所述。可以在许多潜在应用中将蛋白质和化学阵列与本发明的方法和装置组合使用,所述应用包括但不限于蛋白组学(包括蛋白质-蛋白质相互作用和蛋白质-配体相互作用的试验)、用于药物发现的筛选试验和毒理学测试。在一些应用中,这些试验可以利用无标记的光学传感方法,例如,如美国专利第7,349,080号和美国专利第7,292,336号中所述。
[0323] 另一潜在应用是以下试剂的检测:化学和/或生物战剂,包括但不限于细菌芽胞(例如,如美国专利第6,498,041号中所述);细菌剂(例如,炭疽芽孢杆菌(Bacillus anthracis)、鼠疫耶尔森菌(Yersinia pestis)、土拉热弗朗西斯菌(F.tulararensis)、布鲁氏菌属(Brucella)、肉毒梭菌(Clostridium botulinum)、破伤风梭菌(Clostridium tetani)、伯氏立克次氏体(Coxiella burnetii)和霍乱弧菌(Vibrio cholerae));病毒剂(例如,天花病毒;病毒性脑炎剂,诸如委内瑞拉马脑炎(Venezuelan equine encephalitis)、西方马脑炎(western equine encephalitis)和东方马脑炎(eastern equine encephalitis);和病毒性出血热剂,诸如沙粒病毒科(arenaviridae)、本扬病毒科(bunyaviridae)、纤丝病毒科(floviridae)和黄病毒科(flaviviridae)和毒素(例如,葡萄球菌肠毒素B(Staphylococcus enterotoxin B)、肉毒杆菌毒素(botulinum toxin)、蓖麻毒素和霉菌毒素,以及破坏作物剂(例如,小麦秆锈病菌(Puccinia graministrititi)、稻瘟病菌(Piricularia oryzae)、小麦网腥黑粉菌(Tilettia caries)、小麦光腥黑粉菌(Tilettia foetida)、镰孢属真菌(Fusarium fungus)和除草剂)。举例来说,细菌和病毒剂可以使用诸如实时PCR等基于核酸的方法、诸如ELISA等基于抗体的检测方法或者使用如Kulagina等人,Sens.Actuators B.Chem.121:150-157(2007)中所述的抗微生物肽来检测。
[0324] 其它潜在应用是在食品安全中,包括食源性病原体(例如,伤寒沙氏菌(Salmonella typhosa)、鼠伤寒沙门氏菌(Salmonella typhimurium)、空肠弯曲杆菌(Campylobacter jejuni)、大肠杆菌0157H:H7、单核细胞增生利斯特氏菌(Listeria monocytogenes)、金黄色葡萄球菌和产气荚膜梭菌(Clostridium perfringens)的检测;充当变质指示物的化学物质的检测,例如由氧化过程引起的变质;和微量污染性化学化合物、毒素、添加剂或农药的检测。
[0325] 其它非限制性潜在应用包括病毒和细菌性传染病(例如,AIDS、禽流感(Bird Flu)、SARS、西尼罗河病毒(West Nile virus))的检测与诊断;患者的定点照护(point-of-care)监测(例如,糖尿病患者中糖和胰岛素水平的检测,血气水平或乳酸水平的检测);妊娠测试;毒品或麻醉剂(例如,可卡因、摇头丸、甲基苯丙胺、阿片剂)的检测;易爆化学物质(例如,RDX、TNT、硝化甘油)的检测;和空气、水或土壤样品的环境监测,包括农药、重金属、硝酸盐或磷酸盐的检测。
[0326] 这里描述的工作系统也可以是在更大生物分析系统内的子系统。生物分析系统可以包括光学检测之前样品制备、光学检测阶段中所收集数据的后处理以及最后基于这些结果的作出决策的所有方面。样品制备可以包括以下步骤,诸如:从受测试的受试者(人、动物、植物环境等)提取样品;分离样品的不同部分以达到所研究分子的较高浓度和纯度;样品扩增(例如,通过PCR);将荧光标签或标志物附接到样品的不同部分;和将样品点样在衬底上。所收集数据的后处理可以包括:规范化;背景与噪音降低;和统计分析,诸如对重复测试或者不同测试之间相关联求平均。作出决策可以包括:对照一组预先定义的规则进行测试并与外部数据库中存储的信息相比较。
[0327] 本文所述的检测系统的应用与使用可以产生适用于诊断个体(例如患者)的疾病状态的一个或多个结果。在一个实施方案中,诊断疾病的方法包括评估或分析与样品中靶点的存在和/或浓度水平有关的数据。基于数据评估或分析的结论可以提供给患者、卫生保健提供者或卫生保健管理者。在一个实施方案中,结论是基于对关于疾病诊断的数据的评估或分析。设想在另一实施方案中,将结论提供给患者、卫生保健提供者或卫生保健管理者包括在网络上传输数据。
[0328] 因此,提供使用本文所述的检测系统与方法的商业系统和方法。
[0329] 本发明的一方面是一种商业方法,其包括针对生物活性分析物的存在或不存在筛选患者测试样品以产生关于分析物的数据,收集分析物数据,和将分析物数据提供给患者、卫生保健提供者或卫生保健管理者以用于基于对关于疾病诊断的数据的评估或分析来做出结论。在一个实施方案中,将结论提供给患者、卫生保健提供者或卫生保健管理者包括在网络上传输数据。
[0330] 相应地,图15是显示逻辑装置的代表性实例的框图,通过所述逻辑装置,可以实现与本发明有关的数据的评估或分析。所述数据可以与个体的疾病、病症或健康状况有关。图15显示连接到设备1520的计算机系统(或数字装置)1500,以供和检测系统1524一起使用来(例如)产生结果。计算机系统1500可以理解为逻辑设备,其可以从媒体1511和/或网络端口1505读取指令,所述网络端口1505可以任选地连接到具有固定媒体1512的服务器1509。图15中所示的系统包括CPU 1501、磁盘驱动器1503、任选的输入装置(诸如键盘1515和/或鼠标1516)和任选的监视器1507。可以经由连到本地或远程位置上的服务器1509的指示通信媒体来实现数据通信。通信媒体可以包括发送和/或接收数据的任何方式。例如,通信媒体可以是网络连接、无线连接或互联网连接。这种连接可以提供在万维网上的通信。设想和本发明有关的数据可以在这些网络或连接上传输以被一方1522接收和/或评估。接收方1522可以是,但不限于,患者、卫生保健提供者或卫生保健管理者。
[0331] 在一个实施方案中,计算机可读媒体包括适合于传输环境或生物样品的分析结果的媒体。媒体可以包含关于受试者的疾病状况或状态的结果,其中所述结果是使用本文所述的方法得到。
[0332] 还提供包含适用于执行本文所述方法的试剂的套件。
[0333] 在一些实施方案中,套件包括本文所述的检测系统和用于检测样品中靶点的试剂。套件可以任选地含有以下一项或多项:一种或多种荧光或发光分子标签,和一种或多种生物活性分析物,其包括核酸、蛋白质、微生物或化学试剂。
[0334] 套件的组件可以由外壳保持。用于使用套件执行所描述的方法的说明书可以和外壳一起提供,并且可以提供在任何固定装置中。说明书可以位于外壳内部或外壳外部,并且可以印刷在形成外壳的任何表面的内部或外部上以使说明书清晰可辨。套件可以呈用于检测一种或多种不同靶点生物活性分析物的多重形式,所述分析物包括核酸、蛋白质、微生物、气体、化学试剂或污染物。
[0335] 如本文中所述以及图16的说明性实例中所示,在某些实施方案中,套件1603可以包括检测系统1600、用于容纳各个部件的外壳或容器1602。如图16中所示以及本文中所述,套件1603可以任选地包括说明书1601和试剂1605,例如,DNA杂交或免疫试验试剂。设想其中组件包括本文所述的各种额外特点的套件1603的其它实施方案。
[0336] 在一个实施方案中,用于针对靶点测定样品的套件包括检测系统,该检测系统包括扫描光源、检测器和衬底。衬底可以包括多个激发波导和多个收集波导,如本文所述。衬底的激发波导与收集波导交叉或相交形成相交区域和二维阵列。系统进一步包括多个光学传感位置。光学传感位置与一个或多个激发波导和一个或多个收集波导光学通信。套件进一步包括用于使用系统的包装和说明书。
[0337] 在另一实施方案中,激发波导与收集波导的交叉大致上是垂直的。
[0338] 在另一实施方案中,用于针对靶点测定样品的套件包括检测系统,该检测系统包括扫描光源、检测器和衬底。衬底可以包括多个大致上平行的入耦合波导和多个大致上平行的出耦合波导,如本文所述。系统可以进一步包括多个光学传感位置。光学传感位置与一个或多个波导光学通信。套件进一步包括用于使用系统的包装和说明书。
[0339] 在一个实施方案中,套件包括平面光波电路(PLC)作为检测系统。
[0340] 大体而言,在另一方面,提供制造用于针对靶点测定样品的衬底的方法。在一个实施方案中,衬底是PLC。
[0341] 用于制造PLC装置的起始材料是通常由硅(Si)或二氧化硅(SiO2)制成的晶片(wafer)。最常使用的晶片直径是4″、6″和8″。用于PLC装置的制造工艺涉及两个基本过程,即,沉淀和蚀刻。下面对每一种过程进行简短描述。
[0342] 在某些实施方案中,制造本文所述的系统的方法可以包括但不限于激光直写、紫外光(UV)直写和光子带隙波导方法。在一些实施方案中,该制造工艺包括一个或多个沉积、掩蔽和蚀刻步骤。
[0343] 沉积:
[0344] 在沉积步骤中,在整个晶片上沉积一层厚度得到较好控制的成分明确的材料。最常用于波导层沉积的材料是二氧化硅(SiO2)(也就是通常所说的玻璃)和氮化硅(Si3N4)。二氧化硅的光学性质(主要是它的折射率)由沉积期间所引入的掺杂质(Ge、P和B等)的量控制。也使用诸如硅、玻璃、环氧树脂、铌酸锂、磷化铟和SiON(氧氮化硅)以及它的衍生物等的其它材料。对于覆层,材料包括但不限于硅、二氧化硅(SiO2)、玻璃、环氧树脂、铌酸锂和磷化铟。
[0345] 沉积步骤使用几种技术进行,诸如等离子体增强化学气相沉积(PECVD)、低压化学气相沉积(Low Pressure CVD;LPCVD)、常压化学气相沉积(Atmospheric pressure CVD;APCVD)、火焰水解沉积(Flame Hydrolysis Deposition;FHD)和本领域中众所周知的其它技术。
[0346] 图17A说明作为示意性结构的示例性衬底1704,其是在硅1726层上方披覆1721层和核心1723层的两个连续沉积步骤之后所形成,所述硅1726层可以是晶片。如上所提及,这两个层的折射率不同,这是利用不同的掺杂水平来实现的。关于不同层的典型厚度为:覆层至多约20μm,而核心层至多6μm。硅1726晶片的厚度可以在约0.5mm至1mm的范围内。
[0347] 掩蔽:
[0348] 在沉积步骤之后而在蚀刻步骤之前,通过掩蔽不打算蚀刻掉的区域来将PLC装置的所需二维结构转印到经过沉积的晶片。掩蔽分几个步骤进行,这几个步骤涉及用感光材料覆盖晶片、经由光刻(lithographic)掩膜将它暴露给光,和去除暴露材料,而把掩膜留在适当的位置。所述步骤的结果如图17B中所示,其中显示掩膜1725在衬底1704的核心1723层之上。
[0349] 蚀刻:
[0350] 在蚀刻步骤中,从衬底的顶部核心1723层去除未掩蔽区域处的材料(见图17C)。蚀刻速率是已知参数,因此可以由时间控制蚀刻深度。两种最常用于蚀刻的技术是湿法蚀刻和反应性离子蚀刻(Reactive-Ion-Etching;RIO)。图17C显示导致产生波导1727的蚀刻步骤的结果。
[0351] 蚀刻步骤之后,使用与上述类似的沉积步骤形成上覆或顶覆1729层。结果如图17D中所示。如图17D中所示,所产生的波导1727可以被硅1726层上方的顶覆层1729和覆层1721包围。
[0352] 可以重复上述步骤来形成一个在另一个上方的几个波导层。在此情况下,在一个波导层与另一波导层之间可能需要平坦化步骤。这使用一种已知为化学机械平坦化(Chemical Mechanical Planarization;CMP)的技术来进行。
[0353] 当晶片的加工完成时,可以把它切成单个芯片。图18中显示制造工艺的示例性简化流程图。
[0354] 虽然本文已经显示并描述了本发明的优选实施方案,但对本领域的技术人员将显而易见的是这些实施方案仅是作为实例来提供。在不背离本发明的情况下本领域的技术人员现可以做出诸多变更、变化和取代。应理解,在实施本发明时可以采用对于本文所述的本发明实施方案的各种替代方案。意图是,所附权利要求限定本发明的范围并且由此涵盖在这些权利要求和它们的等同物范围内的方法和结构。
[0355] 实施例
[0356] 实施例1:确立检测限
[0357] 本发明传感器的一个特点是检测低数目的生物活性分析物分子的能力。以下实验说明这种能力。通过测定溶液中的荧光标记卵白蛋白来确定传感器的检测限度(limit of detection;LOD)。所用染料是Alexa Fluor 660;它在658nm下被激发并在690nm下测定发射。所有测定在室温(25℃)进行。使用两种不同的方法测定LOD:1)在高于95%的置信度下,确定在缓冲液背景以上可检测的经标记卵白蛋白的最低浓度(P<0.05,学生t检验(Student’s t-test));和2)从传感器响应vs.浓度的标准曲线确定分析灵敏度(MDL=2*SD/slope,其中SD是缓冲液背景测定值的标准偏差,而slope是标准曲线的起始斜率)。
这些方法是可比较的,因为两者都确定关于LOD的95%置信水平。表1中显示来自三个不同步骤等温线的关于LOD的值。
[0358] 表1
[0359]等温线 芯片格式 MDL方法1 MDL方法2
实验1 100×100μm传感器 3.0pM 4.1pM
实验2 52.5×4,500μm传感器 0.1pM 0.33pM
实验3 52.5×4,500μm传感器 0.1pM 0.13pM
[0360] 每样品所检测的分子数目计算如下。所有实验中使用的样品体积都是50微升。因此,例如在0.1pM的浓度下,每样品有3×106个分子。因为所有分子在整个体积上平均分布,所以每传感器可用的分子数是~1000。含有此数目的分子的流体厚度是~1.7mm。使用扩散参数,可以估计这些分子中的0.1%至1%,或者是1至10个分子,能够结合到每个传感器的表面。
[0361] 实施例2:蛋白质-蛋白质相互作用的检测
[0362] 本发明适用于测定蛋白质-蛋白质相互作用。在本实施例中,使用基于波导的光学检测技术测定卵白蛋白与抗卵白蛋白抗体的结合。执行实验之前,用抗卵白蛋白抗体浸渍涂布具有52.5×4,500μm传感元件的芯片。此程序涉及几个步骤。首先,清洗芯片。芯片制造者用薄聚合物层涂布芯片的有效表面从而在晶片切片期间对它进行保护。将芯片浸入丙酮中5分钟,之后浸入异丙醇中5分钟,再第二次用异丙醇冲洗另外1分钟,由此去除聚合物层。随后用去离子水洗涤芯片三次并在真空干燥器中干燥。其次,将表面激活。为了将捕获分子固定到波导,利用Piranha处理在芯片上形成二氧化硅薄层(~10nm)。将芯片浸入含有9%(v/v)H2O2和66.5%(v/v)H2SO4的Piranha溶液中45分钟,同时搅拌。此步骤去除有机污染物并产生反应性硅烷醇基团的薄(1-2纳米)层,所述反应性硅烷醇基团用于偶联抗体。随后用去离子水冲洗芯片四次,之后用双蒸馏水冲洗最后一次。
[0363] 使用形成自组装单层的抗生物素蛋白(avidin)/生物素化学将对卵白蛋白特异的抗体固定到芯片。(Herron,J.N.,H.-K.Wang,V.Janatová,J.D.Durtschi,K.D.Caldwell,D.A.Christensen,I.-N.Chang and S.-C.Huang(2003)Orientation and Activity of Immobilized Antibodies.在Biopolymers at Interfaces,第2版(M.Malmsten编 ),Surfactant Science Series,第110卷,Marcel Dekker,纽约,第115-163页中)抗生物素蛋白可以因静电相互作用而吸收(absorbe)到含有硅烷醇基团的表面。抗体固定分两步进行:抗生物素蛋白吸收到经过Piranha处理的芯片(100nM抗生物素蛋白,在磷酸盐缓冲盐水中,pH 7.4,吸收时间1h,之后五次PBS冲洗),之后生物素化的抗卵白蛋白抗体(例如,US Biological,多克隆)结合到被吸收的抗生物素蛋白(100nM生物素化的抗卵白蛋白抗体,在PBS中)。随后在PBS中冲洗芯片三次,再用去离子水冲洗五次,接着用干燥防护剂(xeroprotectant)(0.1mg/mL海藻糖的去离子水)后涂布,利用氮气流干燥,之后进行真空干燥。
[0364] 据估计过程结束时捕获抗体密度是每平方厘米1pM。
[0365] 为了测定卵白蛋白与抗卵白蛋白抗体的相互作用,如图7D中所描绘,向芯片表面上的样品孔中添加溶液中的荧光标记卵白蛋白,所述溶液中含有磷酸盐缓冲盐水(pH 7.4)和0.1mg/mL牛血清清蛋白。使用四个数量级(从0.1pM至1,000pM)的卵白蛋白浓度范围。随后在室温下监测10分钟时间段的结合反应动力学,并在690nm下测定荧光强度。
[0366] 图19显示对于结合反应的定量传感器响应。在所用的每种卵白蛋白浓度下的荧光强度用绘图符号和误差条标示,并绘制在利用基于对数的横坐标和纵坐标轴的轴上。图19中的实线是曲线拟合。二常数模型拟合结合数据,表现与结合1-μm厚的激发波导使用超灵敏(飞摩尔(femtomolar))传感器的实验所得的结果相一致的结合行为(Plowman,T.E.,W.M.Reichert,C.R.Peters,H.K.Wang,D.A.Christensen and J.N.Herron(1996),“Femtomolar Sensitivity using a Channel-etched Thin Film Waveguide Fluoroimmunosensor,”Biosensors&Bioelectronics 11,149-160)。小百分比的卵白蛋白分子(0.22%)同时结合两种不同的固定抗体分子,而绝大多数(>99%)卵白蛋白分子与单个固定抗体结合。所述小百分比的二价结合产生更高的亲和结合常数(K1),以及在结合曲线的亚皮摩尔浓度(subpicomolar portion)中观察到的“底部(foot)”。由于传感器在亚皮摩尔范围内的敏锐灵敏度和优良精确度,致使仅观察到较小比率的高亲和结合。在试验的4-log浓度范围上精确度大体上良好。
[0367] 实施例3:核酸聚合的检测
[0368] 可以使用基于波导的光学检测系统来量化引物延伸试验中DNA的聚合。在引物延伸反应中,mRNA靶点与DNA引物杂交,并且逆转录酶使用该mRNA靶点作为模板来将脱氧核苷酸(dATP、dTTP、dGTP、dCTP)添加到DNA引物的3’端。
[0369] 使用基于波导的光学检测系统的高灵敏性要求引物延伸反应中的杂交发生在低飞摩尔范围内的浓度之下。因此,首选确立,杂交以低浓度发生在芯片的表面上。对于此实验,将捕获寡核苷酸引物固定到芯片,并把5’端用Cy5.5标记的互补合成DNA与引物一起培养。为了实验的严密性,利用质谱法确认捕获寡核苷酸与互补合成DNA的序列。
[0370] 执行实验之前,利用浸渍涂布过程将捕获寡核苷酸固定在芯片的表面上。首先,清洗芯片。芯片制造者用薄聚合物层涂布芯片的有效表面从而在晶片切片期间对它进行保护。将芯片浸入丙酮中5分钟,之后浸入异丙醇中5分钟,再第二次用异丙醇冲洗另外1分钟,由此去除聚合物层。随后用去离子水洗涤芯片三次并在真空干燥器中干燥。
[0371] 其次,将表面激活。为了将捕获分子固定到波导,利用Piranha处理或氧等离子体处理在芯片上沉积二氧化硅薄层(~10nm)。将Piranha处理芯片浸入含有9%(v/v)H2O2和66.5%(v/v)H2SO4的Piranha溶液中45分钟,同时搅拌。此步骤产生反应性硅烷醇基团的薄(1-2纳米)层。随后用去离子水冲洗芯片四次,之后用双蒸馏水冲洗最后一次。使用等离子体炉,把氧等离子体处理芯片暴露给氧等离子体(100W,0.15Torr)5分钟。
[0372] 为 了 附 接 寡 核 苷 酸,用(3- 缩 水 甘 油 氧 丙 基) 三 甲 氧 基 硅 烷((3-Glycidyloxypropyl)trimethoxysilane;GPS)对激活的芯片(Piranha或等离子体处理的)衍生化,从而在芯片的表面上形成环氧基团的反应性单层。将芯片在40℃下浸入0.1%(v/v)GPS的无水甲苯溶液中30分钟,之后用99.9%甲苯洗涤三次。随后在氮气中干燥芯片并在110℃固化20分钟。将GPS涂布的芯片在40℃下浸入由捕获寡核苷酸溶解于含1mM EDTA的0.1M碳酸盐-碳酸氢盐缓冲液(pH 9)中而得到的5微摩尔浓度溶液中6小时。所合成的捕获寡核苷酸在5’端具有在主氨基团(primary amino group)中终止的柔性间隔基(flexible spacer),其容易与芯片上的环氧基团反应形成稳定的共价键。偶联反应之后在0.2%SDS中洗涤芯片,之后用去离子水冲洗三次。随后将芯片在40℃的去离子水中培养30分钟,接着在氮气流中干燥,之后真空干燥过夜。
[0373] 据估计过程结束时捕获寡核苷酸的密度是每平方厘米10pM。
[0374] 在10飞摩尔浓度(10fM)至10皮摩尔浓度(10pM)的合成DNA分析物浓度范围上,室温执行杂交反应10分钟。在含0.01%十二烷基硫酸钠和1mMEDTA的3X氯化钠-柠檬酸钠缓冲液(0.45M NaCl、45mM柠檬酸钠,pH 7)中制备分析物溶液。使用方差分析(ANOVA)和Dunnett因果关系的(post-hoc)检验评估检测限度(LOD),其中将来自每种浓度的杂交数据与阴性对照(negative control)(缓冲液)的杂交数据相比较。关于两个不同实验(实验1和实验2)的结果如表2中所示。
[0375] 表2
[0376]
[0377]
[0378]
[0379] 平均差的值是负的,因为从阴性对照(缓冲液)的传感器响应减去对于每种浓度的传感器响应。概率值是对于给定浓度所观察到的传感器响应与对于阴性对照所观察到的传感器响应无统计学差别的检验假设(null hypothesis)。使用P<0.05作为否决该检验假设的判据,在两个实验中,30fM和30fM以上的浓度与缓冲液存在统计学差别(即,MDL=30fM)。对于实验1和2中10fM浓度的P值比较(实验1中P=0.4881,而实验2中P=0.1148)显示,在第二个实验中的灵敏度更好,接近10fM。
[0380] 利用前述的过氧化氢/硫酸清洗溶液剥离掉芯片的捕获分子层并接着固定一层新的捕获分子,由此循环利用芯片一次导致减少的、但灵敏度降低的可测的杂交水平(在低皮摩尔浓度范围内;数据未示出)。
[0381] 使用从Promega公司购买的RNA标准品(卡那霉素对照RNA)执行引物延伸实验。捕获寡核苷酸引物与RNA标准品的3’端附近的24碱基序列互补。此序列位于RNA标准品的5’端下游971个碱基处并含有224个乌嘌呤。用荧光染料(Cy5.5)对胞嘧啶脱氧核苷酸加标记。使用罗氏(Roche)的转录器逆转录酶(Transcriptor Reverse Transcriptase)来延伸引物。引物延伸反应在48℃下进行,其产生减少的非特异性杂交。图20中显示来自
1pM卡那霉素RNA的引物延伸的结果。对照品(control)的延伸速率是较小负值(-9.7mV/min),这可能是因为仪器噪音。1pM卡那霉素RNA的延伸速率是128mV/min,显著高于对照品的延伸速率。另外,在10.5-分钟的反应段上信号线性增加,无饱和迹象。1pM RNA反应的初始信号水平稍低于对照品轮次(run),这可能是因为两轮次之间的温度差异(1-2℃)。
[0382] 实施例4:转录物的定量实时PCR检测
[0383] 可以使用本发明的检测系统,使用由Kreuzer等人(同上)所述方案修改得到的PCR试验方案,来实现转录物(例如,酪氨酸激酶抑制剂bcr/abl融合转录物)的定量实时PCR检测。所述系统包括具有激发波导、收集波导和相交区域的衬底芯片。其中激发波导与收集波导交叉的相交区域包括光学传感位置,其具有用于执行定量实时PCR的传感孔。检测系统进一步包括扫描光源,其在沿着它的扫描路径的某一点与衬底的激发波导耦合并光学通信。系统进一步包括光学检测器。
[0384] 处理疑似含有所关注的RNA转录物的样品(例如,来自受试者的血液)以获得总RNA源,随后使用本领域中众所周知的技术,使用逆转录酶将总RNA源逆转录成cDNA。把cDNA样品传递到系统中衬底上的传感位置。按需要,可以将适合的对照品和特定cDNA样品的不同稀释液传递到不同的传感孔。
[0385] 在传感位置提供用于实时逆转录酶PCR的试剂。使用对一个或多个bcr/abl断裂点簇区域特异的引物/探针执行PCR反应。这些引物/探针在本领域中是众所周知的(例如,见Kreuzer等人,同上),可以在5′端用6-羧基-荧光素亚磷酰胺(6-carboxy-fluorescein phosphoramidite)标记,并且可以进一步沿着引物/探针序列并入5-羧基-四甲基-若丹明(5-carboxy-tetramethyl-rhodamine)以作为淬灭剂(quencher)。由于引物/探针经由Taq DNA聚合酶的5’核酸酶活性水解,所以可以引起来自荧光素(报告基团)染料的未淬灭(quench)荧光。将磷酸基附接到引物/探针3’端来防止探针延伸。10-μl PCR反应混合物含有1μl的10x PCR缓冲液、4.5mMMgCl2、0.8mM dNTP、0.5μM每种引物、1μM探针、0.2单位的温度释放(temperature-release)Taq DNA聚合酶( Pfx DNA聚合酶;Invitrogen公司)和20ng的样品cDNA。PCR扩增以94℃处5-min变性步骤开始,之后是94℃处30s变性与65℃处60s退火/延伸的45个循环。
[0386] 在进行PCR扩增的同时,由扫描光源产生波长约658nm的激发光并利用激发波导引导到每个传感孔。如果cDNA样品包含用于bcr/abl融合转录物的转录物,那么应当发生引物/探针到cDNA的退火。随后探针利用聚合酶水解以及荧光素报告基团的未淬灭导致在传感孔中产生荧光。随着循环次数增加,未淬灭的荧光素的量相对于反应中bcr/abl融合转录物cDNA的量增加。
[0387] 经由收集波导,可以利用本系统的光学检测器检测传感孔中的荧光。因此,可以实时地测定bcr/abl融合转录物的检测,并且基于适当的对照品和分析,可以量化样品中bcr/abl融合转录物的量。
[0388] 实施例5:多个受试者的HIV情况的检测
[0389] 可以使用诸如图7A所说明的实施例等的检测系统,来实现对多个受试者的HIV+情况的基于荧光免疫试验的检测。所述系统包括具有激发波导、收集波导和相交区域的衬底芯片。其中激发波导与收集波导交叉的相交区域包括光学传感位置,其具有用于执行荧光免疫试验的传感孔。检测系统进一步包括扫描光源,其在沿着它的扫描路径的某一点与衬底和激发波导耦合并光学通信,和激发波导。系统进一步包括光学检测器。
[0390] 将部分纯化抗原,例如,失活的HIV蛋白p29抗原预涂布到光学传感位置的传感孔上。接着,把可能含有针对HIV p29的抗体的若干受试者血清传递到单独的传感位置。还设想集中来自多个患者的样品共同使用并把每个共用物传递到单独的传感位置。如果受试者是HIV+,那么他们的血清可能含有针对HIV蛋白p29的抗体,并且那些抗体将与传感位置上的HIV p29抗原结合。洗涤步骤之后,向传感位置添加与荧光染料(荧光素)偶联的抗人免疫球蛋白。此二级抗体与传感位置中的人抗体(即,抗p29抗体)结合。接着,由扫描光源产生波长约658nm的激发光并利用激发波导引导到每个传感孔。如果二级抗体存在,那么在孔中存在激发光时偶联的荧光素将发荧光。
[0391] 经由收集波导,可以利用本系统的光学检测器检测传感孔中的荧光。可以把光学检测器所接收的信号解释为确定给定受试者或从多个受试者集中共用的样品是否具有针对HIV p29的抗体。可以使用适合的对照品来验证本试验的结果。因此,可以测定样品中HIV p29的存在或不存在并且可以确定多个受试者或共用物的HIV+或HIV(-)情况。
[0392] 实施例6:两位置夹心式免疫试验
[0393] 可以在使用本发明检测系统(例如,如图7A-7E中所说明的系统)的试验中采用两位置夹心式免疫试验。抗体在这些试验中完成两个不同角色,其中固定抗体捕获分析物,而可溶性的、荧光标记抗体检测或“跟踪”分析物结合。为了防止竞争性结合,捕获抗体与追踪抗体必须结合到分析物分子上的不同位置。对于具有重复表位的较大分析物(例如病毒和细菌),通常可以在捕获与追踪角色二者中采用单个抗体(对重复表位特异)。表达多个、独特表位的较小分析物(例如蛋白质和多糖)需要两个不同抗体,各自对独特表位特异。
[0394] 设想三个两位置夹心式免疫试验测试:1)光学传感位置的连续测试;2)光学传感位置的低复杂度平行测试;和3)灵敏度测试。在其中的第一个测试中,使用微升移液管将较小体积(1-5μL)的样品(含有分析物和追踪抗体)直接点样在含有捕获抗体的光学传感位置处。室温下在-5分钟时间段上监测该位置处的结合动力学。实现光学检测到与不同光学传感位置有关联的激发波导和收集波导的转移,并在新的位置重复试验。设想可以使用此连续程序测试至少10个光学传感位置。这些测试可以证明所述系统的灵敏度和试验内(intra-assay)精确度。
[0395] 在第二种测试形式中,使用包括激发波导与收集波导的10×10阵列的系统的衬底(例如见图7A),激发衬底的单个激发波导,同时使用线性检测器阵列从所有10个收集波导监测输出信号。可以预混合含有分析物和跟踪抗体(例如,10nM,终浓度)的等体积(例如,50μL)样品,接着注射进含有捕获抗体的光学传感位置的样品孔。在室温下在5分钟时间段上,同时监测10个光学传感位置中的结合动力学。这种测试形式可以证明系统的平行试验能力,以及提供关于试验内精确度的更详细信息。
[0396] 在第三种测试形式中,可以通过构建平均反应速率对分析物浓度的标准曲线来证明装置的灵敏度、精确度和线性度。装置配置与上面关于第二种测试形式所描述的相同(即,10个同时试验)。在至少100倍(100-fold)的范围上(例如,10pM至1nM)改变分析物浓度,不过可以取决于所检测分析物的临床浓度范围来调整确切范围。对于待测试的每种浓度使用单独衬底芯片。检测六到八个浓度。所产生的标准曲线在低浓度下通常呈线性,但在较高浓度下饱和。
[0397] Herron实验室开发了用于许多不同分析物的免疫试验,所述分析物包括人心肌肌钙蛋白I(human cardiac troponin I;cTnI)、绒膜促性腺激素(chorionic gonadotrophin;hCG)、肌酸磷酸激酶同工酶MB(creatine phosphokinase isoform MB;CKMB)、肌红蛋白、卵白蛋白(军队上用作诸如篦麻毒素和SEB等毒素的“模拟物”)、蓖麻毒素、葡萄球菌肠毒素B(Staphylococcal enterotoxin B;SEB)。(见Herron,J.N.等人 (2003).Orientation and Activity of Immobilized Antibodies. 在 Biopolymers at Interfaces,第 2版 (M.Malmsten 编 ),Surfactant Science Series,第 110 卷,Marcel Dekker,纽约,第115-163页中;和Herron,J.N.等人(2005)。Planar Waveguide Biosensors for Point-Of-Care Clinical and Molecular Diagnostics.在Fluorescence Sensors and Biosensors(R.B.Thompson编),CRC Press Taylor&Francis Group,Boca Raton,FL.第283-332页中)。
[0398] Herron的卵白蛋白试验可以用在上文描述的第一和第二免疫试验中。有利的是,用于此试验的试剂相对便宜并且不需要特殊处理。对于cTnI和SEB的检测要求最严格,因此对这些分析物特异的免疫试验适用于灵敏度测试免疫试验。然而,由于CDC、NIH和USDA均把SEB列为需要特殊处理的选择剂,所以在灵敏度测试中使用cTnI可能是优选的。可以把cTnI与其它两种心脏标志物(CKMB和肌红蛋白)组对以用于同时的免疫试验灵敏度测试。
[0399] 在上文描述的第二和第三免疫试验中使用艰难梭菌毒素A的检测来证明本发明检测系统的快速性和灵敏性。图21描绘在10通道芯片上牛血清中艰难梭菌毒素A的实时检测。在前5分钟(300秒)没有分析物存在,因此信号是平的。5分钟后添加分析物达到10pM的浓度。随着夹心式试验格式中分析物与固定到芯片表面的捕获抗体结合,并且第二标记抗体与该复合体结合,所有通道中的光学信号增加。增加的信号的斜率与分析物浓度成正比。
[0400] 图22显示如在一系列十个10通道芯片上所测定的关于艰难梭菌毒素A的标准曲线。光学信号斜率随着浓度增加而增加。测定十个不同浓度,从0.1pM开始直到1μM。可见斜率浓度关系在0.3pM与1nM之间呈线性。检测限度(LOD)大约为0.1pM。这些结果证明与市场上可购得用于艰难梭菌毒素A的测试相比较,在快速性和灵敏性上的显著改进,后者的试验时间在15分钟至75分钟的范围内,LODs在2.7pM至133pM的范围内。
[0401] 虽然本文已经显示并描述了本发明的优选实施方案,但本领域的技术人员将显而易见这些实施方案仅是作为实例来提供。在不背离本发明的情况下本领域的技术人员现可以做出诸多变更、变化和替代。应理解,在实施本发明时可以采用对于本文所述的本发明实施方案的各种替代方案。意图是,所附权利要求限定本发明的范围并且在这些权利要求和它们的等同物范围内的方法和结构被因此覆盖。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈