心脏瓣膜

阅读:869发布:2020-05-11

专利汇可以提供心脏瓣膜专利检索,专利查询,专利分析的服务。并且一种人造 心脏瓣膜 ,该人造心脏瓣膜包括 支撑 结构和柔性瓣叶,该支撑结构限定有用于血液流动的孔,所述柔性瓣叶沿着至少部分为直线的第一 连接线 和第二连接线连接到所述支撑结构,其中,所述瓣叶能够在打开状态和关闭状态之间相对于所述支撑结构运动,所述瓣叶在所述打开状态下允许血流通过所述孔,所述瓣叶在所述关闭状态下限制血流通过所述孔。穿过所述瓣叶的横向截面限定有向外的凸起部、向外的凹陷部以及位于所述凸起部与所述凹陷部之间的交点。该心脏瓣膜可以用于移植到人体或动物主体中。本 发明 还公开了一种制造心脏瓣膜的方法和该方法中使用的样板。,下面是心脏瓣膜专利的具体信息内容。

1.一种人造心脏瓣膜,该人造心脏瓣膜包括支撑结构和柔性瓣叶,所述支撑结构限定有用于血液流动的孔,所述柔性瓣叶沿着至少部分为直线的第一连接线和第二连接线连接到所述支撑结构,其中,所述瓣叶能够在打开状态和关闭状态之间相对于所述支撑结构运动,所述瓣叶在所述打开状态下允许血流通过所述孔,所述瓣叶在所述关闭状态下限制血流通过所述孔,并且其中所述孔限定有轴线,在垂直于该轴线的平面内,穿过所述瓣叶的横向截面限定有向外的凸起部、向外的凹陷部以及位于所述凸起部与所述凹陷部之间的交点。
2.根据权利要求1所述的人造心脏瓣膜,其中,所述第一连接线和所述第二连接线基本平行。
3.根据权利要求1或2所述的人造心脏瓣膜,其中,所述第一连接线和所述第二连接线沿基本平行于所述轴线的方向延伸。
4.根据权利要求1至3中任意一项所述的人造心脏瓣膜,其中,所述凸起部从所述第一连接线朝向所述交点延伸,所述凹陷部从所述第二连接线朝向所述交点延伸。
5.根据前面任意一项权利要求所述的人造心脏瓣膜,其中,所述横向截面的曲率在所述交点处不连续。
6.根据权利要求1至4中任意一项所述的人造心脏瓣膜,其中,所述横向截面的曲率在所述交点处连续。
7.根据前面任意一项权利要求所述的人造心脏瓣膜,其中,所述交点包括转折区域。
8.根据前面任意一项权利要求所述的人造心脏瓣膜,其中,所述交点包括拐点。
9.根据前面任意一项权利要求所述的人造心脏瓣膜,其中,所述交点包括弯曲区域。
10.根据前面任意一项权利要求所述的人造心脏瓣膜,其中,所述交点包括直线区域。
11.根据前面任意一项权利要求所述的人造心脏瓣膜,其中,所述心脏瓣膜构造为:使得所述瓣叶在所述打开状态和所述关闭状态之间的运动导致所述横向截面的所述凸起部围绕所述第一连接线枢转,并且导致所述横向截面的所述凹陷部围绕所述第二连接线枢转。
12.根据前面任意一项权利要求所述的人造心脏瓣膜,其中,所述心脏瓣膜构造为使得所述瓣叶的运动导致所述横向截面的所述凸起部和所述凹陷部的曲率发生变化。
13.根据前面任意一项权利要求所述的人造心脏瓣膜,其中,所述心脏瓣膜构造为:使得所述瓣叶从所述关闭状态向所述打开状态的运动导致所述横向截面的所述凸起部的曲率减小,并且导致所述横向截面的所述凹陷部的曲率增大。
14.根据前面任意一项权利要求所述的人造心脏瓣膜,其中,所述心脏瓣膜构造为:使得所述瓣叶从所述关闭状态向所述打开状态的运动首先导致所述瓣叶的所述横向截面的所述凸起部和所述凹陷部的曲率增加,而后导致所述凸起部的曲率减小并且所述凹陷部的曲率进一步增加。
15.根据前面任意一项权利要求所述的人造心脏瓣膜,其中,所述心脏瓣膜构造为使得所述瓣叶的运动使所述交点沿着所述瓣叶的所述横向截面运动。
16.根据前面任意一项权利要求所述的人造心脏瓣膜,其中,所述心脏瓣膜构造为:使得所述瓣叶从所述关闭状态向所述打开状态的运动导致所述交点沿着所述瓣叶的所述横向截面从所述第一连接线向所述第二连接线运动。
17.根据前面任意一项权利要求所述的人造心脏瓣膜,其中,所述心脏瓣膜构造为:使得所述瓣叶从所述关闭状态向所述打开状态的运动首先导致所述交点沿着所述瓣叶的所述横向截面没有运动,而后导致所述交点沿着所述瓣叶的所述横向截面从所述第一连接线向所述第二连接线运动。
18.根据前面任意一项权利要求所述的人造心脏瓣膜,其中,所述横向截面的所述凸起部的长度在所述打开状态下占有的所述横向截面的总长度的比例大于在所述关闭状态下占有的所述横向截面的总长度的比例。
19.根据前面任意一项权利要求所述的人造心脏瓣膜,其中,所述瓣叶沿着连接基线连接到所述支撑结构。
20.根据权利要求19所述的人造心脏瓣膜,其中,所述连接基线与所述孔相邻。
21.根据权利要求19或20所述的人造心脏瓣膜,其中,所述连接基线至少部分地围绕所述孔延伸。
22.根据权利要求19至21中任意一项所述的人造心脏瓣膜,其中,所述连接基线向外凸起。
23.根据权利要求19至22中任意一项所述的人造心脏瓣膜,其中,所述瓣叶包括自由边,该自由边在所述第一连接线与所述第二连接线之间与所述连接基线相对地延伸,所述自由边能够相对于所述支撑结构运动,所述自由边限定有向外的凸起部、向外的凹陷部以及位于所述凸起部与所述凹陷部之间的交点。
24.根据权利要求23所述的人造心脏瓣膜,其中,所述自由边的交点位于所述第一连接线和所述第二连接线之间沿所述自由边的基本为中间的位置
25.根据权利要求23或24所述的人造心脏瓣膜,其中,所述瓣叶的所述自由边比所述连接基线长。
26.根据权利要求23至25中任意一项所述的人造心脏瓣膜,其中,位于所述连接基线和所述自由边之间的通过所述瓣叶的多个横向截面中的每个横向截面限定有向外的凸起部、向外的凹陷部以及位于所述凸起部与所述凹陷部之间的交点。
27.根据权利要求23至26中任意一项所述的人造心脏瓣膜,其中,所述瓣叶限定有共同适应区域,该共同适应区域从所述自由边延伸并且具有多个基本相同的横向截面。
28.根据权利要求27所述的人造心脏瓣膜,其中,所述共同适应区域从所述自由边向边界延伸,所述边界位于所述自由边与所述连接基线之间。
29.根据权利要求28所述的人造心脏瓣膜,其中,相比于离所述连接基线较远且处于所述连接基线与所述共同适应区域的所述边界之间的横向截面,离所述连接基线较近且处于所述连接基线与所述共同适应区域的所述边界之间的横向截面具有较长的凸起部和较短的凹陷部。
30.根据权利要求27或29所述的人造心脏瓣膜,其中,当所述瓣叶在形成状态下时,位于所述连接基线和所述共同适应区域的所述边界之间的通过所述瓣叶的各所述横向截面的交点处在预定的交点参照线上。
31.根据权利要求30所述的人造心脏瓣膜,其中,所述交点参照线至少部分是直线。
32.根据权利要求30或31所述的人造心脏瓣膜,其中,所述交点参照线从沿着所述共同适应区域的所述边界的大致的中间点向位于所述第二连接线与所述连接基线之间的交点延伸。
33.根据前面任意一项权利要求所述的人造心脏瓣膜,其中,所述支撑结构包括基部、第一杆部和第二杆部,所述基部限定有孔,所述第一杆部和所述第二杆部围绕所述孔设置并且从所述基部沿基本平行于由所述孔限定的轴线方向延伸,所述瓣叶沿着所述第一连接线连接到所述第一杆部、沿着所述第二连接线连接到所述第二杆部并且沿着连接基线连接到所述基部。
34.根据权利要求33所述的人造心脏瓣膜,其中,所述瓣叶沿着所述第一连接线延伸通过并且围绕所述第一杆部,所述瓣叶沿着所述第二连接线延伸通过并且围绕所述第二杆部。
35.根据权利要求33或34所述的人造心脏瓣膜,其中,所述第一杆部和所述第二杆部分别限定有贯穿所述第一杆部和所述第二杆部的洞,所述瓣叶延伸通过所述第一杆部的洞,并且所述瓣叶延伸通过所述第二杆部的洞。
36.根据权利要求35所述的人造心脏瓣膜,其中,贯穿所述第一杆部和所述第二杆部的各个洞相对于由所述孔限定的轴线的径向成度。
37.根据权利要求35或36所述的人造心脏瓣膜,其中,贯穿所述第一杆部和所述第二杆部的各个洞中的每个洞包括切口。
38.根据权利要求33至37中任意一项所述的人造心脏瓣膜,其中,所述第一杆部和所述第二杆部中的每个限定有多个贯穿所述第一杆部和所述第二杆部的洞,所述瓣叶延伸通过贯穿所述第一杆部和所述第二杆部的多个洞中的每个洞。
39.根据权利要求33至38中任意一项所述的人造心脏瓣膜,其中,所述瓣叶延伸通过并且围绕所述基部。
40.根据权利要求33至39中任意一项所述的人造心脏瓣膜,其中,所述基部限定有贯穿所述基部的洞,所述瓣叶延伸通过所述洞。
41.根据权利要求40所述的人造心脏瓣膜,其中,贯穿所述基部的所述洞相对于由所述孔限定的轴线的径向成角度。
42.根据权利要求40或41所述的人造心脏瓣膜,其中,贯穿所述基部的所述洞包括切口。
43.根据权利要求33至42中任意一项所述的人造心脏瓣膜,其中,所述基部限定有多个贯穿所述基部的洞,所述瓣叶延伸通过每个所述洞。
44.根据前面任意一项权利要求所述的人造心脏瓣膜,其中,所述瓣叶整体地形成在所述支撑结构上。
45.根据前面任意一项权利要求所述的人造心脏瓣膜,其中,所述支撑结构的至少一部分是柔性的或者可折叠的。
46.根据前面任意一项权利要求所述的人造心脏瓣膜,其中,所述支撑结构包括金属、不锈聚合物和/或聚醚醚(PEEK)。
47.根据前面任意一项权利要求所述的人造心脏瓣膜,该人造心脏瓣膜包括第一内接合部和第二内接合部,其中,所述第一内接合部构造为用于连接到心脏,所述瓣叶沿着所述第一连接线和所述第二连接线连接到所述第二内接合部。
48.根据前面任意一项权利要求所述的人造心脏瓣膜,其中,所述瓣叶构造为用于经皮穿刺传递。
49.根据前面任意一项权利要求所述的人造心脏瓣膜,其中,所述支撑结构包括框架
50.根据前面任意一项权利要求所述的人造心脏瓣膜,其中,所述支撑结构包括支架
51.根据前面任意一项权利要求所述的人造心脏瓣膜,其中,所述支撑结构包括心脏的一部分。
52.根据前面任意一项权利要求所述的人造心脏瓣膜,其中,所述瓣叶包括合成材料。
53.根据前面任意一项权利要求所述的人造心脏瓣膜,其中,所述瓣叶包括高分子材料。
54.根据前面任意一项权利要求所述的人造心脏瓣膜,其中,所述瓣叶包括聚酯。
55.根据前面任意一项权利要求所述的人造心脏瓣膜,其中,所述瓣叶构造为限定有当从所述瓣膜的流出侧观察时形成沿逆时针方向的螺旋血流的横向截面。
56.根据前面任意一项权利要求所述的人造心脏瓣膜,其中,通过所述瓣叶的横向截面限定有向外的凸起部和随后的向外的凹陷部,当从所述瓣膜的流出侧观察时,所述凸起部和所述凹陷部围绕由所述孔限定的轴线沿基本为逆时针的方向形成。
57.根据权利要求1至54中任意一项所述的人造心脏瓣膜,其中,所述瓣叶构造为限定有当从所述瓣膜的流出侧观察时形成沿顺时针方向的螺旋血流的横向截面。
58.根据权利要求57所述的人造心脏瓣膜,其中,通过所述瓣叶的所述横向截面限定有向外的凹陷部和随后的向外的凸起部,当从所述瓣膜的流出侧观察时,所述凹陷部和所述凸起部围绕由所述孔限定的轴线沿基本为逆时针的方向形成。
59.根据前面任意一项权利要求所述的人造心脏瓣膜,该人造心脏瓣膜包括多个柔性瓣叶,各个瓣叶沿着相应的第一连接线和第二连接线连接到所述支撑结构,其中,各个瓣叶能够在打开状态和关闭状态之间相对于所述支撑结构运动,所述瓣叶在所述打开状态下允许血液通过所述孔,所述瓣叶在所述关闭状态下阻止血液通过所述孔,其中,在垂直于所述轴线的平面内通过各瓣叶的横向截面限定有相应的向外的凸起部、相应的向外的凹陷部以及位于所述凸起部和所述凹陷部之间的相应的交点。
60.根据权利要求59所述的人造心脏瓣膜,其中,第一瓣叶的凸起部的曲率与第二瓣叶的凹陷部的曲率基本匹配,所述第二瓣叶在通过所述第一瓣叶和所述第二瓣叶的横向截面内与所述第一瓣叶相邻。
61.一种人造心脏瓣膜,该人造心脏瓣膜包括支撑结构和柔性瓣叶,所述支撑结构限定有用于血液流动的孔,所述柔性瓣叶沿着第一连接线和第二连接线连接到所述支撑结构,其中,各个瓣叶能够在打开状态和关闭状态之间相对于所述支撑结构运动,所述瓣叶在所述打开状态下允许血液通过所述孔,所述瓣叶在所述关闭状态下限制血液通过所述孔,并且其中所述孔限定有轴线,在垂直于所述轴线的平面内,通过所述瓣叶的横向截面限定有向外的凸起部和向外的凹陷部,所述凸起部从所述第一连接线向交点延伸,所述凹陷部从所述交点向所述第二连接线延伸。
62.根据权利要求61所述的人造心脏瓣膜,其中,所述第一连接线和所述第二连接线至少部分为直线。
63.根据权利要求61或62所述的人造心脏瓣膜,其中,所述第一连接线与所述第二连接线为基本平行的关系。
64.根据权利要求61至63中任意一项所述的人造心脏瓣膜,其中,所述第一连接线和所述第二连接线至少部分地沿着平行于由所述孔限定的轴线的方向延伸。
65.根据权利要求61至64中任意一项所述的人造心脏瓣膜,其中,所述第一连接线和所述第二连接线至少部分是弯曲的。
66.一种人造心脏瓣膜,该人造心脏瓣膜包括支撑结构和整体形成的柔性瓣叶,其中,所述支撑结构限定有通孔以及用于血液流动的孔,所述瓣叶延伸通过所述通孔并且围绕所述支撑结构的部分。
67.一种移植人造心脏瓣膜的方法,该方法包括:
将根据前面任意一项权利要求中所述的人造心脏瓣膜移植到人体或动物主体内,使得由所述孔限定的轴线沿着血液流动的方向延伸。
68.一种人造心脏瓣膜,该人造心脏瓣膜包括第一端和第二端,所述第一端和所述第二端构造为用于分别沿着至少部分为直线的第一连接线和第二连接线连接到支撑结构,所述瓣叶能够在打开状态和关闭状态之间相对于所述支撑结构运动,所述瓣叶在所述打开状态下允许血液通过所述支撑结构的孔,所述瓣叶在所述关闭状态下限制血液通过所述支撑结构的孔,其中,在所述瓣叶的端部之间延伸的平面内,通过所述瓣叶的横向截面限定有向外的凸起部、向外的凹陷部以及位于所述凸起部和所述凹陷部之间的交点。
69.一种用于制造人造心脏瓣膜的样板,该样板包括外表面,该外表面构造为在对该外表面上的液体固化时限定根据权利要求1至62中任意一项所述的心脏瓣膜的柔性瓣叶。
70.根据权利要求69所述的样板,其中,所述外表面构造为能够防止所述液体粘结在所述外表面上。
71.根据权利要求69或70所述的样板,其中,所述样板限定有贯穿所述样板的通孔,该通孔构造为用于容纳封堵件,以防止在通孔的入口浸渍到液体中时所述液体进入所述通孔内。
72.一种制造人造心脏瓣膜的方法,该方法包括:
沿着至少部分为直线的第一连接线和第二连接线将柔性瓣叶连接到支撑结构上,其中,所述瓣叶能够在打开状态和关闭状态之间相对于所述支撑结构运动,所述瓣叶在所述打开状态下允许血液通过由所述支撑结构限定的孔,所述瓣叶在所述关闭状态下限制血液通过所述孔,其中,所述孔限定有轴线,在垂直于所述轴线的平面内,通过所述瓣叶的横向截面限定有向外的凸起部、向外的凹陷部以及位于所述凸起部与所述凹陷部之间的交点。
73.根据权利要求72所述的方法,该方法包括:
在液体中浸涂支撑结构;以及
使所述液体固化,以限定所述柔性瓣叶。
74.根据权利要求73所述的制造人造心脏瓣膜的方法,该方法包括:
在液体中浸涂所述支撑结构之前,将所述支撑结构安装到样板上;以及
在所述液体固化后,将所述支撑结构和所述柔性瓣叶从所述样板上移除。
75.根据权利要求74所述的制造人造心脏瓣膜的方法,该方法包括将所述样板及安装在该样板上的支撑结构浸渍到所述液体中,以涂覆所述样板的外表面。
76.根据权利要求75所述的制造人造心脏瓣膜的方法,该方法包括在所述液体固化后,修剪形成在所述瓣叶的共同适应区域的下边缘上方的所述瓣叶,从而限定所述瓣叶的自由边。
77.根据权利要求72至76中任意一项所述的制造人造心脏瓣膜的方法,其中,所述样板限定有贯穿所述样板的通孔,该通孔构造为用于容纳封堵件,所述方法包括:
在将所述样板浸渍到所述液体中之前,用所述封堵件将所述通孔封堵,以防止所述液体进入所述通孔内;
在所述液体固化之后,将所述封堵件从所述通孔上移除;以及
注射释放液体,以辅助所述固化的液体从所述样板的所述外表面上分离。
78.一种用于将人造心脏瓣膜移植到人体或动物主体的方法,该方法包括:
通过在连接环的环形基部的至少一部分上环绕一定长度的缝合线,将所述连接环缝合到人体或动物主体内的通道上。
79.根据权利要求78所述的移植人造心脏瓣膜的方法,其中,所述连接环的外表面构造为与所述通道的内表面密封地接合。
80.根据权利要求78或79所述的移植人造心脏瓣膜的方法,该方法包括:
保持人造心脏瓣膜与所述连接环的密封接合,从而在血液流动路径的周围提供密封周缘,所述血液流动路径延伸通过所述连接环和所述心脏瓣膜。
81.一种用于将人造心脏瓣膜移植到人体或动物主体的连接环,该连接环包括环形基部,其中,所述连接环构造为:通过在所述基部的至少一部分上环绕一定长度的缝合线,将所述连接环缝合到人体或动物主体内的通道上。
82.根据权利要求81所述的连接环,其中,所述连接环的外表面构造为与所述通道的内表面密封地接合。
83.根据权利要求81或82所述的连接环,其中,所述连接环构造为保持与人造心脏瓣膜接合,从而在血液流动路径的周围提供密封周缘,所述血液流动路径延伸通过所述连接环和所述心脏瓣膜。
84.根据权利要求83所述的连接环,其中,所述连接环构造为与所述心脏瓣膜接合,使所述连接环的内表面与所述心脏瓣膜的外表面保持密封接合。
85.根据权利要求81至84中任意一项所述的连接环,其中,所述基部具有0到3mm、0到2mm或者0到1mm的径向扩张。
86.根据权利要求81至85中任意一项所述的连接环,其中,所述基部包括环形支撑结构,该环形支撑结构构造为防止在手术中手术缝针穿过环形支撑结构。
87.根据权利要求81至86中任意一项所述的连接环,其中,所述支撑结构包括金属、不锈钢、钛、聚合物和/或聚醚醚酮(PEEK)。
88.根据权利要求86或87所述的连接环,该连接环包括可弹性变形覆盖材料,该覆盖材料围绕所述支撑结构的至少一部分延伸。
89.根据权利要求88所述的连接环,其中,所述覆盖材料包括涤纶。
90.根据权利要求81至89中任意一项所述的连接环,该连接环包括用于与人造心脏瓣膜的辅助特征接合的接合特征。
91.根据权利要求90所述的连接环,其中,所述连接环限定有孔,该孔限定轴线方向,所述接合特征构造为允许沿着所述轴线方向与人造心脏瓣膜的辅助特征接合。
92.根据权利要求91所述的连接环,其中,所述接合特征沿着所述轴线方向延伸。
93.根据权利要求90至92中任意一项所述的连接环,其中,所述接合特征具有非圆的对称截面。
94.根据权利要求90至93中任意一项所述的连接环,其中,所述接合特征为阴性接合特征。
95.根据权利要求90至94中任意一项所述的连接环,其中,所述接合特征构造为与人造心脏瓣膜的辅助特征定接合。
96.根据权利要求90至95中任意一项所述的连接环,其中,所述接合特征构造为可弹性变形地与人造心脏瓣膜的较硬的辅助特征接合。
97.根据权利要求81至96中任意一项所述的连接环,该连接环包括用于与人造心脏瓣膜的多个辅助特征接合的多个接合特征。
98.一种人造心脏瓣膜,该人造心脏瓣膜构造为保持与根据权利要求81至97中任意一项所述的连接环密封接合,从而在血液流动路径的周围形成密封周缘,所述血液流动路径延伸通过所述心脏瓣膜和所述连接环。
99.一种人造心脏瓣膜组件,该人造心脏瓣膜组件包括根据权利要求81至97中任意一项所述的连接环,该连接环与根据权利要求98中所述的人造心脏瓣膜接合。

说明书全文

心脏瓣膜

技术领域

[0001] 本发明涉及一种人造心脏瓣膜和制造该人造心脏瓣膜的方法。

背景技术

[0002] 心脏瓣膜会在出生时就异常、会病变或者会在老年时衰竭。当心脏瓣膜的功能变得损坏严重时,可能需要更换他们。在现有的临床应用中,有许多不同的用于替代的人造心脏瓣膜。通常,这些人造瓣膜有两种类型。机械替代心脏瓣膜采用刚性、合成材料(比如合金热解或者刚性聚合物等)制成。他们不像天生的心脏瓣膜。生物替代心脏瓣膜采用人体源性或动物源性(比如人体主动脉瓣膜(aortic)或动脉(pulmonary)瓣膜、动物主动脉瓣膜或静脉(venous)瓣膜、或者动物心包膜(pericardium)(包络心脏的纤维层))的柔性材料制成。这些动物组织通常用药剂(比如戊二(glutaraldehyde))处理,以增强其耐久性。生物心脏瓣膜与天生的主动脉瓣膜或肺动脉瓣膜相似。戊二醛处理过的的心包膜是常用的材料,该戊二醛处理过的牛的心包膜用于在支撑框架上制成三个柔性瓣叶来模拟天生的主动脉瓣膜。通过心内直视术(open-heart operation)移除异常的瓣膜后,将这些瓣膜移植到心脏内。最近,通过引入到心脏的尖端的导管或者通过末梢血管(peripheral blood vessel),将柔性瓣膜瓣叶连接在可扩张的网状圆柱体内进行移植。在操作到正确的位置后,该装置被充气球扩张,以产生功能性瓣膜,而不需要传统的微创手术
[0003] 通常,机械瓣膜需要终生的抗凝药物治疗,以防止血液在瓣膜周围凝结并且妨碍瓣膜功能,或者防止血液扩散到血流中阻塞对生命至关重要的通向头部、内脏、四肢或其他区域的动脉,而生物瓣膜容易感染退化,因此限制了他的有效期限,尤其是在儿童或者青少年上使用时。
[0004] 由于避免瓣膜瓣叶化和退化的需要,特别是对于青少年和儿童,产生尝试用合成材料替代生物材料瓣膜瓣叶,以降低临床上生物瓣膜的吸附。大多数的研究都聚焦于非降解性聚酯(biostable polyurethanes)。与生物瓣膜相似的瓣膜设计,期待能保持这些瓣膜的较低的血栓塞(thrombo-embolic)的险。
[0005] 合成高分子、柔性瓣叶的人造心脏瓣膜仍处于试验阶段,其不能称为具有标准的、完善的设计模式。然而,文献中展示的那些例子模拟标准的设计、相应地完善与天生的心脏主动脉瓣膜相似的生物瓣膜。这样设计的好的理由在于该设计通过功能性瓣膜保留接近于天生的血液流动。相比于“非天生”的设计和机械瓣膜的异常流动模式,可以相信的是生物瓣膜不可能使身体机能出现凝血(“较低的血栓塞风险”——因此允许在临床上不需要抗凝而使用这些瓣膜)。
[0006] 对于当前动物源性的柔性瓣叶的生物心脏瓣膜的耐久性有限,已经提出使用合成高分子(比如聚氨酯)作为一种可能的解决方案。临床使用中,几乎没有合成高分子心脏瓣膜的例子,并且这些合成高分子现在局限于用于体外循环(extracorporeal circuits),这种体外循环不要求持续的作用。试验性的高分子心脏瓣膜显示了有限的耐久性,这是进一步发展这种瓣膜作为瓣膜替代装置在临床上使用的一个严重的制约因素。试验性的高分子心脏瓣膜尤其对比如由于高局部弯曲应力而导致撕裂(尤其是在瓣膜手术中发生的弯曲或皱起引起的局部弯曲应力)的破坏敏感。
[0007] 适应于医疗应用并且在血流中持续使用时具有足够的生物稳定的可用的聚氨酯数量上相对有限,而且由聚氨酯制成的瓣叶通常太坚硬而不能达到令人满意的功能。这种情况在使用了具有很好的耐久性和生物稳定性的较硬、较高弹性模量的聚氨酯时尤其明显。此外,聚氨酯中强化物质的使用,例如碳纳米管或者较大的纤维,可能增加硬度并使得坚硬的瓣叶太过坚硬,而不能得到令人满意的血液动力功能,例如太硬而使瓣膜不能容易地打开和关闭,从而在穿过瓣膜以及通过瓣膜的低逆流不能获得令人满意的压降。
[0008] 目前患者中存在没有可用的、令人满意的替代心脏瓣膜供他们使用的重要群体。这个群体包括发展中国家的儿童和青少年。例如,撒哈拉以南的非洲具有世界上患有风湿性心脏病最多的人口(世界卫生组织(WHO)估计有超过一百万名年龄在5-24岁——相比于工业化国家的33000名)。他们许多都应当进行瓣膜更换。对于这些年轻患者,有时应用在发达国家的复合瓣膜修复或者瓣膜置换(罗斯手术(Ross operation))做法并不具有可行的前景;机械瓣膜需要终生抗凝治疗(其自身需要监管),并伴有终生流血或瓣膜血栓的高风险;生物瓣膜经常只能维持几年就需要再次手术,并带有其伴随的风险。因此,对于工业化国家相对较少数量的年轻患者,以及由于药物或者生活方式的原因而不能使用抗凝药物的患者,迫切需要一种耐久的替代心脏瓣膜,该心脏瓣膜在多年不使用抗凝药物的情况下不会损伤致使提早恶化和失效仍能在临床上起到令人满意的作用。然而,还有大量发展中国家的患者难以从这种瓣膜中受益。获得手术设施经常成为限制因素,但是这个问题会随着许多国家的快速发展而变得不成问题。如果有合理的价格,不需要抗凝并且在普通的手术室中易于移植的可靠的心脏瓣膜是可用的,将会有广泛的临床应用。

发明内容

[0009] 根据本发明的第一个方面,提供了一种人造心脏瓣膜,该人造心脏瓣膜包括支撑结构和柔性瓣叶,所述支撑结构限定有用于血液流动的孔,所述柔性瓣叶沿着至少部分为直线的第一连接线和第二连接线连接到所述支撑结构,其中,瓣叶能够在打开状态和关闭状态之间相对于支撑结构运动,瓣叶在所述打开状态下允许血液通过所述孔,瓣叶在关闭状态下限制血液通过所述孔,并且其中所述孔限定有轴线,在垂直于该轴线的平面内,穿过瓣叶的横向截面限定有向外的凸起部、向外的凹陷部以及位于凸起部与凹陷部之间的交点。
[0010] 使用中,这种瓣膜可以移植到人体或动物体内,使瓣叶沿着血液流动方向延伸,通过瓣叶的横向截面对齐,以基本上垂直于血液流动方向。
[0011] 所述瓣膜可以构造为连接到人体或者动物,例如,连接到人或动物的心脏或者连接到人或动物心脏附近的血管。
[0012] 所述瓣膜可以构造为通过缝纫、缝合、缝补等方式与心脏连接。
[0013] 所述瓣膜可以构造为以移植、熔接、粘接或其他方式与心脏连接。
[0014] 为了与穿过瓣叶的变化的压差相对应,所述瓣叶可以在打开和关闭状态间运动。
[0015] 这种心脏瓣膜可以在打开状态下允许血流向前通过瓣膜,并且可以在关闭状态下限制或阻止血流向后通过瓣膜。
[0016] 瓣膜可以形成为具有天生的状态。
[0017] 在天生的状态中,瓣膜可以不受应力或具有最小的内应力。
[0018] 瓣膜可以具有相当于天生的状态的默认状态。
[0019] 在没有任何压差穿过瓣叶时,瓣膜可以构造为使得瓣叶回到默认状态。
[0020] 在默认状态下,瓣叶设置在打开状态和关闭状态之间的瓣叶的中间位置。
[0021] 瓣叶可以具有横向截面,该横向截面限定有在打开状态、关闭状态和所有在打开状态与关闭状态之间包括默认状态的中间状态下的向外的凸起部、向外的凹陷部以及在所述凸起部与所述凹陷部之间的交点。
[0022] 为了与适当的压差相对应,瓣膜可以构造为允许瓣叶从默认状态运动到关闭状态。
[0023] 为了与适当的压差相对应,瓣膜可以构造为允许瓣叶从默认状态运动到打开状态。
[0024] 为了与适当的压差相对应,瓣膜可以构造为允许瓣叶迅速地从默认状态运动到打开状态。
[0025] 根据穿过瓣叶的压差,交点、凸起部和凹陷部至少有一个发生变化。
[0026] 直线的或至少部分为直线的第一连接线和第二连接线以及通过瓣叶的横向截面的状态可以保证瓣叶能够在打开和关闭状态之间根据优选的运动模式运动,在优选的运动模式中,瓣叶的曲率的变化在整个瓣叶的宽度上分布,而不是像许多生物和合成的柔性心脏瓣膜的传统设计那样主要在瓣叶用于连接到支撑结构的连接线附近变化。这种运动模式可以保证瓣叶能在打开和关闭状态间运动,并且相比于公知的人造心脏瓣膜中的弯曲应力在瓣叶内形成较小的弯曲应力。对于给定的瓣叶的硬度,这可以减少心脏瓣膜手术中在瓣叶内产生的弯曲应力,从而减小瓣叶的例如撕裂、破裂等伤害的敏感度。这样,对于给定的瓣叶的硬度,可以产生提高的心脏瓣膜的可靠性。
[0027] 直线的或至少部分为直线的第一连接线和第二连接线以及通过瓣叶的横向截面的状态可以保证瓣叶采用适当的形状,相比于公知的生物心脏瓣膜或公知的合成瓣叶心脏瓣膜,该形状能在瓣叶处于打开状态时减小血液流动的阻力。相应地,对于给定的瓣叶的硬度,这种心脏瓣膜具有较好的血液动力性能。可选地,对于给定的血液动力性能,这种心脏瓣膜可以使用较硬的瓣叶构造。例如,可以选择较硬的瓣叶材料和/或者相比于公知的生物心脏瓣膜或公知的合成瓣叶心脏瓣膜的血液动力性能,在不减弱血液流动性能的前提下可以增加瓣叶的厚度。特别地,这可以允许使用较硬的、较高弹性模量的瓣叶材料,在不减弱血液流动性能的前提下,该材料具有较好的耐久性和较好的生物稳定性。
[0028] 直线的或至少部分为直线的第一连接线和第二连接线以及通过瓣叶的横向截面可以保证瓣叶采用与给定的穿过瓣叶的压差相对应的预定形状。更具体地,为了与穿过瓣叶的压差的变化相应,凸起部和基本凹陷部可以以预定的方式变化。这能防止瓣叶在重新配置时采用所述打开和关闭状态间的任意的形状,并且,特别地,可以避免重新配置时瓣叶的急剧弯曲、变形或者皱起。对于给定的瓣叶硬度,这可以减少在心脏瓣膜手术中瓣叶内的弯曲应力,从而减小瓣叶对例如撕裂、破裂等伤害的敏感度。这样,对于给定的瓣叶硬度,可以导致提高的心脏瓣膜的可靠性。
[0029] 所述第一连接线与第二连接线基本平行。
[0030] 所述第一连接线和第二连接线沿基本平行于轴线的方向延伸。
[0031] 所述凸起部从所述第一连接线向交点延伸。
[0032] 所述凹陷部从所述第二连接线向交点延伸。
[0033] 所述横向截面的曲率在交点处可以不连续。
[0034] 所述横向截面的曲率在交点处可以连续。
[0035] 所述交点包括转折区域。
[0036] 所述交点包括拐点。
[0037] 所述交点包括弯曲区域。
[0038] 所述交点包括直的区域。
[0039] 瓣叶的横向截面的状态可以保证瓣叶采用预定的形状,该形状能改善血液流动性能。瓣叶的横向截面的状态可以使血液以螺旋运动的形式通过瓣叶,从而使血液流过瓣叶模拟相比于公知的人造心脏瓣膜的布置更加精确的生理血液通过天生的心脏瓣膜的流动条件。相比于使用公知的人造心脏瓣膜的心脏效率,这种螺旋血流能够改善心脏的效率。
[0040] 所述瓣叶构造为限定有当从所述瓣膜的流出侧观察时形成沿逆时针方向的螺旋血流的横向截面。通过所述瓣叶的横向截面限定有向外的凸起部和随后的向外的凹陷部,当从所述瓣膜的流出侧观察时,所述凸起部和所述凹陷部围绕由所述孔限定的轴线沿基本为逆时针的方向形成。
[0041] 所述瓣叶构造为限定有当从所述瓣膜的流出侧观察时形成沿顺时针方向的螺旋血流的横向截面。通过所述瓣叶的所述横向截面限定有向外的凸起部和随后的向外的凹陷部,当从所述瓣膜的流出侧观察时,所述凸起部和所述凹陷部围绕由所述孔限定的轴线沿基本为逆时针的方向形成。
[0042] 所述人造心脏瓣膜构造为能使所述瓣叶在所述打开状态和所述关闭状态之间运动,使得所述横向截面的所述凸起部围绕所述第一连接线枢转。
[0043] 所述人造心脏瓣膜构造为能使所述瓣叶在所述打开状态和所述关闭状态之间运动,所述横向截面的所述凹陷部围绕所述第二连接线枢转。
[0044] 所述人造心脏瓣膜构造为使得所述瓣叶的运动使所述横向截面的所述凸起部和所述凹陷部的曲率发生变化。
[0045] 所述人造心脏瓣膜构造为使得所述瓣叶从所述关闭状态向所述打开状态运动,使所述横向截面的所述凸起部的曲率减小。
[0046] 所述人造心脏瓣膜构造为使得所述瓣叶从所述关闭状态向所述打开状态运动,使所述横向截面的所述凹陷部的曲率增大。
[0047] 所述人造心脏瓣膜构造为使得所述瓣叶从所述关闭状态向所述打开状态运动,首先使所述瓣叶的所述横向截面的所述凸起部和所述凹陷部的曲率增加,而后使所述凸起部的曲率减小并且所述凹陷部的曲率进一步增加。
[0048] 所述人造心脏瓣膜构造为使得所述瓣叶的运动使所述交点沿着所述瓣叶的所述横向截面运动。
[0049] 所述人造心脏瓣膜构造为使得所述瓣叶从所述关闭状态向所述打开状态运动使所述交点沿着所述瓣叶的所述横向截面从所述第一连接线向所述第二连接线运动。
[0050] 所述人造心脏瓣膜构造为使得所述瓣叶从所述关闭状态向所述打开状态运动,首先使所述交点沿着所述瓣叶的所述横向截面没有运动,而后使所述交点沿着所述瓣叶的所述横向截面从所述第一连接线向所述第二连接线运动。
[0051] 所述横向截面的所述凸起部的长度包括在所述打开状态下占有的所述横向截面的总长度的比例大于在所述关闭状态下占有的所述横向截面的总长度的比例。
[0052] 瓣叶沿着连接基线连接到支撑结构。
[0053] 连接基线至少部分地围绕着孔延伸。
[0054] 连接基线围绕着孔周向地延伸。
[0055] 连接基线与孔相邻。
[0056] 连接基线向外凸起。
[0057] 瓣叶包括自由边,该自由边能够相对于支撑结构运动。
[0058] 自由边在第一连接线与第二连接线之间与连接基线相对地方向延伸。
[0059] 自由边限定有向外的凸起部、向外的凹陷部以及位于凸起部和凹陷部间的交点。
[0060] 自由边的交点位于第一连接基线与第二连接基线之间沿自由边的基本为中间的位置。
[0061] 瓣叶的自由边比连接基线长。
[0062] 位于连接基线与自由边间的通过所述瓣叶的多个横向截面中的每个限定有向外的凸起部、向外的凹陷部以及位于凸起部与凹陷部间的交点。
[0063] 瓣叶限定了共同适应区域,该共同适应区域从自由边延伸并具有多个基本相同的横向截面。
[0064] 这种共同适应区域的内置表面与较远的共同适应区域的互补的内置表面形成提高的密封,例如,在瓣叶处于关闭状态时,较远的瓣叶的向内设置的共同适应区域阻止或减少血液通过孔回流。
[0065] 共同适应区域从自由边向边界延伸,该边界位于自由边和连接基线之间。
[0066] 相比于离连接基线较远且处于连接基线与共同适应区域的边界之间的横向截面,离连接基线较近且处于连接基线与共同适应区域的边界之间的横向截面具有较长的凸起部和较短的凹陷部。
[0067] 当瓣叶在成型或天生的状态下,位于所述连接基线和所述共同适应区域的所述边界之间的通过所述瓣叶的所述各横向截面的交点处在预定的交点参照线上。
[0068] 所述交点参照线至少部分为直线。
[0069] 所述交点参照线从沿着所述共同适应区域的所述边界的大致的中间点向位于所述第二连接线与所述连接基线之间的交点延伸。这样的设置能保证瓣叶在成型或天生的状态下限定大致为三维的圆锥区域,该区域具有尖端,该尖端位于第二连接线与连接基线的交点上或在其附近。这种三维瓣叶形状能使瓣叶在打开和关闭状态间的运动中,将压力分配在瓣叶宽度方向。
[0070] 支撑结构包括基部,该基部限定有孔。
[0071] 基部可以为弯曲的。基部包括环或基本为环形。基部可以为圆形的、椭圆形的等。
[0072] 基部可以构造为用于连接到人或者动物,例如,连接到人或动物的心脏,或者连接到人或动物的心脏附近的血管。基部可以构造为通过移植、缝合、熔接、粘接或其他方法连接到人或动物。
[0073] 孔为弯曲的。孔可以是圆形的、椭圆形的等。
[0074] 瓣叶沿着连接基线连接到基部。
[0075] 支撑结构包括多个杆部,该杆部从基部延伸。
[0076] 围绕孔可以设置有多个杆部。
[0077] 各杆部沿与轴线基本平行的方向延伸。
[0078] 各杆部包括直边,该直边沿着与轴线基本平行的方向延伸。例如,基部限定有横向平面,各杆部的直边在与基部的横向截面基本垂直的方向延伸。
[0079] 支撑结构包括第一杆部和第二杆部,该第一杆部和第二杆部分别限定有第一连接线和第二连接线。
[0080] 瓣叶连接在两个杆部之间。
[0081] 瓣叶连接在两个相邻的杆部之间。
[0082] 瓣膜可以构造为使瓣叶的自由边的交点位于两杆部之间的直线的一侧,当瓣叶处于关闭状态时,瓣叶连接到该交点。瓣膜可以构造位使瓣叶的自由边的交点位于两杆部之间直线的另一端,当瓣叶处于打开状态时,瓣叶连接到该交点。
[0083] 当瓣叶在打开和关闭状态间运动时,瓣叶在两个杆部间穿过,这种瓣膜结构使在瓣叶上施加了压力。当瓣叶穿过两个杆部时,这个压力使瓣叶的横向截面的凸起部和凹陷部的曲率急剧变化。
[0084] 杆部从基部延伸成向外张开的结构。各杆部限定有相对于轴线方向的锐。各杆部相对于轴线方向限定的角在0到30°、0到10°或者0到5°之间。杆部的这种向外张开的结构允许瓣叶轻松地在打开和关闭状态间运动。这减少了瓣叶运动过程中在瓣叶内的应力。
[0085] 瓣叶延伸通过并沿着第一连接线围绕第一杆部。
[0086] 瓣叶延伸通过并沿着第二连接线围绕第二杆部。
[0087] 第一杆部和第二杆部各自限定有贯穿延伸的洞。
[0088] 瓣叶沿着第一连接线延伸通过洞,该洞延伸通过第一杆部。
[0089] 瓣叶沿着第二连接线延伸通过洞,该洞延伸通过第二杆部。
[0090] 这种设置在瓣叶与第一杆部和第二杆部中的每个之间提供了强有力的固定作用。
[0091] 延伸通过第一杆部和第二杆部的各个洞相对于孔限定的轴线的径向成角度。这保证各瓣叶以如以预定角度的预定方式进入和/或退出延伸通过第一杆部和第二杆部的各个洞。由于瓣叶从贯穿延伸通过第一杆部和第二杆部的各个洞中伸出,因此这种角度保证瓣叶的横向截面在临近第一杆部或第二杆部处具有与瓣叶的横向截面的向外的凸起部或向外的凹陷部的曲率连续的曲率。
[0092] 贯穿第一杆部和第二杆部的各洞可以为细长的。例如,贯穿第一杆部和第二杆部的各洞包括切口等。
[0093] 第一杆部和第二杆部各自限定有多个贯穿延伸的洞。
[0094] 瓣叶延伸通过贯穿第一杆部和第二杆部的多个洞的每个。
[0095] 瓣叶沿着连接基线连接到基部。
[0096] 瓣叶延伸通过并环绕基部。
[0097] 基部限定了贯穿的洞。
[0098] 瓣叶延伸通过基部限定的洞。
[0099] 这种设置在瓣叶与基部间提供了强有力的固定作用。
[0100] 贯穿基部的一个或多个洞相对于孔限定的轴线的径向成角度。
[0101] 这可以保证瓣叶以如以预定角度的预定方式进入和/或退出贯穿基部的一个或多个洞。由于瓣叶从贯穿基部的一个或多个洞中伸出,因此这种角度保证瓣叶的横向截面在临近基部处具有与瓣叶的横向截面的凹陷部的曲率连续的曲率。
[0102] 贯穿基部的一个或多个洞可以为细长的。例如,贯穿基部的一个或多个洞包括切口等。
[0103] 基部限定了多个贯穿的洞。
[0104] 瓣叶延伸通过基部限定的多个洞。
[0105] 瓣叶整体地形成在支撑结构上。
[0106] 瓣叶包括合成材料。
[0107] 瓣叶包括高分子材料。
[0108] 瓣叶包括聚氨酯。
[0109] 瓣叶包括复合材料,该复合材料包括基质材料和一种或多种增强元素。例如,瓣叶包括基质材料和一种或多种例如纤维、原纤、丝状物、纳米管等的增强元素。
[0110] 瓣叶包括碳纳米管增强的聚氨酯。
[0111] 心脏瓣膜包括多个柔性瓣叶,各瓣叶沿着相应的第一连接线和第二连接线连接到支撑结构,这样,各瓣叶能够在打开状态与关闭状态间相对于支撑结构运动,其中,瓣叶在打开状态下允许血液流过孔,瓣叶在关闭状态下限制血液流过孔,其中,在垂直于所述轴线的平面内,通过各瓣叶的横向截面限定有相应的向外的凸起部、相应的向外的凹陷部以及位于凸起部与凹陷部间相应的交点。
[0112] 在穿过第一瓣叶和第二瓣叶的横向截面内,第一瓣叶的凸起部的曲率与临近第一瓣叶的第二瓣叶的凹陷部的曲率基本匹配。
[0113] 这种瓣膜保证在瓣叶处于关闭状态时,各瓣叶至少部分地封堵血液流过瓣膜。
[0114] 各瓣叶限定了共同适应区域,该共同适应区域与一个或多个其他瓣叶的一个或多个互补的共同适应表面配合。这种共同适应表面形成了提高的密封,在瓣叶处于关闭状态时,防止或减少血液通过孔回流。
[0115] 各杆部具有连接在其上的多个瓣膜。
[0116] 各瓣叶整体地形成在框架上。
[0117] 瓣膜包括三片瓣叶。
[0118] 瓣膜包括三个杆部。
[0119] 这种瓣膜为心室动脉瓣膜(主动脉瓣与肺动脉瓣)提供了假体
[0120] 瓣膜包括两个瓣叶。
[0121] 瓣膜包括两个杆部。
[0122] 这种瓣膜为房室瓣(二尖瓣和三尖瓣)提供了假体。
[0123] 至少部分支撑结构为刚性的或半刚性的。
[0124] 至少部分支撑结构为柔性的。例如,至少部分支撑结构是可膨胀的。
[0125] 这种支撑结构允许瓣膜被压缩或折叠以插入主体中,例如,通过血管。这种支撑结构允许瓣膜随着时间在原位膨胀,以适应主体的增长。
[0126] 这种支撑结构也能适应主体的增长,比如儿童。
[0127] 支撑结构包括比瓣叶材料坚硬的材料。
[0128] 支撑结构包括金属。
[0129] 支撑结构包括不锈
[0130] 支撑结构包括
[0131] 支撑结构包括聚合物,例如聚醚醚(PEEK)等。
[0132] 至少部分支撑结构是柔性的或可折叠的。
[0133] 支撑结构可以包括框架。
[0134] 支撑结构具有圆形轮廓。例如,支撑结构具有圆角。在将心脏瓣膜设置或移植到人体或动物主体时,这种支撑结构减少了对人体或动物主体的伤害。
[0135] 瓣膜通过经皮穿刺传递。
[0136] 支撑结构包括支架
[0137] 支撑结构包括心脏的一部分。换言之,瓣叶可以直接连接到人或动物的心脏。
[0138] 瓣膜包括第一内接合部和第二内接合部。
[0139] 第一内接合部用于连接到人或动物,例如,连接到人或动物的心脏,或者连接到人或动物的心脏附近的血管。
[0140] 第二内接合部包括瓣叶。该第一内接合部与第二内接合部用于使第一内接合部连接到心脏,而不会有损伤第二内接合部的瓣叶的风险。
[0141] 第一内接合部通过缝纫、缝合、缝补等方式与心脏连接。
[0142] 第一内接合部通过移植、熔接、粘接或其他方法与心脏连接。
[0143] 第一内接合部可以是弯曲的。第一内接合部可以包括环或基本为环形。第一内接合部可以为圆形的、椭圆形的等。
[0144] 第一内接合部包括缝合环。
[0145] 第一内接合部通过围绕第一接合部的丝线、金属丝等连接到心脏并进入心脏壁内。
[0146] 第一内接合部和第二内接合部具有互补的内接合特征。
[0147] 第一内接合部和第二内接合部包括阳性和阴性特征。
[0148] 第一内接合部和第二内接合部中的一者包括一个或多个突起,第一内接合部和第二内接合部中的另一者包括一个或多个凹槽,其中每个凹槽用于容纳相应的突起。
[0149] 第一内接合部和第二内接合部提供了相互定的连接。例如,第一内接合部和第二内接合部中的一者包括卡销,第一内接合部与第二内接合部中的另一者包括用于安装卡销的凹槽。通过相互扭第一内接合部和/或第二内接合部,将卡销锁定在凹槽中。
[0150] 支撑结构包括第三部,例如适配部,该第三部用于促进第一内接合部与第二内接合部间的连接。
[0151] 根据本发明的第二个方面,提供了一种人造心脏瓣膜,该人造心脏瓣膜包括支撑结构和柔性瓣叶,支撑结构限定了用于血液流动的孔,柔性瓣叶沿着第一连接线和第二连接线连接到支撑结构,其中,各个瓣叶能够在打开状态和关闭状态间相对于支撑结构运动,瓣叶在所述打开状态下允许血液流过孔,瓣叶在关闭状态下限制血液流过孔,并且,其中,所述孔限定有轴线,在垂直于所述轴线的平面内,通过瓣叶的横向截面限定了向外的凸起部和向外的凹陷部,该凸起部从第一连接线向交点延伸,凹陷部从交点向第二连接线延伸。
[0152] 第一连接线和第二连接线至少部分为直线。
[0153] 第一连接线与第二连接线为基本平行的关系。
[0154] 第一连接线和第二连接线至少部分沿着平行于孔限定的轴线的方向延伸。
[0155] 第一连接线和第二连接线至少部分为弯曲的。
[0156] 应当理解,与第一个方面相关的一个或多个可选特征可以任意组合地应用到第二个方面。
[0157] 根据本发明的第三个方面,提供了一种人造心脏瓣膜,该人造心脏瓣膜包括支撑结构和整体形成的柔性瓣叶,其中,支撑结构限定了有通孔以及用于血液流动的孔,并且瓣叶延伸通过通孔并围绕支撑结构的部分。
[0158] 瓣叶整体地形成,以延伸通过通孔。
[0159] 瓣叶整体地形成,以围绕支撑结构的通孔附近的部分延伸。
[0160] 这样的设置在瓣叶与支撑结构间提供了强有力的固定作用。
[0161] 通孔可以为细长的。
[0162] 通孔可以包括切口等。
[0163] 通孔可以是成角度的。这种通孔能保证瓣叶以如以预定角度的预定方式进入和/或退出孔。
[0164] 支撑结构限定了多个贯穿的通孔。
[0165] 瓣叶整体地形成,以延伸通过多个通孔中的每个。
[0166] 瓣叶整体地形成,以围绕支撑结构的多个通孔附近的部分延伸。
[0167] 多个通孔中的每个均可为细长的。
[0168] 多个通孔中的每个可以包括切口等。
[0169] 应当理解,与第一个方面相关的一个或多个可选特征可以任意组合地应用到第三个方面。
[0170] 根据本发明的第四个方面,提供了一种人造心脏瓣膜,该人造心脏瓣膜包括支撑结构和连接到该支撑结构的柔性瓣叶,各瓣叶形成为在打开和关闭状态的运动过程中瓣叶能提供预定形状。
[0171] 瓣叶形成为包括横向截面,该横向截面限定有向外的凸起部、向外的凹陷部以及位于凸起部与凹陷部的交点。
[0172] 这种瓣叶能保证凸起部和凹陷部随着穿过瓣叶的压差的变化以预定方式运动,从而避免瓣叶弯曲。
[0173] 使用中,这种瓣叶可以移植到人体或动物主体中,使瓣叶沿着血液流动方向延伸,通过瓣叶的横向截面对齐,以与血液流动方向基本垂直。
[0174] 心脏瓣膜包括多个柔性的瓣叶,其中,各瓣叶均连接到支撑结构。
[0175] 应当理解,与第一个方面相关的一个或多个可选特征可以任意组合地应用到第四个方面。
[0176] 根据本发明的第五个方面,提供了一种移植人造心脏瓣膜的方法,该方法包括:
[0177] 提供一种人造心脏瓣膜,该人造心脏瓣膜包括支撑结构和柔性瓣叶,支撑结构限定了用于血液流动的孔,柔性瓣叶沿着至少部分为直线的第一连接线和第二连接线连接到支撑结构,其中,瓣叶能够在打开状态和关闭状态间相对于支撑结构运动,瓣叶在所述打开状态下允许血液流过孔,瓣叶在关闭状态下限制血液流过孔,并且,其中,所述孔限定了轴线,在垂直于该轴线的平面内,通过瓣叶的横向截面限定有向外的凸起部、向外的凹陷部以及位于凸起部与凹陷部的交点;以及
[0178] 移植心脏瓣膜到主体中,使得孔限定的轴线沿着血液流动的方向延伸。
[0179] 应当理解,与第一个方面相关的一个或多个可选特征可以任意组合地应用到第五个方面。
[0180] 根据本发明的第六个方面,提供了一种人造心脏瓣膜,该人造心脏瓣膜包括第一端和第二端,该第一末端和第二末端构造为用于分别沿着至少部分为直线的连接线连接到支撑结构,其中,瓣叶能够在打开状态和关闭状态间相对于支撑结构运动,瓣叶在所述打开状态下允许血液流过支撑结构的孔,瓣叶在关闭状态下限制血液流过支撑结构的孔,其中,在所述瓣叶的端部之间延伸的平面内,通过瓣叶的横向截面限定了向外的凸起部、向外的凹陷部以及位于凸起部与凹陷部的交点。
[0181] 应当理解,与第一个方面相关的一个或多个可选特征可以任意组合地应用到第六个方面。
[0182] 根据本发明的第七个方面,提供了一种制造人造心脏瓣膜的方法,该方法包括:
[0183] 沿着至少部分为直线的第一连接线和第二连接线将柔性瓣叶连接到支撑结构,其中,瓣叶能够在打开状态和关闭状态间相对于支撑结构运动,瓣叶在所述打开状态下允许血液流过支撑结构的孔,瓣叶在关闭状态下限制血液流过支撑结构的孔,并且,其中,所述孔限定了轴线,在垂直于该轴线的平面内,通过瓣叶的横向截面限定了向外的凸起部、向外的凹陷部以及位于凸起部与凹陷部的交点。
[0184] 所述方法包括在液体中浸渍支撑结构。
[0185] 所述方法包括允许或引导液体固化,从而形成柔性瓣叶。
[0186] 所述方法包括:
[0187] 在将支撑结构浸渍到液体中之前,先将支撑结构安装到样板上;以及[0188] 在液体固化后,将支撑结构和柔性瓣叶从样板上移除。
[0189] 样板包括外表面,在对该外表面上的液体固化时限定柔性瓣叶。
[0190] 外表面通过固化其上的液体,形成第一个至第四个方面所述的心脏瓣膜的瓣叶。
[0191] 样板包括基部和心轴部,基部用于容纳支撑结构的基部,心轴部具有外表面,在该外表面上固化液体,从而限定柔性瓣叶。
[0192] 所述方法包括在液体中浸渍安装有支撑结构的样板,从而覆盖处于第三边与上横向共同适应平面间的样板的外表面,该上横向共同适应平面位于下横向共同适应平面与第四边之间。
[0193] 该方法包括在液体固化后,修剪横穿瓣叶的共同适应表面的瓣叶,从而限定瓣叶的自由边。样板的外表面用于防止液体粘结到外表面上。
[0194] 液体包括熔融的材料。
[0195] 液体包括合成材料。
[0196] 液体包括高分子材料。
[0197] 液体包括聚氨酯。
[0198] 液体包括溶液。
[0199] 液体包括聚氨酯溶液。
[0200] 这种方法能保证一体成型,在干燥之前,通过将支撑结构用连续的液体层包裹,确保瓣叶连接到支撑结构。这样的好处在于,瓣叶不仅局限于用液体材料粘结到支撑结构的一个或几个部分,从而减小瓣叶从支撑结构脱离的风险,例如,在瓣膜移植或手术过程中。
[0201] 所述方法包括将支撑结构与样板互相对齐。
[0202] 所述方法包括在液体中一起浸渍支撑结构与样板。
[0203] 所述方法包括使液体在样板上固化或干燥,液体固化后将样板移除。
[0204] 这种样板可以形成柔性瓣叶,并且特别地,能形成具有自由边的柔性瓣叶,该自由边能够相对于支撑结构运动。
[0205] 所述方法包括提供支撑结构和带有该支撑结构或者相应的对齐特征的样板,使支撑结构与样板相互对齐。例如,所述方法提供具有互补的内接合特征的支撑结构和样板。
[0206] 所述方法包括提供具有用于与支撑结构的每个杆部对齐的特征的样板,提供的支撑结构的各杆部具有对齐特征,该对齐特征对齐和/或安装到样板的不同对齐特征。
[0207] 所述方法包括提供的支撑结构的各杆部具有纵向的孔,例如,狭缝、切口等。
[0208] 所述方法包括提供的支撑结构的各杆部具有纵向的凹处,例如,凹槽等。
[0209] 所述方法包括提供的样板具有纵向突起,该纵向突起用于与支撑结构的各杆部配合,其中,各纵向突起与不同杆部的纵向孔或凹槽对齐或安装。
[0210] 这种方法的支撑结构的杆部上形成的切口与样板的边缘对齐,这样能保证形成在浸渍的支撑结构上的瓣叶延伸环绕杆部并通过其上形成的用于连接的切口。
[0211] 所述方法包括连接支撑结构与样板。
[0212] 这一步能保证在浸渍过程中,保持支撑结构与样板相互对齐。
[0213] 所述方法包括提供的支撑结构和/或带有该支撑结构的样板,或者相应的使支撑结构与样板相互连接的特征。特别地,所述方法包括提供的支撑结构具有穿通孔,该穿通孔用于安装定位销或固件,例如螺纹紧固件,并且提供的样板具有相应的孔,例如螺纹孔,用于安装定位销或紧固件。
[0214] 所述方法包括通过纵向延伸通过样板的通孔注射释放液。
[0215] 所述方法包括防止液体在通孔的第一端固化或干燥。一旦形成瓣叶的液体固化或干燥,通过通孔注射释放液能辅助从样板上释放人造心脏瓣膜超过与通孔的第一端相对的释放孔的第二端。
[0216] 所述方法包括通过通孔注射液态的释放液,例如,、盐溶液等。
[0217] 所述方法包括通过通孔注射气态的释放液,例如,空气等。
[0218] 所述方法包括使用注射器通过通孔注射释放液。
[0219] 这种方法能够形成各个瓣叶,并将各个瓣叶沿着瓣叶的底边缘连接到基部。这种方法形成的瓣叶,其自由边长于底边缘。
[0220] 这种方法形成的各瓣叶中,瓣叶连接到支撑结构的两个杆部之间。
[0221] 这种方法形成的各瓣叶中,各瓣叶沿着其侧边缘连接到支撑结构的杆部。
[0222] 这种方法形成的各瓣叶中,支撑结构的各杆部可以连接有多个瓣叶。
[0223] 样板限定了通孔,该通孔延伸通过样板,并用于容纳封堵件。
[0224] 该方法包括:
[0225] 将样板浸渍到液体中之前,先用封堵件将通孔封堵,以防止液体进入通孔;
[0226] 在液体固化后,将封堵件从通孔上移除;以及
[0227] 注射释放液以辅助固化的液体从样板心轴的外表面分离。
[0228] 应当理解,与第一个方面相关的一个或多个可选特征可以任意组合地应用到第七个方面。
[0229] 根据本发明的第八个方面,提供了一种样板,该样板用于制造人造心脏瓣膜,该样板包括外表面,该外表面具有至少部分为直线的第一边和第二边,其中,在垂直于第一边和第二边的平面内,穿过外表面的横向截面限定了向外的凸起部、向外的凹陷部以及位于凸起部与凹陷部之间的交点。
[0230] 这种样板用于制造根据本发明第一方面至第四方面中任意一种的人造心脏瓣膜,或者用于制造根据第六方面的用于人造心脏瓣膜的瓣叶,或者用于根据第七方面的制造人造心脏瓣膜的方法。
[0231] 外表面用于使浸渍中附在其上的液体固化或干燥。
[0232] 外表面能在浸渍期间抑制液体粘结到外表面上。
[0233] 外表面用不粘的材料覆盖。
[0234] 外表面是光滑的。
[0235] 外表面包括不锈钢材料。
[0236] 样板用于容纳人造心脏瓣膜的支撑结构。
[0237] 样板允许支撑结构与样板对齐。
[0238] 样板允许支撑结构连接到样板上。
[0239] 样板可以包括基部和心轴部,该基部用于容纳支撑结构的基部,心轴部包括外表面,液体在该外表面固化,从而限定柔性瓣叶。
[0240] 外表面包括第三边和第四边,该第三边与样板基部相邻,第四边与第三边相对。
[0241] 通过样板的第三边和第四边间的外表面的多个横向截面限定了向外的凸起部和向外的凹陷部,该凸起部从第一边向交点延伸,凹陷部从第二边向交点延伸。
[0242] 样板包括贯穿的通孔。
[0243] 所述通孔用于容纳封堵件,以防止在浸渍期间液体进入通孔。
[0244] 所述通孔用于接收释放液,以辅助浸渍后固化或干燥的液体从外表面上分离。
[0245] 通孔用于接收液态的释放液,例如水、盐水等。
[0246] 通孔用于接收气态的释放液,例如,空气等。
[0247] 通孔用于接收加压的释放液。
[0248] 通孔用于接收包括释放液的注射器。
[0249] 液体包括熔融材料。
[0250] 液体包括合成材料。
[0251] 液体包括高分子材料。
[0252] 液体包括聚氨酯。
[0253] 液体包括溶液。
[0254] 液体包括聚氨酯溶液。
[0255] 应当理解,与第一个方面相关的一个或多个可选特征可以任意组合地应用到第八个方面。
[0256] 根据本发明的第九个方面,提供了一种用于将人造心脏瓣膜移植到人或动物主体的方法,该方法包括:
[0257] 通过在连接环的环形基部的至少一部分上环绕一定长度的缝合线,将连接环连接到人或动物主体的通道。
[0258] 所述方法包括使用连续长度的缝合线,并重复缠绕到环形基部。这种走线可以简化缝合过程。
[0259] 相比于公知的缝合环具有较大的径向延伸的基部,这种方法使用的连接环具有较小径向延伸的基部,通过在基部穿过缝合线,将连接环连接到人或动物主体的通道。较小径向延伸的基部的使用允许具有较大血流的孔的人造心脏瓣膜使用连接环。
[0260] 连接环的外表面能密封地安装在通道的内表面上。
[0261] 所述方法包括将人造心脏瓣膜密封地保持在连接环上,从而在血液流动路径周围提供密封环,所述血液流动路径通过连接环和心脏瓣膜。
[0262] 根据本发明的第十个方面,提供了一种连接环,该连接环用于将人造心脏瓣膜移植到人或动物主体,该连接环包括环形基部,其中,所述连接环构造为:通过在连接环的环形基部的至少一部分上环绕一定长度的缝合线,将连接环连接到人或动物主体的通道。
[0263] 连接环的外表面密封地安装在通道的内表面上。
[0264] 连接环用于与人造心脏瓣膜配合,从而在血液流动路径的周围形成密封环,所述血液流动路径通过心脏瓣膜和连接环。
[0265] 连接环用于与心脏瓣膜配合,从而连接环的内表面密封地与心脏瓣膜的外表面配合。
[0266] 基部具有0到3mm、0到2mm或者0到1mm的径向扩张。这使具有较大的血流的孔的人造心脏瓣膜上使用连接环。
[0267] 基部包括环形支撑结构,该环形支撑结构用于防止手术中手术缝针的通道穿过环形支撑结构。相对地,公知的缝合环包括环形支撑结构,使手术中手术缝针的通道穿过该支撑结构。
[0268] 所述支撑结构包括金属、不锈钢、钛、聚合物和/或聚醚醚酮(PEEK)。
[0269] 所述连接环包括可弹性变形的覆盖材料,该覆盖材料围绕支撑结构的至少一部分延伸。
[0270] 所述覆盖材料包括涤纶。
[0271] 所述连接环包括用于与人造心脏瓣膜的互补特征配合的装配特征,。
[0272] 所述连接环限定有孔,该孔限定了轴线方向,装配特征允许沿着轴线方向与人造心脏瓣膜的互补特征配合。
[0273] 装配特征可以沿着轴线方向延伸。这能在手术中简化人造心脏瓣膜装配到连接环,例如,通过通道的限制。
[0274] 装配特征具有非圆的对称截面,例如,正方形或矩形截面。这能保证人造心脏瓣膜与连接环相互对齐时的装配。
[0275] 装配特征可以为阴性装配特征。
[0276] 装配特征可以为阳性装配特征。
[0277] 装配特征用于与人造心脏瓣膜的互补特征进行锁定装配。
[0278] 装配特征能够弹性变形地与人造心脏瓣膜的较硬的互补特征进行装配。
[0279] 装配特征可以是坚硬的,以在装配到人造心脏瓣膜的互补特征时,使该互补特征弹性变形。
[0280] 连接环包括用于与人造心脏瓣膜的多个互补特征配合的多个装配特征。
[0281] 根据本发明的第十一个方面,提供一种人造心脏瓣膜,该人造心脏瓣膜与根据第十个方面的连接环保持密封配合,从而在血液流动路径周围形成密封周缘,所述血液流动路径延伸通过心脏瓣膜和连接环。
[0282] 根据本发明的第十二个方面,提供了一种人造心脏瓣膜组件,该人造心脏瓣膜组件包括根据第十个方面的连接环,该连接环与根据第十一个方面的人造心脏瓣膜配合连接。附图说明
[0283] 现在将参照下面的附图以不限于示例的方式对本发明进行描述,其中:
[0284] 图1(a)是天生的主动脉瓣膜在移除部分主动脉瓣膜和一片瓣叶的情况下的剖切立体图;
[0285] 图1(b)是在关闭状态下从图1(a)的天生的主动脉瓣膜的流出侧观察的视图;
[0286] 图1(c)是在关闭状态下图1(a)的天生的主动脉瓣膜的纵向截面图;
[0287] 图1(d)是在打开状态下从图1(a)的天生的主动脉瓣膜的流出侧观察的视图;
[0288] 图1(e)是在打开状态下图1(a)的天生的主动脉瓣膜显示了血流方向的纵向截面图;
[0289] 图2(a)是心包生物心脏瓣膜的立体图;
[0290] 图2(b)是在瓣膜处于关闭状态下从图2(a)的生物心脏瓣膜的流出侧观察的视图;
[0291] 图2(c)是在瓣膜处于打开状态下从图2(a)的生物心脏瓣膜的流出侧观察的视图;
[0292] 图3(a)是具有三片相对坚硬的瓣叶且具有较差的血液动力性能的合成高分子瓣叶瓣膜的立体图;
[0293] 图3(b)是在瓣膜处于关闭状态下从图3(a)的合成高分子瓣叶瓣膜的流出侧观察的视图,其中瓣膜没有完全打开;
[0294] 图3(c)是具有三片相对柔性的瓣叶且具有较差的耐久性的合成高分子瓣叶瓣膜的立体图;
[0295] 图3(d)是在瓣膜处于关闭状态下从图3(c)的合成高分子瓣叶瓣膜的流出侧观察的视图,其中瓣膜具有承受高弯曲应力的能力;
[0296] 图3(e)是图3(c)的合成高分子瓣叶瓣膜的立体图,显示了在疲劳测试中经过反复循环后瓣叶撕裂的典型位置;
[0297] 图4是构造本发明的实施方式的合成高分子瓣叶瓣膜的立体图;
[0298] 图5(a)是图4的合成高分子瓣叶瓣膜的框架的立体图;
[0299] 图5(b)是从流出侧观察的图4的合成高分子瓣叶瓣膜的瓣叶的等高线图;
[0300] 图6是图4的合成高分子瓣叶瓣膜用于心脏的两个不同位置的剖切立体示意图;
[0301] 图7是图4的合成高分子瓣叶瓣膜的瓣叶在不同的操作状态下从流出侧观察的等高线图;
[0302] 图8是图4的瓣膜框架放置于用于浸渍成型(dip-moulding)的模具上的立体图;
[0303] 图9是贯穿图8所示的模具的纵向截面图;
[0304] 图10(a)是图4的瓣膜在瓣膜的框架的基部附近在瓣膜的纵向平面内显示了包围基部的瓣叶的截面图;
[0305] 图10(b)是图4的瓣膜在框架的杆部附近在瓣膜的横向平面内显示了围绕杆部并穿过杆部的切口形成为整体的相邻的瓣叶的截面图;
[0306] 图11是显示瓣膜瓣叶的关闭状态(实线)和打开状态(虚线)的构造本发明的另一个实施方式的双瓣叶瓣膜从流出侧观察的视图;
[0307] 图12的(a)是图4的合成高分子瓣叶瓣膜的第一种可选的框架的立体图;
[0308] 图12的(b)是显示瓣叶延伸穿过基部且围绕基部的在图12的(a)的框架的基部附近在纵向平面内的图12的(a)的框架的截面图;
[0309] 图13的(a)是图4的合成高分子瓣叶瓣膜的第二种可选的框架的立体图;
[0310] 图13的(b)是显示瓣叶延伸穿过基部且围绕基部的在图13的(a)的框架的基部附近在纵向平面内的图13的(a)的框架的截面图;
[0311] 图14的(a)是构造本发明的再一个实施方式的合成高分子瓣叶瓣膜的立体图;
[0312] 图14的(b)是图14的(a)的合成高分子瓣叶瓣膜的瓣叶在不同的操作状态下从流出侧观察的等高线图;
[0313] 图15的(a)是显示人造心脏瓣膜的框架与连接环的示意性的立体装配图;
[0314] 图15的(b)是图15的(a)的连接环的平面示意图;
[0315] 图15的(c)是贯穿图15的(a)的连接环的基部的截面示意图;以及
[0316] 图15的(d)是在连接环的阴连接结构的附近的图15的(a)的贯穿连接环的基部的截面示意图。

具体实施方式

[0317] 首先参照图1(a)至图1(e),天生的主动脉瓣膜2包括三个袋状的陷凹(pouches)或者瓣叶4,该陷凹或者瓣叶4是沿周向连接于主动脉6的基座或环面的薄柔性组织。瓣叶4沿着弯曲边缘9连接于主动脉6的内壁8。每个瓣叶4具有自由边10,该自由边10相对于主动脉6在大致为横向的平面内延伸,并在被称为接合处(commissures)的区域11内连接于主动脉的内壁8。如图1(b)和图1(c)所示,当瓣膜2在关闭状态下时,瓣叶4彼此并置。如图1(b)所示,当瓣膜2在关闭状态下时,从流入侧观察所述自由边10大体呈凸起状。瓣叶4被动地运动到如图1(d)和图1(e)所示的打开状态,以与瓣膜2的两侧的压差相对应,从而允许血液在心脏的左心室(未画出)收缩期间(排空阶段)从心脏的左心室单向通过,并且关闭以防止在左心室舒张期间(填充阶段)血液逆流回左心室。
[0318] 图2(a)显示生物瓣膜12的立体图,同时图2(b)和图2(c)分别显示同一生物瓣膜12的关闭状态和打开状态。生物瓣膜12包括一片心包膜(包围心脏的纤维囊),该心包膜来自比如小腿肚的供体,心包瓣叶14安装在框架内或支架16内(或围绕框架或支架16),该框架或支架16包括环形缝合环基部18和从该环形缝合环基部18延伸的三个突起20。
[0319] 图3(a)所示为合成高分子瓣膜22,该瓣膜22包括三个相对坚硬的合成高分子瓣叶24,该瓣叶24连接于框架26。所述框架26包括环形缝合环基部28和从该基部28延伸的三个突起30,其中所述基部28限定有入口孔29(图3(b)所示)。所述突起30位于通过基部28延伸的大致为圆柱形的表面上。然而,瓣叶24沿相应的曲线32连接于框架26,曲线32位于与突起30相同的大致为圆柱形的表面上。但是,这种合成高分子瓣膜22会受到较差的血液动力功能,如图3(b)所示,合成高分子瓣膜22在打开状态下,其中所述瓣膜仍然呈现出对于血液流动不被接受的较高限制。如果形成瓣叶24的聚合物是坚硬且不能迅速扩张的(高弹性模量),或者用作制造较厚的瓣叶,或者具有内部加强作用(比如预制成纤维网,或者嵌入碳纳米管)的一些形式,瓣叶24在响应穿过它们的压差时不能迅速运动。这样导致临床上不被接受的阻碍血液向前流动,并且瓣叶缓慢的关闭导致过多的逆流(“较差的血液动力功能”)。因此,由打开的瓣叶24的自由边34形成的排出孔33不能达到与入口孔29相同的大小。这样,在某种程度上,围绕框架26的入口孔29测量的相邻的接合部35之间的距离(πd/3,其中d为入口孔29的直径)的事实结果是大于一片瓣叶的自由边34的长度(d),并且在某种程度上,因为自由边34的与接合部35相邻的接合区域由于瓣叶24的固有刚度而不能打开到理论上完全打开的位置。排出孔区域的限制随着瓣叶刚度的增强而增加。这种不能完全打开的坚硬的聚合物瓣叶22导致较差的血液动力功能,并且也会在接合区域内的未完全打开的瓣叶24下方造成血流限制的区域,这会引起局部血液凝结。
[0320] 图3(c)所示为合成高分子瓣膜42,该瓣膜42包括三片相对柔性的合成高分子瓣叶44,该瓣叶44连接于框架46。框架46包括环形缝合环基部48和从该基部48延伸的三个突起50,其中所述基部48限定有入口孔49(图3(d)所示)。所述突起50位于延伸穿过基部48的大致为圆柱形的表面上。瓣叶44沿相应的曲线52连接于框架46,曲线52位于与突起50相同的大致为圆柱形的表面上。这种合成高分子瓣膜42在图3(d)所示的打开状态下可以减小限制,但这是以与图3(a)的合成高分子瓣膜22相比耐久性减小为代价。如果形成瓣叶44的聚合物能迅速扩张(低弹性模量),或者所述瓣叶44非常薄,所述瓣叶44将在压差穿过时相对应地迅速运动(“较好的血液动力功能”)。尽管这种瓣叶44在血液向前流动中提供的阻力很小并能迅速关闭使通过瓣膜42的逆流最小,但是限制了其耐久性。
瓣膜42在瓣叶44上不能承受持续的打开和关闭压力,甚至会造成如图3(e)所示的撕裂。
[0321] 图3(c)到图3(e)中的瓣膜42的设计特点也会导致耐久性较差。瓣叶44的完全打开要求在接合部55的区域瓣叶44剧烈地弯曲(小曲率半径),这会导致局部应力会非常高,尤其在瓣叶44的接合区域,并且可能导致在如图3(e)所示的瓣叶44的接合区域形成裂缝58。此外,在打开聚合物瓣叶44期间,由于在瓣叶44的关闭状态下各自由边60的长度比框架46的突起50之间的距离长,自由边60从突起50之间穿过时自由边60可能弯曲或剧烈而随意地弯曲,并且该弯曲传播至每个瓣叶44的中部,引起较高的局部弯曲应力,该局部弯曲应力可能最终导致在瓣叶44的中部形成裂缝62。
[0322] 图4所示为一般标注为102的合成高分子瓣膜的第一种实施方式,该瓣膜意在克服或减轻前面提到的现有技术的合成高分子瓣膜的一些问题。所述合成高分子瓣叶102包括三片相对柔性的聚氨酯瓣叶104,该瓣叶104连接于相对坚硬的不锈钢框架106。相比于框架106瓣叶104是柔性的,但是框架106由比用于现有技术的合成高分子心脏瓣膜22、42中使用的聚氨酯瓣叶104的聚氨酯材料更坚硬的、更耐久的聚氨酯材料形成。
[0323] 如图5(a)所示,框架106包括近似为环形的基部108,该基部108限定有孔109和由沿大致为纵向方向从基部108延伸的三个杆部110。每个瓣叶104沿着对应的连接基线112连接到框架106的基部108。每个瓣叶104沿着各自的连接线114连接在框架106的两个相邻的杆部110之间。连接线114大致为直线并且垂直于基部在纵向方向延伸。每个瓣叶104具有自由边115,该自由边115相对于连接基线112在框架106的两个相邻的杆部110之间延伸。每个瓣叶的自由边115相对于框架106自由运动,以与瓣叶104的任意一侧的压差相对应。
[0324] 图5(b)所示为在天生或形成状态下的瓣叶104的等高线图,其中,等高线号1-11代表由框架106的基部108的在距离上增加的等高度,从而等高线号1代表瓣叶104的连接基线112,等高线号11代表竖直的共同适应(co-aptation)区域117的下边界116,该共同适应区域117从瓣叶的自由边115向共同适应区域117的下边界116延伸。由图5(b),因此,显而易见地,穿过每个瓣叶的横向截面包括交点、向外的凸起部119和向外的凹陷部120,交点形成为拐点118,凸起部119从第一个杆部110向拐点118延伸,凹陷部120从第二个杆部110向拐点118延伸,从而当从流出侧方向观察时每个截面都呈“S形”。相应地,穿过每个瓣叶104的每个横向截面比瓣叶104的连接基线112长。另外,每个瓣叶104的自由边115比相应的连接基线112长。每个瓣叶104在三个维度上都采用弯曲状,该弯曲状包括外表面,该外表面在每个拐点118的一侧具有三维的凸起部121以及在每个拐点118的另一侧具有三维的凹陷部122。另外,由于每个瓣叶104的连接线114在框架106的每个杆部110的附近是直线,图5(b)所示的等高线号1-11在框架106的每个杆部110附近相交。处于连接基线112和共同适应区域117的下边界116之间的瓣叶104的每个横截面的拐点118沿着直线124设置,所述直线124从连接线114的交点126向拐点118延伸,其中交点126与具有连接基线112的瓣叶104的凹陷部122相邻,拐点118位于共同适应区域
117的下边界116的中点处。
[0325] 下面将进行更具体的描述,在制造过程中使用模具或样板来限定每个瓣叶104的形状。图9所示为显示穿过样板的纵向截面图,所述样板为显示为在制造过程中瓣叶104适应样板的表面轮廓。相应地,具有瓣叶104的编号1-11的每个等高线由在图9中的样板的表面上指示具有号码1到11的相应的等高线限定。
[0326] 使用中,框架106的基部108装配到环形缝合环(未示出)内,通过手术固定缝合穿过环形缝合环,以将人造心脏瓣膜102缝合固定到需要替换的天生的心脏瓣膜的连接区域(环面)内。如图6所示(其中“LA”表示左心房,“LV”表示左心室,“Ao”表示主动脉),人造瓣膜102以这样的方式定位:允许适当的血液单向流过心脏130,因此能够用于代替主动脉瓣膜(心室动脉瓣膜(ventriculo-arterial valve))和/或二尖瓣膜(心房室瓣(atrio-ventricular valve))。
[0327] 当瓣膜102如图7中虚线所示的标注为“C”的处于关闭状态时,柔性瓣叶104的自由边115和瓣叶104的共同适应区域117的内表面相互接合,以减少或阻止血流通过瓣膜102。当从流入侧施加到柔性瓣叶104上的压力完全超过从流出侧施加的压力时(如在血液排出的开始阶段发生),瓣叶104向外运动,使得自由边115采用如图7中的“O”标注的打开状态,从而形成流出孔132,该流出孔132的最大尺寸可以通过S型的设计而变化,所述S型的设计决定了瓣叶的自由边115的长度。图7中,等高线号3、5、7和9代表在打开状态“O”时瓣叶104的等高度。下面将进行详细的描述,瓣叶104的自由边115形成为标注为“F”的状态,该结构处于标注为“C”的闭合状态与标注为“O”的打开状态的中间状态。
[0328] 相比于传统的合成高分子心脏瓣膜,瓣膜102的设计允许使用更耐久的较硬的、与瓣叶104生物相容的材料,以在“O”型的打开状态下提供减小的血流限制,同时也减轻造成瓣叶104的撕裂的可能性。提高的对损伤的免疫力不仅增加了瓣叶104的坚硬度,也有利于穿过每个瓣叶104的限定在横向截面上的拐点。更确切地说,每个瓣叶104的坚硬度和布置意味着,尽管每个瓣叶104在拐点118处的曲率和/或每个瓣叶104在拐点118的任意一侧的曲率可能根据通过瓣叶104的压差变化而变化,但是瓣叶104的基本的三维凸起部121和凹陷部122基本能承受通过瓣叶104的不同压差。这种运动的结果是,瓣叶104的应力分散到瓣叶104的宽度方向上,为了达到给定的流出孔尺寸,瓣叶104在框架106附近的接合区域并没有像传统合成高分子瓣膜的瓣叶的接合区域(如图3(c)到(e)所示的瓣叶44)一样弯曲。
[0329] 每个瓣叶104的坚硬度和布置也意味着,每个瓣叶104对于穿过瓣叶104的给定的压差具有预定的形状。每个瓣叶104对于穿过瓣叶104压差的给定的预定形状选择为防止各瓣叶104任意地弯曲或褶皱,从而避免各瓣叶104过大的弯曲应力。特别地,每个瓣叶104形成为在打开状态和关闭状态之间的运动过程中具有预定的形状。
[0330] 参照图7,由于各瓣叶104在两个相邻的杆部110之间从其关闭状态“C”向其相应的打开状态“O”运动,瓣叶104的基本的三维凸起部121和凹陷部122围绕各自的连接线114摆动或者转动。瓣叶104的自由边115的凸起部119和凹陷部120的曲率不断增大(accentuated),直到拐点118沿着自由边115穿过在相邻的杆部110之间延伸的直线为止。一旦拐点118沿着自由边115穿过在相邻的杆部110之间延伸的直线,自由边的凸起部119的曲率减小,同时自由边的凹陷部120的曲率增加,并且以牺牲瓣叶104的基本的三维凹陷部122为代价,瓣叶104的基本的三维凸起部121显著增大,直到各瓣叶104运动到达到其相应的打开状态“O”。可以通过由等高线1-11限定的瓣叶104的各横向截面观察到相应的变化。曲率的变化也是通过拐点118沿着瓣叶104的横向截面的运动来实现的,以适应瓣叶104的凸起部121和凹陷部122的曲率变化。这样的结果是,当从瓣膜122的流出侧观察时,各瓣叶104以可预见的方式持续运动,使得以牺牲瓣叶104的外表面的凹陷部122为代价,各瓣叶104的外表面的凸起部121显著增大。这种运动的结果是,可以避免各瓣膜104的弯曲或皱起以及相关的弯曲应力。这允许瓣膜102构造为使得各瓣叶104内的弯曲应力形成为:各瓣叶104的这种运动的结果是不会超过临界弯曲应力,以避免比如各瓣叶104的撕裂的损害。
[0331] 三瓣叶心脏瓣膜102的瓣叶104构造为限定了当从瓣膜102的流出侧观察时沿逆时针方向的螺旋血流的横向截面。各瓣叶104的横向截面限定了当从瓣膜102的流出侧观察时围绕由孔109限定的轴线沿基本为逆时针方向的向外的凸起部119和随后的向外的凹陷部120。在使用中,当移植到人体或受试动物的心脏时,相比于使用已知的人造心脏瓣膜时的心脏效果,这样的螺旋血流可以提高心脏的运行效果。
[0332] 合成心脏瓣膜102的设计意味着在很大程度上脱离了经历了数百万年的自然进化并能终生的健康工作的天生心脏瓣膜的设计,但这都依赖于其复杂的瓣叶结构的物理和生物特性,该复杂的瓣叶结构由胶原蛋白、弹性蛋白和糖蛋白基质以及能够自我修复和替换的活性天然组织组成。此外,合成心脏瓣叶102的设计原则与常规的人造心脏瓣膜设计中采用的设计原则相反,后者决定这种常规的人造心脏瓣膜设计应当模拟天生的心脏瓣膜设计。特别地,与模拟天生的心脏瓣膜的设计的常规的人造心脏瓣膜设计明显的不同点至少在于连接直线114,各瓣叶104沿着该连接直线114与框架106的杆部110连接。另外,各瓣叶104的各横向截面限定了向外的凸起部119、向外的凹陷部120以及位于所述凸起部119与所述凹陷部120之间的拐点118。合成心脏瓣叶102的另一个区别特征是,各瓣叶104的横向截面和各瓣叶104的自由边均比各瓣叶104的连接基线112长。
[0333] 图8所示为使用浸渍成型的心脏瓣膜102的制造工艺,其中框架106放置在样板140合适的位置上,浸渍在聚氨酯溶液中并且允许在烤箱中干燥。样板140的结构决定瓣膜瓣叶104的形成结构。瓣叶104的自由边115的形成结构在图7中标注为“F”。在瓣叶
104没有任何压差的情况下,瓣叶104趋向于返回到瓣膜瓣叶104的形成结构,尤其是,瓣叶
104的自由边115趋向于返回到标注为“F”的状态。这是由于形成瓣叶的材料的属性导致的结果,特别地是瓣叶104在瓣叶104脱离其形成或默认结构后瓣叶104的材料的应力导致的结果。此外,瓣叶104的默认结构有意地设计为使得瓣叶104的自由边115使他们不能从默认结构“F”运动到关闭结构“C”而不会分开太远,以防止血流在相对应于合适的压差的情况下通过瓣膜102回流。此外,默认结构有意地设计为使瓣叶104的自由边115从其默认结构“F”可以迅速运动到打开结构“O”,以使血流在相对应于合适的压差的情况下向前流过瓣叶102的阻碍最小。
[0334] 图9所示为样板140中首先在样板140上安装框架106。所述样板140由不锈钢形成并且包括用于连接到支撑部件(未示出)的螺纹连接部142和主体部144,该主体部144具有高度光滑的表面146,在烘干聚氨酯溶液后,高度光滑的表面146能促进从样板140释放人造心脏瓣膜102。位于中心的通孔148沿纵向延伸通过样板140。该通孔148构造为用于容纳封堵销150,该封堵销150具有柄部152和头部154。所述封堵销150的柄部152用于封堵通孔148,以防止在浸渍成型的过程中聚氨酯溶液进入到通孔148中。所述封堵销150的头部154用于围绕通孔148的开口155保持极大地隔绝了聚氨酯溶液的区域,其中所述开口155形成在样板140的连接部142中。样板140包括定位孔156,该定位孔156形成为用于使用定位销(未示出)与样板140对齐并且将框架106连接到样板140上,以防止样板140与框架106在浸渍成型过程中发生相对运动。这保证样板的各侧边158对齐相邻的与框架106相应的杆部110。
[0335] 浸渍成型完成后,将封堵销154和定位销156从样板140上移除。随后,通过注射比如水或盐溶液的释放液体到通孔的开口155内,可以辅助人造心脏瓣膜102从样板140上释放,从而引起瓣叶104从样板140的主体部144的高度抛光的表面146上平面分离。应当理解的是,样板浸渍到聚氨酯溶液中,以使聚氨酯溶液凝结到水平面上,该水平面为样板140的等高线11限定的共同适应区域117的下边界116。随后,瓣叶104可以整齐地排列在等高线11上方的水平面,从而形成自由边115并限定从共同适应区域117的下边界116到自由边115的共同适应区域117的高度。
[0336] 浸渍成型过程允许聚合物围绕框架106并通过切口160,以完全地包裹框架106并保证瓣叶104的整体成型,以及确保瓣叶104连接到框架106,其中,如图10(a)所示,所述框架106包括基部108,如图10(b),所述切口160在框架106的杆部110内。这个制造过程通过连续的聚氨酯片来包裹框架106可以保证整体成型,并确保瓣叶104连接到框架106。这样具有的优点在于,瓣叶连接不局限于聚氨酯与框架的一个或多个部分粘合,从而减少了瓣叶104从框架106上脱离下来的风险。此外,切口160是成角度的,以保证瓣叶104以预定的结构进入和/或退出切口160。特别地,这种角度可以保证瓣叶104的横向截面在杆部110附近的曲率与瓣叶104的横向截面的凸起部119和凹陷部120的曲率是连续的。
[0337] 图11所示为整体标注为202的合成高分子心脏瓣膜的第二种实施方式,该心脏瓣膜202包括两个柔性的瓣叶204,该瓣叶204沿着两条近似为直线的连接线连接到框架206,所述连接线由从基部208延伸的各自的杆部210限定,所述基部208限定用于血流的孔。各瓣叶204沿着连接基线212连接到框架206的基部208。各瓣叶204沿血流方向朝向自由边215延伸,所述自由边215能够从图11所示的关闭状态“C”移动到图11中虚线所示的打开状态“O”。双瓣叶心脏瓣膜202的瓣叶204构造为限定了横向截面,当从瓣膜
202的流出侧观察时,该横向截面形成了沿顺时针方向的螺旋血流。通过各瓣叶204的横向截面限定了向外的凹陷部和随后的向外的凸起部,当从瓣膜的流出侧观察时,该凹陷部围绕由基部208限定的轴线在基本为逆时针的方向。另一方面,双瓣叶心脏瓣膜202使用与上述三瓣叶合成高分子心脏瓣膜102相同的设计原则设计以及以相似的方法操作。
[0338] 在不脱离本发明的范围的情况下,本领域技术人员应能理解可以对前述的实施方式进行不同的修改。例如,图12(a)所示为用于图4中的合成高分子心脏瓣膜的第一种可选的框架306的示意图,该框架306包括基部308和多个通孔370,该多个通孔370延伸穿过基部308。图12(b)是图12(a)中的框架在基部308附近的纵向平面的截面图,其中显示为瓣叶304延伸通过通孔170并围绕基部308。各通孔370相对于水平面呈约30°向上的角度,以保证瓣叶304在基部308附近的曲率与瓣叶304在凸起部321和凹陷部322的曲率是连续的。
[0339] 图13(a)所示为用于图4中的合成高分子心脏瓣叶的第二种可选的框架406的立体图,该框架406包括基部408和多个切口480,各切口480延伸通过基部408。图13(b)为图13(a)中的框架在基部408附近在纵向平面的截面图,其中显示为瓣叶404延伸通过切口480并围绕基部408。各切口480相对于水平面呈约30°向上的角度,以保证瓣叶404在基部408附近的曲率与瓣叶404在凸起部421和凹陷部422的曲率是连续的。
[0340] 在用于图4中的合成高分子心脏瓣叶的另一种可选的框架(未示出)中,作为用于沿着近似为直线的连接线将瓣叶连接到框架的杆部的切口的替代方式,每个杆部可以限定多个通孔,该通孔与用于沿着近似为直线的连接线连接到瓣叶的杆部对齐。
[0341] 比起刚性或半刚性的,框架106为柔性的。例如,框架106可以是可膨胀的,以允许瓣膜102、202在例如儿童的增长的主体中自然增长,或由于气胀或其他方法强制膨胀而扩张,不至于使瓣膜瓣叶104、204失效或泄露。由于杆部110、210会随着瓣膜102、202的增大而运动分开,但是通过瓣叶的曲率的变化能使瓣叶104、204在共同适应区域117、217的位置保持并置。
[0342] 应当理解的是,在一些实施方式中,一个或多个瓣叶可以构造为限定造成从瓣膜的流出侧观察时形成沿逆时针方向的螺旋血流的横向截面。通过各瓣叶的横向截面限定了当从瓣膜的流出侧观察时围绕由基部限定的轴线沿基本为逆时针方向向外的凸起部和随后的向外的凹陷部。例如,图4、图5(b)、图7和图8中所示的三瓣叶心脏瓣膜102的瓣叶104构造为使得瓣叶104限定有当从瓣膜102的流出侧观察时形成沿逆时针方向的螺旋血流的横向截面。
[0343] 在另一种实施方式中,一个或多个瓣叶可以构造为限定有当从瓣膜的流出侧观察时形成沿顺时针方向的螺旋血流的横向截面。通过各瓣叶的横向截面限定了当从瓣膜的流出侧观察时围绕由基部限定的轴线沿基本的逆时针方向向外的凹陷部和随后的向外的凸起部。例如,图11中的双瓣叶心脏瓣膜202构造为使得瓣叶204限定了当从瓣膜202的流出侧观察时形成沿顺时针方向的螺旋血流的横向截面。类似地,图14(a)和图14(b)中所示的三瓣叶心脏瓣膜302构造为使得瓣叶304限定了当从瓣膜302流出侧观察时形成沿顺时针方向的螺旋血流的横向截面。
[0344] 参照图15(a),其显示人造心脏瓣膜的框架406与整体标注为500的连接环的立体示意图。参照图15(a)和图15(b),连接环500包括环形的基部502,该基部502限定了形成为三个插件504的形式的三个阴性接合特征,所述插件504围绕基部502沿周向分布。如图15(c)清楚显示的贯穿基部502的截面图,基部502包括环形支撑结构506,该支撑结构506被可弹性变形的覆盖材料覆盖,该覆盖材料为涤纶层508的形式。使用中,使用连续缝合线(running suture)510通过围绕基部502重复缠绕缝合线的连续长度将基部502缝合到人体或动物主体的心脏中的通道(未示出)上。然后,涤纶层508压紧通道(未示出)的内表面,以在基部502的外表面提供密封。缝合线510穿入涤纶层508,以避免对基部502的外表面与通道(未示出)的内表面之间的密封产生干涉,并避免对基部502的内表面与框架406的环形基部408的外表面之间形成的随后的密封的干涉。这种缝合方法可以允许使用具有环形基部502的连接环500,该环形基部502的径向膨胀量基本上小于已知的缝合环的径向膨胀量。这样就允许使用具有较大的血流孔的人造心脏瓣膜。
[0345] 如图15(d)所示,各插件504包括凹槽512和弹性变形件514,该弹性变形件514向下延伸并通过凹槽512。所述凹槽512具有基本为矩形的横截面。人造心脏瓣膜的框架406包括形成为三个卡销516的形式的三个刚性的阳性装配特征,各卡销516具有相应的腿部518和脚部520。各个卡销516基本为矩形横截面,以构造为容纳在相应的凹槽512内。
在安装过程中,各个卡销516对准并被推入相应的凹槽512内,使得卡销的脚部520首先接合,然后使相应的变形件514变形。当脚部520完全被推入凹槽512时,脚部520接触到凹槽512的封闭端522,从而允许变形件514的下端524回弹到其自然状态,并且在接合在凹槽512中的情况下锁定相应的卡销516。这种推动装配装置可以简化了将人造心脏瓣膜的框架406连接到在人体或动物主体心脏中的通道(未示出)的过程。
相关专利内容
标题 发布/更新时间 阅读量
心脏瓣膜 2020-05-11 513
心脏瓣膜假体 2020-05-13 14
人工心脏瓣膜 2020-05-14 951
带有具有近腔定位组织膜的框体的可经皮递送的心脏或血管瓣膜 2020-05-12 619
人造心脏瓣膜泵 2020-05-14 4
心脏瓣膜 2020-05-11 32
人工心脏瓣膜 2020-05-14 599
心脏瓣膜 2020-05-11 502
心脏瓣膜 2020-05-11 848
心脏瓣膜 2020-05-12 957
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈