首页 / 专利库 / 医疗设备 / 外科手术机器人 / 具有机器人尖端的电外科手术装置

具有机器人尖端的电外科手术装置

阅读:919发布:2020-05-22

专利汇可以提供具有机器人尖端的电外科手术装置专利检索,专利查询,专利分析的服务。并且提供了一种包括 机器人 尖端的电外科装置。所述电外科装置包括多个 致动器 和铰接构件。所述机器人尖端包括可伸缩 电极 。所述致动器通过多个牵拉机构联接到所述铰接构件,使得一个或多个致动器旋转以选择性地牵拉多个牵拉机构中的一个或多个,以枢转和 旋转机 器人尖端和/或伸出和缩回电极。电极联接到气体源和 能量 源,这样,电极可产生用于外科手术的 等离子体 。,下面是具有机器人尖端的电外科手术装置专利的具体信息内容。

1.一种电外科手术装置,包含:
包括至少一个致动器的组件;
包括近端、远端和中空内部的轴,所述轴的近端联接至组件;
尖端,其包括电极壳体和将电极壳体联接到轴的远端的铰接机构,所述电极壳体包括近端和远端,电极穿过电极壳体的远端布置;和
多个牵拉机构,每个牵拉机构穿过轴的中空内部布置并且包括近端和远端,每个牵拉机构的近端与至少一个致动器的相应一个联连,每个牵拉机构的远端联接到电极壳体的近端,
其中,所述至少一个致动器配置为旋转以沿近端方向选择性地牵拉一个或多个牵拉机构,以借助所述铰接机构使所述尖端相对于所述轴枢转。
2.根据权利要求1所述的电外科手术装置,其中,所述铰接机构包括第一铰接构件和第二铰接构件,所述第一铰接构件和所述第二铰接构件彼此铰接,从而响应于选择性地牵拉一个或多个所述牵拉机构,所述尖端在第一二维平面相对于所述轴枢转。
3.根据权利要求2所述的电外科手术装置,其中,所述铰接机构包括第三铰接构件,所述第三铰接构件铰接地联接至所述第二铰接构件,使得响应于选择性地牵拉一个或多个所述牵拉机构,所述尖端在第二二维平面相对于所述轴枢转。
4.根据权利要求1所述的电外科手术装置,其中,所述铰接机构配置成使得所述尖端能够借助所述铰接机构在三个维度上相对于所述轴枢转。
5.根据权利要求3所述的电外科手术装置,其中,所述至少一个致动器包括第一致动器和第二致动器,并且所述多个牵拉机构包括第一、第二、第三和第四牵拉机构,所述第一和第二牵拉机构的近端联接至第一致动器,使得当第一致动器旋转时,第一或第二牵拉机构中的一个沿近侧方向被牵拉,并且来自第一或第二牵拉机构中的另一个的张被释放,从而使得第一或第二牵拉机构中的另一个沿远侧方向行进,第三和第四牵拉机构的近端联接到第二致动器,使得当第二致动器旋转时,第三或第四牵拉机构中的一个沿近端方向被牵拉,并且来自第三或第四牵拉机构中的另一个的张力被释放,从而使得第三或第四牵拉机构中的另一个能够沿远侧方向行进。
6.根据权利要求1所述的电外科手术装置,其中,当在所述多个牵拉机构的每一个中保持相等的张力时,所述尖端相与所述轴共线。
7.根据权利要求1所述的电外科手术装置,其中,每个牵拉机构包括第一线、第二线和刚性线性构件,所述第一线联接至所述电极壳体的近端,所述刚性线性构件将所述第一线联接至第二线,所述第二线联接到至少一个致动器。
8.根据权利要求1所述的电外科手术装置,还包含:包括近端和远端的管,所述管穿过所述轴的中空内部布置,所述管的远端联接到电极壳体的近端,并且所述管的近端配置成接收待提供给电极壳体的气体。
9.根据权利要求8所述的电外科手术装置,其中,所述铰接机构包括至少一个孔,所述管的远端穿过所述至少一个孔布置并且联接至所述电极壳体的近端。
10.根据权利要求8所述的电外科手术装置,还包括导线,所述导线包括近端和远端,所述导线的近端联接到所述电极以向其提供电外科手术能量
11.根据权利要求10所述的电外科手术装置,其中,所述导线可在所述轴内滑动,并且所述电外科装置还包括至少一个第二致动器,所述至少一个第二致动器联接至所述导线,并配置为旋转以控制所述电极相对于电极壳体的远端的伸出和缩回。
12.根据权利要求11所述的电外科手术装置,其中,当所述电极伸出超过所述电极壳体的远端或者所述电极缩回在所述电极壳体内时,所述电极经由所述导线通电,并且气体提供给所述电极壳体以形成等离子体
13.根据权利要求11所述的电外科手术装置,其中,所述电极伸出超过所述电极壳体的远端,以进行机械切割。
14.根据权利要求11所述的电外科手术装置,其中,所述电极伸出超过所述电极壳体的远端,并且所述电极经由所述导线通电,以进行电外科手术切割。
15.根据权利要求11所述的电外科手术装置,还包括滑动构件,所述滑动构件可滑动地安装在所述组件内,所述滑动构件联接至所述导线的远端和所述第二致动器,其中,响应于所述第二致动器沿第一方向的旋转,所述滑动构件配置成沿近侧方向牵拉导线以相对于电极壳体的远端缩回电极。
16.根据权利要求15所述的电外科手术装置,还包括布置在所述电极壳体中的弹簧,所述弹簧配置成在远侧方向将所述电极偏置超过所述电极壳体的远端。
17.根据权利要求15所述的电外科手术装置,其中,响应于所述第二致动器沿第二方向的旋转,所述滑动构件配置为沿远侧方向伸出所述导线以相对于所述电极壳体的远端伸出所述电极。
18.根据权利要求15所述的电外科手术装置,其中,所述滑动构件联接至气体源并联接至所述管,并且所述滑动构件配置成将来自所述气体源的气体提供至所述管。
19.根据权利要求15所述的电外科手术装置,其中,所述滑动构件联接至能量源,并且所述滑动构件配置成向所述导线提供电外科手术能量。
20.根据权利要求1所述的电外科手术装置,还包括第二致动器,所述第二致动器联接至所述轴,使得所述第二致动器的旋转使所述轴相对于所述组件旋转,其中,当所述轴旋转时,所述尖端旋转。
21.根据权利要求1所述的电外科手术装置,其中,所述电极配置为导电刀片或导电针中的一个。
22.根据权利要求1所述的电外科手术装置,其中,所述至少一个致动器配置为联接至用于旋转所述至少一个致动器的至少一个电动机,所述至少一个电动机配置为通过至少一个处理器和至少一个输入接收设备进行控制。
23.根据权利要求5所述的电外科手术装置,还包括第三致动器,所述第三致动器联接至所述轴,使得所述第三致动器的旋转使所述轴相对于所述组件旋转,其中,当所述轴旋转时,所述尖端旋转。
24.根据权利要求23所述的电外科手术装置,其进一步包括第四致动器和线,所述线穿过所述轴布置并且将所述第四致动器联接到所述电极,所述第四致动器配置为旋转以控制所述电极相对于所述电极壳体的远端的伸出和缩回。
25.根据权利要求24所述的电外科手术装置,其中,每个致动器联接至相应的电动机,每个电动机可通过至少一个处理器和至少一个输入接收设备来控制,以选择性地旋转一个或多个致动器以围绕所述轴枢转所述尖端,相对于所述组件旋转所述尖端和轴,和/或相对于电极壳体的远端伸出或缩回电极。

说明书全文

具有机器人尖端的电外科手术装置

[0001] 优先权
[0002] 本申请要求于2017年5月30日提交的标题为“ELECTROSURGICAL APPARATUS WITH ROBOTIC TIP”的美国临时专利申请No.62/512,538的优先权,其全部内容通过引用并入本文。

技术领域

[0003] 本公开总体上涉及电外科手术和电外科手术的系统和装置,并且更具体地涉及用于冷等离子体应用、电外科手术切割和机械切割的具有机器人尖端和可伸缩电极的电外科手术装置。

背景技术

[0004] 高频电能已广泛用于手术中,并且通常称为电外科手术能量。使用电外科手术能量切割组织并使体液凝结
[0005] 电外科手术器械通常包括“单极”设备或“双极”设备。单极设备包括电外科手术器械上的有源电极,以及连接到患者的返回电极。在单极电外科手术中,电外科手术能量流经仪器上的有源电极,穿过患者的身体到达返回电极。这种单极设备在需要切割和凝结组织并且杂散电流不会对患者构成重大险的外科手术中有效。
[0006] 双极设备包括在外科手术器械上的有源电极和返回电极。在双极电外科手术设备中,电外科手术能量流过有源电极到达患者的组织的距离很短,穿过组织到达返回电极。电外科手术效果基本上局限于位于手术器械上两个电极之间的一小部分组织。已经发现双极电外科手术设备可用于外科手术中,其中杂散电流可能对患者造成危害,或者其他程序上的问题需要有源电极和返回电极紧密靠近。涉及双极电外科手术的外科手术操作通常需要的方法和程序与涉及单极电外科手术的方法和程序大不相同。
[0007] 气体等离子体是能够传导电能的电离气体。等离子体用于外科手术设备中以将电外科手术能量传导给患者。等离子体通过提供相对较低的电阻路径来传导能量。电外科手术能量将穿过等离子体,以切割、凝结、干燥或电灼患者的血液或组织。电极和被治疗的组织之间不需要物理接触
[0008] 不包含调节气体源的电外科手术系统可以使有源电极和患者之间的环境空气电离。由此产生的等离子体将电外科手术能量传导给患者,尽管与具有可电离气体调节流的系统相比,等离子体电弧通常看起来在空间上更分散。
[0009] 已发现大气压放电冷等离子体施加器可用于多种应用中,包括表面灭菌、止血消融肿瘤。通常,使用简单的手术刀切除有问题的组织,然后使用冷等离子体施加器进行烧灼、灭菌和止血。已经开发了用于开放和内窥镜手术的冷等离子体束施加器。在后一种情况下,通常希望能够将冷等离子体束尖端的位置重定向到特定的手术部位。内窥镜工具的外部切口和路径可以选择为避开主要血管和非目标器官,并且可能与目标内部组织部位的最佳对准不一致。在这些情况下,重定向冷等离子体束的装置至关重要。
[0010] 已经开发出精细的机构以根据需要由外科医生改变等离子体束的方向。但是,这些机构机械复杂、生产昂贵并且在某些情况下难以有效地操作。外科手术工具必须通过其而插入的内窥镜套管针的小直径对这些问题施加了甚至更严格的限制。发明内容
[0011] 本发明涉及一种用于冷等离子体应用、电外科手术切割和机械切割的具有可伸缩电极(例如刀片、针、锋利电极等)的电外科手术装置。
[0012] 一方面,本公开的电外科手术设备包括用于以各种方式枢转和旋转可伸缩电极的取向的机器人尖端。
[0013] 根据本公开的一个方面,电外科手术装置包括:组件,其包括至少一个致动器;轴,其包括近端、远端和中空内部,该轴的近端联接至组件;末端,其包括电极壳体和将电极壳体联接到轴的远端的铰接机构,该电极壳体包括近端和远端,电极穿过电极壳体的远端布置;以及多个牵拉机构,每个牵拉机构穿过轴的中空内部布置并包括近端和远端,每个牵拉机构的近端与至少一个致动器的相应一个相连,每个牵拉机构的远端联接到电极壳体的近端,其中,至少一个致动器配置为旋转以在近端方向上选择性地牵拉一个或多个牵拉机构,以使末端经由所述铰接机构相对于所述轴枢转。
[0014] 在一个方面,铰接机构包括第一铰接构件和第二铰接构件,第一铰接构件和第二铰接构件彼此铰接联接,使得响应于一个或多个牵拉机构的选择性牵拉,尖端相对于轴在第一二维平面枢转。
[0015] 在另一方面,铰接机构包括第三铰接构件,第三铰接构件铰接联接至第二铰接构件,使得响应于一个或多个牵拉机构的选择性牵拉,尖端相对于轴在第二二维平面枢转。
[0016] 在进一步的方面,铰接机构配置成使得尖端能够经由铰接机构在三个维度上相对于轴枢转。
[0017] 在另一方面,至少一个致动器包括第一致动器和第二致动器,并且多个牵拉机构包括第一、第二、第三和第四牵拉机构,第一和第二牵拉机构的近端联接到第一致动器,使得当第一致动器旋转时,第一或第二牵拉机构中的一个沿近侧方向牵拉,并且来自第一或第二牵拉机构中的另一个的张被释放,从而使第一或第二牵拉机构中的另一个能够沿远侧方向行进,第三和第四牵拉机构的近端联接到第二致动器,使得当第二致动器旋转时,第三或第四牵拉机构中的一个沿近侧方向牵拉,并且来自第三或第四牵拉机构的另一个的张力从被释放,从而使第三或第四牵拉机构中的另一个沿远侧方向行进。
[0018] 在另一方面,当在多个牵拉机构的每一个中保持相等的张力时,尖端相对于轴是共线的。
[0019] 在一个方面,每个牵拉机构包括第一线、第二线和刚性线性构件,第一线联接至电极壳体的近端,刚性线性构件将第一线联接至第二线,并且第二线联接到至少一个致动器。
[0020] 在另一方面,电外科手术装置还包括管,该管包括近端和远端,该管穿过轴的中空内部布置,该管的远端联接到电极壳体的近端,该管的近端配置为接收待提供给电极壳体的气体。
[0021] 在再一方面,所述铰接机构包括至少一个孔,所述管的远端穿过所述至少一个孔布置并联接至所述电极壳体的近端。
[0022] 在另一方面,电外科手术装置还包括导线,该导线包括近端和远端,该导线的近端联接至电极以向其提供电外科手术能量。
[0023] 在又一方面,所述导线可在所述轴内滑动,并且所述电外科手术装置还包括至少一个第二致动器,所述至少一个第二致动器联接至所述导线并配置为旋转以控制所述电极相对于电极壳体的远端的伸出和缩回。
[0024] 在一方面,当电极延伸超过电极壳体的远端或电极缩回在电极壳体内时,电极通过导线通电,并且气体提供给电极壳体以形成等离子体。
[0025] 在另一方面,电极延伸超过电极壳体的远端以进行机械切割。
[0026] 在再进一步的方面,电极延伸超过电极壳体的远端,并且电极通过导线通电以进行电外科切割。
[0027] 根据本公开的进一步的方面,所述电外科手术装置还包括滑动构件,所述滑动构件可滑动地安装在所述组件内,所述滑动构件联接至所述导线的远端并联接至所述第二致动器,其中,响应于所述第二致动器沿第一方向的旋转,所述滑动构件配置成沿近端方向牵拉导线,以使电极相对于电极壳体的远端缩回。
[0028] 在一方面,电外科手术装置还包括布置在电极壳体中的弹簧,该弹簧配置成沿远侧方向偏置电极超过电极壳体的远端。
[0029] 在进一步的方面,响应于第二致动器沿第二方向的旋转,滑动构件配置成沿远侧方向延伸导线,以相对于电极壳体的远端伸出电极。
[0030] 在另一方面,滑动构件联接至气体源并联接至管,并且滑动构件配置成将来自气体源的气体提供至管。
[0031] 在再一方面,滑动构件联接至能量源,并且滑动构件配置成向导线提供电外科手术能量。
[0032] 在一方面,电外科手术装置还包括第二致动器,第二致动器联接至轴,使得第二致动器的旋转使轴相对于组件旋转,其中,当轴旋转时,尖端旋转。
[0033] 在进一步的方面,电极配置为导电刀片或导电针中的一个。
[0034] 在又一方面,所述至少一个致动器配置为联接至至少一个电动机以旋转所述至少一个致动器,所述至少一个电动机被配置为经由至少一个处理器和至少一个输入接收设备进行控制。
[0035] 在一个方面,电外科手术装置还包括第三致动器,第三致动器联接至轴,使得第三致动器的旋转使轴相对于组件旋转,其中,当轴旋转时,尖端旋转。
[0036] 在另一方面,电外科手术装置还包括第四致动器和线,该线穿过轴布置并且将第四致动器联接到电极,第四致动器配置成旋转以控制电极相对于电极壳体的远端的伸出和缩回。
[0037] 在另一方面,每个致动器联接到相应的电动机,每个电动机可通过至少一个处理器和至少一个输入接收设备控制,以选择性地旋转一个或多个致动器以相对于轴枢转尖端,相对于组件旋转尖端和轴,和/或相对于电极壳体的远端伸出或缩回电极。附图说明
[0038] 当结合附图考虑以下详细描述时,本公开的以上和其他方面、特征和优点将变得更加明显。
[0039] 图1是根据本公开的实施例的示例性单极电外科手术系统的图示;
[0040] 图2是根据本公开的实施例的具有机器人尖端的电外科手术设备的透视图;
[0041] 图3A是根据本公开实施例的图2的电外科手术设备的组件的透视图;
[0042] 图3B-E是根据本公开的实施例的图3A的组件(壳体被移除)的透视图;
[0043] 图4是根据本公开实施例的图2的电外科手术装置的几个部件的侧视图;
[0044] 图5A是根据本公开实施例的图2的电外科手术装置的机器人尖端的侧视图;
[0045] 图5B和5C是根据本公开实施例的图2的电外科手术装置的机器人尖端的局部分解图;
[0046] 图5D是根据本公开实施例的图2的电外科手术装置的机器人尖端的透视图;
[0047] 图5E是根据本公开的实施例的图2的电外科手术装置的机器人尖端(电极处于伸出位置)的侧视图;
[0048] 图5F和5G是根据本发明的一个实施例的图2的电外科手术装置的机器人尖端(枢转中)的视图;
[0049] 图5H是通过根据本公开实施例的图2的电外科手术装置的机器人尖端的远端的视图;
[0050] 图6A和6B是根据本公开实施例的图2的电外科手术装置的机器人尖端的铰接构件的视图;
[0051] 图7A-7C是根据本公开的实施例的图3A的组件(包括替代滑)的透视图。
[0052] 应该理解的是,附图是出于说明本公开的概念的目的,并且不一定是用于说明本公开的唯一可能的构造。

具体实施方式

[0053] 下面将参考附图描述本公开的优选实施例。在下面的描述中,没有详细描述公知的功能或构造,以避免在不必要的细节上使本公开模糊。在附图和随后的描述中,传统上术语“近”将指设备例如器械、装置、施加器、手柄镊子等的末端,其更接近使用者,而术语“远”是指距离用户更远的末端。在本文中,短语“联接”定义为意指通过一个或多个中间部件间接连接或直接连接。这样的中间部件可以包括基于硬件软件两者的组件。
[0054] 图1示出了总体上以10表示的示例性单极电外科手术系统,其包括总体上以12表示的电外科手术发生器(ESU)以产生用于电外科手术装置10的电力,以及总体上以14表示的等离子体发生器以产生等离子体流16并将其施加到患者20上的手术部位或目标区域18,该患者位于导电板或支撑表面22上。电外科手术发生器12包括至少一个总体上表示为24的变压器,其可以包括联接至电源(未示出)的初级和次级,以向等离子体发生器14提供高频电能。在一个实施例中,电外科手术发生器12包括未参考任何电位的隔离浮动电位。因此,电流在有源电极和返回电极之间流动。如果输出不是隔离的,而是以“地”为参考,则电流可以流到具有接地电位的区域。如果这些区域与患者的接触面较小,则会发生不希望的灼伤。
[0055] 等离子体发生器14包括手柄或握持器26,其具有电极28,该电极至少部分地布置在流体流壳体29内并且联接到变压器24以从其接收高频电能,以至少部分地电离供给到手柄或握持器26的流体流壳体29的稀有气体,以产生或创造等离子体流16。在一些实施例中,电极28配置为可伸缩的,使得电极28可以前进以伸出到壳体29的外部或缩回在壳体29内。高频电能从变压器24的次级通过有源导体30馈送到手柄26中的电极28(总有源电极),以产生等离子体流16,以施加到患者20的手术部位18上。此外,限流电容器25可以与电极28串联设置,以限制输送给患者20的电流量。
[0056] 到电外科手术发生器12的返回路径穿过患者20的组织和体液、导体板或支撑构件22以及返回导体32(总返回电极)到达变压器24的次级,以完成隔离的、浮动的电位电路
[0057] 在另一个实施例中,ESU 12包括未参考任何电位的隔离的非浮动电位。流回ESU 12的等离子体电流穿过组织和体液以及患者20。从那里,返回电流电路通过对等离子体发生器手柄26、外科医生的组合外部电容以及通过位移电流完成。电容尤其由患者20的身体大小决定。在Konesky的共同拥有的美国专利号7,316,682中描述了这种电外科手术装置和发生器,其全部内容通过引用整体并入本文。
[0058] 应当理解,在一些实施例中,ESU 12可以配置为与不包括专用变压器的手柄26一起使用。在该实施例中,ESU 12包括至少一个第二变压器,第二变压器配置为执行手柄26内的变压器将执行的至少一些任务。在该实施例中,ESU 12配置为与不包括专用变压器的手柄26一起使用,使得ESU 12配置为支持新的等离子体模式,在此称为内部J等离子体模式,或者简称为J等离子体模式。J等离子模式设计成允许手柄26产生等离子体而无需手柄26包括内部变压器。
[0059] 应当理解,在上述实施例中,在手柄26不包括专用变压器的情况下,限流电容器25可以从手柄26上移除。在该实施例中,ESU 12可以配置为与手柄26一起用作闭环系统,其中,ESU 12可以有效地限制输送到电极28的电流,而无需手柄26包括内部专用变压器。
[0060] 本公开的ESU 12可以配置为通过修改由ESU 12提供给电极28的电力的施加的高压和高频波形来产生各种不同的等离子体束效应。除了产生冷等离子体之外,这些效应还包括几种形式的单极凝结和气体辅助凝结,也称为Cool CoagTM效应。应当理解,在这些气体辅助凝结模式中,在存在惰性气体例如氦气的同时,将凝结波形施加到电极上,从而形成等离子体。以这种方式,根据本公开的单个电外科手术装置可以产生1.)冷等离子体放电,2.)单极凝结效应和3.)各种气体辅助凝结放电或等离子体。
[0061] 应当理解,在各种实施例中,两个高压升压输出变压器包括在ESU 12中,并用于生成必要的波形。在Rencher等人的共同拥有的美国专利No.9,144,453中示出并描述了包括两个高压升压输出变压器的示例性系统,该专利的内容通过引用并入本文。一个变压器针对高压和低电流进行了优化,并用于在电极缩回时(例如,如下所述的电极28和/或电极240)产生冷等离子体束。另一个变压器针对例如单极、双极和凝结等电外科手术所需的较电压但较高电流进行了优化。手持式施加器(例如施加器14)上的按钮,或与ESU 12联接的合适的脚踏开关踏板的选择,可以配置为控制ESU 12中的哪个变压器被激活,以执行所需的步骤来激活ESU 12提供的各种模式。
[0062] 在单极凝结模式下(例如,如上所述,通过按下适当的脚踏开关激活),将凝结波形施加于电极,并通过使电外科手术设备的电极与目标组织之间接触而对目标组织施加凝结效果。
[0063] 在等离子体凝结模式下(例如,如上所述,通过电外科手术装置的按钮或适当的脚踏开关激活),通过将电极与目标组织间隔预定距离可以影响几种形式的气体辅助凝结(或等离子体凝结),包括精确凝结模式、轻度凝结模式和喷雾凝结模式。高的波峰因数或峰值电压与RMS电压之比可确保在各种气体辅助凝结模式下点燃流动的惰性气体。在一个实施例中,在向该装置提供电外科手术能量的电外科手术发生器处选择在等离子体凝结期间(例如,当按下适当的脚踏开关或踏板时)将采用的凝结模式。以此方式,在发生器处选择凝结模式(例如,精确凝结、轻度凝结或喷雾凝结模式)之后,当电外科手术装置(例如,以下描述的施加器14或装置200)的凝结按钮或脚踏开关激活时,在电外科手术装置发射的等离子体束中采用所选的凝结模式。
[0064] 在精确和轻度的气体辅助凝结模式下,等离子体产生脉冲组之间存在相对较短的时间。来自先前放电路径的残留离子可确保后续放电遵循相同的路径,从而使等离子体束的指向精度与冷等离子体束相同,但具有更高的电流和增强的凝结能力。
[0065] 相比之下,气体辅助喷雾模式在脉冲之间具有更长的时间段(例如,通过将电灼模式波形施加到电极上),从而允许任何残留离子重新结合。因此,没有优先的残留放电路径,各个放电都随机覆盖了大得多的面积。
[0066] 与冷等离子体束模式一样,通过调整束中的电功率比和惰性气体流速,可以在各种气体辅助凝结模式中影响多种生理效应。
[0067] 从上面可以理解,根据本公开的单个电外科手术装置(例如,下面描述的施加器14和/或装置200)可以包括至少三种激活模式,包括冷等离子体模式、单极凝结模式(电外科手术装置的电极正在接触目标组织)和气体辅助或等离子体凝结模式(电外科手术装置的电极与目标组织间隔开而没有接触组织)。
[0068] 在另一个实施例中,本公开提供了一种电外科手术装置,其包括配置为沿多个方向枢转和旋转的铰接远端。如以下将描述的,本公开的电外科手术装置配置为用于机器人外科手术系统中以执行各种各样的手术。参照图2,示出了根据本公开的具有机器人远侧尖端208的电外科手术装置200。装置200包括远端215和近端217,其中组件203设置在装置200的近端217处。组件203包括壳体202和基座204,其中壳体202联接至基座204。如以下将更详细描述的,装置200的一个或多个组件联接至基座204并设置在壳体202内。轴206和电缆210均联接至组件203。电缆210进一步联接到连接器212,而轴206进一步联接到机器人远侧尖端208。应当理解,图2在图的下部示出了具有壳体202的装置220,而图2的上部示出了去除了壳体的同一装置200。
[0069] 在一个实施例中,连接器212配置为联接到诸如ESU 12的ESU和气体供应器。应当理解,在一些实施例中,ESU包括气体供应器。联接到连接器212的ESU和气体供应器经由电缆210向组件203提供电外科手术能量和气体。在一个实施例中,电缆210可以包括:一个或多个柔性气体管,该柔性气体管配置为从气体源输送气体或向组件203供应气体;以及一条或多条导电线,导电线配置为提供电力并从ESU(或通过电缆210联接到组件203的任何其他设备)传输电信号到组件203。气体和电外科手术能量从组件203穿过轴206提供给机器人远侧尖端208。尖端208可包括可伸缩的电极或刀片,其与经由组件203提供的电外科手术能量和气体结合可用于产生用于外科手术应用的等离子束。组件203包括一个或多个致动器,致动器配置成以多种方式旋转和枢转机器人远侧尖端208。还可使用致动器中的至少一个来伸出或缩回机器人尖端208中的电极。应当理解,装置200的每个特征在下面更详细地描述。
[0070] 参照图3A至3E,示出了根据本公开的组件203的各种视图。如图3A和3B所示,轴206沿着纵轴线联接到基座204并从基座204延伸。在一个实施例中,轴206是包括中空内部的刚性纤维管。此外,多个致动器250联接至基座204。在一个实施例中,每个致动器250配置为接口,接口可分别联接至可由使用者控制的装置的电动机。在一个实施例中,每个致动器250可包括一个或多个槽259,槽259配置为接收电动机的配合盘的突片或延伸构件,以将每个致动器250联接至相应的电动机。以这种方式,当联接至致动器250的电动机的配合盘(或用于将电动机联接至致动器250中的一个的任何其他配合机构)旋转时,致动器250也旋转。
[0071] 致动器的旋转控制和操纵机器人尖端208的取向(orientation)。例如,如以下将更详细描述的,致动器250A可配置为控制轴206的旋转以引起机器人尖端208的旋转,致动器250B可以配置为控制机器人尖端208的电极或刀片(例如,下面描述的电极240)的伸出和缩回,并且致动器250C和250D可以配置为控制机器人尖端208围绕一个或多个铰接构件枢转。
[0072] 参照图3B、3C和3D,电缆210经由电缆支架254联接到组件203。电缆支架254配置为减轻电缆210的应力。电缆支架254联接到气体端口252(例如,适用于输送气体的柔性管),其中气体端口252进一步联接到管密封块260。电缆支架254也联接到电缆258,电缆258联接到接口块或滑动构件256。应当理解,布置在电缆210内并且配置成将气体从气体源输送到组件203的气体管联接到气体端口252。在一个实施例中,气体端口252是穿过电缆210布置并联接到气体源的单个气体管。还应当理解,布置在电缆210中并且配置成将电力从ESU输送到组件203的一条或多条电线联接到电缆258。在一个实施例中,电缆258通过电缆210布置并且联接到ESU。
[0073] 在一个实施例中,管密封块260通过托架251A和251B(图3D所示)固定地安装到组件203,并且接口块256通过托架251A和251B可滑动地安装到组件203,使得接口块256可沿远侧方向朝向管密封块260前进或沿近侧方向远离管密封块260缩回。应当理解,接口块256联接至导线或杆270(如图3D和4所示),导线或杆270穿过轴206布置并联接到尖端208的电极,使得当接口块256沿远侧方向朝向管密封块260前进或沿近侧方向远离管密封块260缩回时,线270引起尖端208的电极也在与接口块256的移动相同的方向上前进或后退。在一个实施例中,线270是具有0.30mm厚度的柔性不锈导线,其配置成在保持足够刚性以使电极在尖端208内前进或缩回的同时,减少漏电容。
[0074] 例如,参考图4,根据本公开更详细地示出了块260和256。如图4所示,管密封块260包括管接收构件265和块部分263,其中管接收构件265从块部分263沿朝向基座204的方向延伸。管接收构件265配置为具有中空内部或内部通道的大体圆柱形。块部分263包括通道261,其中通道261从块部分263的端部267延伸进入管接收构件265中,从而通道261和管接收构件265的内部通道汇合。气体端口252通过块部分263的端部267联接到通道261。管接收构件265配置为容纳例如柔性特氟隆管的柔性管272的近端。管272的远端联接至尖端208(如下所述)。气体由经由电缆210联接至装置200的气体供应器穿过气体端口252、穿过气体密封块260的通道261、穿过管272的内部通道到达尖端208来提供。如下所述,该气体可以是惰性气体例如氦气,与尖端208的电极240结合使用以产生等离子体。
[0075] 还如图4所示,接口块256包括端部255和257,其中端部255可滑动地设置在托架251A的槽中,而端部257可滑动地设置在托架251B的槽中。可以理解,托架251A和251B在图
3D中示出。线270(例如,导线)的远端固定地联接到接口块256(例如,通过螺钉或其他紧固装置)。线270可滑动地布置为穿过气体管密封块260的块部分263的孔(未示出)、穿过管、接收构件265的内部通道,并进入气体管272的内部。如下所述,线270的远端固定地连接到电极240,这样,当接口块256朝向管密封块260前进或远离管密封块260时,线270也会在管密封块260和管272中沿朝向或远离管密封块260的方向滑动,从而使得尖端208的电极240前进或后退。在一个实施例中,组件203的电缆258将电缆210联接到线270,使得可以由ESU 12将电外科手术能量提供给线270(通过电缆258),以使尖端208的电极240通电。
[0076] 尽管在上述实施例中,管密封块260和接口块256配置为单独的组件,如下所述,但是在本公开的其他实施例中,接口块256和管密封块260可以配置为单个组件。
[0077] 再次参考图4,装置200还包括多根帘线或绞合柔性线231、233、235、239和相应的管或刚性线性构件237A-D。管237A-D可滑动地穿过轴206布置,使得管237A-D布置在管272的外部(即,在管272的外部与轴206的内壁之间)。在一个实施例中,线231、233、235、239中的每条的远端均部分地穿过轴206的近端布置并且固定地联接至相应的拉管237的近端241。例如,线231的远端联接至管237A的近端241A,线233的远端联接到管237B的近端241B,线235的远端联接到管237C的近端241C,线239的远端联接到管237D的近端241D。在一个实施例中,分别将管237A-D的近端241A-D压接,使得线231、233、235、239中的每条的远端分别固定地联接至管237A、B、C和D的近端。在另一个实施例中,每条线231、233、235、239和其相应的管237由单一材料构造。线231、233、235、239中的每条的近端都联接到致动器250C或致动器250D(如图3E所示并且在下文中描述)。例如,参考图3E,示出了根据本公开的组件203的致动器250C和250D。致动器250C包括管状构件262,其中线231和239的近端缠绕在管状构件262周围,如下所述。致动器250D包括管状构件264,其中线233和235的近端缠绕在管状构件264周围,如将在下面更详细地描述的。如图3E所示,管状构件262配置成沿方向A1或相反方向B1旋转,管状构件264配置成沿方向A2或相反方向B2旋转,响应于由电动机旋转的致动器250C和250D中的每一个。
[0078] 线231的近端沿第一方向(例如,方向A1)缠绕在管状构件262上,线239的近端沿与第一方向相反的第二方向(例如,方向B1)缠绕在管状构件262上。在一个实施例中,管状构件262的一部分包括一对螺纹,其以相对于彼此相反的方向以螺旋方式围绕管状构件262嵌入。该对螺纹分别配置成接收线231、239的近端,线231、239的近端以相反的方向联接到管状构件262并缠绕在管状构件262上。
[0079] 这样,当管状构件262沿第一方向A1旋转时,线231绕管状构件262旋转,使得额外量的线231缠绕在管状构件262周围,从而沿朝向组件203的近侧方向在管272内牵拉线231和管237A。当管状构件262沿方向A1旋转时,线239从管状构件262上解开,从而使张力从线239释放,并使线239和管237D沿远侧方向在管272内行进。另外,当管状构件262沿第二方向B1旋转时,线231从管状构件262上解开,导致张力从线231释放,并允许线231和管237A沿远侧方向在管272内行进。当管状构件262沿方向B1旋转时,额外量的线239缠绕在管状构件
262上,从而沿朝向组件203的近侧方向在管272内牵拉线239和管237D。
[0080] 线233、235的近端缠绕在管状构件264周围。线235的近端沿第一方向(例如,方向A2)缠绕在管状构件264周围,并且线233的近端沿与第一方向相反的第二方向(例如,方向B2)缠绕在管状构件264上。在一个实施例中,管状构件264的一部分具有一对螺纹,该一对螺纹以相对于彼此相反的方向成螺旋形地围绕管状构件264嵌入。所述一对螺纹中的每一个均配置成接收线233、235的近端,线233、235的近端沿相反的方向联接至管状构件264并围绕管状构件264缠绕。
[0081] 以这种方式,当管状构件264沿第一方向A2旋转时,线235绕管状构件264旋转,使得额外量的线235缠绕在管状构件264周围,从而沿近侧方向朝向组件203在管272内牵拉线235和管237C。当管状构件264沿方向A2旋转时,线233从管状构件264上解开,从而使张力从线233释放,并使线233和管237B沿远侧方向在管272内行进。另外,当管状构件264沿第二方向B2旋转时,线235从管状构件264上解开,导致张力从线235释放,并允许线235和管237C在管272内沿远侧方向行进。当管状构件264沿方向B2旋转时,额外量的线233缠绕在管状构件
264周围,从而沿近侧方向朝向组件203在管272内牵拉线233和管237B。
[0082] 在一个实施例中,组件203还包括柔性绞合线253,如图3D所示。柔性绞合线253的一端缠绕在致动器250B周围,而线253的另一端联接至接口块256。当致动器250B沿第一方向(例如,方向A3)旋转(例如,如上所述,借助电动机),电缆253从致动器250B解绕,并且张力从线253释放。在一个实施例中,接口块256朝向密封块260(例如,借助弹簧)偏置。以这种方式,当张力从线253释放时(即,通过沿第一方向A3旋转致动器250B),接口块256沿远侧方向朝向块260偏置,从而导致线270将在管272内沿远侧方向(即朝向尖端208)前进。当致动器250B沿第二方向(例如,方向B3)旋转时,额外量的线253缠绕在致动器250B周围,从而导致线253沿近侧方向牵拉接口块256远离块260,这也导致线270在管272内沿近侧方向(即,远离尖端208)缩回。
[0083] 备选地,在另一个实施例中,块256的近侧和远侧移动可以仅由致动器250B和线253控制,而无需将块256朝密封块260偏置。在该实施例中,柔性绞合线253的每个端部可以沿相反的方向缠绕在致动器250B上(即,一端沿方向A3缠绕在致动器250B上,另一端沿方向B3缠绕在致动器250B上)。线253的中央部分联接到接口块256,线253中张力维持恒定。当致动器250B沿第一方向(例如,A3)旋转时,线253的第一端进一步缠绕在致动器250B周围,而线253的第二端从致动器250B周围解开,从而使块256沿远侧方向滑动并使线270沿远侧方向延伸。当致动器250B沿第二方向(例如,B3)旋转时,线253的第一端从致动器250B周围解开,线256的第二端进而缠绕在致动器250B周围,从而使块253沿近侧方向滑动并使线270沿近侧方向缩回。
[0084] 在一个实施例中,致动器250A联接至轴206的近端,使得当致动器250A旋转时,轴206沿相反的方向旋转。在该实施例中,当致动器250A沿方向A4旋转时,轴206沿方向B4旋转。或者,当致动器250A沿相反方向B4旋转时,轴206沿相反方向A4旋转。如下所述,轴206的远侧部分联接至尖端208。通过这种方式,致动器250A可以旋转以旋转尖端208。应当理解,在一个实施例中,管272配置为具有足够的柔性以在轴206内扭转以使得轴206能够旋转。
[0085] 参照图5A、图5B和图5C,根据本公开内容,在图5A中示出了机器人尖端208的侧视图,并且在图5B和5C中示出了尖端208的侧面分解图。机器人尖端208包括电极240,陶瓷插件214,尖端握持器216以及铰接构件220、222和224。陶瓷插件214和尖端握持器216分别配置成大致圆柱形。陶瓷插件214包括远端201和近端205,以及穿过插件214的内部从端部201延伸至端部205的通道。尖端握持器216包括远端207和近端209,以及穿过握持器216的内部从端部207延伸至端部209的通道。如图5A中所示,陶瓷插件214的近端205布置在握持器216的远端207中并固定地联接到握持器216的远端207。应当理解,陶瓷插件214和尖端握持器216一起形成电极壳体,其中陶瓷插件214的远端201是电极壳体的远端,尖端握持器216的近端209为壳体的近端。尖端握持器216的近端209布置在管272的远端上方。尽管未示出,橡胶垫圈设置在握持器216内管272的远端的周围。橡胶垫圈在管272的远端周围形成密封,以防止惰性气体在尖端208泄漏
[0086] 轴206的远端联接到铰接构件224,使得管272的远端穿过铰接构件220、222、224的孔221、223、225布置(图6A和6B进一步示出了铰接构件220、222、224的孔)。管272的远端联接到尖端握持器216的近端209。线270的远端穿过管272的远端、握持器216和陶瓷布置。如图5C所示,线270的远端联接到电极240,电极240滑动穿过陶瓷插件214的内部通道而布置。
[0087] 在一个实施例中,电极240配置为导电刀片。如图5C所示,电极240包括远端244和近端242。线270的远端联接到电极240的近端242。电极240还包括延伸构件247、248和刀片部分246,刀片部分246从延伸构件247、248向远侧延伸到电极240的远端244。应当理解,刀片部分246配置成具有锋利的切割边缘,适于机械切割(即,在没有将RF能量施加到刀片部分的情况下切除组织,类似于使用手术刀等)。尽管电极240示出并描述为导电刀片,但是应当理解,在其他实施例中,电极240可以配置为导电针或适合于在外科手术应用中用作导电电极的任何其他类型的形状。
[0088] 参照图5D,在一个实施例中,陶瓷插件214包括一对沿直径相对的槽211和213,其设置在插件214的通道的内壁中。电极240的延伸构件247、248分别可滑动地设置在槽211和213中,使得电极240可相对陶瓷插件214滑动。如此,当致动器250B沿第一方向或第二相反方向旋转以使接口块256可滑动地伸出或缩回时,线270也在管272内伸出或缩回,使得电极
240伸出或缩回。应当理解的是,由于陶瓷插件214固定地联接到尖端握持器216,使得电极
240和陶瓷插件相对于尖端握持器216旋转地固定。
[0089] 参照图5E,根据本公开,电极240示为处于前进或伸出位置。如图5E所示,当电极240伸出时(通过旋转致动器250B),电极240的远端244延伸超过插件214的远端201,直到刀片部分246布置为超过插件214的远端201。
[0090] 如图5B所示,装置200包括柔性线230、232、234和236。每条线230、232、234、236的远端固定地联接到握持器216的近端209。线230、232、234、236的近端分别部分地布置为穿过轴206的远端并且固定地联接至管237的远端243,其中线230的近端联接至管237A的远端243A,线232的近端联接至管237B的远端243B,线234的近端联接至管237C的远端243C,线
236的近端联接至管237D的远端243D。在一个实施例中,每个远端243都被压接,使得线230、
232、234、236的近端固定地联接到远端243。应当理解,在某些实施例中,线230、232、234、
235,相应的管237和相应的线231、233、235、239由单一材料制成,并且是单一的构造。例如,线230,相应的管237A和线231可以是与如所示的三个独立部件相对的单个线或部件。
[0091] 如上所述,管237配置为刚性管并且可滑动地布置在轴206内。管237配置为响应于致动器250C和250D旋转,将电线231、233、235、239的推拉(即张力的产生和释放)传递到线230、232、234和236。如此,装置200包括4个牵拉机构,牵拉机构包括一根管和两条线:(1)线
230、231和管237A;(2)线232、233和管237B;(3)线234、235和管237C;和(4)线236、239和管
237D。例如,当致动器250C的管状构件262沿方向A1(图3E所示)旋转时,在线234中产生拉力,并且在线232中释放拉力。或者,当致动器250C的管状构件262沿方向B1旋转时,在线234中释放张力并且在线232中产生张力。当致动器250D的管状构件264沿方向A2旋转时(如图
3E所示),在线230中产生张力,在线236中释放张力。或者,当致动器250D的管状部件264沿方向B2旋转时,在线230中释放张力,在线236中产生张力。
[0092] 每个牵拉机构配置成将线231、233、235、239的推动和牵拉(响应于致动器250C和250D的旋转而产生)传递到尖端208的铰接机构。再次参照图5A,铰接机构包括铰接构件
220、222、224。铰接构件220、222、224包括在机器人尖端208中,以使尖端208能够以各种方式相对于轴206枢转和旋转。参照图6A和图6B,示出了根据本公开的铰接构件220、222、224的分解图。铰接构件220、222、224分别配置成大致圆柱形的形状。铰接构件220包括孔221、
276A、277A、278A和279A以及具有凸出或凸起部分281、282和凹入的凹陷部分283、284的弯曲表面280,其中凸出部分281、282围绕表面280沿直径相对,而凹入部分283、284围绕表面
280沿直径相对。铰接构件222包括孔223、276B、277B、278B和279B以及具有凸出或凸起部分
286、287以及凹入或凹陷部分288、289的弯曲表面285,其中凸出部分286、287绕表面285沿直径相对,凹陷部分288、289围绕表面285沿直径相对。铰接构件222还包括具有凹入或凹陷部分291、292和凸出或凸起部分293、294的弯曲表面290,其中凹入部分291、292围绕表面
290沿直径相对,突出部分293、294围绕表面290沿直径相对。铰接构件224包括孔225、276C、
277C、278C和279C以及具有凹入或凹陷部分296、297以及凸出或凸起部分298、299的弯曲表面295,其中凹入部分296、297绕表面295沿直径相对,而突出部分298、299绕表面295沿直径相对。
[0093] 铰接构件220铰接联接至铰接构件222,以使表面280的突出部分281铰接连接至突出部分286,而表面280的突出部分282铰接连接至突出部分287。如此,铰接构件220可以绕铰接构件222枢转,直到表面280的凹入部分283与表面285的凹入部分289接触。或者,铰接构件220可以绕铰接构件222枢转,直到表面280的凹入部分284与表面285的凹入部分288接触。
[0094] 铰接构件222铰接联接至铰接构件224,使得表面290的突出部分293铰接联接至表面295的突出部分299,而表面290的突出部分294铰接联接至表面295的突出部分298。如此,铰接构件222可绕铰接构件224枢转,直到表面290的凹入部分291与表面295的凹入部分296接触。或者,铰接构件222可绕铰接构件224枢转,直到表面290的凹入部分292与表面295的凹入部分297接触。
[0095] 参照图5A、5B、5E、6A和6B,铰接构件224联接至轴206的远端,并且铰接构件220联接至握持器216的近端209。线230的远端分别穿过铰接构件220、222、224的孔276A、276B、276C布置,并固定地联接到握持器216的近端209。线232的远端分别穿过铰接构件220、222、
224的孔277A、277B、277C布置,并且固定地联接到握持器216的近端209。线234的远端分别穿过铰接构件220、222、224的孔278A、278B、278C布置,并且固定地联接到握持器216的近端
209。线236的远端分别穿过铰接构件220、222、224的孔279A、279B、279C布置,并且固定地联接至握持器216的近端209。
[0096] 如图5A和5E最佳所示,当铰接构件220、222、224联接在一起时,管272的远端穿过孔221、223和225布置,并联接到握持器216的远端209。
[0097] 如上所述,致动器250C和250D可以旋转(沿图3E所示的方向A1/A2或B1/B2)以牵拉线230、232、234、236或在线230、232、234、236中产生张力或在线230、232、234、236中释放张力。铰接构件220、222、224的设计配置为利用以多种方式枢转尖端握持器216(并因此枢转电极240)的这种能力。如下文中更详细的描述,响应于选择性地牵拉线230、232、234、236中的一条或多条,铰接构件222、224使握持器216能够在第一二维平面相对于轴206枢转。参见图5E,第一二维平面由x-y平面表示,其中y轴对应于轴206沿其布置的纵轴线,x轴横穿y轴。此外,铰接部件220、222使握持器216响应于线230、232、234、236的一条或多条的选择性牵拉,而在第二二维平面相对于轴206枢转。第二二维平面由图5E中的y-z平面表示,其中z轴横穿y轴。铰接构件220、222、224组合在一起使握持器216三维枢转到轴206。
[0098] 例如,参照图3E、5E、6A、6B,当管状构件262沿方向A1旋转并且管状构件264沿方向B2旋转时,在线230和232中产生张力,并在线234和236中释放张力,使铰接构件222绕铰接构件224枢转,使得表面290的凹入部分291被拉向表面295的凹入部分296,以在y-z平面在方向E上枢转握持器216(图5E中所示)。当管状构件262沿方向B1旋转并且管状构件264沿方向A2旋转时,在线234和236中产生张力,并且在线230和232中释放张力,以使铰接构件222绕铰接构件224枢转,使得表面290的凹入部分292被拉向表面295的凹入部分297,以在y-z平面在方向F上枢转握持器216(图5E中所示),其中方向F与方向E相反。参照图5F,机器人尖端208显示为具有沿根据本公开方向F枢转的尖端握持器216。
[0099] 当管状构件262和264分别各自沿方向A1、A2旋转时,在线230和234中产生张力,并且在线232和236中释放张力,以使铰接构件220围绕铰接构件222枢转,从而将表面280的凹入部分283朝向表面285的凹入部分289拉动,以使握持器216在y-x平面在方向C上(即,垂直于方向E和F的方向)枢转。当管状构件262和264各自沿相反的方向B1、B2旋转时,在线232和236中产生张力,并且在线230和234中释放张力,以使铰接构件220围绕铰接构件222枢转,从而使表面280的凹入部分284向表面285的凹入部分289拉动,以使握持器216在y-x平面在方向D上(即,垂直于方向E和F)枢转,其中方向D与方向C相反。
[0100] 应当理解,使用机器人尖端208的设计,线230、232、234、236的不同组合可以由致动器250C和250D牵拉或释放,以在方向C、D、E和F之间的方向上三维地枢转握持器216,形成握持器216(以及电极240)相对于轴206的可能取向的半球。
[0101] 为了使握持器216沿C、D、E和F之间的方向枢转,如图5E和5H所示,管状构件262/264中的一个可以沿方向A/B旋转,而另一个管状构件262/264相对于第一管状构件262/264保持静止(或旋转较少的回转)。例如,如果管状构件262沿方向A1旋转,而管状构件264保持在静止位置(或在方向B2稍微旋转),在线230中产生张力,在线236中释放张力,使得,线230的张力比线232、234和236的大,线236的张力小于线230、232和234。合张力沿方向E和C之间的方向枢轴握持器216。参见图5G,示出了机器人尖端208,其中尖端握持器216在方向C和E之间的方向枢轴。可以理解,致动器250C和250D可以用于以任何方式控制和改变线230、
232、234、236中任何一条的张力,以实现握持器216相对于轴206的许多不同取向。
[0102] 为了保持机器人尖端208的“零旋转”位置(即,尖端208是直的,使得轴206和尖端208如图5A和5E所示是共线的),管状构件262、264保持在静止位置,使得在所有线230、232、
234、236中均保持相同的张力,并且不会在方向C、D、E、F上向尖端208施加合力。当尖端208围绕铰接构件220、222、224的一个或多个沿方向C、D、E和/或F枢转,以使尖端208返回“零旋转”或中立位置时,使管状构件262、264适当旋转,直到线230、232、234、236中的每一条都达到等量张力。
[0103] 如上所述,致动器250A可以旋转(沿图3E所示的方向A4或B4)以旋转轴206。当致动器250A沿第一方向(例如,方向A4)旋转时,轴206和尖端208沿相反方向(例如,图5H中所示的方向B4)旋转。当致动器250A沿第二方向(例如,方向B4)旋转时,轴206和尖端208沿相反方向(例如,图5H中所示的方向A4)旋转。尖端208旋转的能力进一步增加了尖端握持器216(以及电极240)可实现的取向和位置的数量。
[0104] 应当理解,电极240配置成大体上平面的形状。当电极240布置在陶瓷插件214的内部通道中时,气体通路271、273形成在电极240的任一侧上(如图5D所示)。如此,当从组件203、穿过管272并穿过尖端握持器216和陶瓷插件214的内部通道提供气体时,气体将经过电极240并从陶瓷尖端201的远端201出来。应当理解,如上所述,橡胶密封垫圈布置在管272的远端上方,使得当气体流动时,该密封垫圈防止穿过管272进入握持器216和插件214的内部通道而提供的气体从管272的远端和握持器216的近端209逸出。
[0105] 如图5A所示,当电极240处于缩回位置时,即布置在陶瓷插件214的内部通道内,装置200适合于产生等离子体。在缩回位置中,RF能量经由电缆210、线258和线270从电外科手术发生器(例如ESU 12)传导至电极240的刀片部分246。然后从电外科手术发生器或经由电缆210和气体端口252联接到管272的外部气体源供给惰性气体(如氦气或氩气)。当惰性气体流过电极240的刀片部分246,同时电极240保持在高电压和高频状态时,则从陶瓷插件214的远端201产生并发射冷等离子体束。等离子体束然后可以用于期望的外科手术应用中。
[0106] 参考图5E,电极240示为处于伸出或前进位置,使得刀片部分246延伸超过陶瓷插件214的远端201。应当理解,只要电极240不与患者的组织接触,同时电极240处于前进位置,则装置200也适合于以上述方式产生等离子体(即,通过在电极240上提供惰性气体流,同时将电极保持在高压和高频)。此外,当电极240处于前进位置时,装置200还可以用于两种切割模式:机械切割和电外科手术切割。在机械切割模式中,不将RF或电外科手术能量施加到线270或电极240,因此电极240处于断电状态。在这种模式下,电极240的刀片部分246可用于通过机械切割切除组织,即,刀片部分与组织物理接触。在去除组织之后,可以将气体施加到电极240上(同时使电极240前进或缩回)以产生冷等离子体束,以对手术患者部位进行烧灼、灭菌和/或止血。
[0107] 在电外科手术切割模式中,电极240前进并被使用,同时通电并且用惰性气体包封。该配置类似于电外科手术刀方法,其中电外科手术能量进行切割。但是,添加了惰性气体流,切割后几乎没有焦痂,在切割的侧壁上几乎没有附带损害。与刀片不通电时(即机械切割模式)相比,切割速度要快得多,机械切割阻力较小。在此过程中,止血效果也会受到影响。
[0108] 应当理解,在上述电外科手术切割或机械切割模式中,电外科手术装置200配置为借由致动器250A-D多种方式的旋转实现电极240的切割移动(即,电极240跨组织的平移路径以治疗或另外移除组织)。可以通过致动器250C和250D的选择性旋转以如所期望的相对于轴206枢转尖端208,从而控制任一切割模式期间尖端240的路径。可以进一步通过致动器250A的选择性旋转以使轴206和尖端208绕纵向轴线旋转,从而控制电极240的路径。例如,在尖端208相对于轴206枢转的情况下,轴206围绕纵向轴线旋转导致尖端208(以及伸出的电极240)以圆周运动移动。轴206和尖端208的旋转也用作选择电极240的锋利边缘取向的一种方式,使得可以在整个组织上以不同的度切割。电极240的路径可以通过借助致动器
250B的选择性旋转,改变电极240延伸超过陶瓷插件214的远端201长度来进一步控制。通过改变电极240延伸超过远端201的长度,可以根据需要高精度地选择患者组织的切割或切口的长度和深度。电极240延伸超过远端201的长度也可以随时间变化或振荡(通过改变致动器250B旋转的方向A3和B3)以产生电极240的锯切或穿刺移动。锯切或穿刺移动可以以机械切割模式实施以帮助切割组织。
[0109] 如上所述,在替代实施例中,块256和260可以配置为单个部件。例如,参考图7A、7B、7C,根据本公开,装置200示出为具有块或滑动构件350来代替块256、260。块350包括端部351、352和管接收构件356、358,其中管接收构件358从块350的表面354延伸。块350可滑动地安装到托架251A、251B,其中端部351可滑动地安装到托架251A,而端部352可滑动地安装到托架251B。
[0110] 在该实施例中,线253的中心部分(如图3D所示)联接至块350。此外,线253的第一端和第二端沿相反方向缠绕在致动器250B周围(即,一端沿方向A3缠绕在致动器250B周围,另一端沿方向B3缠绕在致动器250B周围)。如此,当沿第一方向(例如A3)旋转致动器250B时,线253的第一端进一步缠绕在致动器250B周围,线253的第二端从致动器250B周围解开,导致块350沿远侧方向滑动,如图7A所示。当致动器250B沿第二方向(例如,B3)旋转时,线253的第一端从致动器250B周围解开,线256的第二端进一步缠绕在致动器250B周围,使块
350沿近端方向滑动,如图7B所示。
[0111] 管接收构件358配置成接收端口252的端部。应当理解,在本实施例中,柔性塑料管360代替管272。管360的远端联接至尖端208,管360的近端联接到管接收构件356。管360配置成可沿由轴206限定的纵向轴线拉伸,以适应块350在托架251A、251B内的近侧和远侧移动。在块350的内部,管接收构件356、358借由通道或通路连接。如此,借助气体源通过气体端口252提供气体,并借由内部通道连接构件356、358进入管360。还从管360提供气体到尖端208。
[0112] 在一个实施例中,线270穿过管360布置,其中线270的远端联接到电极240。线270的近端穿过管接收构件356的中空内部布置并联接到电缆258,例如借助导电螺钉370。以这种方式,当块350沿远侧方向滑动时(如图7A所示),线270沿远侧方向前进以伸出电极240。当块250沿近端方向滑动(如图7B、7C所示),线270沿近侧方向缩回以使电极240缩回。
[0113] 在另一实施例中,线362代替线270。在一个实施例中,线362是具有特氟隆涂层的柔性不锈钢线。线362穿过管360布置,其中线362的远端联接到电极240,线362的近端进入块350的内部,并且例如借助螺钉370联接至电缆258。线362配置为将从电缆258提供的电外科手术能量(借助ESU)传导至电极240。与线270不同,线362仅配置为沿近端方向牵拉电极240。在该实施例中,弹簧(未示出)布置在尖端208内并且沿远侧方向偏置电极240,使得电极240处于伸出位置(如上所述),除非电极240被线362牵拉。如此,致动器250B可沿第一方向旋转以沿近侧方向滑动块350(如图7B、7C所示)以沿近侧方向牵拉线362,使得电极240缩回尖端208。致动器250B可沿第二方向旋转以沿远侧方向滑动块350(如图7A所示),从而释放线362中的张力并允许尖端208中的弹簧朝向伸出位置偏置电极240。
[0114] 应当理解,虽然管272和360示出并描述为包括用于向尖端208提供单一气体的单个内部通道或腔的管,但是在本公开的另一实施例中,管272和/或360可以配置成用于向尖端208提供两种或更多种气体的多腔或多通道管。在该实施例中,气体端口252和电缆210各自配置成将两种或更多种气体提供给多腔管272和/或360,其中所提供的每种气体对应于管272和/或360的不同腔或通道。在另一实施例中,多腔管272和/或管360的通道或腔之一可以联接到提供气体抽吸的源。如此,尖端208可以配置成还根据需要向手术部位提供送气。
[0115] 如上所述,组件203可以包括或联接到至少一个处理器,处理器配置为控制联接到致动器250A-D的每个电动机的旋转速度和旋转方向,从而也控制每个致动器250A-D的旋转速度和旋转方向。处理器可以包括对每个致动器必须旋转以产生期望的电极240的移动、取向、伸出和缩回的量(即,回转的分数和/或数量)的映射。可以理解,处理器可以包括在组件203中,或者可以在组件203的外部。
[0116] 在一个实施例中,装置200可以借助联接到上述处理器的单独的外围设备来控制。例如,机器人尖端208的移动可以通过鼠标键盘、操纵杆或其他联接到处理器和装置200的输入接收设备来控制。在一个实施例中,输入接收设备可以是跟踪用户的手、腕和手指移动的设备。在该实施例中,用户的手、腕和手指的移动可以跟踪和映射(例如,经由如上所述的处理设备)到致动器250的适当旋转,使得机器人尖端208模仿用户的移动。上述输入接收设备可以联接到处理设备(例如,计算机、ESU 12的处理器和/或装置200的处理器),处理设备配置为控制装置200的致动器250和/或联接到致动器250的电动机。
[0117] 处理器和输入接收设备还可以与ESU 12和气体供应器通信以控制电极240的等离子体生成。例如,处理器可以配置为响应于从输入接收设备接收到的一个或多个输入,向ESU 12和/或气体供应器发送信号,以经由电缆210接收电外科手术能量和/或气体,以将其提供给尖端208以产生等离子体或用于电外科手术切割中。例如,输入接收设备可以包括一个或多个脚踏板或按钮以激活ESU 12能够执行的不同模式(如上所述)。例如,第一脚踏板可配置为在按下时激活J-Plasma模式,而第二脚踏板可配置为激活Cool-CoagTM。
[0118] 如上所述,在一个实施例中,轴206由诸如但不限于碳纤维的刚性材料制成。在该实施例中,装置200的尖端208可插入穿过套管或套管针以用于各种外科手术应用,例如腹腔镜手术。由于如上所述,尖端208配置为根据需要被操纵以借助致动器250A-D的旋转从远处实现相对于轴206的多个取向和位置,尖端208不需要单独的设备或机构(例如镊子)来与尖端208相互作用以在外科手术应用期间控制尖端208的取向和位置。因为,不需要诸如镊子的附加设备来控制尖端208的取向和移动,可以与电外科手术装置200一起使用直径小于通常使用的直径的套管或套管针(因为仅需要轴206和尖端208通过套管或套管针),可以在患者身上产生比正常情况更小的直径的切口。
[0119] 应当理解,示出和描述的各种特征是可互换的,即,一个实施例中示出的特征可以并入另一实施例中。
[0120] 尽管已经参照本公开的某些优选实施例示出和描述了本公开,但是本领域技术人员将理解,在不脱离如所附权利要求书所定义的本公开的精神和范围的情况下,可以在形式和细节上进行各种改变。
[0121] 此外,尽管前述文本阐述了许多实施例的详细描述,但是应当理解,本发明的法律范围由本专利末尾提出的权利要求书的词语来定义。具体说明仅解释为示例性的并且不描述每个可能的实施例,因为描述每个可能的实施例是不切实际的,即使不是不可能的。一个人可以使用当前技术或在本专利申请日之后开发的技术来实现许多替代实施例,这仍将落在权利要求的范围内。
[0122] 还应理解,除非在本专利中使用句子“如本文所用,术语‘______'在此定义为……”或类似的句子明确定义术语,否则不意图限制该术语的含义(无论是明示或暗示的含义)为超出其普通含义或普遍含义,并且该术语不应基于本专利任何部分中的任何陈述(除了权利要求的语言)而解释为限制。在某种程度上,在本专利末尾的权利要求中记载的任何术语在本专利中以与单一含义一致的方式被提及,这样做仅仅是为了清楚起见,以免使读者感到困惑,这并不暗示或以其他方式意指该术语限制为单一含义。最后,除非通过记述单词“装置”和功能而不带任何结构记述来定义权利要求要素,否则,不意指任何权利要求要素的范围基于35U.S.C.§112,第六款来解释。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈