首页 / 专利库 / 医疗设备 / 矫形器 / 交互式骑行系统和使用肌肉信号控制骑行模式及刺激强度的方法

交互式骑行系统和使用肌肉信号控制骑行模式及刺激强度的方法

阅读:315发布:2021-03-12

专利汇可以提供交互式骑行系统和使用肌肉信号控制骑行模式及刺激强度的方法专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种针对下肢残障人士的以肌肉 信号 驱动的康复训练交互式骑行系统和方法。旨在增强患者的肌肉、骨骼以及肌肉协调性。本系统整合 电机 动 力 与肌肉力量,使得康复训练更加便利有效,并以患者实时肌肉信号的强度作为参考量,实时调节电机转速以施加辅助力或阻力。同时,本系统在患者下肢肌肉施加电脉冲使之产生收缩从而维持连续的骑行动作。,下面是交互式骑行系统和使用肌肉信号控制骑行模式及刺激强度的方法专利的具体信息内容。

1.一种针对下肢残障人士的以肌肉信号驱动的康复训练交互式骑行系统,所述系统包括:
踏板
曲柄臂,所述曲柄臂连接所述踏板;
电机,所述电机连接所述曲柄臂;
刺激器,所述刺激器连接多个刺激电极
控制器,所述控制器连接所述电机和所述刺激器;以及
数据采集系统,所述数据采集系统连接所述控制器和肌肉信号传感器
其中,所述电机向所述曲柄臂施加辅助或阻力,
其中,所述刺激器连接所述多个刺激电极并传输刺激信号,
其中,所述数据采集系统采集肌肉信号,
其中,所述控制器根据实时肌肉信号的强度调节电机转速以施加所述辅助力或阻力,以及
其中,所述控制器根据实时肌肉信号的强度调节所述刺激器输出刺激信号的强度。
2.如权利要求1所述的系统,其中,所述踏板固定在L形踝部矫形器上。
3.如权利要求1所述的系统,还包括:
连接到所述踏板的力传感器;
连接到所述曲柄臂的力传感器;
链轮,所述前链轮连接所述曲柄臂;
后链轮,所述后链轮通过链条连接所述前链轮;以及
扭矩传感器,所述扭矩传感器分别连接所述后链轮、所述电机和所述控制器。
4.如权利要求1所述的系统,其中,对于单侧腿部训练,所述肌肉信号传感器和刺激电极贴附在同一条腿以仅对该条腿进行训练。
5.如权利要求1所述的系统,其中,对于双侧腿部训练,所述肌肉信号传感器和刺激电极同时贴附在左右两条腿上。
6.如权利要求1所述的系统,其中,一个所述肌肉信号传感器和一对刺激电极贴附在使用者的四个不同部位:腿后肌、股四头肌、腓肠肌和胫骨前肌。
7.如权利要求1所述的系统,其中,所述刺激器在所述曲柄臂的旋转度随着使用者的腿后肌收缩而改变时,通过输出所述刺激信号来刺激所述腿后肌。
8.如权利要求1所述的系统,其中,所述刺激器在所述曲柄臂的旋转角度随着使用者的股四头肌收缩而改变时,通过输出所述刺激信号来刺激所述股四头肌。
9.如权利要求1所述的系统,其中,所述刺激器在所述曲柄臂的旋转角度随着使用者的腓肠肌收缩而改变时,通过输出所述刺激信号来刺激所述腓肠肌。
10.如权利要求1所述的系统,其中,所述刺激器在所述曲柄臂的旋转角度随着使用者的胫骨前肌收缩而改变时,通过输出所述刺激信号来刺激所述胫骨前肌。
11.在骑行运动期间,由肌肉信号控制刺激信号强度的方法,所述方法包括:
向如权利要求1所述的系统提供计算机可读介质,
其中,所述计算机可读介质包括存储的指令,所述存储的指令在被执行时使用至少一个处理器完成以下工作:
在所述使用者骑行期间,检测使用者对不同强度刺激信号的反应,以确定使用者可接受的刺激信号的最小强度和最大强度;
在所述使用者骑行期间,采集所述使用者的目标肌肉的肌肉信号;
判断肌肉激活率与预设阈值的大小关系;
控制所述系统的刺激器将刺激信号传输到所述目标肌肉,所述刺激信号的强度取决于所述肌肉激活率与预设阈值的大小关系;以及
重复所述方法,直到所述使用者停止骑行。
12.如权利要求11所述的方法,其中,当所述肌肉激活率小于所述阈值时,所述存储的指令进一步使用处理器完成以下工作:
控制所述刺激器将具有所述最小强度的刺激信号施加到所述目标肌肉。
13.如权利要求11所述的方法,其中,当所述肌肉激活率大于所述阈值时,所述存储的指令进一步使用所述处理器完成以下工作:
根据所述肌肉激活率计算刺激信号的期望强度;
判断计算出的期望强度与刺激信号最大强度的大小关系;以及
控制所述刺激器将刺激信号施加到所述目标肌肉,
所述刺激信号的强度取决于计算出的刺激信号的期望强度与所述刺激信号最大强度的大小关系。
14.如权利要求13所述的方法,其中,当所述计算出的刺激信号的期望强度大于所述刺激信号最大强度时,所述存储的指令进一步使用所述处理器完成以下工作:
控制所述刺激器将具有所述最大强度的刺激信号施加到所述目标肌肉。
15.如权利要求13所述的方法,其中,当所述计算出的刺激信号的期望强度小于所述刺激信号最大强度时,所述存储的指令进一步使用所述处理器完成以下工作:
控制所述刺激器将具有所述计算出的期望强度的刺激信号施加到所述目标肌肉。
16.如权利要求11所述的方法,其中,所述存储的指令进一步使用所述处理器完成以下工作:
通过实时肌肉激活模式与期望肌肉激活模式之间的激活时间窗的重叠百分比,计算所述肌肉激活率;或者
通过实时肌肉信号的实际振幅与实时肌肉信号的期望振幅的比值,计算所述肌肉激活率。
17.在骑行运动期间,使用肌肉信号控制电机施加力的性质的方法,所述方法包括:
向根据权利要求1所述的系统提供计算机可读介质,
其中,所述计算机可读介质包括存储的指令,所述存储的指令在被执行时使用至少一个处理器完成以下工作:
在使用者骑行期间,确定所述系统的曲柄臂的最小转速和最大转速;
在所述使用者骑行期间,由传感器采集所述使用者的目标肌肉的肌肉信号;
确定肌肉激活率与预设阈值的大小关系;
控制所述系统的电机施加辅助力或阻力;以及
重复所述方法,直到所述使用者停止骑行。
18.如权利要求17所述的方法,其中,当所述肌肉激活率小于所述阈值时,所述存储的指令进一步使用处理器完成以下工作:
控制所述系统的所述电机施加阻力以将所述系统的所述曲柄臂的转速降低到预设速度。
19.如权利要求17所述的方法,其中,当所述肌肉激活率大于所述阈值时,所述存储的指令进一步使用所述处理器完成以下工作:
根据所述肌肉激活率来计算所述系统的所述曲柄臂的期望转速;
判断计算出的所述系统的所述曲柄臂的期望转速与电机最大转速的大小关系;以及根据计算出的所述系统的所述曲柄臂的期望转速与电机最大转速的大小关系,控制所述系统的所述电机施加辅助力或阻力。
20.如权利要求19所述的方法,其中,当计算出的所述系统的所述曲柄臂的所述期望转速大于所述最大转速时,所述存储的指令进一步使用处理器完成以下工作:
控制所述系统的所述电机施加辅助力以将所述系统的所述曲柄臂的所述转速增加到预设速度。
21.如权利要求19所述的方法,其中,当计算出的、所述系统的所述曲柄臂的期望转速小于所述最大转速时,所述存储的指令进一步使用所述处理器完成以下工作:
控制所述系统的所述电机施加辅助力以将所述系统的所述曲柄臂的转速增加到计算出的所述期望转速。
22.如权利要求17所述的方法,其中,所述存储的指令进一步使用所述处理器完成以下工作:
通过实时肌肉激活模式与期望肌肉激活模式之间激活时间窗的重叠百分比,计算所述肌肉激活率;或者
通过实时肌肉信号的实际振幅与实时肌肉信号的期望振幅的比值,计算所述肌肉激活率。

说明书全文

交互式骑行系统和使用肌肉信号控制骑行模式及刺激强度的

方法

技术领域

[0001] 本申请涉及一种交互式骑行系统。

背景技术

[0002] 固定式自行车可用作中或下肢残疾患者的康复工具。在治疗期间,患者可通过电脉冲刺激来增强恢复已损伤肌肉。本文中所描述的系统可增强肌肉、骨骼与肌肉协调性。发明内容
[0003] 本发明的实施方式提供了用于残障人士康复训练的以肌肉信号驱动的交互式骑行系统。在基于家庭和临床设置中,患有中风或下肢残疾患者可使用自行车来进行康复训练。该系统旨在加强患者的肌肉、骨骼与肌肉协调性。
[0004] 该系统整合电机与肌肉力量,以便于康复锻炼。本系统使用肌肉信号的强度作为自主意图的输入(来自表面电极的肌肉活动),可驱动电机以不同的速度旋转,从而促进骑行运动。由刺激器输出的电脉冲信号可刺激目标肌肉以产生肌肉收缩,从而使患者保持连续的骑行运动。交互式骑行系统也可充分利用外部力量来促进单侧腿部训练,而无需涉及未受影响的腿部。附图说明
[0005] 图1a是包含刺激伪信号的经处理的肌电图(EMG)。图1b是不包含刺激伪信号的经处理的肌电图。图1c是经处理的肌电与刺激伪信号的放大图。
[0006] 图2是腿部肌肉系统的示意图,其中刺激电极和EMG电极放置在腿后肌、股四头肌、腓肠肌和胫骨前肌上。
[0007] 图3是与腿后肌、股四头肌、腓肠肌和胫骨前肌相关的骑行模式的示意图。
[0008] 图4是L形踝部矫形器的正视图(左)和侧视图(右)。
[0009] 图5a是45°视的交互式骑行系统的示意图。图5b是45°视角的交互式骑行系统的实物图。
[0010] 图6a是90°视角的交互式骑行系统的示意图。图6b是90°视角的交互式骑行系统的实物图。
[0011] 图7是交互式骑行系统的后视图。
[0012] 图8是交互式骑行系统的电机与扭矩传感器的实物图。
[0013] 图9是交互式骑行系统的链传动的实物图。
[0014] 图10是交互式骑行系统的链传动系统、控制箱和电极的配置方式的示意图。
[0015] 图11是放置在腿后肌、股四头肌、腓肠肌和胫骨前肌上的刺激电极和EMG电极的位置示意图。
[0016] 图12a是进行单侧训练的交互式骑行系统的图像。图12b是进行双侧腿部训练的交互式骑行系统的图像。
[0017] 图13是确定电刺激强度的过程的流程图
[0018] 图14是确定电机速度的过程的流程图。
[0019] 图15a是基于卧式姿势设计的交互式骑行系统的视图。图15b是基于直立姿势设计的交互式骑行系统的示意图。
[0020] 图16是与激活时间窗100%重叠的经处理的肌肉信号的示意图。

具体实施方式

[0021] 以肌肉信号驱动的骑行康复系统可用作中风或下肢残疾患者的康复训练工具。
[0022] 图2是放置在受试者腿部肌肉的四对电刺激电极700和表面肌电图(EMG)电极800的位置示意图。多个表面EMG电极800可放置在受试者的股四头肌、腿后肌、腓肠肌和胫骨前肌上。表面EMG电极由可粘附到身体目标位置的非侵入式电极阵列组成。EMG电极800用于测量电极800之间的电势差。交互式骑行系统会在受试者骑行期间采集腿部肌肉信号,以便调节骑行速度和刺激强度,从而调节康复训练过程。在图2、图10和图11中,每肌肉上只貼附了一对表面EMG电极800,但是本系统可在每块肌肉上貼附更多EMG电极800或肌内EMG电极。肌肉信号经表面EMG电极、针式EMG电极、并最終由超声传感器或振动传感器来采集。
[0023] 刺激电极700可与已貼附在受试者股四头肌、腿后肌、腓肠肌和胫骨前肌上的EMG电极800配对使用。刺激电极700接收来自刺激器的刺激信号并将电脉冲传输到受试者的肌肉。交互式骑行系统可根据从目标肌肉采集到的肌肉信号的模式来增加或减小刺激信号强度。强度可调刺激信号为受试者在骑行时提供连续的交互式辅助。交互式骑行系统可连续采集受试者的随腿部运动而变化的肌肉信号,从而持续调节刺激信号的强度以辅助康复训练。
[0024] 图3为每个目标肌群的骑行刺激模式的示例。0°定义为两个曲柄臂920都垂直于地面的并且受影响的腿部在上方时的的情况。该系统可根据曲柄臂920在旋转角度弧上的位置,向使用者腿部的目标位置提供间歇刺激信号。每个目标肌群都有由特定角度弧组成的骑行刺激模式。例如,腿后肌具有330°至240°之间的骑行刺激模式300。股四头肌具有330°至120°之间的骑行刺激模式310,腓肠肌具有0°至160°之间的骑行刺激模式320,并且胫骨前肌具有260°至340°之间的骑行刺激模式330。表1总结了每个目标肌肉群的不同刺激模式。
[0025] 表1-骑行期间的腿部运动
[0026]曲柄角 受到刺激的肌肉 下肢运动
330°-240° 腿后肌 膝盖屈曲
330°-120° 股四头肌 膝盖伸展
0°-160° 腓肠肌 脚踝跖屈
260°-340° 胫骨前肌 脚踝背屈
[0027] 图4中可看到本系统的使用者穿戴的踝部矫形器的正视图和侧视图。踝部矫形器400拥有L形轮廓并且可使使用者的腿部保持在矢状平面内,保证脚-膝-髋关节与踏板对齐,并抑制髋关节外展以最大化骑行期间的向前驱动力。
[0028] 如图5a和图5b所示,交互式系统包括连接到连接杆210的显示器200、连接到相应的曲柄臂920以在骑行期间优化向前驱动力的踏板220以及连接到每个踏板的力传感器230。力传感器可为三轴传感器并且可由压阻式3D力传感器或基于CMOS的力传感器构成。连接杆可连接到基座杆250和支架杆260,以在交互式骑行系统的操作期间提供支撑作用。交互式骑行系统配备有连接到自行车后齿轮的电机270。电机270可根据使用者肌肉的EMG信号的强度的不同而提供辅助力或阻力。尽管图5a和5b所示为后轮毂电机270,但是本系统可由中心定位的电机或以其它方式连接到驱动链240的电机提供动力。在本发明实施方式中,如图5b所示,交互式骑行系统配备有可伸展的座椅适配器620,供需要轮椅630的使用者使用。
[0029] 图6a和图6b是交互式骑行系统的侧视图。系统包括张紧器280,用于产生并保持张力以防止链条240在骑行中产生松动。
[0030] 图7和图8分别是交互式骑行系统后部的示意图和实物图。电机270可通过联轴器290连接到扭矩传感器300。扭矩传感器300测量由使用者施加给踏板的机械扭矩并将该扭矩转换成电子信号。对扭矩的测量使系统可以确定由电机270施加的辅助力或阻力的大小。
图9所示为张紧器280向链条240施加可变机械力以增加或减小链条张力的图像。
[0031] 图10和图11是交互式骑行系统的示意图。刺激电极700可粘附到使用者的皮肤上,并提供四个信道CH 1A、CH 2A、CH 3A和CH 4A来传输由刺激器610根据目标肌肉的运动而产生的电刺激信号。EMG电极800可粘附到使用者的皮肤上并且放置在使用者的腿后肌、股四头肌、腓肠肌或胫骨前肌上。EMG电极800经由四个信道CH 1B、CH 2B、CH 3B和CH 4B连续地采集实时肌肉信号,并将采集的数据传输到控制箱500。控制箱500包括数据采集系统510和控制器520。控制箱500可与由中央处理单元、显示器、图形处理单元外围设备鼠标键盘存储器所组成的计算机设备400进行通信。
[0032] 在本发明实施方式中,处理器400可用于实施控制算法。该处理器400的辅助设备包括具有开关、滤波功能的EMG放大器和电机控制器(例如UIRobot UIM 24104)。另外,系统能够以例如5KHz的采样频率采集EMG信号并将该数据存储在存储器(例如,SD卡)中。便携式四信道可编程刺激器610可根据控制算法提供实时的系统控制以产生不同的刺激模式。刺激器610可提供介于0Hz与50Hz之间的刺激频率的、介于100μs和500μs之间的脉冲带宽的、以及介于0mA与100mA之间的可调节强度的刺激信号。刺激器610为便携式的设备,尺寸为15cm(长)×8cm(阔)×2.5cm(高)并具有较轻重量(400g)。
[0033] 处理器400可与控制器520进行通信以与交互式骑行系统600对接。使用者的肌肉信号被放大后经由数据采集设备(DAQ)510、控制器520驱动刺激器610以产生不同的刺激模式。(例如,利用ArduinoTM开发板的固态继电器)。同时对曲柄角度的测量可使系统针对每个肌群产生不同的骑行模式。刺激脉冲由刺激器610产生,并通过表面电极700刺激股四头肌、腿后肌、腓肠肌和胫骨前肌以产生收缩,从而促使连续的骑行运动。处理器400可根据肌肉信号的强度控制电机270以改变交互式骑行系统的速度。数据处理器可通过提供阻力或辅助力来控制电机270改变骑行速度。
[0034] 图12a和图12b分别是使用者进行单侧和双侧腿部训练的交互式骑行系统的图像。该系统可提供由电机产生的外部动力以及由刺激器610产生的刺激脉冲信号,以促进单侧或双侧腿部训练。EMG电极800可连接到EMG放大器910,以放大使用者肌肉产生的信号。使用者可通过连接到处理器400的显示器900来监测信号响应和刺激信号的强度。
[0035] 图13中的流程图描述了确定刺激信号强度的方法。第一步检测使用者的目标肌肉对不同信号强度的响应(S100),以确定使用者可接受的刺激信号的最小和最大强度。第二步从使用者的目标肌肉采集肌肉信号(S110)。该肌肉信号将被放大、滤波并存储在存储器中以便于分析。第三步计算肌肉激活率(S120)。如果肌肉激活率小于阈值(S130),则系统将控制刺激器(S190)输出最小刺激强度的信号(S160)。如果肌肉激活率大于阈值(S130),则根据肌肉激活率来重新计算刺激信号强度(S140)。在第一步中,如果计算出的刺激信号强度大于最大刺激信号强度(S150),则系统将控制刺激器(S190)输出等于最大强度的刺激信号(S170)。如果计算出的刺激信号强度小于最大强度,则系统将控制刺激器(S190)输出等于计算出的刺激信号强度的刺激信号(S180)。处理器可持续采集肌肉信号并重复上述步骤,直到使用者停止骑行(S200)。
[0036] 图14中的流程图描述了确定电机输出力性質的方法。第一步输入最小和最大电机速度(S300)。第二步采集使用者目标肌肉的肌肉信号(S310)。该肌肉信号将被放大、滤波并存储在存储器中以便于分析。处理器将根据该肌肉信号计算肌肉激活率(S120)。如果肌肉激活率小于阈值(S330),则处理器将控制电机(S390)产生阻力从而减慢使用者的踏行速率(S360)。如果肌肉激活率小于阈值(S330),则处理器将根据肌肉激活率(S340)和电机最大转速(S350)来计算期望转速,并控制电机(S390)将转速调节到预设速度(S370)。如果计算出的转速小于电机最大转速,则电机(S390)可将转速调节为与计算出的转速相同(S380),但是将其限制在输入的最小电机速度与最大电机速度(S300)的范围内。处理器可持续采集肌肉信号并重复上述步骤,直到使用者停止骑行(S400)。
[0037] 计算肌肉激活率(S120)的第一种方法为计算实时肌肉激活模式与期望肌肉激活模式之间的激活时间窗510的重叠百分比。较大的重叠值表示与期望的肌肉激活模式的匹配度更大。重叠百分比的范围为0%至100%。
[0038] 计算肌肉激活率(S120)的第二种方法取决于肌肉信号的振幅。较大的振幅表示肌肉产生较大的力。使用者需要产生足够的自发力来控制系统的刺激信号强度和电机速度。
[0039] 图15a和图15b分别为斜躺式交互式骑行系统与直立式交互式骑行系统的推动阶段与拉动阶段示意图。在推动阶段,踏板在推动力作用下,上止点(TDC)向前移动到下止点(BDC);在拉动阶段,踏板在拉动力作用下,从BDC向后移动到TDC。
[0040] 图16所示为与激活时间窗510 100%重叠的经处理的肌肉信号110。图中,刺激信号强度500与肌肉信号的振幅相对应。
[0041] 本文中所描述的方法和过程可实施为代码和/或数据。本文中所描述的软件代码和数据可存储在一个或多个机器可读介质上,包括可存储供计算机系统使用的代码和/或数据的任何设备或介质。当计算机系统和/或处理器读取并执行存储在计算机可读介质上的代码和/或数据时,计算机系统和/或处理器执行实施为存储在计算机可读存储介质内的数据结构和代码的方法和过程。
[0042] 本领域技术人员应理解,计算机可读介质包括可用于存储信息的可移动和不可移动结构/设备,诸如计算机可读指令、数据结构、程序模块和由计算系统/环境使用的其它数据。计算机可读介质包括但不限于诸如随机存取存储器(RAM、DRAM、SRAM)的易失性存储器;诸如闪存、各种只读存储器(ROM、PROM、EPROM、EEPROM)、磁性磁/铁电存储器(MRAM,FeRAM)以及磁性和光学存储设备(硬盘驱动器、磁带、CD、DVD)的非易失性存储器;网络设备;或者现在已知或以后开发的能够存储计算机可读信息/数据的其它介质。计算机可读介质不应理解或解释为包括任何传播信号。本发明的计算机可读介质可为例如光盘(CD)、数字视频盘(DVD)、闪存设备、易失性存储器或硬盘驱动器(HDD),诸如外部HDD或者计算设备的HDD,但实施方式不限于此。计算设备可为笔记本电脑、台式计算机、服务器、手机或平板电脑,但实施方式不限于此。
[0043] 通过举例说明给出的以下实施方式,可更好地理解本发明及其许多优点。下面的实施示例说明了本发明的一些方法、应用、实施方式和变体。当然,它们不应视为对本发明的限制。可对本发明进行许多改变和修改
[0044] 本发明包括但不限于以下示例性实施方式。
[0045] 实施方式1.用于以肌肉信号控制骑行模式的系统,系统包括:
[0046] 踏板;
[0047] 曲柄臂,连接踏板;
[0048] 电机,连接曲柄臂;
[0049] 刺激器,连接多个刺激电极;
[0050] 控制器,连接电机和刺激器;以及
[0051] 数据采集系统,连接控制器和肌肉信号传感器,
[0052] 其中,电机可向曲柄臂施加辅助力或阻力,
[0053] 其中,刺激器可向多个刺激电极传输刺激信号,
[0054] 其中,数据采集系统可连续地采集肌肉信号,
[0055] 其中,控制器可根据肌肉信号控制电机施加辅助力或阻力,以及[0056] 其中,控制器可根据肌肉信号控制刺激器增加或减小刺激信号的强度。
[0057] 实施方式2.如实施方式1中所述的系统,其中,踏板固定在L形踝部矫形器上。
[0058] 实施方式3.根据实施方式1和2中任一项所述的系统,其中,力传感器安装在踏板上。
[0059] 实施方式4.根据实施方式1至3中任一项所述的系统,其中,力传感器连接曲柄臂。
[0060] 实施方式5.根据实施方式1至4中任一项所述的系统,其中,前齿轮连接曲柄臂。
[0061] 实施方式6.如实施方式5中所述的系统,其中,链条连接前齿轮和后齿轮。
[0062] 实施方式7.如实施方式6中所述的系统,其中,扭矩传感器连接后齿轮。
[0063] 实施方式8.如实施方式7中所述的系统,其中,扭矩传感器连接电机和控制器。
[0064] 实施方式9.根据实施方式1至8中任一项所述的系统,其中,肌肉信号传感器和多个刺激电极可贴附到单个腿部肌肉以训练受影响的腿部的运动,而不涉及未受影响的腿部。
[0065] 实施方式10.根据实施方式1至8中任一项所述的系统,其中,肌肉信号传感器和多个刺激电极可同时贴附到左腿部和右腿部以训练双侧下肢运动。
[0066] 实施方式11.根据实施方式1至10中任一项所述的系统,其中,肌肉信号传感器和一对刺激电极可贴附到使用者的腿后肌。
[0067] 实施方式12.根据实施方式1至11中任一项所述的系统,其中,肌肉信号传感器和一对刺激电极可贴附到使用者的股四头肌。
[0068] 实施方式13.根据实施方式1至12中任一项所述的系统,其中,肌肉信号传感器和一对刺激电极可贴附到使用者的腓肠肌。
[0069] 实施方式14.根据实施方式1至13中任一项所述的系统,其中,肌肉信号传感器和一对刺激电极可贴附到使用者的胫骨前肌。
[0070] 实施方式15.根据实施方式1至14中任一项所述的系统,其中,当曲柄臂的旋转角度随着使用者的腿后肌收缩而改变时,刺激器通过输出刺激信号来刺激腿后肌。
[0071] 实施方式16.根据实施方式1至15中任一项所述的系统,其中,当曲柄臂的旋转角度随着使用者的股四头肌收缩而改变时,刺激器通过输出刺激信号来刺激股四头肌。
[0072] 实施方式17.根据实施方式1至16中任一项所述的系统,其中,当曲柄臂的旋转角度随着使用者的腓肠肌收缩而改变时,刺激器通过输出刺激信号来刺激腓肠肌。
[0073] 实施方式18.根据实施方式1至17中任一项所述的系统,其中,当曲柄臂的旋转角度随着使用者的胫骨前肌收缩而改变时,刺激器通过输出刺激信号来刺激胫骨前肌。
[0074] 实施方式19.用于在骑行期间使用肌肉信号来控制刺激信号强度的方法,该方法包括:
[0075] 向实施方式1所描述的系统提供计算机可读介质,
[0076] 其中,计算机可读介质包括存储的指令,存储的指令在被执行时使用至少一个处理器执行以下任务:
[0077] 在骑行期间,检测使用者对不同强度刺激信号的反应,以确定使用者可接受的刺激信号的最小和最大强度;
[0078] 在骑行期间,采集使用者目标肌肉的肌肉信号,以确定肌肉激活率与预设阈值的大小关系;
[0079] 控制系统的刺激器将刺激信号传输到目标肌肉,
[0080] 其中,刺激信号的强度取决于肌肉激活率与预设阈值的大小关系,以及重复该方法,直到使用者停止骑行。
[0081] 实施方式20.如实施方式19所述的方法,其中,如果肌肉激活率小于阈值,存储的指令进一步使用处理器控制刺激器将具有最小强度的刺激信号传输到目标肌肉。
[0082] 实施方式21.如实施方式19所述的方法,其中,如果肌肉激活率大于阈值,存储的指令进一步使用处理器完成以下工作:
[0083] 根据肌肉激活率计算的刺激信号期望强度;
[0084] 确定计算出的刺激信号期望强度与最大强度的大小关系;以及
[0085] 控制刺激器将刺激信号传输到目标肌肉,
[0086] 其中,刺激信号的强度取决于计算出的刺激信号期望强度与最大强度的大小关系。
[0087] 实施方式22.如实施方式21所述的方法,其中,如果计算出的的刺激信号期望强度大于最大强度,存储的指令进一步使用处理器完成以下工作:
[0088] 控制刺激器将具有最大刺激强度的刺激信号传输到目标肌肉。
[0089] 实施方式23.如实施方式21所述的方法,其中,如果计算出的的刺激信号期望强度小于最大强度,存储的指令进一步使用处理器完成以下工作:
[0090] 控制刺激器将具有计算出的期望强度的刺激信号传输到目标肌肉。
[0091] 实施方式24.如实施方式19所述的方法,其中,存储的指令进一步使用处理器完成以下工作:
[0092] 根据实时肌肉激活模式与期望肌肉激活模式两者激活时间窗的重叠百分比,计算肌肉激活率;或者
[0093] 根据实时肌肉信号的实际振幅与实时肌肉信号的期望的振幅两者的比值,计算肌肉激活率。
[0094] 实施方式25.用于在骑行操作期间使用肌肉信号控制电机施加在踏板上力的性质的方法,该方法包括:
[0095] 向根据实施方式1所描述的系统提供计算机可读介质,
[0096] 其中,计算机可读介质包括存储的指令,存储的指令在被执行时使用至少一个处理器执行以下工作:
[0097] 在使用者骑行期间,确定系统曲柄臂的最小转速和最大转速;
[0098] 在使用者骑行期间,采集来自使用者目标肌肉的肌肉信号;
[0099] 确定肌肉激活率与预设阈值的大小关系;
[0100] 控制电机施加辅助力或阻力;以及
[0101] 重复该方法,直到使用者停止骑行。
[0102] 实施方式26.如实施方式25所述的方法,其中,如果肌肉激活率小于阈值,存储的指令进一步使用处理器完成以下工作:
[0103] 控制电机施加阻力以将系统的曲柄臂的转速降低到预设速度。
[0104] 实施方式27.如实施方式25所述的方法,其中,如果肌肉激活率大于阈值,存储的指令进一步使用处理器完成以下工作:
[0105] 根据肌肉激活率,计算系统的曲柄臂的期望转速;
[0106] 确定计算出的期望转速与最大转速的大小关系;以及
[0107] 如果计算出的曲柄臂的期望转速大于最大转速,控制电机施加辅助力。
[0108] 实施方式28.如实施方式27所述的方法,其中,如果计算出的曲柄臂的期望转速为大于最大转速,存储的指令进一步使用处理器完成以下工作:
[0109] 控制电机向系统的踏板施加辅助力以将系统的曲柄臂的转速增加到预设速度。
[0110] 实施方式29.如实施方式27所述的方法,其中,如果计算出的期望转速小于最大转速,存储的指令进一步使用处理器完成以下工作:
[0111] 控制电机施加辅助力以将系统的曲柄臂的转速增加到计算出的期望转速。
[0112] 实施方式30.如实施方式25所述的方法,其中,存储的指令进一步使用处理器完成以下工作:
[0113] 根据实时肌肉激活模式与期望肌肉激活模式两者激活时间窗的重叠百分比,计算肌肉激活率;或者
[0114] 根据实时肌肉信号的实际振幅与实时肌肉信号的期望振幅两者的比值,计算肌肉激活率。
[0115] 实施范例1
[0116] 固定式自行车(X2FIT-HG-599-17A)配备有用于轮椅使用者的可伸缩座椅适配器,受试者坐于改装后的标准座椅中。金属框架上安装有可以产生15Nm扭矩和50rpm转速的电机。根据使用者下肢肌肉的EMG信号的强度,控制器可以改变电机的扭矩,从而在骑行运动期间提供辅助力或阻力。该设计适合中风或下肢残疾的患者,可用作对受影响的腿部进行康复训练的工具。未受影响的腿部可在一旁休息而无需参与训练。
[0117] 本文中描述的实施范例和实施方式仅用于说明目的,并且对于本领域技术人员而言,将建议对其进行各种修改或改变,并且这些修改或改变将包括在本申请的精神和范围内。
[0118] 本文中提及或引用的所有专利、专利申请、临时申请和出版物通过引用以及全文(包括所有的图和表)并入,只要它们没有与本说明书的明确教导不一致。
相关专利内容
标题 发布/更新时间 阅读量
矫形器 2020-05-12 497
拇指矫形器 2020-05-17 247
矫形器 2020-05-12 608
踝部矫形器 2020-05-17 132
踝足矫形器 2020-05-14 428
斜颈矫形器 2020-05-11 322
踝足矫形器 2020-05-16 805
脊柱矫形器 2020-05-14 151
压力矫形器 2020-05-16 868
一种膝踝足矫形器 2020-05-18 357
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈