首页 / 专利库 / 手术 / 远程手术 / 弯曲套管和机器人操纵器

弯曲套管机器人操纵器

阅读:1032发布:2020-07-24

专利汇可以提供弯曲套管机器人操纵器专利检索,专利查询,专利分析的服务。并且一种 机器人 手术系统配置有(多个)刚性的弯曲 套管 (416a),这些套管延伸穿过同一个开口进入病人体内。具有(多个)被动柔性轴(506)的手术器械(500)延伸穿过这些弯曲套管。这些套管被定向为朝手术部位引导器械。公开了一种远程操作控制系统,该系统以一种允许外科医生体验直观控制的方式移动这些弯曲套管及其相关联的器械。这些柔性轴器械被控制为就好像沿着一条虚拟的直线插入和抽出轴线进行延伸。公开了在该单个开口内 支撑 弯曲套管的各种端口构件(1402)。公开了在插入到该单个开口以及安装至机器人操纵器上的过程中支撑这些套管的(多个)套管支撑固定件(1902)。,下面是弯曲套管机器人操纵器专利的具体信息内容。

1.一种手术系统,其包括:
主控操纵器;
机器人从动操纵器;
耦连到所述机器人从动操纵器的弯曲套管
被动柔性器械轴,其延伸越过所述弯曲套管的远端;和
控制系统;
其中直线的器械插入和抽出轴线被限定为在所述弯曲套管的远端处从所述弯曲套管的纵向中心轴线延伸;并且
其中响应于所述主控操纵器的移动,所述控制系统命令所述机器人操纵器使所述弯曲套管的所述远端围绕远程运动中心移动,就好像所述器械轴是沿着所述器械插入和抽出轴线直线地定位
2.如权利要求1所述的手术系统,进一步包括:
内窥镜,其中对于所述内窥镜捕获的图像限定参考系;
显示器,其中对于所述显示器输出的图像限定参考系;和
耦连到所述器械轴的远端的手术末端执行器
其中所述内窥镜的参考系和所述显示器的参考系彼此对应;
其中所述显示器输出所述末端执行器的图像;并且
其中所述控制系统接收主控命令,该主控命令与所述主控操纵器的一部分相对于所述显示器的参考系以特定方向的移动相对应,并且响应于接收到所述主控命令,所述控制系统向从动操纵器输出从动命令,使所述末端执行器相对于所述内窥镜的参考系以基本相同的特定方向移动。
3.如权利要求1所述的手术系统:
其中所述控制系统阻止所述器械轴的远端部分延伸越过所述弯曲套管的所述远端超出一个预设的极限距离;并且
其中所述预设的极限是由所述器械轴的所述远端部分的硬度决定的。
4.如权利要求1所述的手术系统:
其中所述控制系统阻止所述主控操纵器的移动使所述套管或所述器械移动,直到所述手术器械的远端尖端延伸超过所述套管的所述远端。
5.如权利要求4所述的手术系统:
其中所述控制系统是通过启动伺服电机而提供所述主控操纵器的操作员所体验的触觉,从而阻止所述主控操纵器的移动造成所述套管或器械的移动。
6.如权利要求1所述的手术系统,进一步包括:
耦连到所述柔性轴的所述远端的手术末端执行器,其中所述柔性轴与所述末端执行器之间没有腕部机构;
其中所述主控操纵器被配置为接收来自所述主控操纵器的操作员的输入而移动手术器械腕部机构;并且
其中所述控制系统启动与所述主控操纵器相关联的伺服电机以提供所述操作员所体验的触觉力,从而有效阻止所述操作员做出移动所述手术器械腕部机构的输入。
7.如权利要求1所述的手术系统,进一步包括:
第二弯曲套管,其包括远端;
其中所述弯曲套管包括弯曲区段以及位于所述弯曲套管的所述弯曲区段与所述远端之间的直区段;
其中所述第二弯曲套管包括弯曲区段以及位于所述第二弯曲套管的所述弯曲区段与所述远端之间的直区段;
其中所述弯曲套管的所述弯曲区段的弯曲半径与所述第二弯曲套管的所述弯曲区段的弯曲半径基本相同;
其中所述弯曲套管的所述直区段的长度与所述第二弯曲套管的所述直区段的长度不相同;并且
其中所述控制系统以相同的动力学控制参数来控制所述弯曲套管和所述第二弯曲套管的移动。
8.如权利要求7所述的手术系统:
其中所述动力学控制参数包括Denavit-Hartenberg参数。
9.一种在机器人手术系统中的控制方法,其包括以下动作:
限定一个直线的器械插入和抽出轴线,所述器械插入和抽出轴线在耦连至机器人从动操纵器的弯曲套管的远端处从所述弯曲套管的纵向中心轴线延伸;
接收来自主控操纵器的主控命令而移动手术器械的远端;并且
响应于接收到所述主控命令,向所述从动操纵器输出从动命令以使所述弯曲套管围绕远程运动中心移动,就好像延伸穿过所述弯曲套管并且越过所述弯曲套管的远端的所述手术器械轴沿着所述器械插入和抽出轴线直线地定位。
10.如权利要求9所述的方法:
其中所述远程运动中心位于所述弯曲套管上。
11.如权利要求9所述的方法:
其中所述主控命令包括在对于显示器输出的图像限定的参考系中与所述主控操纵器的一部分的特定取向相关联的信息;并且
其中所述从动命令包括命令所述从动操纵器将所述手术器械的末端执行器移动至在对于内窥镜捕获的末端执行器图像所限定的参考系中处于基本相同的特定取向。
12.如权利要求9所述的方法:
其中所述主控命令对应于所述主控操纵器的一部分相对于针对显示器输出的图像而限定的参考系在一个特定方向上的移动;并且
其中所述从动命令包括命令所述从动操纵器在对于内窥镜捕获的末端执行器图像所限定的参考系中在基本相同的特定方向上移动所述手术器械的末端执行器。
13.如权利要求9所述的方法,进一步包括:
自动阻止所述手术器械的远端部分延伸越过所述弯曲套管的远端超过一个预设的极限距离;
其中所述预设的极限是由所述器械轴的所述远端部分的硬度决定的。
14.如权利要求9所述的方法:
其中仅在所述手术器械的远端尖端延伸超过所述套管的远端时输出所述从动命令。
15.如权利要求9所述的方法,进一步包括:
向所述主控操纵器的操作员输出触觉力;
其中所述触觉力有效地阻止所述操作员对主控操纵器的移动。
16.如权利要求9所述的方法,进一步包括:
向所述主控操纵器的操作员输出触觉力;
其中所述触觉力有效地阻止所述操作员对所述主控操纵器与手术器械腕部机构的控制相关联的一部分的移动。
17.如权利要求9所述的方法,进一步包括:
基于与所述弯曲套管相关联的动力学信息来产生所述从动命令;
其中所述弯曲套管包括弯曲区段以及位于所述弯曲套管的所述弯曲区段与远端之间的直区段;并且
其中所述动力学信息不包括与所述弯曲套管的所述直区段相关联的信息。
18.如权利要求16所述的方法:
其中所述动力学信息包括Denavit-Hartenberg参数。

说明书全文

弯曲套管机器人操纵器

[0001] 相关申请的交叉引用
[0002] 本申请是美国专利申请No.12/618,549(于2009年11月13日提交)[律师卷号ISRG 02390/US](公开了“弯曲套管(Curved Cannula)”)的部分继续,该申请要求美国临时专利申请No.61/245,171(2009年9月23日提交)(公开了“弯曲套管(Curved Cannula)”)的权益,这两个申请均通过引用结合到本文。
[0003] 本申请可能涉及以下申请:美国专利申请No.12/618,583(2009年11月13日提交)[律师卷号ISRG 02391/US](公开了“弯曲套管手术系统(Curved Cannula Surgical System)”)、美国专利申请No.12/618,608(2009年11月13日提交)[律师卷号ISRG02393/US](公开了“弯曲套管器械(Curved Cannula Instrument)”)、美国专利申请No.12/618,621(2009年11月13日提交)[律师卷号ISRG 02394/US](公开了“手术端口构件(Surgical Port Feature)”)以及美国专利申请No.12/618,631(2009年11月13日提交)[律师卷号ISRG 02395/US](公开了“套管安装固定件(Cannula Mounting Fixture)”),所有这些申请都通过引用结合到本文。

技术领域

[0004] 本发明各方面涉及微创手术,更具体地涉及微创机器人手术系统,并且还更具体地涉及穿过单个进入点进入病人体内工作的微创机器人手术系统。

背景技术

[0005] 微创手术的益处是众所周知的,并且与传统的开放式切口手术相比它们包括病人的更少创伤、更少失血和更快的恢复时间。此外,机器人手术系统(例如,提供远程呈现的遥控机器人系统)诸如加利福尼亚州Sunnyvale的直观外科手术公司(Intuitive Surgical,Inc.)的da 手术系统的使用是已知的。与手动微创手术相比,此类机器人手术系统可以允许外科医生以直观控制和提高的精确度来进行操作。
[0006] 为了进一步减少病人创伤并且保留机器人手术系统的益处,外科医生已经开始执行通过经皮肤的单个切口来研究或处理病人状况的手术程序。在一些情况下,这样的“单端口入路(port access)”手术已经采用手动器械或采用现有机器人手术系统执行。因此,期望的是改进的设备和方法,与使用现有的设备和方法相比,其能够使外科医生更有效地进行单端口入路手术。还期望的是能够容易地修改一般用于执行这种单端口入路手术的多切口(多端口)手术的现有机器人手术系统。

发明内容

[0007] 在一个方面,手术系统包括机器人操纵器、弯曲套管以及延伸穿过该弯曲套管的具有被动柔性轴的器械。该机器人操纵器使该弯曲套管绕远程运动中心移动,该运动中心被设置在病人体内的开口处(例如切口、天然孔口),从而使得该弯曲套管提供该手术器械在手术部位处的三测量角度。在一个实现方式中,使用内窥镜以及两个这样的弯曲套管,其中弯曲套管的远端被定向为朝向手术部位呈不同的角度,从而使得实现有效的器械三角测量,这允许外科医生在该手术部位处有效地工作并观看该手术部位。
[0008] 在另一方面,该弯曲套管包括直区段和相邻的弯曲区段。机器人操纵器安装支架被耦连至该直区段上。第二直区段可以被耦连至该弯曲区段的相反末端上,以便有助于从该套管的远端延伸出的被动柔性的手术器械朝手术部位的对齐。
[0009] 在另一方面,手术器械包括被动柔性轴和耦连至该轴的远端的手术末端执行器。该柔性轴延伸穿过弯曲套管,并且该柔性轴的远端区段延伸至悬出该弯曲套管的远端。该柔性轴的远端区段是足够刚性的,以便在手术部位提供有效的手术动作,而它是足够柔性的,以便允许其穿过该弯曲套管插入和抽出。在一些方面,该器械轴的远端区段的硬度大于在手术程序中该套管的弯曲区段中剩余的轴的区段的硬度。
[0010] 在另一方面,手术端口构件是单个主体,该单个主体在其顶表面与底表面之间包括(多个)通道。这些通道在相反方向上成角度,以便以期望的角度来夹持这些弯曲套管的直区段。该主体是足够柔性的,以便允许弯曲套管绕远程运动中心移动,远程运动中心大体位于通道内。在一些方面,该端口构件包括用于内窥镜套管的通道和/或一个或多个辅助通道。这些通道可以包括不同的密封件
[0011] 在另一个方面,公开第二端口构件,该第二端口构件包括上部漏斗状部分和下部舌状件。用于手术器械的通道(如弯曲套管)被限定在腰部区段中,该腰部区段将该漏斗状部分与该舌状件连结起来。在一个方面,该第二端口构件被用于要求器械以相对小的角度(锐角)进入病人体内的手术,因为该端口构件有助于防止器械与病人身体之间的不必要的应,反之亦然。
[0012] 在另一方面,公开套管安装固定件。这些固定件支撑套管以便插入并对接到它们的相关联的机器人操纵器上。在一个方面,固定件包括(多个)臂,这些臂夹持内窥镜套管和弯曲的器械套管。在另一方面,固定件被配置为帽,这个帽夹持内窥镜和弯曲套管的远端。这个帽的指向有助于插入病人内的开口之中。
[0013] 在另一方面,公开了带有弯曲套管的机器人手术系统的控制系统。该控制系统使用与该弯曲套管相关联的运动学数据。为了给外科医生提供直观控制体验,该控制系统命令机器人操纵器响应于外科医生在主操纵器处的输入而使该弯曲套管及其器械移动,就好像该器械被定位成沿着从该弯曲套管的远端延伸的一条直轴线与该套管的弯曲区段的远端大致相切。附图说明
[0014] 图1A是机器人手术系统中病人侧推车的前向正视图。
[0015] 图1B是机器人手术系统中外科医生控制台的前向正视图。
[0016] 图1C是机器人手术系统中视频推车的前向正视图。
[0017] 图2A是器械臂的侧面正视图。
[0018] 图2B是安装有器械的操纵器的透视图。
[0019] 图2C是安装有摄像机的摄像机臂的一部分的侧面正视图。
[0020] 图3是穿过体壁插入而抵达手术部位的多个套管和相关联的器械的图解视图。
[0021] 图4A是病人侧机器人操纵器的一部分的示意图,该操纵器支撑并移动弯曲套管和被动柔性手术器械的组合。
[0022] 图4B是示出加在图4A的视图上的第二病人侧机器人操纵器的示意图,该第二病人侧机器人操纵器支撑并移动第二弯曲套管和被动柔性手术器械的组合。
[0023] 图4C是示出加在图4B视图上的内窥镜摄像机操纵器的示意图,该内窥镜摄像机操纵器支撑内窥镜。
[0024] 图5是柔性器械的图解视图。
[0025] 图6A是拉动(pull/pull)式器械设计的图解视图。
[0026] 图6B是推拉(push/pull)式器械设计的图解视图。
[0027] 图7A是力传递机构的底视图。
[0028] 图7B是用于拉动式器械设计中的力传递机构的平面图。
[0029] 图7C是用于推拉式器械设计中的力传递机构的平面图。
[0030] 图7D是用于推拉式器械设计中的另一力传递机构的平面图。
[0031] 图8A是器械轴的一部分的剖视透视图。
[0032] 图8B是另一器械轴设计的图解透视截面视图。
[0033] 图8C是另一器械轴的一部分的剖视透视图。
[0034] 图8D是又一器械轴设计的图解透视图。
[0035] 图9A是柔性轴器械的远端的分解透视图。
[0036] 图9B是图9A中描绘的实现方式的截面视图。
[0037] 图9C是拉动型末端执行器的图解视图。
[0038] 图9D是另一柔性轴器械的远端的分解透视图。
[0039] 图9E是推拉型末端执行器的图解视图。
[0040] 图9F是器械轴端帽的图解透视图。
[0041] 图10是弯曲套管的图解视图。
[0042] 图10A是对齐的键构件(key feature)的图解视图。
[0043] 图10B套管末端间隙检测系统的示意图。
[0044] 图11A和11B图示说明套管取向。
[0045] 图11C是带有多个操纵器的机器人手术系统的平面图,其中这些操纵器处于一个示例性姿势以定位多个弯曲套管。
[0046] 图12A、12B和12C是示出延伸穿过各种套管构型并且从中延伸的器械轴的图解视图。
[0047] 图13是图示说明另一弯曲套管和柔性器械组合的示意图。
[0048] 图14A是端口构件的图解平面视图。
[0049] 图14B是端口构件的图解透视图。
[0050] 图15A是在图14A中切割线处截取的图解截面视图。
[0051] 图15B示出图15A中所描绘的密封件的细节。
[0052] 图15C是在图14A中另一个切割线处截取的图解截面视图。
[0053] 图15D是图示说明端口构件中的导电层的图解截面视图。
[0054] 图15E示出另一密封件的细节。
[0055] 图16A是各种皮肤和筋膜切口的图解视图。
[0056] 图16B是另一端口构件的图解透视截面视图。
[0057] 图17A和17B是又一端口构件的图解视图。
[0058] 图18A和18B是又一个端口构件的图解视图。
[0059] 图19A是套管插入/稳定固定件的透视图。
[0060] 图19B是套管插入/稳定固定件的另一个透视图。
[0061] 图19C是套管稳定固定件的图解透视图。
[0062] 图20A-20D是图示说明插入套管的另一种方法的图解视图。
[0063] 图21是弯曲套管和各种参考轴线的图解视图。
[0064] 图22是弯曲套管和带有相关光纤应变传感器的柔性器械远端的图解视图。
[0065] 图23是控制系统构造的图解视图。

具体实施方式

[0066] 示例说明多个发明性方面和实施例方案的说明和附图不应被认为限制性的,权利要求书限定了受保护的发明。可以进行各种机械的、组成的、结构的、电气的和操作的改变,而不偏离本说明书和权利要求书的精神和范围。在一些情况下,为了不使本发明模糊,熟知的电路、结构和技术未详细地示出或说明。在两个或更多个附图中相同的数字表示相同或类似的元件。
[0067] 另外,本说明书的术语不旨在限制本发明。例如,空间相关术语,例如“之下/下方”、“以下/在……下面”、“下部”、“之上/上方”、“以上/在……上面”、“近侧/近端”和“远侧/远端”等,可以用于描述如在这些附图中图示说明的一个元件或构件与另一个元件或构件的关系。这些空间相关术语旨在包含除图中所示的位置和取向之外,设备在使用或操作中的不同位置(即,定位)和取向(即,旋转位置)。例如,如果这些附图中一个设备被翻转,描述为在其他元件或构件“以下”或“之下”的元件则应当在这些其他元件或构件“以上”或“之上”。因此,示例性术语“以下”可以包含以上和以下的位置和取向两者。另外,一个设备可以被定向(旋转90度或以其他取向)并且因此用在此使用的空间相关描述语进行解释。同样,沿着并且环绕各个轴线移动的说明包括各种特定的设备位置和取向。此外,单数形式“一”、“一个”和“所述/该”也旨在包含复数形式,除非在上下文中另外地指出。并且,术语“包括”、“包括有”和“包含”等限定了所述构件、步骤、操作、元件和/或部件的存在但不排除一种或多种其他构件、步骤、操作、元件、部件和/或组的存在或加入。描述为耦连的部件可以是直接电耦合或机械耦连,或它们可以经由一个或多个中间部件间接耦连。
[0068] 在实践时参考一个实施例详细说明的要素及其相关方面可以被包括在它们在其中未被明确示出或说明的其他实施例中。例如,如果参考一个实施例来详细说明一个要素,并且没有参考第二实施例来说明该要素,尽管如此,该要素可以被要求包括在该第二实施例中。
[0069] 与机械结构或部件相关的术语“柔性的”应作广义解释。本质上,该术语是指该结构或部件可以反复地弯曲并且恢复到初始形状而没有损害。由于材料特性,许多“刚性的”物体具有少量固有的弹性“曲度(bendiness)”,但当在此使用该术语时,这类物体不能被认为是“柔性的”。柔性的机械结构可以具有无限的自由度(DOF’s)。这类结构的实例包括封闭的、可弯曲的管(由例如NITINOL、聚合物软化橡胶等制成)、螺旋卷簧等,它们可以被弯曲成各种简单的和复杂的曲线,通常无显著的截面变形。通过使用一系列紧密间隔的部件(它们类似于蛇形布置中的“椎骨”),其他柔性机械结构可以近似这样一种无限DOF工件。在这样的椎骨安排中,每个部件是运动链中的短连杆,并且各连杆之间可移动的机械限制(例如,销栓铰链外圈和球、活性铰链等)可以允许这些连杆之间相对运动一个(例如,俯仰)或两个(例如,俯仰和偏转)DOF。短的柔性结构可以用作并且被模制成在运动链的两个连杆之间提供一个或多个DOF的单个的机械限制(关节),即使该柔性结构本身可以是由若干耦连的连杆形成的运动链。本领域技术人员本领域技术人员将会理解部件的柔性能够以其硬度的形式来表示。
[0070] 在本说明书中,柔性的机械结构或部件可以是主动柔性亦或被动柔性的。通过使用主动柔性工件本身内在相关的力,主动柔性工件可以被弯曲。例如,一个或多个(tendon)可以沿着工件纵向行进并且从该工件的纵轴偏移,这样使得在该一个或多个腱上的张力导致该工件弯曲。主动弯曲主动柔性工件的其他方式包括但不限于使用气动或液压力,齿轮、电活性的聚合物等。通过使用被动柔性工件外部的力,被动柔性工件被弯曲。具有内在硬度的被动柔性工件的实例是塑料杆或弹性橡胶管。当未被其内在相关的力致动时,主动柔性工件可以是被动柔性的。单个部件可以由连续的一个或多个主动和被动柔性部分制成。
[0071] 本发明的多个方面主要以使用da 手术系统(具体地说,Model IS3000,TM TM以da Si HD 手术系统的形式进行销售)的实现方式的形式进行说明,其中该
手术系统由加利福尼亚州Sunnyvale直观外科手术公司(Intuitive Surgical,Inc.)制造。然而本领域技术人员将理解的是在此公开的发明性方面能够以各种方式来体现和实现,包括机器人的和非机器人的实施方案和实现方式。da 手术系统(例如,Model TM TM
IS3000;Model IS2000,作为da S HD 手术系统销售)实现方式仅仅是示例性的,并且不应被认为是限制在此公开的发明性方面的范围。
[0072] 图1A、1B和1C是用于微创手术的远程控制机器人手术系统的三个主要部件的前向正视图。这三个部件彼此连接从而允许外科医生在手术团队的帮助下,在病人身上进行诊断性和矫正性手术程序。
[0073] 图1A是da 手术系统的病人侧推车部件100的前向正视图。该病人侧推车包括立在地面上的底座102,安装在底座102上的支撑塔104,以及支撑手术工具(包括立体内窥镜)的若干个臂。如图1A中所示,臂106a和106b是支撑并且移动用于操纵组织的手术器械的器械臂,并且臂108是支撑并且移动内窥镜的摄像机臂。图1A还示出支撑在支撑塔104的背侧上的任选的第三器械臂106c,并且该第三器械臂106c可以根据需要定位到该病人侧推车的左侧或右侧上用来进行手术程序。图1A进一步示出了安装在器械臂106a、
106b、106c上可互换的手术器械110a、110b、110c,并且其示出了安装在摄像机臂108上的内窥镜112。下面对这些臂进行更详细的讨论。本领域技术人员将理解的是支撑这些器械和摄像机的这些臂还可以被底座平台支撑,该底座平台(固定的或可移动的)安装在天花板或墙壁上,或在一些情况下安装到手术室中另一件器械上(例如,手术台)。同样,本领域技术人员将理解的是可以使用两个或更多个分开的底座(例如,一个底座支撑一个臂)。
[0074] 图1B是da 手术系统的外科医生控制台120部件的前向正视图。该外科医生控制台装备有左侧和右侧多DOF主工具操纵器(MTM)122a和122b,它们是用于控制这些手术工具(包括内窥镜和各种套管)的运动链系。外科医生抓握(典型地用拇指和食指)每个MTM 122上的夹紧器(pincher)组件124a和124b,并且可以将该夹紧器组件移动到各个位置和取向。当选择工具控制模式时,耦连每个MTM 122用来控制病人侧推车100的相应的器械臂106。例如,可以耦连左侧MTM 122a用来控制器械臂106b和器械110a,并且可以耦连右侧MTM 122b用来控制器械臂106b和器械110b。如果在手术程序期间第三器械臂106c被使用并且被定位在左侧,则左侧MTM 122a可以在控制臂106a和器械110a至控制臂106c和器械110c之间进行切换。同样,如果在手术程序期间第三器械臂106c被使用并且被定位在右侧上,则右侧MTM 122a可以在控制臂106b和器械110b至控制臂106c和器械110c之间切换。在一些情况下,MTM的122a与122b以及臂106a/器械110a组合与臂106b/器械110b组合之间的控制指派也可以交换。这可以实现,例如,如果将内窥镜转动180度,从而使得在内窥镜视场中移动的器械看起来位于与外科医生正在移动的MTM同一侧上。一般使用该夹紧器组件来操作位于器械110的远侧处的钳式手术末端执行器(例如,剪刀、抓握式牵引器、针驱动器等)。
[0075] 外科医生控制台120还包括立体图像显示系统126。由立体内窥镜112捕获的左侧和右侧图像被输出在相应的左侧和右侧显示器上,在显示系统126上外科医生将这些图像感知成三维图像。在有利的配置中,MTM的122被定位在显示系统126之下,从而使得显示器中所示的手术工具的图像看起来与显示器下面外科医生的手共同定位。这个特征允许外科医生在该三维显示器中直观地控制各种手术工具就像直接看到手一样。因此,相关联的器械臂和器械的MTM伺服控制是基于内窥镜图像参考系。
[0076] 如果将MTM切换到摄像机控制模式,也使用内窥镜图像参考系。在da 手术系统中,如果选择摄像机控制模式,外科医生可以通过一起移动MTM中的一个或两个来移动内窥镜的远端(两个MTM的部分可以被伺服机械地耦连使得这两个MTM部分看起来作为一个单元一起移动)。然后外科医生可以通过移动MTM来直观地移动(例如,摇动、倾斜、变焦)所显示的立体图像,就像将图像握在手中一样。
[0077] 外科医生的控制台120一般设置在与病人侧推车100相同的手术室中,虽然它被定位成使得操作该控制台的外科医生位于无菌区之外。一个或多个助手一般辅助外科医生在无菌手术区内工作(例如,改变病人侧推车上的工具,执行手动抽出等)。因此,外科医生远离无菌区进行操作,并且这样该控制台可以位于与手术室分开的房间或建筑物中。在一些实现方式中,两个控制台120(共同定位亦或彼此远离)可以通过网络连接在一起从而使得两个外科医生可以同时观察和控制手术部位的工具。
[0078] 图1C是da 手术系统的视觉推车部件140的前向正视图。图像推车140容纳手术系统的中央电子数据处理单元142和视觉设备144。该中央电子数据处理单元包括用于操作手术系统的许多数据处理。然而,在各种其他实现方式中,可以将电子数据处理分配到外科医生控制台和病人侧推车中。视觉设备包括用于立体内窥镜112的左侧和右侧图像捕获功能的摄像机控制单元。该视觉设备还包括提供照明用以成像手术部位的照明设备(例如,氙气灯)。如图1C中所示,该视觉推车包括一个任选的24英寸触摸屏监视器146,该监视器可以安装在其他地方,例如在病人侧推车100上。图像推车140进一步包括用于任选的辅助手术设备(例如电子手术单元和吹入器)的空间148。该病人侧推车和外科医生控制台通过光纤通信链路耦合到该视觉推车上,从而使得三个部件一起充当单个的远程操作的微创手术系统,该手术系统为外科医生提供直观的远程呈现。并且,如上所述,可以包括第二外科医生控制台,从而使得第二外科医生可以例如监督该第一外科医生的工作。
[0079] 图2A是示例性器械臂106的侧面正视图。为了清楚的目的省略掉在手术期间正常使用的无菌帘和相关的机构。该臂是由一系列连杆和将这些连杆耦连在一起的关节构成的。该臂被分成两个部分。第一部分是“建立(set-up)”部分202,其中未通电的关节耦连这些连杆。将第二部分通电,即支撑和移动该手术器械的机器人操纵器部分204(病人侧操纵器;“PSM”)。在使用期间,移动建立部分202从而将操纵器部分204放置在适当位置用来执行希望的手术任务。然后建立部分关节被定(例如,用制动机构)从而防止该臂的这个部分运动。
[0080] 图2B是安装有示意性器械110的PSM 204的透视图。PSM 204包括偏转伺服致动器206、俯仰伺服致动器208以及插入和抽出(“I/O”)致动器210。示出的示意性手术器械110安装在器械安装托架212上。示出的示意性直套管214安装到套管支座216。器械110的轴218延伸穿过套管214。PSM 204被机械地限制从而它围绕沿着该器械轴定位的一个固定的远程运动中心220来移动器械110。偏转致动器206提供绕远程中心220的偏转运动222,俯仰致动器208提供绕远程中心220的俯仰运动224,并且I/O致动器210提供通过远程中心220的插入和抽出运动226。建立部分202一般被定位用来在手术期间将远程运动中心220放置在病人体壁中的切口处,并且用来允许可以得到足够的偏转和俯仰运动来进行预期的手术任务。本领域技术人员将理解的是绕远程运动中心的运动还可以仅通过使用软件而不是通过机械组件所限定的物理限制进行限制。
[0081] 安装托架212中的匹配力传递圆盘和器械力传递组件230耦合来自PSM 204中致动器232的致动力,从而移动器械110的各个部分以便定位、定向和操作器械末端执行器234。这类致动力一般可以转动器械轴218(因此提供通过该远程中心的另一个DOF),操作提供偏转和俯仰DOF的腕部236,以及操作可移动的工件或各种末端执行器的抓握夹爪(例如,(能烧灼或不够烧灼的)剪刀、解剖器、抓握器、针驱动器、电烙术钩子、牵引器、施夹器等)。
[0082] 图2C是安装有示例性摄像机112的摄像机臂108的一部分的侧面正视图。类似于器械臂106,摄像机臂108包括建立部分240和操纵器部分242(内窥镜摄像机操纵器;“ECM”)。ECM 242类似于PSM 204配置并且包括偏转运动致动器244,俯仰运动致动器246和I/O运动致动器248。内窥镜112安装在托架组件250上并且内窥镜套管252安装在摄像机套管支座254上。ECM 242移动内窥镜112使其环绕并且穿过远程运动中心256。
[0083] 在使用参考图1A-2C描述的机器人手术系统的典型手术程序期间,在病人身体中形成至少两个切口(通常使用套针用来放置相关联套管)。一个切口用于内窥镜摄像机器械,并且其他切口用于必要的手术器械。有时这类切口被称为“端口”,即还可以表示用于这样的切口中的一件设备的术语(如下详细说明)。在一些手术程序中,为了提供所需要的进入以及对手术部位成像,若干器械和/或摄像机端口是必要的。虽然与常规开放式手术所使用的较大切口相比较,这些切口是较小的,但仍需要并期望进一步减少切口的数量从而进一步减少病人创伤并且用于提高美观性。
[0084] 单端口手术是一种技术,其中用于微创手术的所有器械通过该病人体壁中的一个单个切口,或在一些情况下穿过一个单个自然开口。这类方法可以通过各种术语来提及,例如单端口入路手术(SPA)、腹腔镜内镜单部位手术(LESS)、单切口腹腔镜手术(SILS)、单端口脐部手术(OPUS)、利用单端口无切口常规设备手术(SPICES)、单入路部位手术内窥镜(SASSE)或自然孔道经脐手术(NOTUS)。使用手动器械亦或机器人手术系统(例如上述之一)可以完成单端口的使用。然而,使用这样的技术产生困难,因为单端口限制了手术器械可以进入手术部位的角度。例如,将两个器械并排靠近地布置,并且因此难以在手术部位实现有利的三角测量(三角测量是能够沿着一个三角形的两条边来定位两个手术器械的远端以便在手术部位以该三角形的顶点来有效地工作)。另外,因为这些器械和内窥镜通过同一个切口进入,直的器械轴易于模糊大部分内窥镜视场。并且,另外地,如果使用机器人手术系统,则由于它们的尺寸和它们的移动,多个操纵器可能彼此干扰,这也限制了可供外科医生使用的末端执行器运动的量。
[0085] 图3图示说明针对单端口手术使用多臂机器人手术系统的困难。图3是穿过体壁插入从而抵达手术部位300的多套管和相关联器械的图解视图。如图3中所示,摄像机套管302延伸穿过摄像机切口304,第一器械套管306延伸穿过第一器械切口308,并且第二器械套管310延伸穿过第二器械切口312。可以看出如果这些套管302、306、310中每一个延伸穿过同一个(稍微扩张的)端口304,由于要求每一个绕远程运动中心运动并且还由于将这些套管夹持在安装固定件302a、306a、310a上的上述操纵器的体积和移动,那么末端执行器的非常小的移动是可能的,并且这些套管和器械轴可能模糊该内窥镜视场中的手术部位。为了保留这些器械在手术部位的一些三角测量,已经进行了尝试来交叉这些器械轴并使用这些器械腕部来提供某种有限的三角测量,但这种配置产生“向后(backwards)”控制方案(在内窥镜的视野中右侧主控器控制左侧从动器械,并且反之亦然),这是非直观的并且因此损失了直观的远程机器人控制的一些强大益处。腕部为直轴的手动器械同样要求外科医生以双手交叉或跨视线的“向后的”方式来移动器械。并且此外,对于腹腔镜手术,由于穿过单个切口放置的多个器械/套管,难以维持恰当的气腹。
[0086] 对于使用手动器械的单端口手术而言,已经尝试使用刚性的弯曲器械轴来改善三角测量。这类弯曲轴典型地具有复杂的“S”弯曲,该“S”弯曲在体内允许它们弯曲离开该切口然后返回该手术部位,并且在体外弯曲离开该切口从而为器械手柄和外科医生的手提供间隙。这些弯曲的器械看起来比直轴手动器械甚至更难以使用,因为这些弯曲轴进一步限制了外科医生通过移动该轴亦或通过使用手动操作的腕部机构精确地移动器械末端执行器的能力。例如,使用这类刚性弯曲轴器械进行缝线看起来是极其困难的。此外,因为它们的形状,外科医生直接地在切口和手术部位之间插入并且抽出这类弯曲轴器械的能力受到限制。并且,由于它们的形状,转动刚性的弯曲器械可能引起该器械轴的一部分接触并且有可能损害组织(在外科医生不知道的情况下)。
[0087] 对于使用机器人手术系统的单端口手术而言,提出了多种方法用来为手术器械提供增加的可控的自由度。例如,已经提出使用远程机器人控制的“蛇状”器械以及相关联的可控制的引导管作为通过单个切口进入手术部位的方法。类似地,提出使用具有小型机械平行运动机构的器械。参见,例如,美国专利申请公开号US 2008/0065105A1(2007年6月13日提交)(描述一种微创手术系统)。当这类器械最终可能是有效的时,它们通常在机械上是复杂的。并且,由于它们增加的DOF致动要求,这类器械不可能与现有机器人手术系统兼容。
[0088] 弯曲的套管系统
[0089] 图4A是病人侧机器人操纵器的一部分的示意图,该部分支撑并且移动弯曲的套管和被动柔性手术器械的组合。如图4A中所示,远程机器人操作的手术器械402a包括力传递机构404a、被动柔性轴406a和末端执行器408a。器械402a安装在PSM 204a的器械托架组件212a上(为了清楚的目的示意地绘制上述部件)。接口圆盘414a耦合来自PSM204a中伺服致动器的致动力,从而移动器械402a部件。末端执行器408a示例性地操作单个DOF(例如,关闭夹爪)。用来提供一个或多个末端执行器DOF的腕部(例如,俯仰、偏转;
参见例如美国专利US 6,817,974(2002年6月28日提交的)(公开了“具有主动可定位式腱致动的多圆盘式腕关节的手术工具(Surgical Tool Having Positively Positionable Tendon-Actuated Multi-Disk Wrist Joint)”,该专利通过引用被并入本文)是任选的并且未示出。许多器械实现方式不包括这样的腕部。省略腕部简化了PSM 204a和器械402a之间致动力接口的数量,并且这种省略还减少了近端力传递机构404a与远端致动件之间必要的力传递元件的数量(并且因此降低器械复杂性并减小尺寸)。
[0090] 图4A进一步示出弯曲套管416a,该套管具有近端418a、远端420a以及在近端418a与远端420a之间延伸的中心通道422a。在一个实现方式中,弯曲套管416a是刚性的单件套管。如图4A中所绘制的,弯曲套管416a的近端418a被安装在PSM 204a的套管支座
216a上。在使用期间,器械402a的柔性轴406a延伸穿过柔性套管416a的中心通道422a,从而使得柔性轴406a的远端部分和末端执行器408a延伸超过套管416a的远端420a从而到达手术部位424。如上所述,PSM 204a的机械限制(或可替代地,PSM 204a的控制系统中预编程的软件限制)导致器械402a和弯曲套管416a以俯仰和偏转的形式围绕沿着套管
416a定位的远程运动中心426移动,该套管一般布置在病人体壁中的切口处。由托架212a提供的PSM 204a的I/O致动将器械402a穿过套管416a插入和抽出从而移入和移出末端执行器408a。下面讨论器械402a、套管416a以及对这两个部件进行控制的详细情况。
[0091] 图4B是示出第二病人侧机器人操纵器的示意图,该操纵器支撑和移动第二弯曲套管和被动型柔性手术器械组合(加入图4A视图中)。第二PSM 204b、器械402b和弯曲套管416b的部件基本上类似于图4A中所述的那些部件,并且与它们基本上功能相似。然而,弯曲套管416b在与弯曲套管416a弯曲方向相反的方向上弯曲。因此图4B图示说明了以相反方向弯曲的两个弯曲套管和相关器械被定位成延伸通过病人体壁430中单个切口428从而到达手术部位424。每个弯曲套管最初成角度地远离该切口与手术部位之间的直线,然后朝向该直线弯曲返回从而将该延伸的器械引导至手术部位。通过以俯仰偏转方式操作PSM的204a和204b,因此弯曲套管的远端420a和420b移动,并且因此器械末端执行器404a和404b相对于手术部位移动(并且结果是,相对于内窥镜视场移动)。可以看出虽然这两个弯曲套管和柔性器械组合的远程运动中心不相同,但是它们彼此足够接近(紧邻),从而使得可以将它们两者定位在单个切口428处。
[0092] 图4C是示出内窥镜摄像机操纵器的示意图,该操纵器支撑内窥镜(该示意图被加在图4B视图上)。为了清楚的目的,一些前面使用的参考数字被省略掉。如图4C中所示,ECM 242夹持了内窥镜112从而使得内窥镜112连同两个弯曲的套管和柔性器械组合一起延伸穿过单个切口428。内窥镜112延伸穿过被套管支座254支撑的常规的套管252。在一些实现方式中,套管252提供通往体腔的吹入法。ECM 242被定位以便将内窥镜112的远程运动中心安置在切口428处。如上,可以看出这两个弯曲套管和器械组合以及内窥镜112的这些远程运动中心不完全相同,但是它们可以被定位为充分接近从而允许它们都能延伸穿过该单个切口428而无需形成过大的切口。在一个示例性实现方式中,这三个远程中心可以大致地定位在一条直线上(如图4C中图示说明)。在其他实现方式中,例如下述的那些,这些远程中心不是线性对齐的,而是足够接近成组的。
[0093] 图4C还示意性地图示说明了PSM的204a和204b,并且ECM 242可以被定位从而使得每个PSM具有充分改善的体积,在该体积下以俯仰和偏转方式移动而不彼此干扰。即,如果使用直轴器械,则PSM必须总体上保持在彼此邻近的位置中从而将这些轴保持在接近平行的关系中以便通过单个切口有效工作。然而,在使用弯曲套管的情况下,PSM可以被彼此更加远离地安置,并且这样与直轴器械相比较,每个PSM总体上可以在相对较大体积中移动。此外,图4C图示说明了弯曲套管416如何为这些手术器械提供改进的三角测量,从而使得在内窥镜112的视场430中手术部位426是相对清楚的。
[0094] 图4C进一步图示说明了端口构件432可以安置在切口428中。套管416a、416b和252各自延伸穿过端口构件432。这类端口构件可以具有各种配置(如下面详细说明)。
[0095] 图5是与弯曲套管一起使用的示意性柔性器械500的图解视图。器械500包括近端力传递机构502、远端手术末端执行器504以及耦合力传递机构502和末端执行器504的轴506。在一个实现方式中,轴506约43cm长。在一些实现方式中,轴506是被动柔性的并且包括三个区段:近端区段506a、远端区段506c以及位于近端区段506a和远端区段506c之间的中间区段506b。
[0096] 在一些实现方式中,这些区段506a、506b、506c各自的特征可以体现在它们的不同硬度。区段506a是轴506从力传递机构502朝向弯曲套管延伸的部分,其中轴506的其他区段延伸穿过该弯曲套管。结果,与其他区段506b、506c相比较,区段506a是相对刚性的。在一些实现方式中,区段506a可以是有效刚性的。与其他两个区段506a、506c相比,区段506b是相对更柔性的。在手术程序期间区段506b的大部分位于该弯曲套管内,并且这样区段506b被做成相对柔性的从而减少与弯曲套管内壁的摩擦力,但它的柔性没有被做成使得在手动或伺服控制操作下在插入期间使它翘曲。与区段506b相比,区段506c是相对更硬的,因为区段506c从该弯曲套管的远端延伸。因此,区段506c被做成足够柔性使得可以将它插入穿过该弯曲套管的弯头,然而它的刚性足以向末端执行器504提供足够的悬臂支撑。
[0097] 然而,在一些实现方式中,轴区段506a-506c各自具有相同的物理结构—每个区段由相同的(一种或多种)材料构成,并且选择该(一种或多种)材料以便具有各区段可接受的弯曲硬度—因此这些区段具有相同的硬度。这样的器械轴总体上具有更低的成本,因为例如它们具有更少的零件并且更容易组装。
[0098] 对于需要通过轴滚动的末端执行器滚动DOF器械来说,所有三个区段506a-506c的抗扭刚性(torsionally rigid)足以将滚动运动从器械的近端传递至远端手术末端执行器504。下面参考图8A-8D对多个实例进行说明。
[0099] 在一些实现方式中,该器械轴(或至少该轴在套管内移动的部分)的硬度接近于机器人可以插入和滚动的最大值,其中选择一种外部材料来合理地最小化在套管内的轴摩擦。这样的插入和滚动力基本大于人可以合理控制的力,并且因此可以使得该器械从套管远端延伸的远端区段的硬度高于手操作的器械轴的硬度(对于类似的但手动致动的弯曲套管系统而言)。这个特征使得能够在如下情况下使用弯曲套管机器人手术系统,其中穿过弯曲套管而动作的手操作的器械可以最低限度地起作用的或不起作用(例如,手操作的轴的硬度太低而不能使该器械在手术部位有效地工作)。并且在一些实现方式中,“调谐”该器械(例如,通过选择一种或多种特殊材料和/或通过使用选定的(多种)材料进行不同的轴构造)以便(i)以适当硬度的轴来有效使用该机器人的插入和滚动驱动能力,同时(ii)不允许这样的适当硬度的轴与特殊的套管曲线尺寸之间的摩擦来抵消该机器人的驱动能力的益处。因此某些器械可以具有一种硬度的柔性轴,用于与具有一个曲率半径和/或内直径的套管一起使用,并且其他器械可以具有另一种硬度的轴,用于与具有另一曲率半径和/或内直径的套管一起使用。例如,对于特定的轴直径而言并且假定套管的曲率半径和套管-轴的摩擦相反地变化,则被设计用于与具有较大曲率半径的套管一起使用的器械的轴硬度可以大于被设计用于与具有较小曲率半径的套管一起使用的器械的轴硬度。在不同的2 4 2
方面,该轴的横向(弯曲)硬度是在从约1磅每平方英寸(lb-in)(PSI×英寸 )至约4lb-in
2
的范围内,并且在一个实现方式中,该轴的横向硬度是约2.0lb-in。在不同的方面,该轴的
2 2
旋转硬度是大于约11lb-in,并且在一个实现方式中,该轴的旋转硬度是约22.0lb-in。对
2
于具有在约1-4lb-in 范围内的横向硬度的轴的实现方式中,旋转硬度的实际范围是在约
2 2
11lb-in 至约66lb-in 的范围内。
[0100] 主要由于摩擦力,当弯曲套管的弯曲半径减小时,器械轴的硬度必须也降低。如果将各向同性的材料用于该器械轴,如结合图8C和8D所图示说明的,则从该套管远端延伸的轴部分的硬度也降低。在某一点处,轴的延伸的远端的硬度亦或在传递机构与套管之间的轴部分的硬度可能变成低得不可接受。因此,如以上描述的,可以针对具有固定尺寸的各向同性的材料的轴来限定硬度范围,这取决于套管的弯曲半径和内直径。
[0101] 被布置在柔性轴器械的远端处的手术器械末端执行器具有两种通用类型。第一类型的末端执行器没有移动部件。这样的不移动的末端执行器可以包括例如:抽吸/冲洗尖端、电烙术钩子或刀片、探针、钝的解剖器、摄像机、牵引器等。第二种类型的末端执行器具有在机器人控制下被致动的至少一个移动部件。这样的移动部件式末端执行器包括例如:抓握器、针驱动器、移动的烧灼术钩子、施夹器、(非烧灼的和烧灼的)剪切机等等。
[0102] 该一个或多个移动式末端执行器部件能够以不同方式被致动。在一个方面,可以使用两个拉伸元件来致动一个末端执行器部件。在这样的“拉动”式设计中,一个拉伸元件使该末端执行器部件以一个方向运动,而第二个拉伸元件使该部件以相反方向运动。在另一方面,使用单个的压缩/拉伸元件来移动该末端执行器部件。在这样的“推拉”式设计中,拉动(拉伸)用于使该部件以一个方向运动,并且推动(压缩)用于使该部件以相反方向运动。在一些实现方式中,拉伸力用于在要求最大力的方向上致动该末端执行器部件(例如,关闭夹爪)。
[0103] 图6A是图示说明拉动式器械设计的多个方面的图解视图。如图6A中所示,器械的力传递机构602通过柔性轴主体606被耦合至抓握型末端执行器604上。拉伸元件608延伸穿过该轴主体606并且将末端执行器604中的可移动部件耦合至传递机构602中接收机器人致动力的部件(未示出,见下面)。拉伸元件608延伸穿过力隔离部件610,该力隔离部件被耦合在末端执行器的底座612与传递机构602中的背板614之间。在一个实现方式中,轴主体606是塑料管(例如,聚芳基醚(PEEK)),拉伸元件608是海波管(例如,316不锈(面硬化的),0.028英寸OD×0.020ID,具有聚四氟乙烯(PTFE)浸涂涂层),在每端具有缆线(例如,0.018英寸的钨),这些缆线被耦连至该传递机构和末端执行器部件上,并且力隔离部件610是盘管(例如,300系列的不锈钢)。在一个实现方式中,使用了304V(真空电弧重熔)不锈钢,因为其表面光洁度比其他300系列不锈钢更光滑,这导致该盘管内部的摩擦更小。可以看到轴主体606并未经受使该末端执行器部件移动的拉伸元件608上的拉伸荷载,因为该拉伸力被隔离部件610中的相等的相反作用力抵消了。因此,对于拉动式末端执行器致动设计,可以使用位于轴主体管606内的两对这样的拉伸元件与力隔离部件,该器械轴在拉动式致动过程中保持柔性的,并且在其设计的硬度或弯曲方面没有实际变化,并且拉伸元件608上的拉伸荷载有效地独立于轴主体606的弯曲。
[0104] 图6B是图示说明推拉式器械设计的多个方面的图解视图。如图6B中所示,器械的力传递机构620通过柔性轴主体624被耦合至抓握型末端执行器622上。压缩/拉伸驱动元件626延伸穿过该轴主体624并且将末端执行器622中的可移动部件耦合至传递机构620中接收机器人致动力的部件(未示出,见下面)。一个或多个力隔离部件628(示出了示例性的两个)也延伸穿过轴主体624并且被耦合至末端执行器的底座630和力传递机构中的背板632上。在一个实现方式中,轴主体624是塑料管(例如,PEEK),驱动元件626是实心杆(例如,304V不锈钢,0.032英寸OD,具有PTFE喷涂涂层),并且力隔离部件628也是实心杆(例如,304V不锈钢,0.032英寸OD,具有PTFE喷涂涂层)。可以看到轴主体624并未经受使该末端执行器部件移动的驱动元件626上的压缩或拉伸荷载,因为该驱动力被隔离部件628中的相等的相反作用力抵消了。因此,该器械轴在推拉式致动过程中保持柔性的,并且在其设计的硬度或弯曲方面没有实际变化,并且驱动元件626上的驱动荷载实际上独立于轴主体624的弯曲。除了将该器械轴沿着其纵向轴线坚硬化以便隔离这些推拉式驱动荷载之后,这些力隔离部件628可以起作用来有效地将该器械轴的弯曲硬度增大一个希望的值。
[0105] 图7A是力传递机构502的实现方式的底视图。如图7A中所示,da 手术系统中使用的手术器械的力传递机构已经被修改过,从而去除该器械上用于控制腕部机构的机构,并且仅使用单个的接口圆盘对末端执行器(或其他可移动部件)的夹爪进行控制。
因此在一个图示说明性实现方式中,一个接口圆盘702a使轴506滚动,从而为末端执行器
504提供滚动DOF,并且第二接口圆盘702b操作末端执行器504的夹爪机构。如以上描述的,在一个实现方式中,传递机构502中的隔板支撑延伸穿过该器械轴的(多个)盘管(如以上和以下详述的)。力传递机构502可以耦合到PSM 204上,而PSM不需要任何机械的修改(这是将现有的机器人手术系统中弯曲套管方面的实现成本最小化的特征)。
[0106] 图7A还示出力传递机构502的实现方式可以包括导电接口引脚704和电耦合到接口引脚704上的电子数据存储器706。与器械500及其操作相关的参数(例如,器械被使用的次数,用于控制的Denavit-Hartenberg参数(下面说明的)等)可以被存储在存储器706中并且在操作期间被机器人手术系统访问以便适当地使用该器械(参见例如美国专利US 6,331,181(1999年10月15日提交)(公开了机器人手术工具、数据构造以及使用),该专利通过引用并入本文)。在一个实现方式中,该器械延伸穿过其中的弯曲套管专用运动数据也可以被存储在存储器706中,从而使得如果该系统检测出安装了弯曲套管(参见,例如图10和下面相关文字),该系统可以访问和使用所存储的套管数据。如果使用多于一个弯曲套管运动配置(例如,不同的长度、弯曲半径、弯曲角度等),则每个容许配置的专用数据可以被存储在相关器械的存储器中,并且该系统可以访问并且使用被安装的该特定的套管配置的数据。此外,在一些情况下如果机器人手术系统感测到柔性器械已经耦连到夹持直的而不是弯曲的套管的操纵器上,则该系统可以声明这种情况是非法状态并且阻止操作。
[0107] 图7B是在拉动式器械设计中使用的力传递机构的示例性实现方式的平面视图。如图7B中所示,两个盘管730被定位为靠在背板732上。两个拉伸元件734从这些盘管延伸,穿过该背板并且延伸至开/关绞盘(capstan)736,该绞盘如箭头738所示进行转动,以便拉动拉伸元件中的一个或另一个。图7B还描绘了轴辊(交叉连接的螺旋驱动齿轮740和轴辊齿轮742)的示例性实现方式。辊齿轮742耦连(例如,激光焊接)到被冲压(swage over)在柔性轴的主体管的近端上的不锈钢适配器。图7B进一步描绘了在插头746与导电拉伸元件734之间的示例性单极电烙术能量连接744。并且图7B描绘存储芯片748的示例性定位,该芯片748包含器械和/或相关套管的数据,如在此描述的;以及该芯片的相关电触点750,电触点750通过PSM上的匹配触点与该手术系统连接。
[0108] 图7C是在推拉式器械设计中使用的力传递机构的示例性实现方式的平面视图。如图7C中所示,(多个)力隔离杆760从该柔性器械轴的近端延伸出并且与背板762连接起来。推拉式驱动元件杆764也从该器械轴的近端延伸出并且进一步延伸穿过背板762以便与滑766耦连。在这个实现方式中,驱动元件杆764通过使用自由滚动轴承768与线性滑块766耦连。这个自由滚动轴承防止该驱动杆在器械轴滚动(即,提供不受限制的滚动DOF)时扭曲。推拉式驱动齿轮770与杠杆齿轮772相接合。杠杆齿轮772通过连杆(偏置的曲柄)774耦连至滑块766上。在驱动齿轮770如箭头776所示往返转向时,滑块766沿着轴778如箭头780所示地滑动,因此使驱动元件764沿着该器械轴的纵向轴线移动。在图7C中,轴辊的实现方式与以上参考图7B描述的实现方式基本上类似。
[0109] 图7C还示出位于器械轴近端的示例性的冲洗流体进入端口790。在所描绘的实现方式中,该冲洗流体端口被制成为将该轴主体管耦连至辊齿轮上的组件的一部分。冲洗流体可以被引导到端口中,从而清洁该轴内部的部件。例如,即使致动的驱动杆或缆线可以延伸穿过该轴远端处的接触密封件(wipe seal),但少量的体液可能穿过该密封件并且进入该轴主体的内部。
[0110] 图7D是在推拉式器械设计中使用的力传递机构的另一个示例性实现方式的透视图。如图7D中所示,两个小齿轮驱动齿轮782接合它们之间的齿条784。如所描绘的,该齿条是圆的,并且扁平齿条可以用作替代。该推拉式驱动元件杆耦连至该齿条上(例如,用如上描述的自由滚动轴承)。图7D中描绘的实现方式使用朝该力传递机构的背面定位的两个额外的驱动元件及其相关的接口圆盘(未示出;例如见图7A),并且这些驱动元件在相反的方向上转动从而使该齿条沿着该器械轴的纵向轴线移动。这个实现方式的设计与图7C中所述的实现方式相比使用更少的部件、并且更便宜并且制造更简单,但图7D的这种实现方式并没有在该力传递机构至机器人操纵器的接口中使用额外的驱动元件。然而,使用多于一个驱动元件的优点是:该机构与仅使用单个的相当的驱动元件相比可以施加更大的力(例如,实际上如使用两个驱动元件情况下的两倍)。
[0111] 应当理解的是对于移动末端执行器部件而描述的原理可以适用于在器械轴的远端包括可移动腕部机构或其他机构的器械中。这样的腕部机构允许改变末端执行器的取向而不改变轴的位置。
[0112] 对于这些柔性的器械轴,可以使用不同的设计方面。以下说明内容公开了用于具有可移动末端执行器部件的器械的柔性轴的示例性实现方式,并且应当理解的是所描述的原理(例如,硬化方式)可以适用于不具有带移动部件的末端执行器的轴。应当理解的是这些原理可以适用于在器械轴的远端包括可移动腕部机构或其他机构的器械方面。
[0113] 图8A是示出器械轴506的一部分的图示说明性结构的剖面透视图。两个拉伸元件802a、802b延伸穿过轴506的远端部分,并且被耦连以便操作该末端执行器(图解地示出;例如da 手术系统器械中使用的5mm直径等级的手术末端执行器)。拉伸元件802a、802b可以是分开的,或者它们可以是例如环绕末端执行器中的滑轮的相同元件的多个部分。在一个实现方式中,拉伸元件802a和802b是0.018英寸钨丝。如图8A中所示,拉伸元件802a和802b的近端耦连(例如,压接等)到进一步向近端延伸穿过大部分轴506的第二拉伸元件804a和804b的远端上。在一个实现方式中,拉伸元件804a和804b是0.032英寸不锈钢海波管。在近端处(未示出)使用以如上描述的类似方式耦连的金属丝将拉伸元件804a和804b耦连到传递机构502上。
[0114] 如图8A中所示,拉伸元件804a和804b分别延伸穿过支撑管806a和806b,支撑管806a和806b引导拉伸元件804a和804b并且使它们避免在轴506内屈曲或扭折。在一个实现方式中,支撑管806a、806b是不锈钢(例如,304V(减少摩擦的真空熔融物))盘管(0.035英寸内直径;0.065英寸外直径),并且可以使用其他材料和结构。为了减少摩擦,当每个拉伸元件滑动到其支撑管内部时,减少摩擦的鞘808a和808b被布置在该拉伸元件与该支撑管的内壁之间。在一个实现方式中,鞘808a和808b是PTFE,并且可以使用其他材料。两个支撑管806a和806b被布置在一个单个的内部轴管810内。在一个实现方式中,扁平螺旋不锈钢丝用于内部轴管810,以便在滚动期间提供抗扭硬度。外轴管812(例如,编织的不锈钢网或适合用于保护这些轴部件的其他材料)包围内轴管810。弹性体外皮814(例如,或其他适当的材料)包围该外轴管812。外皮814保护轴506的内部部件免
受例如手术期间体液的直接污染,并且该外皮有助于轴506滑入该弯曲套管中。在一些实现方式中,轴506具有大约5.5mm(0.220英寸)外直径。
[0115] 在一个示例性实现方式中,该支撑管和拉伸元件组件可以用PTFE浸涂从而提供减少摩擦的“鞘”。将浸涂材料填充在盘管之间的空间从而形成管。在另一个示例性实现方式中,在盘管被包围之前,金属丝被预涂覆,并且然后将该盘管烘焙从而将涂层重融并且形成实心管。该管的末端可以围绕拉伸元件进行密封从而防止污染(例如,体液)进入该拉伸元件与该盘管之间。
[0116] 轴506可以包括额外的部件。如图8中所示,例如,在一些实现方式中一个或多个硬化杆816延伸穿过轴506的不同部分。杆816的数量、尺寸以及组成可以被改变,从而提供部分506a-506c的不同硬度(如上所述)。例如,在一些实现方式中,杆816是不锈钢。此外,在一些实现方式中另一种材料的一个或多个额外的杆818可以延伸穿过轴506的一个或多个部分。例如,图8A示出PEEK的第二杆,在一个实现方式中该杆延伸穿过远端区段506c从而提供除了来自杆516的硬度之外的硬度。此外,或者包括这些硬化杆或者替代这些硬化杆,在轴506中还包括用来提供例如用于清洁的抽吸和/或冲洗或冲刷作用的一个或多个补充管。并且,可以包括额外的拉伸元件来操作例如位于该器械轴远端处的任选多DOF腕部机构。
[0117] 图8B是器械轴设计的另一个实现方式的图解的透视截面视图。如图8B中所示,具有PTFE涂层的两个海波管拉伸元件820被定位在力隔离盘管822内。任选的氟化乙丙烯(FEP)隔离层可以环绕盘管。PEEK主体管824围绕这些拉伸元件和盘管,并且FEP热收缩外皮826围绕该主体管。任选的冲洗管828可以被置于该主体管824内部,并且其被配置为使得来自该轴的近端的清洁流体行进穿过该清洁管到达该轴的远端,并且接着返回通过该主体管从而例如冲洗出污染的体液。但是,器械材料被选择成允许该器械能经受用于灭菌的加压加热作用。
[0118] 图8C是示出器械轴506的一部分的另一图示说明性结构的剖面透视图。拉伸元件830a、830b、832a和832b类似于上述拉伸元件802a、802b、804a和804d。这些拉伸元件各自的路经穿过多通道支撑管834中单独的通道。在一个实现方式中,管834是具有多个通道836的FEP压制品,并且可以使用其他材料。FEP提供拉伸元件靠在其上滑动的低摩擦表面。类似于以上公开那些杆的一个或多个硬化杆(未示出)可以延伸穿过支撑管834中不同的其他通道836从而为每个器械轴区段506a-506c提供希望的硬度。七通道管834(六个通道围绕一个中心通道布置)显示在图8C中,并且硬化杆或其他元件可以被插入到该中心通道中。额外的线缆(例如用于操作在轴506远端处的任选的多DOF腕部机构)的路径可以穿过管834中的其他通道。可替代地,其他功能(例如抽吸和/或冲洗)可以通过这些通道提供。
[0119] 图8C进一步示出环绕支撑管838以便为轴506提供轴向抗扭硬度的轴主体管834(例如,压制的PEEK或其他适当的材料)。外皮或涂层840环绕主体管838,从而当轴506滑入弯曲套管内部时减少摩擦并且用来保护轴部件。在一个实现方式中,外皮840是热收缩在主体管838周围的0.005英寸FEP层,并且可以使用其他适当的材料。在图8C中所示结构的一个实现方式中,轴506外直径是约5.5mm(0.220英寸),其中一个单件压制PEEK主体管具有约5.0mm外直径和约3.5mm内直径。使用PEEK,因为它的硬度(弹性模量杨氏模量)足够低,使得允许用足够低的径向力弯曲以便限制该弯曲套管内部的摩擦力,从而使得器械I/O不以显著的方式受到影响,但是它的弹性模量足够高,使得为延伸超过该弯曲套管远端的轴远端部分506c提供良好的悬臂梁硬度,用来抵抗轴在传递机构与该套管近端之间的任何部分屈曲,并且用来沿着该器械轴的长度以足够的硬度和精度传递滚动移动和扭矩
[0120] 图8D是示出柔性器械轴设计的又一实现方式的透明的图解透视图。如图8D中所示,推拉式驱动元件850延伸穿过多通道管854中的中心通道852,该多通道管与以上描述的管834类似。如以上描述的三个力隔离/硬化杆856延伸穿过围绕该中心通道的三个通道858。如图8D中所示,这些杆856的远端包括配合在这些通道中的不锈钢插头。在所描绘的实现方式中,环绕该中心通道的剩余三个通道860是开放的并且被用作冲洗流体通道。然而,在其他实现方式中,其他元件可以延伸穿过这些通道860中的一个或多个。为了清楚起见,在图中省略了周围的器械轴主体管和外皮。
[0121] 图9A是柔性轴器械的远端的实现方式的分解透视图。如图9A中所示,两个盘管902被耦连到远端帽904。盘管被定位在具有如上描述的外皮908的主体管906内部(拉伸元件未示出)。拉伸元件密封件910被配合到端帽904中,并且拉伸元件延伸穿过密封件
910,该密封件阻止流体进入这些盘管中。在一个图示说明性实现方式中,密封件910是模制的酮/硅树脂接触密封件。适配帽912被定位在该主体管的远端上,并且该末端执行器帽槽(clevis)914被耦合至该适配帽上。
[0122] 图9B是图9A中所示的实现方式的截面图。在图9B中可见,端帽904包括多个脊916,这些脊使得该帽能够被冲压(swage)在主体管906内部。盘管902被定位为抵靠帽904,并且拉伸元件缆线918延伸穿过帽904和密封件910。适配帽912被冲压在主体管906上,并且在该图示说明性实现方式中适配帽912是锥形的(或逐渐变小)以便允许FEP热收缩外皮908覆盖该帽912的一部分。末端执行器帽槽914被耦连至(例如,激光焊接至)适配帽912。虽然未示出,但可以用帽槽和适配帽的一个单件(未示出)来替代帽912和帽槽
914。该单件通过消除激光焊接而使制造成本和复杂性降低。
[0123] 图9C是图示说明可以位于柔性轴器械的远端的拉动型末端执行器的图解视图。如图9C中所绘,拉动一根缆线则打开末端执行器夹爪,并且拉动另一根缆线则关闭末端执行器夹爪。
[0124] 图9D是柔性轴器械的远端的另一实现方式的分解透视图。如图9D中所示,端帽920配合在轴主体管922的远端内部。接触密封件924覆盖端帽920中的开口,并且推拉式驱动杆连接件926延伸穿过端帽920和密封件924从而与该末端执行器的可移动部件耦合。末端执行器帽槽与附连帽组件928装配在轴主体管922的末端上。这些部件是以与图
9B所描述的方式相类似的方式进行组装的(例如,使用冲压等等)。密封件924中用于驱动杆连接件的开口略微尺寸偏小,并且在将组件928冲压到轴主体管上之前压缩该密封件进一步使密封件围绕该驱动杆连接件密闭。
[0125] 图9E是图示说明可以位于柔性轴器械的远端的推拉型末端执行器的图解视图(示出图示说明性的施夹器末端执行器)。如图9E中所绘,推动该驱动杆则关闭末端执行器夹爪,而拉动该驱动杆则打开末端执行器夹爪。
[0126] 图9F是设计为辅助清洁的端帽的实现方式的示意性透视图。如上所述的两个盘管在开口940处用该端帽连接起来。如上所述的两个冲洗流体管在开口942处用该端帽连接起来。细长孔944被设置在该端帽中,与每个开口940、942相交。该孔的末端通过该端帽与该主体管之间的冲压连接而被密封,并且因此形成腔室(为清楚起见在图中省略了这些冲压脊)。用于清洁的流体经冲洗管向远端行进穿过该器械轴,进入该腔室中,并且在近端被再次引导穿过盘管内部以便进行清洁。类似地,在推拉型器械的实现方式中,远端腔室接收穿过多通道支撑管中的一个或多个通道的清洁流体,并将流体再次引导穿过该中心通道来冲洗掉污染物以便进行清洁。
[0127] 图10是图示说明性弯曲套管416的图解视图。如图10中所示,套管416包括安装区段1002和套管主体区段1004。该安装区段1002被配置成安装在机器人系统操纵器上(例如,PSM 204)。在一些实现方式中,一个或多个构件1006被布置在该安装区段1002上以便被该操纵器的套管支座中的传感器1008感测。如通过传感器1008感测到构件1006的存在,可以指示例如该套管被适当地安装以及套管的类型(例如,直的或弯曲的、套管长度、曲率半径等)。在一个实现方式中,这些构件1006是凸起的环形金属环,并且相应的传感器1008是霍尔效应传感器
[0128] 安装区段1002还可以包括机械键构件1009,该机械键构件与操纵器上的对应构件配合用来确保该套管以相对于操纵器插入轴线适当的取向来安装。这样,例如,可以形成“左侧”和“右侧”弯曲套管。此外,为了区别左侧对右侧弯曲取向,可以使用该键构件来确保该套管以适当角度在该操纵器支座中滚动从而使得器械以希望的角度接近手术部位。本领域技术人员应当理解的是可以使用许多不同的机械键构件(例如,配合的销钉/孔、接片/凹槽、球/锁销等)。图10A图示说明示例性键构件。如图10A中所示,键构件1030附连(例如,焊接)到弯曲套管的安装支架1032的侧面上。键构件1030包括凹陷1034,该凹陷接收机器人操纵器的套管安装支架的一部分以及两个垂直对齐的销钉1036a和1036b。对齐销钉1036a和1036b与操纵器安装支架中对应的对齐孔配合从而确保该套管相对于该操纵器的适当滚动取向。
[0129] 图11A和11B是两个弯曲套管的远端1102a和1102b的图解视图,外科医生可以在外科医生控制台的3D显示器1104中看到它们,该显示器输出内窥镜视场中捕获的图像。在该显示器中,弯曲的套管延伸离开内窥镜从而使器械1106a和1106b能够到达手术部位处的组织1108。在手术期间这些套管能够以不同的滚动角度安装在操纵器上,或操纵器可以被定向从而使得这些器械以不同角度接近手术部位。因此,能够以数种方式说明套管滚动取向。例如,套管滚动角度可以被彼此相关联地说明。图11A示出在一个实现方式中这些套管可以用大致地位于单个的共同平面中的其远端曲线来定向,从而使得器械从直接相反的角度朝向手术部位延伸。图11B示出在一个实现方式中这些套管可以用位于相对于彼此成角度(例如如示出的,约60度)的平面中的其远端曲线来定向,从而使得这些器械从偏离角度朝向手术部位延伸。许多套管弯曲平面相关角度是可能的(例如,120、90、45、30或0度)。用于表达套管滚动取向的另一种方式是将它限定为包括套管曲线的平面与对于操纵器自由度之一的运动(例如,俯仰)平面之间的角度。例如,可以安装一个套管使得它的曲线位于平面上,该平面与操纵器的俯仰DOF成30度角。
[0130] 因此,用于得到器械套管位置的一个图示说明性方法(如图11B中所示)是定位彼此面对的两个PSM,其中它们俯仰运动平面大致平行(这些平面可以稍微偏移使得这两个套管在它们运动中心不交叉)。然后,将每个弯曲套管以相对于它对应的PSM俯仰运动平面大致30度来定向。图11C是处于图示说明性配置的da 手术系统的平面视图,其中两个PSM 204和ECM 242的姿势为如以上关于图11B所述那样来安置弯曲套管416。在图11C中可见,与在单个主体开口中使用直的套管和器械相比,具有弯曲套管的PSM具有一个它们可以在其中无冲撞地移动的适当大的体积,这提供在其中这些器械可以在手术部位移动的相应的更大体积。
[0131] 再次参考图10,在一些实现方式中套管主体区段1004被分成近端区段1004a、中间区段1004b和远端区段1004c。近端区段1004a是直的,并且它的长度被做成足以为支持PSM提供足够的移动间隙。中间区段1004b被弯曲用来从操纵器位置为手术部位提供必要的器械三角测量,这提供用于完成手术任务的足够运动范围,而没有明显碰撞。在一个实现方式中,以5英寸弯曲半径将中间区段1004b弯曲60度。其他弯曲角度和弯曲半径可以用于特定的手术程序。例如,一个套管长度、曲线角度和弯曲半径可能是最适合用于从特定的切口点(例如,在脐部)朝向一个特定的解剖学结构(例如,胆囊)延伸,而另一个套管长度、弯曲角度和/或弯曲半径可能最适合用于从特定的切口点朝向第二特定解剖学结构(例如,阑尾)延伸。并且,在一些实现方式中,可以使用各自具有不同长度和/或弯曲半径的两个套管。
[0132] 弯曲区段的内壁与内部滑动的柔性器械之间相对紧凑的间隙要求弯曲区段的截面贯穿其长度是圆形的或接近圆形的。在一些实现方式中,该弯曲套管是由304不锈钢制成的(加工硬化),并且使用例如弯曲固定件或计算机数字控制(CNC)弯管机将弯曲区段1004b弯曲。对于5.5mm(0.220英寸)外直径器械而言,在一些实现方式中,该弯曲套管的内直径被制成大致0.239英寸,其为内直径制造变化提供可接受的公差,其还为器械轴提供良好的滑动性能。
[0133] 远端区段1004c是套管主体的短的直区段。参考图12A,可以看到的是由于器械轴外直径与套管内直径之间较小的空间(为了强调的目的夸张地示出),并且由于器械轴的弹性(虽然是被动柔性的,它可以保留变成直线的倾向),器械轴的远端区段1202接触该套管远端的外边缘。因此,如果弯曲套管在弯曲区段1004b处终止,则器械的远端区段1202以相对于套管延伸中心线1204的相对较大的角度延伸出套管外面(再一次,夸张示出)。此外,器械轴与外边缘之间的角度在器械抽出期间引起增加的摩擦(例如,刮擦)。然而,如图12B所示,将远端区段1004c添加到套管上减少远端区段1202与套管的延伸中心线1204之间的角度,并且还减少外边缘与器械轴之间的摩擦。
[0134] 如图12C所示,在一些实现方式中,套筒1206被插入远端区段1004c的远端中。套筒1206在远端处缩减(neck down)弯曲套管的内直径,并且这样进一步有助于器械轴的远端区段1202延伸接近套管的延伸中心线1204。在一些实现方式中,套筒1206的外边缘是圆形的,并且套筒1206的内直径是相对接近于器械轴的外直径。通过防止器械抽出期间组织被夹紧在器械轴与套管之间,这帮助减少可能的组织损伤。在一些实现方式中,套筒1206是由304不锈钢制成的并且是大致0.5英寸长具有大致0.225英寸内直径。套筒1206也可以由减少摩擦的材料例如PTFE制成。在替代实现方式中,不使用分离的套筒1206,而是弯曲套管的远端可以被冲压,以减少套管的内直径从而产生类似效果。缩减远端区段1004c上的其他方式包括例如压延减小套管或将更小直径的管焊接到该套管末端上。
[0135] 可以使用不同长度的直的远端区段,从而在不同的工作深度处对柔性器械提供支撑。例如,一个套管可以具有带有特定弯曲半径和相对更短的直远端区段的弯曲区段,并且第二套管可以具有带有相同的特定弯曲半径但带有相对更长的直远端区段的弯曲区段。可以使用带有相对更长的直远端区段的套管来定位其相关联的器械以到达病人体内相对更远的手术部位,并且可以使用该带有相对更短的直远端区段的套管来定位其相关联的器械以到达病人体内相对更靠近该单个端口入口位置的手术部位。如下面描述的,这些相同弯曲套管中每个的控制方面实际上可以相同,并且因此在一些实现方式中每个套管都清楚地带着标签(被标记、彩色编码等等)以指示手术人员其直远端区段的长度。
[0136] 因为可以对具有相同弯曲区段的套管使用不同的直远端区段的长度,并且因为这些不同的远端区段长度对于该系统可能没有被确认,因此该系统的关于器械在套管内插入深度的信息可能并不正确地识别出该器械远端相对于套管远端的位置。这种情况对于诸如使用电烙术器械的情况可能是个问题,其中为安全起见该器械不应被通电,直到其远端(即,电烙术末端执行器和任何相关联的暴露的通电部分)超过了导电性弯曲套管的远端。因此,在某些方面,使用套管末端间隙检测系统来确定器械的远端是否安全超过该套管的远端。
[0137] 图10B是图示说明套管末端间隙检测系统的实现方式的示意图。如图10B中所示,器械的远端部分1040仍然位于套管1042的远端直区段之内。该远端部分1040包括电烙术末端执行器1044,该电烙术末端执行器接收来自能量控制器1046的电烙术能量。远端部分1040还包括检测器组件1048,该检测器组件在图10B中被描绘为例如光学反射传感器(可以使用各种其他的传感器类型,例如霍尔效应传感器)。传感器部件1050a产生的光从套管1042的内壁被反射并且被传感器部件1050b接收(在器械与套管之间存在小空隙,这个空隙提供该反射光程)。能量控制器1046被耦连到检测器组件1048,并且因此该检测器组件指示该器械的远端是位于套管的远端内还是超过远端。当器械的远端被插入超过套管的远端时,如虚线表示的,能量控制器1046接收来自检测器组件1048的指示并且对末端执行器1044提供能量。对各种器械可以使用间隙检测系统的多种实现方式(例如,激光器械的激活安全性、为抽出器械进行机械腕部组件的自动定位等等),并且一个或多个传感器可以作为替代被设置在套管上或在器械和套管二者上。
[0138] 图13是图示说明弯曲套管和柔性器械组合的替代实现方式的示意图。作为上述简单的C形弯曲的替代,弯曲套管1302具有复杂的S形弯曲(平面的亦或体积的)。在一个图示说明性实现方式中,每个弯曲部具有约3英寸弯曲半径。远端弯曲区段1304为手术器械提供三角测量,并且近端弯曲部1306为例如PSM 204b(可替代地,在手动实现方式中,为手术器械手柄和外科医生的手)提供间隙。如所描述的,机器人控制的手术器械402b的被动柔性轴404b延伸穿过弯曲套管1302并且超过套管的远端1308。为了清楚的目的,第二弯曲套管和柔性器械组合从图中省略。S形弯曲套管的使用类似于如在此公开的C形弯曲套管的使用。然而,对于S形套管而言,在针对内窥镜视场限定的参考系中,控制该器械的操纵器与对应的末端执行器一样被定位在该手术部位相同侧。因为与C形套管相比,S形套管中多个弯曲部引起该器械轴与套管壁之间沿着套管长度在更多点处接触,在每个点处具有类似法向力的情况下,使用S形套管该器械和套管之间的I/O和滚动摩擦相对较高。
[0139] 本文描述的弯曲套管被描述为刚性的,这是指它们在使用过程中实际是刚性的。众所周知某些材料或机构可以弯曲成一种曲线形状并且接着稍后又被弯曲成另一种曲线形状。例如,具有许多短连杆的柔性管可以通过沿着该管的纵向轴线压缩这些连杆而被有效刚化,从而使得摩擦作用阻止这些连杆相对于彼此移动。或者,内管和外管可以被径向地压缩在一起以便防止它们相对于彼此滑动。参见例如美国专利US 5,251,611(1991年5月7日提交)(公开“进行探测程序的方法和装置(Method and Apparatus for Conducting Exploratory Procedures)”)以及美国专利申请公开号US 2008/0091170 A1(2006年6月30日提交)(公开“用于自由空间导航的套管系统以及使用方法(Cannula System for Free-Space Navigation and Method ofUse)”),二者均通过引用被并入本文。而且在一些实现方式中,如在此描述的弯曲套管的弯曲区段可以是可再弯曲(可再定位的)成不同的曲线形状。为了确定该曲线形状的运动学参数,其中这些参数对于如下面描述的控制是必要的,可以使用已知的感测技术。这样的技术包括测量用来使该弯曲区段再弯曲的多个腱(tendon)的电机位置(或这些腱本身的位移)或者使用光纤形状感测来确定该曲线形状。
参见例如美国专利US 5,798,521(1997年2月27日提交)(公开“测量布拉格光栅中应力的设备和方法(Apparatus and Method for Measuring Strain in Bragg Gratings)”)、美国专利申请公开号US2006/0013523 A1(2005年7月13日提交)(公开“光纤位置和形状感测装置和相关方法(Fiber Optic Position and Shape Sensing Device and Method Relating Thereto)”)、美国专利申请公开号US2007/0156019 A1(2006年7月20日提交)(公开“包括使用光纤布拉格光栅的位置传感器的机器人手术系统(Robotic Surgery System Including Position Sensors Using Fiber Bragg Gratings)”)以及美国专利申请公开号US 2007/0065077 A1(2006年9月26日提交)(公开“光纤位置和形状感测装置和相关方法(Fiber Optic Position and Shape Sensing Device and Method Relating Thereto)”),全部都通过引用并入本文。
[0140] 以上描述的不同方面和实现方式关注在使用两个弯曲套管来在手术部位为它们的相关联的柔性轴器械提供三角测量。然而,在一些方面和实现方式中,单个弯曲套管及其相关联的柔性轴器械可以与直套管及其相关联的刚性轴器械一起使用。虽然这样的实现方式与双弯曲套管的实现方式相比提供了在手术部位处更少的器械三角测量并且可能在更大程度上阻挡内窥镜的手术部位图像,但弯曲的和直的套管的组合对于在某些解剖区域执行手术可能是有利的或甚至是必须的。参见图11C,例如在弯曲套管手术系统的一种图示说明性使用中,左侧PSM 204及其相关联的套管和器械可以暂时从该单个身体开口中移除,并且另外的左侧PSM(以局部装载位置示出)的姿势可以是将其相关联的直套管和直轴器械布置在该单个身体开口之内。
[0141] 此外,以上描述的方面和实现方式关注直的刚性内窥镜的图示说明性的使用。然而,在其他方面和实现方式中,可以使用弯曲的内窥镜套管并且可以将柔性轴摄像机器械插入穿过该弯曲的内窥镜套管。这样的柔性轴摄像机器械可以使用例如一束柔性光纤来将图像从内窥镜的远端承载至身体外的近端摄像机,或者它可以具有安装在被动柔性轴的末端上的远端成像系统(例如,CMOS图像传感器)。关于该直的刚性的内窥镜,可以在其相关联的套管内部插入、抽出或滚动柔性内窥镜,如以上描述的。使用弯曲的内窥镜套管的优点是它可以提供该手术部位的三角测量视野,该视野不太可能被手术器械阻碍或者提供对特殊组织结构的更有益的透视。也可以使用带有成角度的视野(例如,偏离轴线三十度)的直轴内窥镜来提供替代的视野透视。
[0142] 端口构件
[0143] 图14A是可以与如在此说明的弯曲套管和器械组合以及与内窥镜和一个或多个其他器械一起使用的端口构件1402的示例性实现方式的图解平面图。图14B是图14A中所示的实现方式的顶透视图。端口构件1402被插入病人体壁中的单个切口中。如图14A中所示,端口构件1402是具有五个通道的单个主体,这些通道在顶表面1404与底表面1406之间延伸。其他实现方式可以在该端口构件上的不同位置处具有不同数量的端口。第一通道1408用作内窥镜通道并且其尺寸被形成为容纳内窥镜套管。在替代实现方式中,通道1408的大小被形成为容纳无套管的内窥镜。如图14A中所示,内窥镜通道1404从端口构件1402的中心轴线1410偏移。如果手术程序需要吹入,则可以通过内窥镜套管上已知构件来提供。
[0144] 图14A示出两个其他通道1412a和1412b,它们用作器械通道并且各自的尺寸被形成为容纳本文所述的弯曲套管。通道1412a和1412b以相反角度延伸穿过端口构件1402以便适应弯曲套管的定位。因此,在一些实现方式中,通道1412a和1412b延伸跨过一个平面,该平面在图14A中示出的方向上将该端口构件分成左侧和右侧。如图14A所示,器械通道1412a和1412b也从中心轴线1410偏移。在使用期间,内窥镜和器械套管的远程运动中心将大体位于它们对应通道内的中间垂直位置。通过使该内窥镜通道1408和器械通道1412a、1412b从中心轴线1410平地偏移,可以将这组远程中心的一个中心点大致地定位在该端口构件的中心(即,该切口的中心)。将远程中心设置成靠近在一起使手术期间病人创伤降至最低(例如,由于套管移动期间组织拉伸)。并且,该端口构件使套管彼此靠近但是抵抗组织迫使套管朝向彼此的倾向性,因此防止这些套管彼此干扰。在各种实现方式中可以使用各种通道角度来适应所使用的弯曲套管的具体配置或有利于具体手术程序所需要的弯曲套管的定位。
[0145] 图14A还示出两个示意性任选的辅助通道1414和1416,辅助通道1414和1416垂直地延伸通过端口构件1402(辅助通道的数量可以改变)。与第二辅助通道1416的直径相比,第一辅助通道1414的直径相对较大(各种尺寸的直径可以用于各自辅助通道)。第一辅助通道1414可以用于将另一个手术器械(手动或自动的,例如牵引器或抽吸器械;具有或不具有套管)插入通过端口构件1402。如图14A中所示,内窥镜通道1408、器械通道1412a和1412b以及第一辅助通道1414各自包括密封件(下述),而第二辅助通道1416不包括。因此,第二辅助通道1416可以同样用于插入另一个手术器械,或其可以通过在通道中不具有密封件而更好地用于另一个目的,例如用于为柔性抽吸或冲洗管(或其他非刚性器械)提供通道,或用于为吹入或排空提供通道(可以通过使用该内窥镜套管或其他套管上典型的构件来进行吹入)。
[0146] 这些图中所示的通道角度是图示说明性的,并且应当理解的是可以使用不同角度的通道。例如,内窥镜通道可以在该端口构件的顶表面与底表面之间以一个角度延伸,从而使得在手术过程中内窥镜不在端口构件上施加扭力/切向力(例如,对于具有三十度偏离视角的内窥镜而言,该内窥镜可以用来“向下”看手术部位,以提供较少被弯曲套管和器械阻挡的视场)。同样,辅助通道中的一个或多个可以是成角度的。而且,在与直套管组合使用一个或多个弯曲套管的实现方式中,该直套管器械通道可以在该端口构件的顶表面与底表面之间垂直地延伸,其中该弯曲套管器械通道成角度延伸。
[0147] 图14A示出在一些实施方式中,端口定向构件1418可以被定位在顶表面1404上。在使用期间,外科医生将端口构件1402插入到切口中并且然后对该端口构件进行定向从而使得方向/取向指示器1418大体在手术部位的方向上。因此该端口构件被定向成为内窥镜和弯曲的套管提供必要的定位以便进行手术程序。可以用各种方式形成定向构件1418,例如模制到顶表面1404中或印制在顶表面1404上。类似地,图14A示出在一些实现方式中器械端口识别构件1420a和1420b(用圆圈着的数字“1”和“2”所指示)可以各自定位在两个器械端口之一附近,以识别该器械通道。类似的识别构件可以被设置在旨在用在“左侧”或“右侧”上的套管上,从而使得医务人员可以通过匹配该套管和该端口通道标识而容易地将弯曲的套管放置在其适当的端口通道中。
[0148] 在一些实现方式中,端口构件1402是由单件的模制(例如,塑模的、压模的等等)的硅酮/硅树脂制成。该端口构件可以具有不同的硬度计数值(例如,在约40肖氏00(3-4肖氏A)至约15肖氏A的范围内),并且在一个图示说明性实现方式中,注模的硅酮/硅树脂端口构件具有约5肖氏A的硬度计数值。可以使用端口构件1402的其他配置,包括具有二级套管的多件式端口构件,这些套管可以容纳例如如在此所述的内窥镜和弯曲套管两者。
[0149] 参考图14B,在一些情况中,顶表面1404和底表面1406(未示出)做成凹形。图14B还示出在一些情况下端口构件1402是缩腰的/腰部变细的。腰部1422提供了帮助将端口构件1402夹持在切口内适当位置的顶部凸缘1424和底部凸缘1426。因为端口构件
1402可以由软的弹性材料制成,由腰部1422以及凹形顶表面和底表面形成的凸缘1424和
1426容易变形从而允许外科医生将该端口构件插入该切口中,并且然后凸缘返回到其初始形状以便将该端口构件夹持在适当位置。
[0150] 图15A是在图14中的切割线A-A截取的图解横截面视图,并且它图示说明通道1408b如何以从一侧到另一侧的锐角横穿(across)端口构件1402的垂直中段从顶表面通到底表面。类似地通道1408a以相反方向延伸。当适当地插入时,两个通道交叉的垂直位置(在图15A的方向中,通道1412a(未示出)更接近于观察者,从右上至左下横穿该端口构件)大致地是对应的套管远程运动中心的垂直位置。如上所述,在一些实施方式中,密封件被放置在通过端口构件1402的一个或多个通道中,并且图15A示出示例性地定位在该套管远程运动中心的垂直位置处或实际上位于此处的这样一个密封件的实例。
[0151] 图15B是器械通道1412b内的密封件1502的示例实现方式的详细视图。如图15B中所示,密封件1502包括一体模制的固体/实心(solid)的环1504,该环从通道1412b的内壁1506向内朝向通道1412b的纵向中心线延伸。小开口1508保留在环1504的中心,以便允许该环围绕插入的物体伸展开,但是该开口总体上足够小,小到能够防止任何显著的流体通过(例如,吹入气体漏出)。因此,这些密封件允许在插入任何器械(例如,套管)之前进行吹入(例如,通过该端口构件的辅助通道)。当该端口构件是柔性的时,这些密封件还改善该端口构件与套管之间的密封,并且因此由于手术期间套管的移动使通道的形状发生变形。在另一个实现方式中,薄膜被模制以填充该密封件内的开口,从而提供完全的吹入密封,直到器械被插入该通道中。在第一套管的插入过程中可以例如通过阻塞器来刺穿这样的膜。
[0152] 图15C是在图14A中切割线B-B处截取的图解的横截面视图。穿过内窥镜通道1408的中心线取得切割线B-B,并且这样切割线B-B不包括辅助通道1414或1416的中心线。图15C图示说明了在一些实现方式中内窥镜通道1408包括密封件1508,并且辅助通道
1414包括密封件1510,但是辅助通道1416不具有密封件。图15C进一步图示说明密封件
1508和1510类似于密封件1502,虽然可以如上所述使用各种密封件。
[0153] 图15D是在图14中切割线A-A处截取的图解横截面视图,并且它图示说明在一些实现方式中存在水平地延伸横穿该端口构件的中部的导电硅酮/硅树脂层1512(例如,如图所示在腰部1422处)。示出的导电层1512在该端口构件的顶表面和底表面之间的中间位置形成间隔,并且这样它结合本文所述的密封件。在其他实现方式中,导电层可以位于不结合密封件的另一个垂直位置处,或可以使用两个或更多个导电层。在一些实现方式中,这些通道的内部在导电层处颈缩但是不必配置成密封件,从而在导电层与该器械之间提供必要的电接触。在一个实现方式中,导电层1512与该端口构件的上部1514和下部1516一体地模制。由于必要的添加剂,与上部和下部相比,该导电硅酮/硅树脂可能具有更高的硬度计数值,但是因为它大致地定位在套管运动中心的水平处,因此与无导电层的类似端口构件相比,较高硬度不会显著影响套管运动。这种导电层在病人体壁(其与端口构件的外表面接触)与通过该通道的套管和/或器械之间形成导电路径。在电烙术期间这个导电路径提供电接地路径。
[0154] 图15E是密封件的另一个实例实现方式的详细视图,该密封件可以被定位在该端口构件主体中的不同通道中的任何一个之内。如图15E中所示,环形突起1520与该端口构件主体一体模制并且从通道1412b的内壁1506朝向该通道的中心线延伸。在图示说明的图中,该突起的表面与该通道壁成约六十度角,这允许器械在插入后更容易与该密封件对齐并穿过密封件。关于上述的密封件实现方式,突起围绕套管或其他手术器械向内压,从而在该端口构件主体与器械之间提供吹入密封。因为该突起的截面与抵靠该器械的圆形的密封表面大体成三角形,并且因为该器械的远程运动中心大体被定位在或实际位于在该密封件处,因此该密封件随着该器械移动从而在围绕该远程运动中心移动的过程中在该器械拉伸该端口构件主体并略微扭曲该通道截面时提供对抗该器械的可靠密封。小开口(例如,对于器械通道是0.014英寸,对于内窥镜通道是0.043英寸)仍留在该密封件中心,并且在一些实现方式中如以上描述,薄膜被模制成横穿该开口。
[0155] 本领域技术人员将理解的是可以使用用于实现有效密封的各种其他方式。例如,在另一个密封实现方式中,一体模制的弹性膜使通道完全封闭,并且在将物体插入穿过该通道时第一次刺穿该膜。然后,该膜与该物体形成密封。在其他实现方式中,作为分离件的密封件被插入到该通道中。例如,环形锁销(detent)被模制在通道壁1506中,并且然后密封件可以被定位并且保持在该锁销中。
[0156] 如上所述,在一些情况下,端口构件1402可以被插入穿过整个体壁。然而,在其他情况下,单个切口不能形成为穿过整个体壁。例如,单个切口可以包括在脐处(例如,以Z形)形成的单个经皮切口和在下面筋膜中的多个切口。因此,在一些情况下,该端口构件可以被取消,并且当该内窥镜套管和弯曲套管的每一个延伸穿过该单个经皮切口时,这些套管各自通过筋膜中分开的切口,并且可能被它们支撑。图16A的图解视图图示说明内窥镜套管1602,以及左侧和右侧弯曲套管1604a和1604b的部分,这些套管通过单个的皮肤切口1606并且然后各自通过分开的筋膜切口1608。在一些情况下,手术室人员可能希望在这样的单个经皮的/多重筋膜切口中对套管额外的支持(例如,当插入的套管对接到其相关联的机器人操纵器上时)。在这类情况中,可以使用类似于顶部部分1514(图15D)或类似于结合的顶部部分1514和导电层1512配置的端口。
[0157] 图16B是另一个端口构件的图解透视截面视图,该端口构件可以与单个的皮肤切口/多重筋膜切口程序一起使用。端口构件1620在配置上类似于端口构件1402,并且上述构件(例如,取向和端口指示器、当适用时的密封件、软的弹性材料等)也可以应用到端口构件1620上。端口构件1620具有大体柱形/圆柱形的主体,它包括顶表面1622,底表面1624以及位于该顶表面和底表面之间的变窄的侧壁腰部1626。因此,顶部凸缘1628和底部凸缘1630形成在该侧壁与该顶表面和底表面之间。在使用期间,皮肤被保持在该上凸缘和下凸缘之间的腰部1626中,并且底表面1624和底部凸缘1630保持在皮肤下面的筋膜层上。
[0158] 图16B进一步示出四个示意性端口,这些端口在该端口构件的顶表面和底表面之间延伸。通道1632是内窥镜通道,并且通道1634是辅助通道,类似于上面参考端口构件1402所述的这类通道。类似地,通道1636a和1636b是成角度的器械通道,这些通道类似于上述这类通道,通道1636b从右上朝向左下成角度(如示出),而通道1636a从左上朝向右下成角度(隐藏不可见)。然而,与端口构件1402的器械通道不同,端口构件1620的器械通道1636a和1636b的中心线不延伸横穿端口构件的垂直中线。相反地,成角度的器械通道终止于端口构件1620的中线处,这样使得套管和器械的远程运动中心被定位在下面的筋膜切口处(图示说明示意性的运动中心位置1638)。因此,可以看到的是该端口构件的底表面上器械通道的出口位置可以改变从而将运动中心设置在相对于病人组织的希望位置处。
[0159] 对于一些手术程序而言,单个切口和手术部位之间的直线(例如,脐与胆囊之间)开始接近相对于病人的头(coronal)(正面)平面成锐角。因此,套管以相对于皮肤表面相对小的角度(锐角)进入该单个切口中,并且该体壁在这些套管/器械上或在该端口上扭动并且施加扭矩。图17A是又一个端口构件1702的图解顶视图,并且图17B是它的图解侧视图,该端口构件1702可以用于引导和支持两个或更多个套管通过单个切口进入。如图17A和17B中所示,端口构件1702包括上部漏斗状(funnel)区段1704、下部前舌状件1706和下部后舌状件1708。在一些实现方式中,该漏斗状区段和舌状件是单件。端口构件1702可以由例如相对刚性模制的塑料诸如PEEK、聚醚酰亚胺(例如, 产品)、聚乙烯、聚丙烯等形成,从而使得端口构件1702在使用期间大体保持其形状。当定位在切口1710中时,下部舌状件1706和1708在主体的内侧,并且漏斗状区段1704保持在主体的外侧。如这些图中所示,在一些实现方式中漏斗状区段1704被成型为倾斜的圆锥或椭圆锥,当如下所述该端口构件在切口中扭动时,该漏斗状区段1704减少对定位在该漏斗状区段上的设备的干扰。可以看到,一旦就位,漏斗状区段1704的远端1712朝向皮肤表面按压。这个动作引起该上部漏斗状部分与下部舌状件之间的腰部区段1714在该切口中扭动,这有效地对该切口再定向,并且使得它为该手术部位提供更没有阻力的路径。前舌状件防止端口构件1702在这个扭曲过程中从切口中出来。此外,按压漏斗状区段的远端1712使得前舌状件的远端1716提升。在一些实现方式中,该前舌状件的尺寸和形状被设计成在舌状件的远端升高时缩回组织。后舌状件1708还有助于将端口构件1702保持在切口中。
[0160] 端口构件1702还包括至少两个进入通道用来容纳内窥镜和器械套管。如图17A中所图示说明的,在一些实现方式中,四个示例通道在腰部部分1714内。内窥镜套管通道1720被设置在腰部部分1714的中间,并且三个器械套管通道1722被定位在内窥镜套管通道1720周围。在一些实现方式中,这些通道形成在与该漏斗状区段和这些舌状件相同的单件中。在其他实现方式中,这些通道形成在柱形工件1723中,该工件被安装从而如箭头
1723a指示在腰部区段1714中旋转。在一些实现方式中,这些器械套管通道1722各自形成在球关节1724中,该球关节被定位在腰部区段1714中(例如,直接地或在该柱形工件中)。
套管的远程运动中心被定位在球关节中,然后球关节允许套管容易地在端口构件1702内枢转。在其他实现方式中,通道被配置成接收球,该球在远程运动中心处固定(例如,压力装配)到套管上,并且然后该套管球在该通道凹座中作为球关节来枢转。在一些实现方式中,腰部区段的顶表面和底表面(例如,该柱形工件的顶表面和底表面)可以成斜角从而允许增加套管在该球关节中运动的运动范围。在一些实现方式中,该内窥镜套管通道1720不包括球关节。在一些实现方式中,在使用或不使用上述的球关节的情况下,内窥镜和/或具有刚性轴的器械穿过其相应的无套管的通道。在一些实现方式中,如上所述,(多个)密封件可以被定位在通道的一个或多个之中。
[0161] 图18A是又一个端口构件1802的图解顶视图,并且图18B是它的图解侧视图,该端口构件1802可以用于引导和支持两个或更多个套管穿过单个切口进入。端口构件1802的基本配置类似于端口构件1702,例如漏斗状区段和前舌状件并且通道大体类似。然而,在端口构件1802中,后舌状件1804可以从与前舌状件1806对齐的位置(如替换位置1808所指示)转动到与该前舌状件相对的位置,如图18B中所示。因此,后舌状件1804可以比后舌状件1708相对更长(图17B),并且端口构件1802仍然可以被插入到单个的小切口中。当端口构件1802被定位在该切口中时,后舌状件1804与前舌状件1806对齐,并且然后当该端口构件就位时,后舌状件1804被转动至后面位置。在一个实现方式中,后舌状件1804耦连到包含通道的旋转柱体上(如上所述),并且定位在漏斗状区段内部位于柱形工件上的接片(tab)1810如箭头指示从其替换插入位置1812朝前旋转从而将该后舌状件定位用于手术用途。
[0162] 如在此所述的端口构件的多个方面未被限制为与一个或多个弯曲套管一起使用,并且这类端口构件可以例如与直线器械套管、刚性器械轴(具有或不具有套管)一起使用,并且用于机器人手术和手动手术两者。
[0163] 插入固定件
[0164] 在多端口微创手术中,该内窥镜一般是待插入的第一手术器械。一旦插入,该内窥镜可以被定位以观察其他套管和器械插入物,从而使得器械不会意外接触和损害组织。然而,在单个切口的情况下,一旦将内窥镜插入,其他套管以及器械至少最初被插入到该内窥镜视场之外。并且,对于弯曲的套管而言,难以确保套管尖端将会直接移动进入内窥镜视场中而不接触其他组织。此外,当这些机器人操纵器被调节并且然后耦连(对接)到套管上时使这些套管保持适当地定位和取向可能需要多于一个人的相当大的手动灵巧性。因此,需要安全并且容易地将多个器械插入穿过单个切口的方法。在一些手术程序中,端口构件(例如上述的那些)可以提供安全地插入多个器械的适当的方法。例如,端口构件(全部或一半高度)被定位在体壁中或体壁上。该端口构件的通道充当套管插入的引导件,并且一旦插入该套管,该端口构件就支持这些套管耦连至其相关联的机器人操纵器上。因此如上描述的这些端口构件可以在手术程序的早期充当插入和稳定固定件,如以上描述的。在其他手术程序中,或者由于外科医生偏好,可以使用安全地插入并支持多个器械的其他方式。
[0165] 图19A是套管插入固定件1902的实例的透视图。如图19A所示,插入固定件1902能够引导内窥镜套管和两个弯曲的器械套管进入单个切口中。其他实现方式可以引导更多或更少的套管。插入固定件1902包括底座1904,内窥镜套管支撑臂1906和两个器械套管支撑臂1908a和1908b。如图19A中所示,内窥镜套管支撑臂1906被刚性地安装在底座1904上,虽然在其他实现方式中它可以被枢转地安装。内窥镜套管支撑臂1906的远端被向下朝向底座平面弯曲并且包含内窥镜套管支撑槽1910,该支撑槽1910用作套管的安装支架。支撑槽1910中的锁销(detent)1912允许以各种角度定位和夹持该内窥镜套管。
[0166] 图19A还示出一个器械套管支撑臂1908a在铰链1914a处被枢转地安装在底座1904上。器械套管支座1916a位于套管支撑臂1908a的远端并且夹持示意性的器械套管(例如,如上所述的弯曲套管)。套管支座1916a可以包括一个或多个机械键构件以确保该套管被夹持在希望的滚动方向上(如上所述)。图19A示出在插入位置中支撑臂1908a与其相关联的套管的位置。
[0167] 图19A进一步示出另一个器械套管支撑臂1908b在铰链1914b处被枢转地安装在底座1904上,其在与支撑臂1908a相对的一侧上。支撑臂1908b包括类似于套管支座1916a的器械套管支座1916b。图19A示出了在套管插入穿过切口之前支撑臂1908b及其相关联的套管的位置。这些套管被套管支座1916a和1916b夹持,从而使得铰链1914a和1914b的转动轴线邻近弯曲套管的弯曲部的轴线。因此,当支撑臂在铰链处转动时,弯曲套管行进穿过大致相同的小区域,其与单个切口或进入身体的其他入口对齐。参考图19B,可以看到支撑臂1908b已经移动以插入其相关联的套管,该套管以弧形移动穿过该切口。此外,铰链1914a和1914b可以被定向,从而使得两个套管移动穿过切口中稍微不同的区域,以便在该切口中在不同的套管之间建立期望的间隙和布置。
[0168] 套管插入固定件的示例性使用是与单个经皮的/多个筋膜的切口一起使用(例如上述之一)。外科医生首先形成该单个经皮切口。接着,外科医生将解剖(例如,尖头)阻塞器插入内窥镜套管中并且以期望的角度将该内窥镜套管耦连到该插入固定件上。这时,外科医生可以将内窥镜插入穿过该内窥镜套管以便观察进一步插入,将该内窥镜套管和内窥镜安装到机器人操纵器上亦或暂时地用手支撑该内窥镜。然后,外科医生可以沿着套管的插入弧形来移动套管,直至它们接触体壁。通过使用解剖阻塞器,外科医生然后可以将每个套管插入穿过筋膜。然后外科医生可以任选地从这些套管中移除解剖阻塞器并且将这些套管清空亦或插入钝的阻塞器。然后,外科医生可以继续将这些器械套管移动到它们完全插入的位置,其中它们的远端被定位从而出现在内窥镜的视场中。一旦套管被插入,这些机器人操纵器可以被移入到适当位置中,并且然后器械套管可以被安装(对接)到它们的机器人操纵器上。然后插入固定件被移除,并且柔性轴器械在内窥镜显示下穿过套管朝向手术部位插入。这个示意性插入过程是使用插入固定件穿过各种切口和身体开口插入和支持任何数量的套管的多种可能变化的实例。
[0169] 在一些情况下,插入固定件的实现方式可以用于支持这些套管,同时一个或多个手动操作的器械可以插入通过该一个或多个套管并在手术部位使用。
[0170] 在一些替代实现方式中,插入固定件可以被简化从而仅提供在套管对接到它们相关的操纵器上期间将套管夹持在固定位置中的方式。例如,这可以通过以下步骤实现:首先插入这些套管,然后将固定件应用到该摄像机套管上,并且然后将该固定件附连到这些弯曲套管上。一旦插入的套管被耦连到该固定件上,病人侧的机器人以及它的操纵器就会被移动到相对于病人的适当位置。然后,当该固定件将摄像机套管和弯曲套管夹持在适当位置时,每个套管都对接到其相关联的操纵器上。通常,首先对接摄像机套管。
[0171] 图19C是套管稳定固定件1930的图解透视图。固定件1930包括底座1932以及两个套管夹持器1934a和1934b。臂1936a将套管夹持器1934a耦连到底座1932上,并且臂1936b将套管夹持器1934b耦连到底座1932上。底座1932被耦连到静止对象,从而使得该固定件可以支撑保持在臂的末端处的套管。在一个实现方式中,底座1932被配置用来在开口1938中接收内窥镜套管,并且位于开口1938每侧上的两个一体的弹簧夹1940a和1940b将底座紧固地夹持在该内窥镜套管上(该内窥镜套管可以刚性地耦连到其相关联的ECM上)。每个套管夹持器1934a和1934b被配置为通过接收类似于上面参考图10A所述的键构件的键构件来夹持器械套管。套管夹持器中的孔接收销钉1036(如图10A中所示)。
在一个图示说明性实现方式中臂1936a和1936b是被抗腐蚀的硅酮/硅树脂管覆盖用以抗腐蚀的重的可弯曲的线,并且因此这些臂可以根据需要来定位和再定位。在其他实现方式中,其他材料如不锈钢(不需要耐腐蚀的覆盖物或涂层)以及不同的可再弯曲/可再定位的配置(例如,如上描述的一系列可刚化的连杆,“鹅颈”型管等等)可以被用于臂,从而提供足够的套管支撑。每个臂支持其相关联的套管夹持器和器械套管,从而使得当器械套管都被定位到单个的皮肤切口中时,这些器械套管相对于该内窥镜套管保持固定。本领域技术人员将会理解该固定件的多种变化是可能的以便在插入期间以及在对接到机器人操纵器上期间将不同的套管作为一个单个单元有效地夹持就位。例如,每端都具有套管夹持器的单个臂可以用于将两个套管相对彼此进行支撑。
[0172] 图20A-20D是图示说明将套管插入单个切口中的另一种方法的图解视图。例如,图20A示出内窥镜套管2002以及两个弯曲套管2004a和2004b。在一些情况下,内窥镜2006可以被插入内窥镜套管2002中。套管的远端(如果内窥镜的成像端可用的话)被一起成组到帽2008内部。在一些实现方式中,帽2008可以是由足够刚性的材料制成的正圆锥,从而用作阻塞器以便穿透体壁。在一些实现方式中,外科医生首先形成切口,并且然后帽
2008和其后成组的套管被插入穿过该切口。在一些情况下,该帽可以由透明材料制成,该透明材料允许内窥镜对该帽前面的插入路径成像。在一些实现方式中,帽2008可以与端口构件2010(例如上述之一或其他适当的端口构件)成组在一起。因此在一些情况下,端口构件对于内窥镜和/或器械可以用作一个或多个套管。(如所示,端口构件2010还图示说明在任何端口构件中通过吹入通道2012的吹入可以被提供在一些实现方式中,虽然上述的吹入能够以其他方式来提供,例如经由套管之一)。栓系2014被附连到帽2008上,并且栓系延伸到主体外部。
[0173] 图20B示出当将它更深地插入病人体内时,套管(或器械,当可用时)的远端仍然成组在帽2008中。当端口构件2010仍然紧固在体壁2016中时,套管(或器械,当可用时)滑动通过它,从而保持在帽2008内。在一些情况下,通过按压一个或多个套管(或器械,当可用时)将帽向内更深地移动。例如,内窥镜套管和/或套管被安装在机器人摄像机操纵器上,并且该操纵器可以被用于将该帽向内更深地插入。
[0174] 图20C示出一旦套管(或器械,当可用时)的远端已达到期望的深度,套管可以被耦连到其相关联的机器人操纵器上(例如,套管2004a耦连到操纵器2018a上并且套管2004b耦连到操纵器2018b上)。然后手术器械可以被插入穿过器械套管之一(例如,通过套管2004b插入手术器械2020b,如所示)并且被安装到相关联的操纵器上(例如操纵器2018b)。
然后该手术器械可以被用于将该帽从套管(或其他器械,当可用时)的远端去除。图20D示出可以在使用内窥镜和机器人控制的器械2020a和2020b两者的手术过程期间将帽2008定位在远离病人内部的手术部位。帽2008可以任选地在该程序结束时结合用于样品回收的样品袋2022。该样品袋可以任选地结合牵引绳以便将该袋子封闭,并且该样品袋牵引绳可以任选地与帽栓系2014整合在一起。在手术完成并且器械、套管和端口构件被移除之后,帽2008(以及任选的袋)可以通过拉动栓系2014而被移除。
[0175] 在一个方面,在此描述的不同的安装固定件被配置为辅助插入和支撑一个或多个弯曲的器械套管与一个或多个直的器械套管的组合。
[0176] 控制方面
[0177] 微创机器人手术系统的控制是已知的(参见例如,美国专利US5,859,934(1997年1月14日提交)(公开了在远程操作系统中转换坐标系的方法和装置),US 6,223,100(1998年3月25日提交)(公开用铰接的器械执行计算机增强手术的装置和方法),7,087,049(2002年1月15日提交)(公开了在微创远程手术中主/从关系的再定位和再定向),以及US 7,155,315(2005年12月12日提交)(公开了微创手术装置中摄像机参考控制)以及美国专利申请公开号US2006/0178559(2005年12月27日提交)(公开了微创手术过程中用于协作或培训的多用户医学机器人系统),上面所有文献通过引用并入本文)。可以如本文所述修改用于操作机器人手术系统的控制系统以便与弯曲套管和被动型柔性手术器械一起使用。在一个示意性实现方式中,da 手术系统的控制系统被这样修改。
[0178] 图21是弯曲套管2102的图解视图,其具有安装在机器人操纵器上的近端2104,远端2106以及位于该近端和远端之间的弯曲区段(例如,60度弯曲)。纵向中心轴线2110被限定在该弯曲套管2102的近端和远端之间。此外,插入和抽出轴线2112被限定为包括中心线,该中心线从该弯曲套管的远端沿着纵向轴线2110以直线延伸。因为被动型柔性器械轴的远端区段(506c,图5)是相对硬的,当它延伸到该弯曲套管的远端外时它大致地沿着插入和抽出轴线2112移动。因此,控制系统被配置从而假设该柔性轴用作具有插入和抽出轴线2112的直的刚性轴。即,采用器械的I/O轴线作为从弯曲套管的远端延伸的直的纵向中心线,并且该系统确定沿着该I/O轴线2112的器械尖端的虚拟位置。通过双头箭头2114示出该套管远端处该器械I/O移动。为了防止延伸超过套管远端的该柔性轴区段中过量的侧向移动,在一个实现方式中延伸距离通过控制系统软件来调节并且可以取决于例如所使用的具体器械的柔性轴远端区段的硬度。并且在一个实现方式中,该控制系统将不允许主操纵器移动该套管或器械直至该器械尖端延伸超过该套管的远端。
[0179] 该控制系统还被修改以结合与弯曲套管相关联的运动学限制。对器械尖端延伸到套管外的移动(就像通过参考系的虚拟系列运动链所产生的一样)进行描述,通过一组Denavit-Hartenberg(DH)参数独特描述。例如,套管远端2106的边界条件被定义为尖端位置、尖端取向以及沿着该弯曲区段的长度。作为另一个实例,作为替代使用套管的物理末端(包括该套管的远端直区段)来定义边界条件。这类边界条件被用来限定适当的DH参数。如图21中所图示说明的,可以限定一个参考系,其沿着纵向轴线2110在一个位置处具有原点(例如,在套管远程运动中心2116处,如所示)。这种参考系的一个轴线2118可以被限定为在点2120处与延伸的I/O轴线2112交叉。可以确定参考系的原点与该套管远端2106之间的最小距离。各种不同的套管配置(例如,长度、弯曲角度、当安装在操纵器上时的转动等)将具有各种相关联的运动学限制。然而,对于器械I/O而言,使用沿着该弯曲区段的实际路径长度而不是远程运动中心和该器械远侧尖端之间的最小距离。本领域技术人员将理解的是可以使用不同的方法来描述运动学限制。例如,解决该问题的替代方法是将描述弯曲套管的几何形状的均匀转换(homogenous transformation)明确结合到系列运动学链中。
[0180] 如以上描述的,可以存在两个或更多个具有相同曲率但具有不同的远端直区段长度的弯曲套管。由于与这些套管中的每个套管相关联的DH参数是相同的,因此无论每个套管的远端直区段的长度如何都会保持相同的直观控制。因此,由于为控制的目的可以对每个套管进行相同处理,因此如以上关于图10所描述的套管类型的检测构件可以将这样的套管视为单个的套管类型。
[0181] 对于控制系统的进一步修改允许外科医生在主操纵器(例如,122a和122b,如图1B中所示)处接收触觉反馈。在各种机器人手术系统中,外科医生体验来自主操纵器中伺服电机的触觉力。例如,如果该系统感测到(例如,通过编码器触发)达到或几乎达到从动侧关节的极限,则该外科医生体验到在该主操纵器中倾向于阻止外科医生以从动侧关节极限方向移动该主操纵器的力。作为另一个实例,如果该系统感测到外力在该手术部位处被施加到该器械上(例如通过感测到当系统试图将器械保持在其命令位置时所使用的过量的电动机电流),则该外科医生可以体验到在该主操纵器中指示作用在该从动侧上的外力的方向和大小的力。
[0182] 主操纵器中触觉反馈被用在控制系统的实现方式中,控制系统用于在外科医生使用套管时为外科医生提供直观控制体验。对于不具有腕部的柔性器械而言,该控制系统在该主操纵器处提供触觉力,从而防止外科医生通过腕部运动来移动多DOF主操纵器。即,当外科医生改变主操纵器位置时,主操纵器伺服电动机试图将该主操纵器方向保持固定在俯仰和偏转方向上。这个特征类似于在当前的机器人手术系统中所使用的特征,其中器械具有直的刚性轴并且无腕部。该系统感测器械类型(例如,有腕部,无腕部)并且因此施加触觉反馈。
[0183] 触觉反馈还被用在一个实现方式中用来为外科医生提供对施加到该器械运动学链中不同点上的外力的感知。对于任何感知的施加到该操纵器上(例如,如果操纵器与其他操纵器碰撞时可能发生)或该弯曲套管的直的近端部分上的外力的触觉反馈被提供给外科医生。然而,因为该套管是弯曲的,对于施加到该套管的弯曲区段的外力来说(例如,在该内窥镜视场之内或之外,与另一个弯曲套管碰撞而产生的外力),该系统不能提供适当的触觉反馈,这是因为该系统不能确定施加力的方向和大小。对于这个示例性实现方式而言,为了将这类非直观的触觉反馈降至最低,通过将机器人操纵器以及其相关联的套管适当定位(例如,如上所述,最初使用固定件和/或在手术期间使用端口构件)将套管碰撞降至最低。类似地,该系统提供给外科医生的由施加到从套管远端延伸的器械部分上的外力所引起的触觉反馈将是不准确的(除非是直接地沿着I/O轴线经受的)。然而实际上,与器械/传递中的摩擦力和顺应力的量相比,在器械远端上的这类力更低,并且因此任何产生的触觉反馈可忽略不计。
[0184] 然而,在其他实现方式中,可以使用力传感器来为外科医生提供对施加到套管的弯曲区段或器械的延伸的远端上的外力的准确体验。例如,使用光纤应变传感的力传感器是已知的(参见例如,美国专利申请公开号US 2007/0151390 A1(2006年9月29日提交)(公开了用于手术器械的力矩传感)、US 2007/0151391 A1(2006年10月26日提交)(公开了模块力传感器(modular force sensor))、US2008/0065111 A1(2007年9月29日提交)(公开了用于手术器械的力传感)、US 2009/0157092 A1(2007年12月18日提交)(公开了带肋的力传感器)以及US 2009/0192522 A1(2009年3月30日提交)(公开了力传感器温度补偿),上面所有文献都通过引用并入到本文)。图22是弯曲套管和柔性器械远端部分的图解视图,并且它示出在示意性实现方式中,一个或多个力传感光纤2202a和2202b可以被定位(例如,四个光纤等距地围绕在外侧)在弯曲套管2204上(为了清楚的目的,光纤的应变传感解调(interrogation)和应变确定部件被省略)。类似地,该柔性器械的远端区段2206可以结合(例如,其内部布置)一个或多个应变传感光纤2208,该传感光纤2208感测在远端区段上弯曲的位置或其形状,并且相对于该套管远端的位移量和位置被用于确定该延伸器械上的外力。
[0185] 图23是用于带有远程呈现的远程操作的机器人手术系统的控制系统构造2300的图解视图。如图23中所示,
[0186] fh=人的力
[0187] xh=主控器/主操纵器位置
[0188] em,s=编码器数值(主,从)
[0189] im,s=电动机电流(主,从)
[0190] θm,x=关节位置(主,从)
[0191] τm,s=关节扭矩(主,从)
[0192] fm,s=笛卡儿力(主,从)
[0193] xm,s=笛卡儿位置(主,从)
[0194] fe=环境力
[0195] xe=从动器械位置
[0196] 在一个实现方式中,控制系统构造2300的“从动运动学”部分2302中进行如上所述的控制系统改变。例如在上述参考文献中发现控制系统构造2300的另外的详细说明。控制系统2300数据处理可以在电子数据处理单元142中(图1C)实现,或其可以被分配在贯穿该手术系统的不同处理单元中。
[0197] 参考图11A和11B以及图1B和图4C,可以看到的是在许多实施方式中,被“左侧”机器人操纵器致动的器械末端执行器出现在该内窥镜视场的右侧,并且被“右侧”机器人操纵器致动的器械末端执行器出现在该内窥镜视场的左侧。因此,为了保持对末端执行器的直观控制,就如同外科医生在外科医生控制台显示器上所看到的那样,该右侧主操纵器控制该“左侧”机器人操纵器,并且该左侧主操纵器控制“右侧”机器人操纵器。这个配置与典型地与直的手术器械一起使用的配置是相反的,在使用直的手术器械的配置中该机器人操纵器及其相关联的器械都被定位在相对于该内窥镜视场的垂直分区的同一侧上。在使用弯曲套管期间,该机器人操纵器及其相关联的器械被定位在该内窥镜参考系的相对侧上。然而,这不适用于某些混合弯曲套管的使用,例如图13及相关内容所说明的。
[0198] 因此,该控制系统的各种实现方式允许外科医生甚至在不使用提供俯仰和偏转移动的器械腕的情况下也能体验对器械末端执行器的直观控制以及得到的远程呈现。主操纵器的移动(例如,122a,图1B)导致相关联的弯曲套管的远端(对于在手术部位处的俯仰和偏转移动)或者器械末端执行器(对于I/O、滚动和抓握(或其他末端执行器DOF))的相应移动。因此,在没有使用器械中独立的腕部机构的情况下,外科医生的手在主控制处的移动可以与对应的从动器在手术部位处的运动相当良好的接近。这些器械尖端响应于主操纵器位置改变而不是主操纵器取向改变而移动。该控制系统不能解析这种外科医生腕部运动取向改变。
[0199] 在一些实现方式中,该机器人手术系统的控制系统可以被配置为自动地在使用与直轴器械相关联的直套管和使用与柔性轴器械相关联的弯曲套管之间进行切换。例如,该系统可以感测到弯曲套管和柔性轴器械两者都安装在一个操纵器上,如上参考图6和图10所述,并且因此切换到与弯曲套管和柔性器械相关的控制模式。然而,如果该系统感测到该操纵器上安装了直套管和柔性器械,则这个感测可以触发非法状态,并且该系统将不能操作。
[0200] 在具有多个机器人操纵器的机器人手术系统的一些实现方式中,控制软件可以允许外科医生使用各种不同形状的弯曲套管,各种不同长度的柔性轴器械以及直套管和刚性直轴器械的混合。所有这些器械的尖端运动会表现得相似,并且由于对上述套管运动学限制的自动处理使得外科医生可以体验直观控制。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈