首页 / 专利库 / 诊断设备和程序 / 医学影像学 / 分子成像 / 磁共振成像 / 作为用于抑制病理性血管生成和肿瘤细胞侵袭力的治疗剂以及用于分子成像和靶向递送的抗DEspR抑制剂

作为用于抑制病理性血管生成和肿瘤细胞侵袭治疗剂以及用于分子成像和靶向递送的抗DEspR抑制剂

阅读:67发布:2023-03-06

专利汇可以提供作为用于抑制病理性血管生成和肿瘤细胞侵袭治疗剂以及用于分子成像和靶向递送的抗DEspR抑制剂专利检索,专利查询,专利分析的服务。并且在此提供了多种新颖的组合物,其包含抗DEspR 抗体 及其 片段 ,包括全人、复合工程化人、人源化、单克隆和多克隆抗DEspR抗体及其片段,以及它们在许多种 治疗 应用中的使用方法。包含在此所述的抗DEspR抗体及其片段的组合物用于诊断方法和成像方法中,如血管生成的DEspR靶向 分子成像 、以及用于伴随诊断(companion diagnostic)和/或体内非侵袭性成像和/或评定。,下面是作为用于抑制病理性血管生成和肿瘤细胞侵袭治疗剂以及用于分子成像和靶向递送的抗DEspR抑制剂专利的具体信息内容。

1.一种分离的抗DEspR抗体或其抗体片段,其与DEspR(双重内皮素/VEGF信号肽受体)特异性结合并且降低或抑制DEspR生物活性。
2.如权利要求1所述的抗DEspR抗体或其抗体片段,其中该DEspR包含SEQ ID NO:1的基酸序列。
3.如权利要求1-2中任一项所述的抗DEspR抗体或其抗体片段,其中该抗体或其抗体片段与包含SEQ ID NO:1的残基1-9的DEspR表位特异性结合。
4.如权利要求1-3中任一项所述的抗DEspR抗体或其抗体片段,其中该抗体或其抗体片段在VEGF信号肽(VEGFsp)结合部位与DEspR特异性结合。
5.如权利要求1-4中任一项所述的抗DEspR抗体或其抗体片段,其中该VEGF信号肽包含SEQ ID NO:2的氨基酸序列。
6.如权利要求1-5中任一项所述的抗DEspR抗体或其抗体片段,其中该抗DEspR抗体是单克隆抗体或其抗体片段。
7.如权利要求1-6中任一项所述的抗DEspR抗体或其抗体片段,其中该抗DEspR抗体或抗体片段包含可变重(VH)链氨基酸序列,该可变重链氨基酸序列包含SEQ ID NO:4的序列。
8.如权利要求1-7中任一项所述的抗DEspR抗体或其抗体片段,其中该抗DEspR抗体或抗体片段包含可变轻(VL)链氨基酸序列,该可变轻链氨基酸序列包含SEQ ID NO:9的序列。
9.如权利要求1-6中任一项所述的抗DEspR抗体或其抗体片段,其中该抗DEspR抗体是人源化抗体或其抗体片段。
10.如权利要求1-6或9中任一项所述的抗DEspR抗体或其抗体片段,其中该抗DEspR抗体或抗体片段包含一个或多个重链CDR区,这个或这些重链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:5、SEQ ID NO:6、以及SEQ ID NO:7。
11.如权利要求1-6或9-10中任一项所述的抗DEspR抗体或其抗体片段,其中该抗DEspR抗体或抗体片段包含一个或多个重链CDR区,这个或这些重链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:10、SEQ ID NO:11、以及SEQ ID NO:12。
12.如权利要求1-5中任一项所述的抗DEspR抗体或其抗体片段,其中该抗DEspR抗体是复合抗体或其抗体片段。
13.如权利要求12所述的抗DEspR抗体或其抗体片段,其中该抗DEspR复合抗体或抗体片段包含一个或多个重链CDR区,这个或这些重链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:5、SEQ ID NO:6、以及SEQ ID NO:7。
14.如权利要求12或13所述的抗DEspR抗体或其抗体片段,其中该抗DEspR复合抗体或抗体片段包含一个或多个轻链CDR区,这个或这些轻链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:10、SEQ ID NO:11、以及SEQ ID NO:12。
15.如权利要求12-14中任一项所述的抗DEspR抗体或其抗体片段,其中该抗DEspR复合抗体或抗体片段包含选自下组的可变重(VH)链氨基酸序列,该组由SEQ ID NO:13-SEQ ID NO:17组成。
16.如权利要求12-14中任一项所述的抗DEspR抗体或其抗体片段,其中该抗DEspR复合抗体或抗体片段包含选自下组的可变轻链(VL)链氨基酸序列,该组由SEQ ID NO:18和SEQ ID NO:19组成。
17.如权利要求1-6中任一项所述的抗DEspR抗体或其抗体片段,其中该抗DEspR抗体或其抗体片段是一种由杂交瘤7C5C55或G12E8表达或产生的抗体。
18.如权利要求1-6中任一项所述的抗DEspR抗体或其抗体片段,其中该抗DEspR抗体或其抗体片段显示出与由杂交瘤7C5B2、7C5C55、或G12E8表达或产生的抗体所显示的结合模式相似的结合模式。
19.如权利要求1-6中任一项所述的抗DEspR抗体或其抗体片段,其中该抗DEspR抗体或其抗体片段显示出与由杂交瘤7C5B2、7C5C55、或G12E8表达或产生的抗体所显示的亲合相似的亲合力。
20.如权利要求1-6中任一项所述的抗DEspR抗体或其抗体片段,其中该抗DEspR抗体或其抗体片段与由杂交瘤7C5B2、7C5C55、或G12E8表达或产生的抗体所结合的那些表位相同的表位结合。
21.如权利要求1-6中任一项所述的抗DEspR抗体或其抗体片段,其中该抗DEspR抗体或其抗体片段包含由杂交瘤7C5C55或G12E8表达或产生的抗体的一个或多个CDR的氨基酸序列。
22.如权利要求1-6中任一项所述的抗DEspR抗体或其抗体片段,其中该抗DEspR抗体或其抗体片段具有由杂交瘤7C5B2、7C5C55、或G12E8表达或产生的单克隆抗体的一个或多个生物学特征。
23.如权利要求1-6中任一项所述的抗DEspR抗体或其抗体片段,其中该抗DEspR抗体或其抗体片段与DEspR表位特异性结合,该DEspR表位被由杂交瘤7C5B2、7C5C55、或G12E8表达或产生的抗体结合。
24.如权利要求1-23中任一项所述的抗DEspR抗体或其抗体片段,其中该抗体片段是Fab片段、Fab’片段、Fd片段、Fd'片段、Fv片段、dAb片段、F(ab')2片段、单链片段、双体抗体(diabody)、或线性抗体。
25.如权利要求1-24中任一项所述的抗DEspR抗体或其抗体片段,进一步包含与该抗DEspR抗体或其抗体片段偶联以形成DEspR特异性免疫偶联物的物质。
26.如权利要求25所述的抗DEspR抗体或其抗体片段,其中与该抗体或其抗体片段偶联的物质是化疗剂、毒素、放射性同位素、小分子、siRNA、纳米粒子、或微泡。
27.一种药物组合物,其包含如权利要求1-26中任一项所述的与DEspR特异性结合的抗DEspR抗体或其抗体片段、以及药学上可接受的载体。
28.一种在患有依赖于血管生成或受其调节的疾病或失调的受试者中抑制血管生成的方法,该方法包括向对其有需要的受试者给予治疗有效量的如权利要求27所述的药物组合物。
29.如权利要求28所述的方法,其中该依赖于血管生成或受其调节的疾病或失调是癌症或肿瘤
30.如权利要求29所述的方法,其中该依赖于血管生成或受其调节的疾病或失调选自下组,该组由以下各项组成:年龄相关性黄斑变性、颈动脉疾病、糖尿病性肾病、类湿性关节炎、神经变性失调、阿尔茨海默病、肥胖症、子宫内膜异位症、屑病、动脉粥样硬化、眼部新血管形成、新生血管性青光眼、骨质疏松症、以及再狭窄
31.一种在患有癌症或肿瘤的受试者中抑制肿瘤细胞侵袭力的方法,该方法包括向对其有需要的受试者给予治疗有效量的如权利要求27所述的药物组合物。
32.如权利要求28-31中任一项所述的方法,其中该方法进一步包括给予一种或多种化疗剂、血管生成抑制剂、细胞毒性剂、或抗增殖剂。
33.一种在对其有需要的受试者中通过抑制细胞中DEspR表达和/或功能而抑制肿瘤生长和减少肿瘤尺寸或肿瘤转移的方法,该方法包括向对其有需要的受试者给予治疗有效量的如权利要求27所述的药物组合物。
34.如权利要求33所述的方法,其中该DEspR表达和/或功能在肿瘤细胞、肿瘤起始细胞、癌干细胞样细胞、癌干细胞、转移性肿瘤细胞、内皮祖细胞、炎症细胞、肿瘤间质细胞、肿瘤血管细胞、或其任何组合中被抑制。
35.如权利要求33所述的方法,其中该肿瘤血管细胞是内皮细胞、周细胞、平滑肌细胞、外膜细胞、或其任何组合。
36.一种通过抑制细胞中DEspR表达和/或功能而抑制肿瘤抵抗和肿瘤复发的方法,该方法包括向对其有需要的受试者给予治疗有效量的如权利要求27所述的药物组合物。
37.如权利要求36所述的方法,其中该DEspR表达和/或功能在肿瘤细胞、肿瘤起始细胞、癌干细胞样细胞、癌干细胞、转移性肿瘤细胞、或其任何组合中被抑制。
38.一种通过抑制肿瘤细胞中DEspR表达和/或功能来促进癌细胞的自体吞噬而抑制癌症进展的方法,该方法包括向对其有需要的受试者给予治疗有效量的如权利要求27所述的药物组合物。
39.如权利要求38所述的方法,其中该DEspR表达和/或功能在肿瘤细胞、肿瘤起始细胞、癌干细胞样细胞、癌干细胞、转移性肿瘤细胞、或其任何组合中被抑制。
40.一种通过抑制DEspR表达和/或功能而促进自体吞噬或减少细胞内有毒物质或病原体积累的方法,该方法包括向对其有需要的受试者给予治疗有效量的如权利要求27所述的药物组合物。
41.如权利要求40所述的方法,其中该受试者患有阿尔茨海默病或亨廷顿病。
42.一种通过靶向DEspR进行分子成像的方法,该方法包括给予有效量的与靶向部分偶联的如权利要求27所述的药物组合物,并且使用分子成像确定与靶向部分偶联的如权利要求27所述的药物组合物的存在或不存在。
43.如权利要求42所述的方法,其中该分子成像是对比增强超声成像、MRI(磁共振成像)、近红外成像、或光声成像
44.如权利要求42或43所述的方法,其中该靶向部分是抗体、DEspR结合肽配体、小分子、纳米粒子、聚合物、适配体、或其任何组合。
45.一种通过确定DEspR表达对肿瘤进行分层或分类的方法,该方法包括使一种细胞与如权利要求1-26中任一项所述的与DEspR特异性结合的抗DEspR抗体或其抗体片段接触,并且确定在所述接触之后该抗DEspR抗体或其抗体片段是否与这种细胞结合,其中该DEspR抗体或其抗体片段与这种细胞的结合指示这种细胞表达DEspR。
46.如权利要求45所述的方法,其中这种细胞是肿瘤细胞、内皮细胞、周细胞、平滑肌细胞、外膜细胞、肿瘤间质细胞、或其任何组合。
47.如权利要求46所述的方法,其中这种肿瘤间质细胞是纤维细胞、肌成纤维细胞、炎症细胞、星状细胞、或其任何组合。
48.如权利要求45-47中任一项所述的方法,其中使这种细胞接触是在组织活检样品、石蜡包埋切片、或冷冻切片中。
49.一种用于通过DEspR靶向声孔效应而增强治疗剂递送的方法,该方法包括使用靶向超声递送向对其有需要的受试者递送有效量的如权利要求27所述的药物组合物和治疗剂,其中相对于在如权利要求27所述的药物组合物不存在时递送该治疗剂,该治疗剂的递送被增强。
50.如权利要求49所述的方法,其中该治疗剂是化疗剂、小分子、肽、或适配体。
51.一种用于通过DEspR靶向声孔效应来降低治疗剂的毒性的方法,该方法包括使用靶向超声递送向对其有需要的受试者递送有效量的如权利要求27所述的药物组合物和治疗剂,其中相对于在如权利要求27所述的药物组合物不存在时递送该治疗剂,该治疗剂的毒性被降低。
52.如权利要求51所述的方法,其中该治疗剂是化疗剂、小分子、肽、或适配体。
53.一种用于将DEspR靶向分子成像和DEspR靶向递送治疗剂组合的方法,该方法包括向受试者给予有效量的治疗剂以及与一个靶向部分偶联的如权利要求27所述的药物组合物,并且使用分子成像确定与该靶向部分偶联的如权利要求27所述的药物组合物的存在或不存在。
54.如权利要求53所述的方法,其中该分子成像是对比增强超声成像、MRI(磁共振成像)、近红外成像、或光声成像。
55.如权利要求53或54所述的方法,其中该治疗剂是化疗剂、小分子、肽、或适配体。
56.如权利要求27所述的药物组合物,用于在患有依赖于血管生成或受其调节的疾病或失调的受试者中抑制血管生成。
57.如权利要求56所述的用途,其中该依赖于血管生成或受其调节的疾病或失调是癌症或肿瘤。
58.如权利要求57所述的用途,其中该依赖于血管生成或受其调节的疾病或失调选自下组,该组由以下各项组成:年龄相关性黄斑变性、颈动脉疾病、糖尿病性肾病、类风湿性关节炎、神经变性失调、阿尔茨海默病、肥胖症、子宫内膜异位症、银屑病、动脉粥样硬化、眼部新血管形成、新生血管性青光眼、骨质疏松症、以及再狭窄。
59.如权利要求27所述的药物组合物,用于在患有癌症或肿瘤的受试者中抑制肿瘤细胞侵袭力。
60.如权利要求59所述的用途,其进一步包括一种或多种化疗剂、血管生成抑制剂、细胞毒性剂、或抗增殖剂。
61.如权利要求27所述的药物组合物,用于通过在对其有需要的受试者中抑制细胞中的DEspR表达和/或功能而抑制肿瘤生长和减少肿瘤尺寸或肿瘤转移。
62.如权利要求61所述的用途,其中该DEspR表达和/或功能在肿瘤细胞、肿瘤起始细胞、癌干细胞样细胞、癌干细胞、转移性肿瘤细胞、内皮祖细胞、炎症细胞、肿瘤间质细胞、肿瘤血管细胞、或其任何组合中被抑制。
63.如权利要求62所述的用途,其中这种肿瘤血管细胞是内皮细胞、周细胞、平滑肌细胞、外膜细胞、或其任何组合。
64.如权利要求27所述的药物组合物,用于通过在对其有需要的受试者中抑制细胞中的DEspR表达和/或功能而抑制肿瘤抵抗和肿瘤复发。
65.如权利要求64所述的用途,其中该DEspR表达和/或功能在肿瘤细胞、肿瘤起始细胞、癌干细胞样细胞、癌干细胞、转移性肿瘤细胞、或其任何组合中被抑制。
66.如权利要求27所述的药物组合物,用于通过在对其有需要的受试者中抑制肿瘤细胞中的DEspR表达和/或功能来促进癌细胞的自体吞噬而抑制癌症进展。
67.如权利要求66所述的用途,其中该DEspR表达和/或功能在肿瘤细胞、肿瘤起始细胞、癌干细胞样细胞、癌干细胞、转移性肿瘤细胞、或其任何组合中被抑制。
68.如权利要求27所述的药物组合物,用于通过在对其有需要的受试者中抑制DEspR表达和/或功能而促进自体吞噬或减少细胞内有毒物质或病原体积累。
69.如权利要求68所述的用途,其中该受试者患有阿尔茨海默病或亨廷顿病。
70.如权利要求27所述的药物组合物,用于向对其有需要的受试者使用靶向超声递送通过DEspR靶向声孔效应而增强治疗剂的递送。
71.如权利要求70所述的用途,其中该治疗剂是化疗剂、小分子、肽、或适配体。
72.如权利要求27所述的药物组合物,用于向对其有需要的受试者使用靶向超声递送通过DEspR靶向声孔效应而降低治疗剂的毒性。
73.如权利要求72所述的用途,其中该治疗剂是化疗剂、小分子、肽、或适配体。

说明书全文

作为用于抑制病理性血管生成和肿瘤细胞侵袭治疗

以及用于分子成像和靶向递送的抗DEspR抑制剂

[0001] 相关申请的交叉引用
[0002] 本申请在35U.S.C.§119(e)下要求2010年7月23日提交的美国临时专利申请序列号61/367,206的权益,其内容通过引用以其全文结合在此。

技术领域

[0003] 本发明涉及针对DEspR的单克隆抗体、和它们作为治疗剂在抑制病理性血管生成和肿瘤细胞侵袭力中的用途,以及用于分子成像的诊断剂和靶向递送其他治疗剂的靶向剂的用途。
[0004] 政府支持
[0005] 受美国政府支持在由美国国立卫生研究院授予的合同号RR025771下做出本发明。美国政府在本发明中有一定的权利。

背景技术

[0006] 确立血管生成开关在肿瘤形成中的关键作用已经使开发抗血管生成疗法背后的基本原理清楚(Hanahan和Weinberg2007)。遗憾的是,仍未实现获得抗血管生成疗法对所有癌症类型的远期疗效的能力,以便将癌症减弱成休眠的、慢性的可控制的疾病而不增加来自副作用的发病率(Loges等人,2010,Ferrara2009,Abdollahi和Folkman2009,Bergers和Hanahan2008)。
[0007] 累积观察结果表明,FDA批准的所有三种VEGF通路抑制剂(抗VEGF贝伐单抗或阿瓦斯汀、抗VEGFR2舒尼替尼、和索拉非尼)仅导致短暂改善肿瘤淤滞或缩小的形式并且仅用于某些癌症,尽管大部分癌症类型(如果不是所有癌症类型的话)展示病理性血管生成。(Carmeliet2005;Bergers和Hanahan2008)。而且,虽然在临床前试验中抗VEGF通路疗法已经减少原发肿瘤生长和转移(Crawford和Ferrara2008),最近的小鼠肿瘤模型研究已经报道,尽管在一些情况下舒尼替尼和抗VEGFR2抗体DC101抑制原发肿瘤生长并且增加总生存期,肿瘤细胞的转移却增加了(Ebos等人2009,Paez-Ribes等人2009)。在解决这个“抗血管生成疗法难题”时,累积观察结果已经提示几种逃避和内在抵抗机制(Loges等人
2010,Ferrara2009,Abdollahi和Folkman2009,Bergers和Hanahan2008),如:a)替代性促血管生成途径的活化和/或上调,b)骨髓源促血管生成细胞的募集,c)周细胞对肿瘤血管的覆盖增加,从而减弱VEGF信号转导的需要;d)侵袭和转移的激活和增强以便在没有专性新血管形成的情况下提供到达正常组织血管的通路;[对于固有抗性]:e)预先存在的大量冗余促血管生成信号;f)预先存在的炎症细胞介导的血管保护作用;g)肿瘤血管过少(hypovascularity);和h)在没有必需血管生成的情况下正常血管的侵袭性和转移性共择(Bergers和Hanahan2008)。

发明内容

[0008] 在此描述了新颖的组合物,其包含抗DEspR抗体及其片段,包括全人、复合工程化人、人源化、单克隆和多克隆抗DEspR抗体及其片段,以及它们在多种应用中的使用方法,这些应用包括但不限于:1)与治疗癌症有关的抗血管生成疗法和抗肿瘤细胞侵袭力,2)与治疗其中病理性血管生成在发病或进展中发挥作用的那些血管疾病相关的抗血管生成方法,这些血管疾病例如颈动脉疾病、新生滋养血管形成(因此影响中)和易损斑新血管形成(因此例如影响心脏病),和3)与神经变性疾病相关的促自体吞噬手段,其中增加的自体吞噬可以防止有毒产物或错误折叠的蛋白质或异常蛋白的积累,正如在阿尔茨海默病、亨廷顿病等疾病中那样。
[0009] 另外,包含在此所述的抗DEspR抗体及其片段的组合物用于诊断方法和成像方法中,如血管生成的DEspR靶向分子成像,其可以例如用于监测对治疗的反应、体内检测肿瘤“血管生成开关”或血管拟态。包含这些抗DEspR抗体及其片段的组合物用于新颖的伴随诊断(companion diagnostic)和/或体内非侵袭性成像和/或评定。另外,在需要最大功效而具有最小全身毒性的癌症中,使用包含抗DEspR抗体及其片段的组合物的治疗剂的靶向递送的增值益处是特别重要的。值得注意地,这样的诊断剂提供了用于个体化医疗中的抗血管生成治疗的新手段。因此,包含在此所述的抗DEspR抗体及其片段的组合物包含用于靶特异性递送多种形式的治疗剂(如毒素、药物、小分子、肽、融合蛋白、嵌合蛋白、纳米粒子、DNA、siRNA,等等)以及用于组合性靶特异性诊断剂和治疗剂(在此称作“治疗诊断剂”)的靶向工具和/或模块。
[0010] 因此,在一些方面,在此提供了分离的抗DEspR抗体或其抗体片段,其与DEspR(双重内皮素/VEGF信号肽受体)特异性结合并且降低或抑制DEspR生物活性。
[0011] 在这些方面和在此所述的所有这样的方面的一些实施方案中,抗DEspR抗体或其抗体片段与包含SEQ ID NO:1的基酸序列的DEspR特异性结合。在这些方面的一些实施方案中,这种抗体或其抗体片段与包含SEQ ID NO:1的残基1-9的DEspR表位特异性结合。在这些方面的一些实施方案中,这种抗体或其抗体片段与基本上由SEQ ID NO:1的残基1-9组成的DEspR表位特异性结合。在这些方面的一些实施方案中,这种抗体或其抗体片段与由SEQ ID NO:1的残基1-9组成的DEspR表位特异性结合。
[0012] 在这些方面和在此所述的所有这样的方面的一些实施方案中,抗DEspR抗体或其抗体片段与在VEGF信号肽(VEGFsp)结合部位处的DEspR特异性结合。在一些这样的实施方案中,VEGF信号肽包含SEQ ID NO:2的氨基酸序列。在一些这样的实施方案中,VEGF信号肽基本上由SEQ ID NO:2的氨基酸序列组成。在一些这样的实施方案中,VEGF信号肽由SEQ ID NO:2的氨基酸序列组成。
[0013] 在这些方面和在此所述的所有这样的方面的一些实施方案中,抗DEspR抗体是单克隆抗体或其抗体片段。
[0014] 在这些方面和在此所述的所有这样的方面的一些实施方案中,抗DEspR抗体或抗体片段包含可变重(VH)链氨基酸序列,所述可变重链氨基酸序列包含SEQ ID NO:4的序列。
[0015] 在这些方面和在此所述的所有这样的方面的一些实施方案中,抗DEspR抗体或抗体片段包含可变轻(VL)链氨基酸序列,所述可变轻链氨基酸序列包含SEQ ID NO:9的序列。
[0016] 在这些方面和在此所述的所有这样的方面的一些实施方案中,抗DEspR抗体或抗体片段包含可变重(VH)链氨基酸序列和可变轻(VL)链氨基酸序列,所述可变重链氨基酸序列包含SEQ ID NO:4的序列,所述可变轻链氨基酸序列包含SEQ ID NO:9的序列。
[0017] 在这些方面和在此所述的所有这样的方面的一些实施方案中,抗DEspR抗体是人源化抗体或其抗体片段。
[0018] 在这些方面和在此所述的所有这样的方面的一些实施方案中,抗DEspR抗体或抗体片段包含一个或多个重链CDR区,所述重链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:5、SEQ ID NO:6、以及SEQ ID NO:7。在一些这样的实施方案中,一个或多个重链CDR区基本上由选自下组的序列组成,该组由以下各项组成:SEQ ID NO:5、SEQ ID NO:6、以及SEQ ID NO:7。在一些这样的实施方案中,一个或多个重链CDR区由选自下组的序列组成,该组由以下各项组成:SEQ ID NO:5、SEQ ID NO:6、以及SEQ ID NO:7。
[0019] 在这些方面和在此所述的所有这样的方面的一些实施方案中,抗DEspR抗体或抗体片段包含一个或多个轻链CDR区,所述轻链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:10、SEQ ID NO:11、以及SEQ ID NO:12的序列。在一些这样的实施方案中,一个或多个轻链CDR区基本上由选自下组的序列组成,该组由以下各项组成:SEQ ID NO:10、SEQ ID NO:11、以及SEQ ID NO:12。在一些这样的实施方案中,一个或多个轻链CDR区由选自下组的序列的序列组成,该组由以下各项组成:SEQ ID NO:10、SEQ ID NO:11、以及SEQ ID NO:12。
[0020] 在这些方面和在此所述的所有这样的方面的一些实施方案中,抗DEspR抗体或抗体片段包含一个或多个重链CDR区,所述重链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:5、SEQ ID NO:6和SEQ ID NO:7,和一个或多个轻链CDR区,所述轻链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:10、SEQ ID NO:11、以及SEQ ID NO:12。在一些这样的实施方案中,一个或多个重链CDR区基本上由选自下组的序列组成,该组由以下各项组成:SEQ ID NO:5、SEQ ID NO:6、以及SEQ ID NO:7。在一些这样的实施方案中,一个或多个重链CDR区由选自下组的序列组成,该组由以下各项组成:SEQ ID NO:5、SEQ ID NO:6、以及SEQ ID NO:7。在一些这样的实施方案中,一个或多个轻链CDR区基本上由选自下组的序列组成,该组由以下各项组成:SEQ ID NO:10、SEQ ID NO:11、以及SEQ ID NO:12。在一些这样的实施方案中,一个或多个轻链CDR区由选自下组的序列组成,该组由以下各项组成:SEQ ID NO:10、SEQ ID NO:11、以及SEQ ID NO:12。
[0021] 在这些方面和在此所述的所有这样的方面的一些实施方案中,抗DEspR抗体是复合抗体或其抗体片段。在一些这样的实施方案中,抗DEspR复合抗体或抗体片段包含一个或多个重链CDR区,所述重链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:5、SEQ ID NO:6、以及SEQ ID NO:7。在一些这样的实施方案中,抗DEspR复合抗体或抗体片段包含一个或多个重链CDR区,所述重链CDR区基本上由选自下组的序列组成,该组由以下各项组成:SEQ ID NO:5、SEQ ID NO:6、以及SEQ ID NO:7。在一些这样的实施方案中,抗DEspR复合抗体或抗体片段包含一个或多个重链CDR区,所述重链CDR区由选自下组的序列组成,该组由以下各项组成:SEQ ID NO:5、SEQ ID NO:6、以及SEQ ID NO:7。在一些这样的实施方案中,抗DEspR复合抗体或抗体片段包含一个或多个轻链CDR区,所述轻链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:10、SEQ ID NO:11、以及SEQ ID NO:12的序列。在一些这样的实施方案中,抗DEspR复合抗体或抗体片段包含一个或多个轻链CDR区,所述轻链CDR区基本上由选自下组的序列组成,该组由以下各项组成:SEQ ID NO:10、SEQ ID NO:11、以及SEQ ID NO:12。在一些这样的实施方案中,抗DEspR复合抗体或抗体片段包含一个或多个轻链CDR区,所述轻链CDR区由选自下组的序列组成,该组由以下各项组成:SEQ ID NO:10、SEQ ID NO:11、以及SEQ ID NO:12。
[0022] 在这些方面和在此所述的所有这样的方面的一些实施方案中,抗DEspR抗体是包含选自下组的可变重链(VH)氨基酸序列的复合抗体或其抗体片段,该组由以下各项组成:SEQ ID NO:13-SEQ ID NO:17。在这些方面和在此所述的所有这样的方面的一些实施方案中,抗DEspR抗体是基本上由选自下组的可变重链(VH)氨基酸序列组成的复合抗体或其抗体片段,该组由以下各项组成:SEQ ID NO:13-SEQ ID NO:17。在这些方面和在此所述的所有这样的方面的一些实施方案中,抗DEspR抗体是由选自下组的可变重链(VH)氨基酸序列组成的复合抗体或其抗体片段,该组由以下各项组成:SEQ ID NO:13-SEQ ID NO:17。
[0023] 在这些方面和在此所述的所有这样的方面的一些实施方案中,抗DEspR抗体是包含选自下组的可变轻链(VL)氨基酸序列的复合抗体或其抗体片段,该组由以下各项组成:SEQ ID NO:18和SEQ ID NO:19。在这些方面和在此所述的所有这样的方面的一些实施方案中,抗DEspR抗体是基本上由选自下组的可变轻链(VL)氨基酸序列组成的复合抗体或其抗体片段,该组由以下各项组成:SEQ ID NO:18和SEQ ID NO:19。在这些方面和在此所述的所有这样的方面的一些实施方案中,抗DEspR抗体是由选自下组的可变轻链(VL)氨基酸序列组成的复合抗体或其抗体片段,该组由以下各项组成:SEQ ID NO:18和SEQ ID NO:19。
[0024] 在这些方面的其他实施方案中,抗DEspR抗体或其抗体片段是由杂交瘤7C5C55或G12E8表达或产生的抗体。
[0025] 在这些方面的一些实施方案中,抗DEspR抗体或其抗体片段显示出与由杂交瘤7C5B2、7C5C55、或G12E8表达或产生的抗体所显示的结合模式相似的结合模式。在这些方面的一些实施方案中,抗DEspR抗体或其抗体片段显示出与由杂交瘤7C5B2、7C5C55、或G12E8表达或产生的抗体所显示的亲合力相似的亲合力。在这些方面的一些实施方案中,抗DEspR抗体或其抗体片段与由杂交瘤7C5B2、7C5C55、或G12E8表达或产生的抗体所结合的那些表位相同的表位结合。
[0026] 在这些方面的一些实施方案中,抗DEspR抗体或其抗体片段包含由杂交瘤7C5C55或G12E8表达或产生的抗体的一个或多个CDR的氨基酸序列。在这些方面的一些实施方案中,抗DEspR抗体或其抗体片段具有由杂交瘤7C5B2、7C5C55、或G12E8表达或产生的单克隆抗体的一个或多个生物学特征。在这些方面的一些实施方案中,抗DEspR抗体或其抗体片段与DEspR表位特异性结合,所述DEspR表位由杂交瘤7C5B2、7C5C55、或G12E8表达或产生的抗体结合。
[0027] 在这些方面和在此所述的所有这样的方面的一些实施方案中,抗体片段是Fab片段、Fab’片段、Fd片段、Fd’片段、Fv片段、dAb片段、F(ab’)2片段、单链片段、双体抗体(diabody)、或线性抗体。
[0028] 在这些方面和在此所述的所有这样的方面的一些实施方案中,这种抗DEspR抗体或其抗体片段进一步包含与所述抗DEspR抗体或其抗体片段偶联以形成DEspR特异性免疫偶联物的物质。在一些这样的实施方案中,与所述抗体或其抗体片段偶联的物质是化疗剂、毒素、放射性同位素、小分子、siRNA、纳米粒子、或微泡。
[0029] 在一些方面,在此提供了多种药物组合物,它们包含在此所述的与DEspR特异性结合的任何一种抗DEspR抗体或其抗体片段、以及药学上可接受的载体。
[0030] 在一些方面,在此提供了在患有依赖于血管生成或受其调节的疾病或失调的受试者中抑制血管生成的方法,这些方法包括向对其有需要的受试者给予治疗有效量的药物组合物,该药物组合物包含在此所述的与DEspR特异性结合的任何一种抗DEspR抗体或其抗体片段。在这些方面和在此所述的所有这样的方面的一些实施方案中,依赖于血管生成或受其调节的疾病或失调是癌症或肿瘤。在这些方面和在此所述的所有这样的方面的一些实施方案中,依赖于血管生成或受其调节的疾病或失调选自下组,该组由以下各项组成:年龄相关性黄斑变性、颈动脉疾病、糖尿病性肾病、类风湿性关节炎、神经变性失调、阿尔茨海默病、肥胖症、子宫内膜异位症、屑病、动脉粥样硬化、眼部新血管形成、新生血管性青光眼、骨质疏松症、以及再狭窄
[0031] 在一些方面,在此提供了在患有癌症或肿瘤的受试者中抑制肿瘤细胞侵袭力的方法,这些方法包括向对其有需要的受试者给予治疗有效量的药物组合物,该药物组合物包含在此所述的与DEspR特异性结合的任何一种抗DEspR抗体或其抗体片段。在这些方面和在此所述的所有这样的方面的一些实施方案中,所述方法进一步包括给予一种或多种化疗剂、血管生成抑制剂、细胞毒性剂或抗增殖剂。
[0032] 在一些方面,在此提供了在患有肿瘤或转移的受试者中通过抑制细胞中的DEspR表达和/或功能而抑制肿瘤生长并且减少肿瘤尺寸或肿瘤转移的方法,所述方法包括向对其有需要的受试者给予治疗有效量的药物组合物,所述药物组合物包含在此所述的与DEspR特异性结合的任何一种抗DEspR抗体或其抗体片段和。在这些方面和在此所述的所有这样的方面的一些实施方案中,DEspR表达和/或功能在肿瘤细胞、肿瘤起始细胞、癌干细胞样细胞、癌干细胞、转移性肿瘤细胞、内皮祖细胞、炎症细胞、肿瘤间质细胞、肿瘤血管细胞、或其任何组合中受到抑制。在一些这样的实施方案中,肿瘤血管细胞是内皮细胞、周细胞、平滑肌细胞、外膜细胞、或其任何组合。
[0033] 在一些方面,在此提供了在受试者中通过抑制细胞中的DEspR表达和/或功能而抑制肿瘤抵抗和肿瘤复发的方法,该方法包括向对其有需要的受试者给予治疗有效量的药物组合物,该药物组合物包含在此所述的与DEspR特异性结合的任何一种抗DEspR抗体或其抗体片段。在这些方面和在此所述的所有这样的方面的一些实施方案中,DEspR表达和/或功能在肿瘤细胞、肿瘤起始细胞、癌干细胞样细胞、癌干细胞、转移性肿瘤细胞、或其任何组合中受到抑制。
[0034] 在一些方面,在此提供了通过借助抑制肿瘤细胞中的DEspR表达和/或功能来促进癌细胞的自体吞噬而抑制癌症进展的方法,这些方法包括向对其有需要的受试者给予治疗有效量的药物组合物,该药物组合物包含在此所述的与DEspR特异性结合的任何一种抗DEspR抗体或其抗体片段。在这些方面和在此所述的所有这样的方面的一些实施方案中,DEspR表达和/或功能在肿瘤细胞、肿瘤起始细胞、癌干细胞样细胞、癌干细胞、转移性肿瘤细胞、或其任何组合中受到抑制。
[0035] 在一些方面,在此提供了通过抑制细胞中的DEspR表达和/或功能而促进自体吞噬或减少胞内有毒物质或病原体积累的方法,这些方法包括向对其有需要的受试者给予治疗有效量的药物组合物,该药物组合物包含在此所述的与DEspR特异性结合的任何一种抗DEspR抗体或其抗体片段。在这些方面和在此所述的所有这样的方面的一些实施方案中,受试者患有阿尔茨海默病或亨廷顿病。
[0036] 在一些方面,在此提供了通过靶向DEspR进行分子成像的方法,这些方法包括给予有效量的药物组合物,该药物组合物包含在此所述的与DEspR特异性结合的与靶向部分偶联的任何一种抗DEspR抗体或其抗体片段,并且使用分子成像确定与靶向部分偶联的抗DEspR抗体或其抗体片段的存在或不存在。在这些方面和在此所述的所有这样的方面的一些实施方案中,分子成像是对比增强超声成像、MRI(磁共振成像)、近红外成像、或光声成像。在这些方面和在此所述的所有这样的方面的一些实施方案中,靶向部分是抗体、DEspR结合肽配体、小分子、纳米粒子、聚合物、适配体、或其任何组合。
[0037] 在一些方面,在此提供了通过确定DEspR表达对肿瘤进行分层或分类的方法,这些方法包括使一种细胞与在此所述的与DEspR特异性结合的任何一种抗DEspR抗体或其抗体片段接触,并且确定在所述接触之后抗DEspR抗体或其抗体片段是否与这种细胞结合,使得DEspR抗体或其抗体片段与细胞的结合指示这种细胞表达DEspR。在这些方面和在此所述的所有这样的方面的一些实施方案中,这种细胞是肿瘤细胞、内皮细胞、周细胞、平滑肌细胞、外膜细胞、肿瘤间质细胞、或其任何组合。在一些这样的实施方案中,肿瘤间质细胞是纤维细胞、肌成纤维细胞、炎症细胞、星状细胞、或其任何组合。在这些方面和在此所述的所有这样的方面的一些实施方案中,使这种细胞接触是在组织活检样品、石蜡包埋切片、或冷冻切片中。
[0038] 在一些方面,在此提供的是用于通过DEspR靶向声孔效应而增强治疗剂递送的方法,这些方法包括使用靶向超声递送向对其有需要的受试者递送有效量的药物组合物和治疗剂,所述组合物包含在此所述的与DEspR特异性结合的任何一种抗DEspR抗体或其抗体片段,使得相对于在包含在此所述的任何一种抗DEspR抗体或其抗体片段的药物组合物不存在的情况下递送所述治疗剂,这种治疗剂的递送被增强或增加。在这些方面和在此所述的所有这样的方面的一些实施方案中,这种治疗剂是化疗剂、小分子、肽、或适配体。
[0039] 在一些方面,在此还提供了通过DEspR靶向声孔效应而降低治疗剂毒性的方法,这些方法包括使用靶向超声递送向对其有需要的受试者递送有效量的药物组合物和治疗剂,所述组合物包含在此所述的与DEspR特异性结合的任何一种抗DEspR抗体或其抗体片段,使得相对于在包含在此所述的任何一种抗DEspR抗体或其抗体片段的药物组合物不存在的情况下递送这种治疗剂,这种治疗剂的毒性被降低。在这些方面和在此所述的所有这样的方面的一些实施方案中,这种治疗剂是化疗剂、小分子、肽、或适配体。
[0040] 在一些方面,在此提供了将DEspR靶向分子成像与治疗剂的DEspR靶向递送法结合的方法。这些方法包括向受试者给予有效量的治疗剂和药物组合物,该药物组合物包含在此所述的与一个靶向部分偶联的任何一种抗DEspR抗体或其抗体片段,并且使用分子成像确定在此所述的与该靶向部分偶联的抗DEspR抗体或其抗体片段的存在或不存在。在这些方面和在此所述的所有这样的方面的一些实施方案中,分子成像是对比增强超声成像、MRI(磁共振成像)、近红外成像、或光声成像。在这些方面和在此所述的所有这样的方面的一些实施方案中,这种治疗剂是化疗剂、小分子、肽、或适配体。
[0041] 在一些方面,在此提供了用于在患有依赖于血管生成或受其调节的疾病或失调的受试者中抑制血管生成的多种药物组合物,它们包含在此所述的与DEspR特异性结合的任何一种抗DEspR抗体或其抗体片段。在这些方面和在此所述的所有这样的方面的一些实施方案中,依赖于血管生成或受其调节的疾病或失调是癌症或肿瘤。在这些方面和在此所述的所有这样的方面的一些实施方案中,依赖于血管生成或受其调节的疾病或失调选自年龄相关性黄斑变性、颈动脉疾病、糖尿病性肾病、类风湿性关节炎、神经变性失调、阿尔茨海默病、肥胖症、子宫内膜异位症、银屑病、动脉粥样硬化、眼部新血管形成、新生血管性青光眼、骨质疏松症、以及再狭窄。
[0042] 在一些方面,在此提供了用于在患有癌症或肿瘤的受试者中抑制肿瘤细胞侵袭力的多种药物组合物,它们包含在此所述的与DEspR特异性结合的任何一种抗DEspR抗体或其抗体片段。在这些方面和在此所述的所有这样的方面的一些实施方案中,这些药物组合物进一步包含一种或多种化疗剂、血管生成抑制剂、细胞毒性剂、或抗增殖剂。
[0043] 在一些方面,在此提供了用于通过在对其有需要的受试者中抑制细胞内的DEspR表达和/或功能而抑制肿瘤生长和减少肿瘤尺寸或肿瘤转移的多种药物组合物,它们包含在此所述的与DEspR特异性结合的任何一种抗DEspR抗体或其抗体片段。在这些方面和在此所述的所有这样的方面的一些实施方案中,DEspR表达和/或功能在肿瘤细胞、肿瘤起始细胞、癌干细胞样细胞、癌干细胞、转移性肿瘤细胞、内皮祖细胞、炎症细胞、肿瘤间质细胞、肿瘤血管细胞、或其任何组合中受到抑制。在一些这样的实施方案中,肿瘤血管细胞是内皮细胞、周细胞、平滑肌细胞、外膜细胞、或其任何组合。
[0044] 在一些方面,在此提供了用于通过在对其有需要的受试者中抑制细胞中的DEspR表达和/或功能而抑制肿瘤抵抗和肿瘤复发的多种药物组合物,它们包含在此所述的与DEspR特异性结合的任何一种抗DEspR抗体或其抗体片段。在这些方面和在此所述的所有这样的方面的一些实施方案中,DEspR表达和/或功能在肿瘤细胞、肿瘤起始细胞、癌干细胞样细胞、癌干细胞、转移性肿瘤细胞、或其任何组合中受到抑制。
[0045] 在一些方面,在此提供了用于通过在对其有需要的受试者中抑制肿瘤细胞中的DEspR表达和/或功能来促进癌细胞的自体吞噬而抑制癌症进展的多种药物组合物,它们包含在此所述的与DEspR特异性结合的任何一种抗DEspR抗体或其抗体片段。在这些方面和在此所述的所有这样的方面的一些实施方案中,DEspR表达和/或功能在肿瘤细胞、肿瘤起始细胞、癌干细胞样细胞、癌干细胞、转移性肿瘤细胞、或其任何组合中受到抑制。
[0046] 在一些方面,在此提供了用于通过在对其有需要的受试者中抑制DEspR表达和/或功能而促进自体吞噬或减少细胞内有毒物质或病原体积累的多种药物组合物,它们包含在此所述的与DEspR特异性结合的任何一种抗DEspR抗体或其抗体片段。在这些方面和在此所述的所有这样的方面的一些实施方案中,受试者患有阿尔茨海默病或亨廷顿病。
[0047] 在一些方面,在此提供了用于向对其有需要的受试者通过使用靶向超声递送的DEspR靶向声孔效应而增强治疗剂递送的多种药物组合物,它们包含在此所述的与DEspR特异性结合的任何一种抗DEspR抗体或其抗体片段。在这些方面和在此所述的所有这样的方面的一些实施方案中,这种治疗剂是化疗剂、小分子、肽、或适配体。
[0048] 在一些方面,在此提供了用于向对其有需要的受试者通过使用靶向超声递送的DEspR靶向声孔效应而降低治疗剂毒性的多种药物组合物,它们包含在此所述的与DEspR特异性结合的任何一种抗DEspR抗体或其抗体片段。在这些方面和在此所述的所有这样的方面的一些实施方案中,这种治疗剂是化疗剂、小分子、肽、或适配体。
[0049] 定义
[0050] “DEspR拮抗剂”是指能够中和、阻断、抑制、消除、减少或干扰DEspR活性(包括其与内皮素-1或VEGFsp的结合)的分子。DEspR拮抗剂包括与DEspR特异性结合,从而抑制、阻止或掩蔽DEspR与其配体(如VEGFsp和内皮素-1)结合的抗DEspR抗体及其抗原结合片段、受体分子以及衍生物。
[0051] 术语“抗体”在最广泛的意义上使用并且包括单克隆抗体(包括全长或完整的单克隆抗体)、多克隆抗体、多价抗体、多特异性抗体(例如,双特异性抗体)、以及抗体片段(见下文),只要它们展示所希望的生物活性和特异性即可。
[0052] 如在此所使用的,术语“靶标”是指具有结合部位的多肽结构域可以与之选择性结合的生物分子(例如,肽、多肽、蛋白质、脂质、化合物)。靶标可以例如是细胞内靶标(例如,细胞内蛋白质靶标)或细胞表面靶标(例如,膜蛋白、受体蛋白)。优选地,靶标是细胞表面靶标,如细胞表面蛋白。
[0053] 术语“特异性”是指如在此所述的抗体或其抗体片段可以与之结合的不同类型的抗原或抗原决定簇的数目。可以基于亲和力和/或亲合力确定抗体或其抗体片段的特异性。由抗原与抗原结合蛋白的解离平衡常数(KD)代表的亲和力是在抗原决定簇与在抗原结合蛋白(如抗体或其抗体片段)上的抗原结合部位之间的结合强度的量度:KD值越小,抗原决定簇与抗原结合分子之间的结合强度越大。可替代地,亲和力也可以表示为亲和常数((KA),其是1/KD)。如技术人员将显而易见的,取决于具体的感兴趣的抗原,可以按本身已知的方式测定亲和力。因此,当如在此定义的抗体或其抗体片段与第一抗原以这样的亲和力(如上文所述并且适当地表示为例如KD值)结合,这种亲和力优于所述氨基酸序列或多肽与另一种靶标或多肽结合的亲和力至少10倍,如至少100倍,并且优选地至少1000倍,以及高达10000倍或更高时,则与第二靶标或抗原相比,将所述抗体或其抗体片段称作对第一靶标或抗原“特异”。
[0054] 亲合力是在抗原结合分子(如在此所述的抗体或其抗体片段)与相关抗原之间的结合强度的量度。亲合力与在抗原决定簇及其在抗原结合分子上的抗原结合部位之间的亲和力、以及在抗原结合分子上存在的相关结合部位的数目两者有关。典型地,抗原结合蛋-5白(如在此所述的抗体或其抗体片段)将与它们的同源或特异性抗原以解离常数(KD10 至-12 -7 -12 -8 -12
10 摩尔/升或更小,并且优选10 至10 摩尔/升或更小,以及更优选10 至10 摩尔
5 12 7 12
/升(即,以缔合常数(KA)10 至10 升/摩尔或更大,并且优选地10 至10 升/摩尔或更
8 12 -4
大,以及更优选10 至10 升/摩尔)结合。通常将大于10 摩尔/升的任何KD值(或低于
4 -1
10M 的任何KA值)视为指示非特异性结合。被视为有意义的(例如,特异性的)生物学相-10 -5
互作用的KD典型地处于10 M(0.1nM)至10 M(10000nM)范围内。相互作用越强,其KD越低。优选地,在在此所述的抗体或其抗体片段上的结合部位将以小于500nM、优选地小于
500nM、更优选地小于10nM(如小于500pM)的亲和力与所希望的抗原结合。可以按本身已知的任何适合方式测定抗原结合蛋白与抗原或抗原决定簇的特异性结合,例如包括斯卡查德分析和/或竞争性结合测定,如放射免疫测定(RIA)、酶免疫测定(EIA)和夹心竞争测定、以及本领域本身已知的它们的不同变型;以及如在此提到的其他技术。
[0055] 因此,如在此所使用的,“选择性地结合”或“特异性结合”是指在此所述的抗体或-5 -6 -7 -8 -9 -10 -11 -12其抗体片段以10 M(10000nM)或更小,例如10 M、10 M、10 M、10 M、10 M、10 M、10 M或更小的KD与靶标(如存在于细胞表面上的分子)结合的能力。特异性结合可以例如受多肽物质的亲和力和亲合力以及多肽物质的浓度影响。使用任何适合的方法,如在适合的细胞结合测定中的多肽物质的滴定,本领域的普通技术人员可以确定在此所述的多肽物质选择性地结合靶标的适宜条件。
[0056] 如在此所述,“抗原”是由多肽物质(如抗体或其抗体片段)上的结合部位结合的分子。典型地,抗原由抗体配体结合并且能够在体外内产生抗体应答。抗原可以是多肽、蛋白质、核酸或其他分子。在常规抗体和其片段的情况下,如由可变环(L1、L2、L3和H1、H2,H3)所定义的抗体结合部位能够与抗原结合。术语“抗原决定簇”是指抗原上被抗原结合分子识别并且更具体地被所述分子的抗原结合部位识别的表位。
[0057] 如在此所使用的,“表位”可以从连续氨基酸或因蛋白质的三级折叠而靠近的非连续氨基酸形成。从连续氨基酸形成的表位典型地在暴露于变性溶剂时保留,而由三级折叠形成的表位通典型地用变性溶剂处理时丧失。表位典型地包含至少3个并且更常见地至少5个、大约9个、或大约8-10个处于独特空间构象的氨基酸。“表位”包括被免疫球蛋白VH/VL对常规结合的结构单元。表位定义了抗体的最小结合部位并且因此代表抗体的特异性靶标。在单域抗体的情况下,表位代表被孤立的可变域结合的结构单元。术语“抗原决定簇”和“表位”也可以在此可互换地使用。
[0058] 如在此所使用的的术语“单克隆抗体”是指从基本上同质抗体群中获得的抗体,即,构成这个群的各个抗体是基本上相同的,除了可能以少量存在的可能的天然存在的突变之外。单克隆抗体是高度特异性的,即针对单一的抗原。此外,与典型地包括针对不同决定簇(表位)的不同抗体的多克隆抗体制剂相反,每种单克隆抗体针对抗原上的单个决定簇。修饰语“单克隆的”不得解释为需要通过任何特定的方法产生该抗体。例如,可以通过由Kohler等人,Nature256:495(1975)首次描述的杂交瘤方法制造,或可以通过重组DNA方法(参见,例如,美国专利号4,816,567)制造根据本发明的有待使用的单克隆抗体。还可以使用例如在Clackson等人,Nature352:624-628(1991)或Marks等人,J.Mol.Biol.222:581-597(1991)中描述的技术从噬菌体抗体文库分离“单克隆抗体”。单克隆抗体可以是任何种类的,包括但不限于小鼠、大鼠、山羊、兔和人单克隆抗体。
[0059] 如在此所使用的,术语“抗体片段”是指蛋白质片段,其仅包含完整抗体的一部分,通常包括完整抗体的抗原结合部位并且因此保留结合抗原的能力。由本发明定义涵盖的抗体片段的实例包括:(i)Fab片段,其具有VL、CL、VH和CH1结构域;(ii)Fab’片段,其是在CH1结构域的C末端具有一个或多个半胱氨酸残基的Fab片段;(iii)Fd片段,具有VH和CH1结构域;(iv)Fd’片段,具有VH和CH1结构域以及在CH1结构域的C末端处的一个或多个半胱氨酸残基;(v)Fv片段,其具有抗体的单臂的VL和VH结构域;(vi)dAb片段(Ward等人,Nature341,544-546(1989)),由VH结构域组成;(vii)分离的CDR区;(viii)F(ab’)2片段,包括在铰链区由二硫桥连接的两个Fab’片段的双价片段;(ix)单链抗体分子(例如,单链Fv;scFv)(Bird等人,Science242:423-426(1988);和Huston等人,PNAS(USA)
85:5879-5883(1988));(x)带有两个抗原结合部位的“双体抗体”,包括在相同多肽链中与轻链可变域(VL)连接的重链可变域(VH)(参见,例如,EP404,097;WO93/11161;和Hollinger等人,Proc.Natl.Acad.Sci.USA,90:6444-6448(1993));(xi)“线性抗体”,其包含一对串联Fd区段(VH-CH1-VH-CH1),所述Fd区段与互补轻链多肽一起形成一对抗原结合区(Zapata等人,Protein Eng.8(10):1057-1062(1995);和美国专利号5,641,870)。
[0060] “Fv片段”是含有完整抗原识别和结合部位的抗体片段。这个区域由紧密缔合的一个重链可变区结构域和一个轻链可变区结构域的二聚体组成,所述缔合可以在性质上是共价的,例如在scFv中。正是以这种构型,每个可变域的三个CDR相互作用以限定VH-VL二聚体表面上的抗原结合部位。共同地,这6个CDR或其亚群向抗体赋予抗原结合特异性。然而,甚至单个可变域(或仅包含3个抗原特异性CDR的半个Fv)具有识别并结合抗原的能力,虽然通常以比完整结合部位更低的亲和力进行。
[0061] 在贯穿本说明书权利要求书的范围内,按照如Kabat等人,免疫学感兴趣的蛋白质序列(Sequences of Proteins of Immunological Interest),第5版,公众健康服务局,国立卫生研究院,贝塞斯达,里兰州,(1991)中的EU index进行免疫球蛋白重链中的残基的编号,所述文献也在环球网上可获得并且通过引用以其全文明确地结合在此。“如在Kabat中的EU index”是指人IgG1EU抗体的残基编号。
[0062] 如在此所使用的,“抗体可变域”是指抗体分子的轻链和重链的部分,其包括互补决定区(CDR;即,CDR1、CDR2、以及CDR3)、以及框架区(FR)的氨基酸序列。VH是指重链的可变域。VL是指轻链的可变域。根据在本发明中所使用的方法,赋予CDR和FR的氨基酸位置可以根据Kabat免疫学感兴趣的蛋白质序列(Sequences of Proteins of Immunological Interest)(国立卫生研究院(National Institutes of Health),贝塞斯达(Bethesda),马里兰州,1987和1991))定义。抗体或抗原结合片段的氨基酸编号也根据Kabat进行。
[0063] 如在此所使用的,术语“互补决定区”(CDR),(即,CDR1、CDR2和CDR3)是指其存在对于抗原结合为必需的抗体可变域的氨基酸残基。每个可变域典型地具有标识为CDR1、CDR2和CDR3的3个CDR区。每个互补决定区可以包含来自如由Kabat所定义的“互补决定区”的氨基酸残基(即,轻链可变域中的大约第24-34(L1)、50-56(L2)和89-97(L3)残基和重链可变域中的第31-35(H1)、50-65(H2)和95-102(H3)残基;Kabat等人,免疫学感兴趣的蛋白质序列(Sequences of Proteins of Immunological Interest),第5版,公众健康服务局,国立卫生研究院,贝塞斯达,马里兰州,(1991))和/或来自“高变环”的那些残基(即,轻链可变域中的大约第26-32(L1)、50-52(L2)和91-96(L3)残基和重链可变域中的第26-32(H1)、53-55(H2)和96-101(H3)残基;Chothia和Lesk J.Mol.Biol.196:901-917(1987))。在一些情况下,互补决定区可以包含来自根据Kabat所定义的CDR区和高变环两者的氨基酸。例如,抗体4D5的重链的CDRH1包括第26至35位氨基酸。
[0064] “框架区”(下文FR)是除CDR残基之外的那些可变域残基。每个可变域典型地具有标识为FR1、FR2、FR3和FR4的四个FR。如果根据Kabat定义CDR,则轻链FR残基位于大约第1-23(LCFR1)、35-49(LCFR2)、57-88(LCFR3)、以及98-107(LCFR4)位残基处,并且重链FR残基位于重链残基中的大约第1-30(HCFR1)、36-49(HCFR2)、66-94(HCFR3)、以及103-113(HCFR4)位残基处。如果CDR包含来自高变环的氨基酸残基,则轻链FR残基位于轻链中的大约第1-25(LCFR1)、33-49(LCFR2)、53-90(LCFR3)、以及97-107(LCFR4)位残基处,并且重链FR残基位于重链残基中的大约第1-25(HCFR1)、33-52(HCFR2)、56-95(HCFR3)、以及102-113(HCFR4)位残基处。在一些情况下,当CDR包含来自如由Kabat所定义的CDR和高变环的那些CDR两者的氨基酸时,FR残基将被相应地调整。例如,当CDRH1包含氨基酸H26-H35时,重链FR1残基在位置1-25处,并且FR2残基在位置36-49处。
[0065] “Fab片段”含有轻链的可变域和恒定域以及重链的可变域和第一恒定域(CH1)。F(ab’)2抗体片段包含一对Fab片段,所述Fab片段通常在它们的羧基端附近由它们之间的铰链半胱氨酸共价地连接。抗体片段的其他化学偶联也是本领域已知的。
[0066] “单链Fv”或“scFv”抗体片段包包括抗体的VH和VL结构域,其中这些结构域存在于单一多肽链中。通常,Fv多肽进一步包含在VH和VL结构域之间的多肽接头,所述多肽接头使scFv能够形成所希望的用于抗原结合的结构。关于scFv的综述,参见Pluckthun,The Pharmacology of Monoclonal Antibodies,第113卷,Rosenburg和Moore编著,Springer-Verlag,New York,第269-315页(1994)。
[0067] 术语“双体抗体”是指带有两个抗原结合部位的小抗体片段,所述片段包括在相同的多肽链(VH和VL)中与轻链可变域(VL)连接的重链可变域(VH)。通过使用太短以至于不允许在相同链上的两个结构域之间配对的接头,这些结构域被迫与另一条链的互补结构域配对并且产生两个抗原结合部位。在例如EP404,097;WO93/11161;和Hollinger等人,Proc.Natl.Acad.Sci.USA90:6444-6448(1993)中更充分地描述了双体抗体。
[0068] 表述“线性抗体”是指在Zapata等人,Protein Eng.8(10):1057-1062(1995)中描述的抗体。简言之,这些抗体包含一对串联Fd区段(VH-CH1-VH-CH1),它们与互补轻链多肽一起形成一对抗原结合区。线性抗体可以是双特异或单特异性的。
[0069] 在此的“单克隆抗体”特别包括这些“嵌合”抗体(免疫球蛋白),其中重链和/或轻链的部分与来自特定种类或属于特定抗体类别或亚类的抗体中的相应序列相同或同源,而所述链的其余部分与源自另一个种类或属于另一个抗体类别或亚类的抗体、以及这种抗体的片段中的相应序列相同或同源,只要它们展示所希望的生物活性即可(美国专利号4,816,567;和Morrison等人,Proc.Natl.Acad.Sci.USA81:6851-6855(1984))。
[0070] 非人(例如,小鼠)抗体的“人源化”形式是经工程化或设计以包含最少的衍生自人免疫球蛋白的序列的嵌合抗体。对大部分情况而言,人源化抗体是人免疫球蛋白(受体抗体),其中来自受体的高变区中的残基被来自非人种类(供体抗体)如小鼠、大鼠、兔或非人灵长类动物的具有所希望的特异性、亲和力和容量的高变区中的残基替换。在一些情况下,人免疫球蛋白的Fv框架区(FR)残基由相应的非人残基替换。此外,人源化抗体可以包含未发现于受体抗体中或供体抗体中的残基。作出这些修饰以进一步改进抗体性能。通常,人源化抗体将包含基本上所有的至少一个、并且典型地二个可变域,其中所有或基本上所有的高变环与非人免疫球蛋白的那些高变环相应并且所有或基本上所有的FR区是人免疫球蛋白序列的那些FR区。人源化抗体任选地也将包含免疫球蛋白恒定区(Fc)的至少一部分,典型地是人免疫球蛋白恒定区的部分。对于进一步的详情,参见Jones等人,Nature321:522-525(1986);Reichmann等人,Nature332:323-329(1988);和Presta,Curr.Op.Struct.Biol.2:593-596(1992)。如在此所使用的,“复合人抗体”是特定类型的工程化或人源化抗体。
[0071] “人抗体”、“非工程化人抗体”或“全人抗体”是这样一种抗体,这种抗体拥有与人产生的抗体的氨基酸序列相应的氨基酸序列和/或已经使用如在此披露的用于制造人抗体的任何技术而制造。人抗体的这个定义特别排除包含非人抗原结合残基的人源化抗体。可以使用本领域已知的各种技术产生人抗体。在一个实施方案中,人抗体选噬菌体文库,其中这种噬菌体文库表达人抗体(Vaughan等人,Nature Biotechnology14:309-314(1996);Sheets等人,Proc.Natl.Acad.Sci.95:6157-6162(1998);Hoogenboom和Winter,J.Mol.Biol.,227:381(1991);Marks等人,J.Mol.Biol.,222:581(1991))。也可以通过将人免疫球蛋白基因座引入转基因动物(例如,其中内源性小鼠免疫球蛋白基因已经部分或完全失活的小鼠)中而制造人抗体。在激发后,观察到人抗体产生,这在各个方面与人类中所见到的情况十分相似,包括基因重排、组装和抗体谱。这种方法例如描述于美国专利号5,545,807;5,545,806;5,569,825;5,625,126;5,633,425;5,661,016中,并且描述于以下科学出版物中:Marks等人,Bio/Technology10:779-783(1992);Lonberg等人,Nature368:856-859(1994);Morrison,Nature368:812-13(1994);Fishwild等人,Nature Biotechnology14:845-51(1996);Neuberger,Nature Biotechnology14:826(1996);Lonberg和Huszar,Intern.Rev.Immunol.13:65-93(1995)。可替代地,可以通过永生化产生针对靶抗原的抗体的人B淋巴细胞(这样的B淋巴细胞可以从个体中回收或可以已经在体外免疫)而制备人抗体。参见,例如,Cole等人,Monoclonal Antibodies and Cancer Therapy,Alan R.Liss,第77页(1985);Boerner等人,J.Immunol.,147(1):86-95(1991);
和美国专利号5,750,373。
[0072] “亲和力成熟的”抗体是在一个或多个CDR中存在一个或多个改变的一种抗体,其中与没有这些改变的亲本抗体相比,所述改变导致抗体对抗原的亲和力改进。优选的亲和力成熟的抗体将对靶抗原具有纳摩尔或甚至皮摩尔亲和力。通过本领域已知的方法产生亲和力成熟的抗体。Marks等人,Bio/Technology10:779-783(1992)描述了借助VH和VL结构域改组的亲和力成熟。CDR和/或框架残基的随机诱变由Barbas等人,Proc Nat.Acad.Sci,USA91:3809-3813(1994);Schier等人,Gene169:147-155(1995);Yelton等人,J.Immunol.155:1994-2004(1995);Jackson等人,J.Immunol.154(7):3310-9(1995);和Hawkins等人,J.Mol.Biol.226:889-896(1992)描述。
[0073] 抗体的“功能性抗原结合部位”是能够结合靶抗原的一种抗原结合部位。抗原结合部位的抗原结合亲和力不必然地与抗原结合部位从其衍生的亲本抗体一样强,但是结合抗原的能力必须是使用已知的用于评价抗体与抗原结合的多种方法中的任何一种方法可测量的。而且,在此的多价抗体的每个抗原结合部位的抗原结合亲和力不必在数量上是相同的。对于多聚抗体,可以使用超速离心分析,如在美国专利申请公开号20050186208的实例2中所述那样评估功能性抗原结合部位的数目。根据这种分析方法,将靶抗原对多聚抗体的不同比率合并,并且假定功能性结合部位的数目不同,计算复合物的平均分子量。这些理论值与获得的实际实验值比较,以便评价功能性结合部位的数目。
[0074] 如在此所使用的,“阻断”抗体或抗体“拮抗剂”是抑制或减少与其结合的抗原的生物活性的一种抗体。例如,DEspR特异性拮抗抗体结合DEspR并且抑制DEspR例如结合VEGFsp并诱导血管生成、诱导血管内皮细胞增殖或诱导血管通透性的能力。在某些实施方案中,阻断抗体或拮抗抗体完全抑制抗原的生物活性。
[0075] 除非另外指明,表述“多价抗体”贯穿本说明书用来表示包含3个或更多个抗原结合部位的抗体。例如,多价抗体是经过工程化以具有3个或更多个抗原结合部位并且通常不是具有天然序列的IgM或IgA抗体。
[0076] 具有指定抗体的“生物学特征”的抗体是这样一种抗体,它拥有这种抗体的一个或多个生物学特征,所述生物学特征使所述抗体与相同抗原结合的其他抗体区分。
[0077] 为了筛选在与感兴趣的抗体结合的抗原上的表位相结合的抗体,可以进行常规交叉阻断测定,如在Antibodies,A Laboratory Manual,Cold Spring Harbor Laboratory,编著Harlow和David Lane(1988)中描述的。
[0078] “种类依赖性抗体”是这样一种抗体,这种抗体对来自第一哺乳动物种类的抗原的亲和力比它对来自第二哺乳动物种类的抗原的同源物的亲和力更强。通常,种类依赖性抗-7 -8体“特异性结合”人抗原(即,具有不超过大约1X10 M,优选地不超过大约1X10 M和最优选-9
地不超过大约1X10 M的结合亲和力(KD)值),但是对来自第二非人哺乳动物种类的这种抗原的同源物的结合亲和力比它对人抗原的结合亲和力弱至少大约50倍或至少大约500倍或至少大约1000倍。种类依赖性抗体可以是如上文定义的各种类型抗体中的任何一种,但典型地是人源化或人抗体。
[0079] 如在此所使用的,“抗体突变体”或“抗体变体”指种类依赖性抗体的氨基酸序列变体,其中种类依赖性抗体的一个或多个氨基酸残基已经被修饰。这类突变体必然与种类依赖性抗体具有小于100%的序列一致性或相似性。在一个实施方案中,抗体突变体将具有这样的氨基酸序列,它与种类依赖性抗体的重链或轻链可变域的氨基酸序列具有至少75%、更优选地至少80%、更优选地至少85%、更优选地至少90%、和最优选地至少95%的氨基酸序列一致性或相似性。关于这个序列的一致性或相似性在此处被定义为:在比对序列并且引入空位(如果需要)以实现最大序列一致性百分比之后,在候选序列中与种类依赖性抗体残基相同(即,相同残基)或相似(即,基于常见侧链特性来自相同组的氨基酸残基,见下文)的氨基酸残基的百分比。在可变域外部的抗体序列的N端、C端或内部延长、缺失或插入均不应当解释为影响序列一致性或相似性。
[0080] 为了增加含有在此所述的氨基酸序列的抗体或多肽的半衰期,可以将挽救受体(salvage receptor)结合表位连接至抗体(尤其是抗体片段),例如,如在美国专利号
5,739,277中描述。例如,编码挽救受体结合表位的核酸分子可以框内连接至编码在此所述的多肽序列的核酸,从而由这种工程化核酸分子表达的融合蛋白包括挽救受体结合表位和在此所述的多肽序列。如在此所使用的,术语“挽救受体结合表位”是指IgG分子(例如,IgG1、IgG2、IgG3、或IgG4)的Fc区表位,其负责增加IgG分子的体内血清半衰期(例如,Ghetie等人,Ann.Rev.Immunol.18:739-766(2000),表1)。还在WO00/42072、WO02/060919;
Shields等人,J Biol Chem.276:6591-6604(2001);Hinton,J Biol Chem.279:6213-6216(2004))中描述了其Fc区中具有置换并且血清半衰期增加的抗体。在另一个实施方案中,也可以例如通过连接其他多肽序列增加血清半衰期。例如,在本发明方法中有用的抗体或其他多肽可以与血清白蛋白或结合于FcRn受体的血清白蛋白部分或血清白蛋白结合肽连接,使得血清白蛋白与这种抗体或多肽结合,例如,这样的多肽序列披露于WO01/45746中。
在一个实施方案中,待连接的血清白蛋白肽包含DICLPRWGCLW(SEQ ID NO:3)的氨基酸序列。在另一个实施方案中,通过这些方法增加Fab的半衰期。对于另外的血清白蛋白结合肽序列,还参见Dennis等人,J Biol Chem.277:35035-35043(2002)。
[0081] “嵌合DEspR受体蛋白”是具有源自至少两种不同蛋白质的氨基酸序列的DEspR分子,所述蛋白质至少之一是DEspR蛋白。在某些实施方案中,嵌合DEspR蛋白能够与DEspR结合并且抑制其生物活性。
[0082] “分离的“抗体是已经被鉴定并且从其自然环境的组分中回收的一种抗体。其自然环境的污染组分是将干扰该抗体的诊断或治疗用途的物质,并且可以包括酶、激素、以及其他蛋白质性或非蛋白质性溶质。在某些实施方案中,将该抗体纯化(1)至按重量计大于95%的抗体,如通过例如Lowry法测定,并且最优选地按重量计大于99%,纯化(2)至足以通过转杯测序仪(spinning cup sequenator)获得至少15个N端残基或内部氨基酸序列的程度,或纯化(3)至通过SDS-PAGE在还原或非还原条件下使用考马斯蓝或银染色所确定的同质性。分离的抗体包括在重组细胞内部在原位的抗体,因为该抗体的自然环境的至少一种组分将不存在。然而,一般将通过至少一个纯化步骤制备分离的抗体。
[0083] “片段”表示多肽(如抗体或其抗体片段)或核酸分子的一部分,所述部分优选地含有参考核酸分子或多肽的整个长度的至少10%、20%、30%、40%、50%、60%、70%、80%、90%、95%或更多。片段可以含有10、20、30、40、50、60、70、80、90或100、200、300、400、500、600个或更多个核苷酸或10、20、30、40、50、60、70、80、90、100、120、140、160、180、190、200个或更多个氨基酸。
[0084] “抗血管生成剂”或“血管生成抑制剂”是指直接或间接地抑制血管生成、血管形成或不希望的血管通透性的小分子量物质、多核苷酸、多肽、分离的蛋白质、重组蛋白、抗体、或其偶联物或融合蛋白。应当理解的是,抗血管生成剂包括结合和阻断血管生成因子或其受体的血管生成活性的那些物质。例如,血管生成剂是针对如贯穿本说明书定义的或本领域已知的血管成生剂的抗体或其他拮抗剂,例如,但不限于,针对VEGF-A或针对VEGF-A受TM体(例如,KDR受体或Flt-1受体)的抗体、VEGF-trap、抗PDGFR抑制剂如Gleevec (甲磺酸伊马替尼)。抗血管生成剂也包括天然的血管生成抑制剂,例如,血管抑素、内皮抑素,等等。参见,例如,Klagsbrun和D’Amore,Annu.Rev.Physiol.,53:217-39(1991);Streit和Detmarr,Oncogene,22:3172-3179(2003)(例如,表3列出了在恶性黑色素瘤中的抗血管生成疗法);Ferrara和Alitalo,Nature Medicine5:1359-1364(1999);Tonini等人,Oncogene,22:6549-6556(2003)(例如,表2列出了已知的抗血管生成因子);和Sato.Int.J.Clin.Oncol.,8:200-206(2003)(例如,表1列出了临床试验中使用的血管生成剂)。
[0085] 术语“抗癌疗法”是指在治疗癌症中有用的疗法。抗癌治疗剂的实例包括例如但不限于手术、化疗剂、生长抑制剂、细胞毒性剂、在放射疗法中使用的药剂、抗血管生成剂、凋亡剂、抗微管蛋白剂、以及治疗癌症的其他药剂,如抗HER-2抗体(例如,赫赛汀 )、抗CD20抗体、表皮生长因子受体(EGFR)拮抗剂(例如,酪氨酸激酶抑制剂)、HER1/EGFR抑制剂(例TM如,厄洛替尼( ))、血小板衍生生长因子抑制剂(例如,Gleevec (甲磺酸伊马替尼))、COX-2抑制剂(例如,塞来昔布)、干扰素、细胞因子、与以下靶标ErbB2、ErbB3、ErbB4、PDGFR-β、BlyS、APRIL、BCMA或VEGF受体)、TRAIL/Apo2中的一种或多种结合的拮抗剂(例如,中和抗体)、以及其他生物活性物质和有机化学物质,等等。在本发明中也包括它们的组合。
[0086] 如在此所使用的的术语“细胞毒性剂”是指抑制或阻止细胞功能和/或引起细胞211 131 125 90 186 188 153
破坏的物质。该术语旨在包括放射性同位素(例如,At 、I 、I 、Y 、Re 、Re 、Sm 、
212 32
Bi 、P 和Lu的放射性同位素)、化疗剂、以及毒素如小分子毒素或细菌源、真菌源、植物源或动物源的酶活性毒素,包括其片段和/或变体。
[0087] “化疗剂”是用于治疗癌症的化合物。化疗剂的实例包括,但不不限于减少细胞增殖的烷化剂,如塞替派(Thiotepa)和 环磷酰胺;烷基磺酸酯如白消安、英丙舒凡和哌泊舒凡;氮丙啶类如苯佐替派(benzodopa)、卡波醌、美妥替哌(meturedopa)和乌瑞替派(uredopa);乙烯亚氨类和甲基蜜胺类,包括六甲蜜胺(altretamine)、三亚乙基蜜胺、三亚乙基磷酰胺(trietylenephosphoramide)、三亚乙基硫代磷酰胺(triethiylenethiophosphoramide)和三羟甲蜜胺(trimethylolomelamine);乙酸原化合物(尤其是布拉他辛(bullatacin)和布拉他辛(bullatacinone));喜树(包括合成类似物拓扑替康( );苔藓抑素;海绵聚酮(callystatin);CC-1065(包括
它的阿多来新、卡折来新和比折来新合成类似物);念珠藻素(尤其念珠藻素1和念珠藻素
8);多拉司他汀;多卡米新(duocarmycin)(包括合成类似物KW-2189和CB1-TM1);榴塞洛素;水鬼蕉碱;匍枝珊瑚醇(sarcodictyin);海绵素;氮芥类如苯丁酸氮芥、氮芥、cholophosphamide、雌莫司汀、异环磷酰胺、氮芥、盐酸氮芥、美法仑、新氮芥、苯芥胆甾醇、泼尼莫司汀、曲磷胺、尿嘧啶氮芥;亚硝基脲类如卡莫司汀、氯脲菌素、福莫司汀、洛莫司汀、尼莫司汀、和雷莫司汀;抗生素如烯二炔类抗生素(例如,刺孢霉素,尤其刺孢霉素λ1I和刺孢霉素ΩI1(参见,例如,Angew,Chem.Intl.Ed.Engl.,33:183-186(1994));
达内霉素,包括达内霉素A;二膦酸盐类如氯膦酸盐;埃斯波霉素;以及新制癌菌素发色团和相关的色蛋白烯二炔抗生素发色团、阿克拉霉素、放线菌素、安曲霉素(authramycin)、偶氮丝氨酸、博来霉素、放线菌素C、卡柔比星(carabicin)、洋红霉素、嗜癌霉素、色霉素(chromomycinis)、放线菌素D、柔红霉素、地托比星、6-重氮-5-氧代-L-正亮氨酸、阿霉素 多柔比星(包括吗啉代-多柔比星、氰基吗啉代-多柔比星、2-吡咯啉-多柔比星和去氧多柔比星)、表柔比星、依索比星、伊达比星、麻西罗霉素、丝裂霉素类如丝裂霉素C、霉酚酸、诺加霉素、橄榄霉素、培洛霉素、泊非霉素(potfiromycin)、嘌呤霉素、三阿霉素、罗多比星、链黑霉素、链佐星、杀结核菌素、乌苯美司、净司他汀、佐柔比星;抗代谢药如甲氨蝶呤和5-氟尿嘧啶(5-FU);叶酸类似物如二甲叶酸、甲氨蝶呤、蝶罗呤和三甲曲沙;嘌呤类似物如氟达拉滨、6-巯基嘌呤、硫咪嘌呤、硫嘌呤;嘧啶类似物如安西他滨、阿扎胞苷、6-氮杂尿苷、卡莫氟、阿糖胞苷、双脱氧尿苷、去氧氟尿苷、依诺他滨、氟尿苷;雄激素类如卡鲁睾酮、丙酸屈他雄酮、环硫雄醇、美雄烷、睾内酯;抗肾上腺药(anti-adrenals)如氨鲁米特、米托坦、曲洛司坦;叶酸补充剂如亚叶酸;醋葡内酯;醛磷酰胺糖苷(aldophosphamide glycoside);氨基乙酰丙酸;恩尿嘧啶;安吖啶;阿莫司汀(bestrabucil);比生群;依达曲沙;地磷酰胺(defofamine);秋水仙胺;地吖醌;依氟鸟氨酸;依利醋铵;埃坡霉素;依托格鲁;硝酸镓;羟基脲;香菇多糖;氯尼达明;美登素类化合物如美坦新和安斯菌素;米托胍腙;米托蒽醌;莫哌达醇(mopidanmol);二胺硝吖啶(nitraerine);喷司他丁;蛋氨氮芥(phenamet);吡柔比星;洛索蒽醌;鬼臼酸;2-乙基酰肼;丙卡巴肼; 多糖复合物(JHS Natural Products,Eugene,Oreg.);丙亚胺;根霉素;西佐喃;锗螺胺;细交链孢菌酮酸;三亚胺醌;2,2',2''-三氯三乙胺;单端孢霉烯族化合物(尤其是T-2毒素、疣孢菌素A(verracurin A)、杆孢菌素A和蛇形菌素);乌拉坦;长春地辛;达卡巴嗪;甘露莫司汀;二溴甘露醇;二溴卫矛醇;哌泊溴烷;gacytosine;阿糖胞苷(“Ara-C”);环磷酰胺;塞替派;紫杉烷类,例如, 紫杉醇(Bristol-Myers Squibb Oncology,Princeton,
N.J.)、不含克列莫佛的 紫杉醇、白蛋白工程化纳米粒制剂(American
Pharmaceutical Partners,Schaumberg,Illinois)和泰索帝 多西他赛(Rhone-Poulenc Rorer,Antony,France);瘤可宁; 吉西他滨;6-硫鸟嘌呤;巯基嘌呤;甲氨蝶
呤;铂类似物如顺铂、奥沙利铂和卡铂;长春碱;铂;依托泊苷(VP-16);异环磷酰胺;米托蒽醌;长春新碱; 长春瑞滨;诺肖林;替尼泊苷;依达曲沙;道诺霉素;氨基蝶
呤;希罗达;伊班膦酸盐;依立替康(开普拓(Camptosar),CPT-11)(包括依立替康联合5-FU和甲酰四氢叶酸的治疗方案);拓扑异构酶抑制剂RFS2000;二氟甲基鸟氨酸(DMFO);维生素A酸类如维甲酸;卡培他滨;考布他汀;甲酰四氢叶酸(LV);奥沙利铂,包括奥沙利铂治疗方案(FOLFOX);拉帕替尼(Tykerb.RTM.);PKC-α、Raf、H-Ras、EGFR(例如,厄洛替尼(特罗凯( ))和VEGF-A以及任何以上药物的药学上可接受的盐、酸或衍生物。
[0088] 还包括在这个定义中的是起作用以调节或抑制激素对肿瘤的作用的抗激素药,如抗雌激素药和选择性雌激素受体调节剂(SERM),包括例如他莫昔芬(包括他莫昔芬)、雷洛昔芬、屈洛昔芬、4-羟基他莫昔芬、曲沃昔芬、雷洛昔芬(keoxifene)、LY117018、奥那司酮和 托瑞米芬;抑制芳香酶的芳香酶抑制剂,其调节
肾上腺中的雌激素产生,例如4(5)-咪唑类、氨鲁米特、 醋酸甲地孕酮、
AROM 依西美坦、福美坦、法倔唑、 伏氯唑、 来曲唑和
阿那曲唑;和抗雄激素药如氟他胺、尼鲁米特、比卡鲁胺、亮丙立德和戈舍瑞
林;以及曲沙他滨(1,3-二氧戊环核苷胞嘧啶类似物);反义寡核苷酸,尤其是抑制牵涉异常细胞增殖信号通路中的基因(例如像PKC-α、Raf和H-Ras)的表达的那些;核酶如VEGF表达抑制剂(例如, 核酶)和HER2表达抑制剂;疫苗,如基因治疗疫苗,例如,
疫苗、 疫苗和 疫苗;
拓扑异构酶1抑制剂; 以及任何上述药物的药学
上可接受的盐、酸或衍生物。
[0089] 如在此所使用的,“生长抑制剂”是指在体外和/或在体内抑制细胞生长的化合物或组合物。因此,生长抑制剂可以是一种显著减少处于S期的细胞的百分比的药剂。生长抑制剂的实例包括阻断细胞周期进程(在除S期之外的位置)的药剂,如诱导G1停滞和M期停滞的药剂。经典的M期阻滞剂包括长春碱类(长春新碱和长春碱)、 和拓扑异构酶II抑制剂如多柔比星、表柔比星、柔红霉素、依托泊苷、以及博来霉素。使G1停滞的那些药剂还影响到S期停滞,例如DNA烷基化剂,如他莫西芬、强的松、达卡巴嗪、氮芥、顺铂、甲氨蝶呤、5-氟尿嘧啶、以及阿糖胞苷(ara-C)。其他信息可以在The Molecular Basis of Cancer,Mendelsohn和Israel编著,Murakami等人,第1章,名称为“细胞周期调节、癌基因、和抗肿瘤药物”(Cell cycle regulation,oncogenes,and antineoplastic drugs)(WB Saunders:Philadelphia,1995),尤其是第13页中找到。
[0090] 如在本申请中所使使用的术语“前药”是指药学活性物质的前体或衍生物形式,与母体药物相比,所述前体或衍生物对肿瘤细胞具有较低的细胞毒性并且能够酶促地被活化或转变成更有活性的母体形式。参见,例如,Wilman,“癌症化疗中的前药”(Prodrugs in Cancer Chemotherapy),Biochemical Society Transactions,14,第375-382页,615th Meeting Belfast(1986)和Stella等人的“前药:靶向药物递送的化学手段”(Prodrugs:A Chemical Approach to Targeted Drug Delivery),Directed Drug Delivery,Borchardt等人(编著),第247-267页,Human Press(1985)。在此所述的前药包括,但不限于含有磷酸酯的前药、含有硫代磷酸酯的前药、含有硫酸酯的前药、含有肽的前药、D-氨基酸修饰的前药、糖基化前药、含有β-内酰胺的前药,任选地含有置换的苯氧乙酰胺的前药或任选地含有置换的苯乙酰胺的前药、5-氟胞嘧啶和其他5-氟尿苷前药,这些前药可以转变成细胞毒性更强的游离型药物。可以衍生成用于本发明中的前药形式的细胞毒性剂的实例包括但不限于上述的那些化疗剂。
[0091] 对于“放射疗法”表示使用定向的伽玛射线或β射线至以诱导对细胞的足够损伤,从而限制其正常发挥作用的能力或完全破坏细胞。应当理解的是,本领域中存在着许多已知的确定剂量和治疗持续时间的方式。典型的治疗作为一次给药而给予并且典型的剂量范围是从每天10单位至200单位(Grays)。
[0092] 对于“降低或抑制”表示引起总体减少优选20%或更多、30%或更多、40%或更多、45%或更多、更优选地50%或更多、55%或更多、60%或更多、65%或更多、70%或更多,以及最优选75%、80%、85%、90%、95%或更多。降低或抑制可以是指例如正在被治疗的失调的症状、转移或微小转移的存在或大小、原发肿瘤的大小、休眠肿瘤的存在或大小、或在血管生成失调中的血管的大小或数目。
[0093] 术语“静脉输注”是指将药物经大于大约5分钟、优选在大约30分钟至90分钟之间的一段时间引入动物或人类受试者的静脉中,虽然,根据本发明,静脉输注可替代地给予10小时或更短。术语“静脉推注”(intravenous bolus)或“静脉推注”(intravenous push)是指将药物给予到动物或人的静脉中,使得身体在大约15分钟或更短、优选地5分钟或更短内接受药物。
[0094] 术语“皮下给药”是指将药物通过相对缓慢、持久的递送从药物容器中引入动物或人类受试者的皮肤下方,优选在皮肤和下方组织之间的囊内。可以通过捏住或牵拉皮肤向上并且离开下方组织而产生该囊。
[0095] 术语“皮下输注”是指将药物通过相对缓慢、持久的递送从药物容器中经一段时间(包括但不限于30分钟或更短或90分钟或更短)引入动物或人类受试者的皮肤下方,优选在皮肤和下方组织之间的囊内。任选地,可以通过在动物或人类受试者的皮肤下方皮下植入药物递送进行输注,其中该泵递送预定量的药物持续预定的时段,如30分钟、90分钟或跨越整个治疗方案长度的时段。
[0096] 术语“皮下推注”是指在动物或人类受试者的皮肤下方给予药物,其中推注药物递送优选小于大约15分钟,更优选小于5分钟,并且最优选小于60秒。给药优选地是在皮肤与下方组织之间的囊内,其中例如通过向上捏或牵拉皮肤和离开下方组织而产生该囊。
[0097] “失调”是将从用例如在此所述抗体进行的治疗中获益的任何病症。这包括慢性和急性失调或疾病,包括使哺乳动物易于罹患所讨论的失调的那些病理状态。在此有待治疗的失调的非限制性实例包括癌症;良性和恶性肿瘤;白血病和淋巴恶性疾病(lymphoid malignancy);神经元失调、神经胶质失调、星形胶质细胞失调、下丘脑失调和其他腺体失调、巨噬细胞失调、上皮失调、间质失调和囊胚腔失调;和炎性、血管生成和免疫失调。
[0098] 当在此使用时,词语“标记”是指与多肽直接或间接偶联的可检测化合物或组合物。标记可以自身是可检测的(例如放射性同位素标记或荧光标记),或者在酶标记的情况下,可以催化可检测的底物化合物或组合物的化学变化。
[0099] 对于“受试者”表示哺乳动物,包括但不限于,人或非人哺乳动物,如、马、犬、羊、或猫。优选地,受试者是人。在此患者也是受试者。附图说明
[0100] 图1使用没有或敲除(Dear-/-)DEspR(以前被称作Dear,在Gen Bank作为Dear保藏)的小鼠显示了DEspR是胚胎发育中的关键性血管生成参预者。
[0101] 图2显示DEspR有助于成体组织血管供应,如使用能量多普勒分析时在展示组织血管供应减少的成年单倍体缺陷(+/-)小鼠中所见。
[0102] 图3A-图3E显示,通过在基础状态和血管生成管形成状态下在脐静脉内皮细胞(HUVEC)(图3A-图3C)和微血管内皮细胞(HMECS)中的免疫染色来检测DEspR和VEGFsp。重要的是,使用抗DEspR(Ab1)和抗VEGFsp(Ab2)抗体在HUVEC(图3D)和HMEC(图3E)血管生成测定中看到血管生成新血管的管长度的抑制。(对于HUVEC和HMEC两者,Tukey全配对多重比较P<0.001)。对其他血管生成参数(包括产生的新血管分支和相互连接)观察到相似的发现。
[0103] 图4A-图4D展示,使用免疫染色,也在肿瘤细胞中检测到DEspR和VEGFsp,VEGFsp和DEspR共定位于细胞膜和核膜内。在多个肿瘤细胞类型中检测到DEspR细胞膜和核膜表达,这表明抗DEspR疗法对不同的癌类型有效。在人非小细胞癌NCI-H727、肺巨细胞瘤TIB-223/GCT、乳腺腺癌MDA-MB-231(图4A-图4C)和MDA-MB-468、膀胱癌253J BV、结肠腺癌SW480、肝细胞癌、HEP3B、黑色素瘤SK-MEL-2、骨肉瘤MG-63、卵巢腺癌HTB-161/NIH:OVCA R3、前列腺腺癌PC-3mm2、以及胰腺癌CRL-1469/PANC-1(图4D)中检测到DEspR表达。
[0104] 图5A-图5C显示,在HCI-H292肺粘液性表皮样癌和HEPG2肝细胞癌(图5A)和CCL-86/Raji Burkitt淋巴瘤中未检测到DEspR表达,因此显示阳性观察结果的特异性。在Gr.III肺腺癌的肿瘤切片免疫染色(图5C)上证实了在NCI-727肺癌细胞中的发现(图5B)。
[0105] 图6A-图6B显示,与对照(C)和免疫前抗体处理(PI)相反,通过抗人DEspR抗体处理对DEspR的抑制在测试的两个细胞系、转移性乳腺肿瘤MDA-MB-231和胰腺腺癌PANC-1细胞系中抑制了肿瘤细胞侵袭力。
[0106] 图7显示,与模拟治疗对照相比较(■),抗DEspR治疗的大鼠(□□)展示最少的肿瘤生长,双尾t-检验*P<0.05;**P<0.001。
[0107] 图8A-图8D显示,使用免疫组织化学分析,DEspR在与MDA-MB-231乳腺癌细胞相似的乳腺肿瘤细胞(图8A)中表达,而在正常的乳腺组织中无表达(图8B)。另外,残余肿瘤在治疗的大鼠中展示血管的正常化(图8C),相反,模拟治疗的肿瘤在肿瘤血管中显示出破坏的内皮,同时肿瘤细胞侵蚀到管腔内(图8D)。
[0108] 图9显示选择的单克隆抗体的表征。使用标准程序通过间接ELISA测试单克隆抗体2E4A8、2E4B11、2E4H10、5G12E8、7C5B2、7C5C5、8E7D11、8E2F6、E2G4和8E7F8。如下测试来自含有1μg/ml单克隆抗体的上清液的连续稀释物:1=1/2;2=1/4;3=1/8;4=1/16;
5=1/32;6=1/64;7=1/128;8=1/256;9=1/512;10=1/1024;11=1/2048和12=1/4096。
[0109] 图10显示了所测试的单克隆抗体的蛋白质印迹分析。为了确定特异性,测试了低亲和力(5G12E8)、中等亲和力(2E4H6)、和高亲和力(7C5B2)单克隆抗体以及亚克隆上清液和后续的纯化抗体。抗人DEspR单克隆抗体对于人DEspR的预测10kD蛋白是特异性的。使用从Cos1人DEspR转染的细胞分离的总细胞蛋白作为抗原进行蛋白质印迹分析,第一抗体包括纯化的抗体和3个选择克隆的亚克隆上清液,凝胶浓度为10%,以便检测人DEspR的预期10kD分子量蛋白质。使用硝酸纤维素(PIERCE)连同具有3.07g Tris、14.4g甘氨酸、200ml甲醇、800ml dH2O的转移缓冲液。以1:100,000使用HRP抗小鼠多价免疫球蛋白(Sigma#0412);ECL试剂(SuperSignal West Femto试剂盒#34094)、Stain试剂Kodak RP-X-Omat、以及X胶片(Kodak X胶片#XBT-1)。无论相对亲和力是多少,蛋白质印迹结果证明了抗人DEspR单克隆抗体的特异性,因此鉴定了一种以上的成功的抗人DEspR单克隆抗体。这些结果表明,具有最高相对亲和力和特异性的单克隆抗体克隆是克隆7C5B2。
[0110] 图11A-图11C显示了不同的血管生成参数被通过针对DEspR的单克隆抗体7C5B2和多克隆抗体制剂抑制。显示7C5B2单克隆抗体使正在经历管形成的HUVEC、胰腺腺癌PANC-1、以及乳腺癌MDA-MB-231细胞免疫染色。图11A显示了作为新血管复杂性的量度的平均分支点数目,并且图在11B中显示了作为新血管密度的量度的总的管长度。图11C显示了体外血清诱导的HUVEC血管生成(tubulogenesis)被单克隆抗体7C5B2以浓度依赖方式抑制。使HUVEC(人脐静脉内皮细胞)在基础培养基中的基质胶包被的孔上生长,所述基础培养基补充有2%FBS(对照)或2%FBS+单克隆抗体7C5B2(0.05nM-500nM)。将血清诱导的血管生成的百分比测定为在对照条件下与在补充有所指示的单克隆抗体7C5B2的培养基中生长的HUVEC之间的差异。呈现了在体外管形成测定中的每孔总的管长度%和每孔分支点总数。数据显示为均值±标准误差。每个实验条件在5个重复孔中进行。总的管长
度的EC50=4.34nM±0.45nM;分支点数目#的EC50=3.97nM±0.51nM。
[0111] 图12A-图12C展示,单克隆抗体抑制了7C5B2在MDA-MB-231人乳腺癌(图12A)和PANC-1胰腺癌(图12B)细胞系中的肿瘤细胞侵袭力(P<0.001*,<0.01*)。图12C显示了单克隆抗体7C5B2抑制MDA-MB-231细胞侵袭的剂量反应曲线(EC50=3.55nM±0.32nM)。5次重复的数据,均值±标准误差。*P<0.001,**P<0.01(单因素方差分析,全配对多重比较Tukey检验)。
[0112] 图13A-图13D显示了抗人DEspR单克隆抗体7C5B2(IgG2b同种型)对体外血清诱导的HUVEC血管生成的影响(建立的体外血管生成测定)。使HUVEC(人脐静脉内皮细胞)在基础培养基中的基质胶包被的孔上生长,该基础培养基补充有2%FBS(对照C1)或2%FBS+多克隆抗hDESPR抗体的免疫前IgG同种型对照(500nM,对照C2)、或2%FBS+抗hDESPR mAB的IgG2b同种型对照(500nM,C3对照)或2%FBS+多克隆抗hDEspR(500nM,P)或2%FBS+单克隆抗体7C5B2(500nM,M)。在图13A中显示了每孔形成的管的平均数目的定量分析,在图13B中显示了每孔平均分支点数目,在图13C中显示了每孔平均连接数目,并且在图13D中显示了每孔平均总的管长度(单位mm)。数据显示为均值±标准误差。每个实验条件在
5个重复孔内进行。统计显著性差异(与对应的对照条件相比)如下指示:*P<0.001(单因素方差分析,接着是全配对多重比较Tukey检验)。
[0113] 图14A-图14B显示了使用抗人DEspR7C5B2单克隆抗体在相同载玻片上的由代表肿瘤和正常组织的芯活检标本组成的人肿瘤组织阵列的免疫组织化学分析。首先使用福尔马林固定、石蜡包埋的芯活检切片测试优化的检测特异性和敏感性的条件。进行双重免疫荧光实验来评价人DEspR表达和CD133表达,其中后者用作癌干细胞的标记。使用1:10稀释度的抗人DEspR单克隆抗体和1:20稀释度的商业可得的抗CD133单克隆抗体进行抗原修复。使用抗人DEspR7C5B2单克隆抗体的人肿瘤组织阵列的代表性免疫组织化学分析检测到II期肺癌肿瘤细胞中的增加的hDEspR(Alexa-568红色)表达,如在图14A中所显示。
一些肿瘤细胞对于人DEspR和CD133两者为免疫染色双阳性,而其他肿瘤细胞仅对CD133免疫染色。这些观察结果展示,人DEspR也存在于CD133阳性癌干细胞以及CD133阴性肿瘤细胞中。相反,如在图14B中所示,正常肺标本不对人DEspR或CD133展示任何免疫染色。
[0114] 图15A-图15B显示,在正常人胰中存在最少的DEspR表达(图15B),其中α-平滑肌肌动蛋白用作阳性对照,而与此相反,IV期胰腺癌肿瘤细胞和肿瘤血管展示增加的DEspR表达(图15A)。
[0115] 图16A-图16D展示了DEspR靶向超声分子成像并且显示,DEspR特异性抗体(图16A)检测到DEspR+内皮损伤(图16B)和新生滋养血管形成(图16C)。对比强度的定量是使用集成的VisualSonics Micro成像系统软件完成的(图16D)并且展示DespR+颈动脉内皮和滋养血管中的对比强度增加,与在EspR(-)内皮和滋养血管、以及同种型-微泡对照两者中的低对比强度相反。P<0.0001,ANOVA和配对多重比较。抗DEspR经生物素酰化并且结合于链霉亲和素-PEG包被的商业可得的微泡用于超声分析和成像。
[0116] 图17A-图17F显示了使用抗DEspR单克隆抗体在人乳腺组织中的DEspR表达的免疫组织化学分析,(图17A-图17C)正常;1级T1浸润性导管癌(图17D-图17F)。图17A显示正常乳腺组织:DEspR、aSMA和DAPI核染色的3X叠加检测到在乳腺肌上皮细胞细胞中的aSMA表达,但是在上皮细胞和微血管中没有DEspR表达。图17B显示DEspR和DAPI核
染色的2X-免疫荧光叠加并且证实在正常乳腺组织中不存在DEspR表达。图17C是DEspR、aSMA、DAPI免疫荧光和扩散对比成像(DIC)的4X叠加,其描绘了组织形态、aSMA的表达以及DEspR在正常乳腺上皮和内皮中无表达/最少表达。图17D是1期-T1浸润性导管癌中的
DAPI、aSMA和DEspR免疫荧光的3X叠加,其检测到血管内皮中的DEspR表达、以及与aSMA在乳腺组织中的共定位。图17E是图17D中所显示的乳腺癌的DAPI和DEspR的2X叠加,
其突出显示了DEspR表达。图17F是阐明DEspR空间表达的DAPI、aSMA、DEspR、DIC的4X叠加,连同上皮细胞和微血管的组织形态。比例尺=20微米。
[0117] 图18A-图18F显示了在正常胰腺组织(图18A-图18C)(正常)和3级T3胰腺导管癌(图18D-图18F)中的DEspR表达的单克隆抗体免疫组织化学分析。图18A显示了对于正常胰腺组织,用DEspR、aSMA和DAPI核染色的3X叠加,在微血管中检测到最少DEspR表达。图18B显示了DEspR、aSMA、DAPI与组织形态DIC成像的4X免疫荧光叠加。图18C(左)显示了DEspR、aSMA、DAPI免疫荧光的3X叠加;(右)显示了组织形态的DEspR、aSMA、DAPI和扩散对比成像(DIC)的4x叠加,其显示在正常内皮中的aSMA表达和DespR的不表达/最少表达。图18D显示了在3级-T3胰腺导管癌中DAPI、aSMA和DEspR免疫荧光的3X叠
加检测到在血管内皮中的DEspR表达、以及与aSMA的共定位。图18E显示了在图19D中所显示的图像的DAPI和DEspR的2X叠加并且突出显示了DEspR表达。图18F显示了DAPI、
aSMA、DEspR的3X叠加,其显示了在胰腺导管癌细胞中增加的DEspR表达。比例尺=20微米。
[0118] 图19A-图19E显示了代表性对比增强的超声(CEU)图像,其具有所描绘的对比强度信号(CIS)。图19A显示了在转基因大鼠R1中的MBD DEspR靶向分子成像,展示了在声学破裂(acoustic disruption)之后CEU阳性显像和在CIS峰中的特征性降低(|)。图19B显示了在转基因大鼠R1中的后续同种型-微泡(MBC)成像,其显示低峰CIS水平和CIS破坏前和破坏后指示CIU阴性显像的‘平整-线模式(‘flat-line pattern)。图19C显示了在非转基因大鼠R2中的MBD DEspR靶向分子成像,其展示与MBC CEU阴性显像相似的CEU阴性显像。图19D显示了在不同研究组之间如所标记那样的CIS差异的图(Δ),所述差异将Tg MBD CEU+组中的CEU阳性显像与其他CEU-阴性组区分。图20E显示了在所有转基因大鼠(Tg+)与非转基因大鼠(nonTg)之间的CIS差异的图。加斜杠的条代表在输注MBD的CEU+与输注MBD的CEU-转基因大鼠之间的阈值。血池,在推注MB之后1分钟的CEU图
像,其显示在不同大鼠之间的同等MB输注和来自移动伪像(movement artifact)的最小对比强度信号。1-Pre,在推注之后4分钟所获得的声学破坏前CEU图像,目的是允许MB粘附至靶标(如果存在的话)并且记录在管腔中最少(如果有的话)循环型MB。图像对应于CIS图上的#1。2-Post,声学破坏后的CEU图像,其相应于散点图上的#2。CIS图,在代表性的感兴趣的区域内对比强度信号(CIS)的散点图(在aqua中环绕)。1#,声学破坏前检测到的CIS;#2,声学破坏后检测到的CIS(2)。黑色线和随后的空位标注CIS-散点图中的声学破坏的时间段。MBD,DEspR靶向的微泡;MBC,对照同种型靶向的微泡;Tg,转基因大鼠;nonTg,非转基因对照大鼠;CEU+,CEU阳性显像;CEU-,CEU阴性显像,Δ对比强度,破坏前/破坏后CIS差异;***,P<0.0001。
[0119] 图20A-图20H描绘了代表性MBD特异性对比增强的超声(CEU)阳性图像,其描述了在转基因大鼠R3中的粘附性MBD-微泡的声学破坏的复杂图案。图20A显示了代表性CEU-图像,其记录了循环性MBD在推注之后一分钟充满颈动脉腔的血池。CCA,颈总动脉;
ECA,颈外动脉;ICA,颈内动脉;*,CCA分叉处。图20B-图20D显示了对比强度信号的散点图,其用相同的虚线块标注以便指代在图20E中的相应的感兴趣区(ROI)。(20B)白色实线;
(20C),白色阴影线;(20D)白色点线ROI。图20E显示了相应于散点图b、c、d上的#1的代表性CEU图像,记录了刚好在声学破坏之前的粘附性的DEspR靶向的微泡(MBD)(黑色线)。
在白色实线、白色阴影线和白色点线包围的三个ROI中看到粘附性MBD。图20F显示了相应于散点图b-d上的#2的代表性CEU图像,显示了分别与不同ROI中的#1的水平相比,声学破坏后信号强度下降。图20G显示了相应于散点图b-d上的#3的代表性CEU图像,显示了在不同ROI中的对比强度信号的声学破坏后的次峰。图20H显示了相应于散点图上的#4
的代表性CEU图像,记录了接近基线水平(在同种型对照或输注MBD的CEU阴性图像中观察到)的对比强度信号下降并且展示了低背景CIS水平。
[0120] 图21A-图21H描绘了用DEspR阳性分子成像的与大鼠-R1(图21A-小图21D)和大鼠-R3(图21E-小图21H)相应的颈动脉的代表性组织学和荧光免疫染色分析。图21A显示了马松三色染色的颈动脉内皮切片。图21B-图212C显示了与针对DEspR表达的荧光免疫染色和DAPI核染色叠加的微分干涉差(DIC)图像。图21D显示了与内皮的DIC图像叠加的对照同种型-ab免疫染色和DAPI核染色。图21E显示了马松三色染色的颈动脉切
片,其显示增加的外膜新生滋养血管(vasa vasorum neovessel)。在图21F中以更高的放大率显示加框的区域,记录了填充有rbc的滋养血管。图21G显示了荧光免疫染色检测到在滋养血管和周围的细胞中的DEspR阳性表达。图21H显示了用α-SMA和DEspR双重免
疫染色检测到在DEspR阳性新血管中的αSMA共表达。→,粘附性DEspR靶向的微泡MBD;
白色箭头指向图21G和图21H中的新生滋养血管;m,中间层;比例尺=10微米,图21A-图
21D、图21F;20微米,图21E、图21G、图21H。
[0121] 图22A-图22E描绘了来自大鼠的颈动脉的代表性荧光免疫染色分析,其展示MBD特异性CEU阳性显像(22B、22C)和CEU阴性显像(22D、22E)。图22A显示了破坏前CIS峰水平的散点图,其突出显示在MBD特异性CEU阳性显像(CEU+)和CEU阴性显像(CEU-)之间的阈值(加斜线的条)。图22B显示了颈动脉内皮和扩张的滋养血管的DEspR阳性免疫染色;在培养基中的平滑肌细胞(SMC)中的αSMA阳性免疫染色。一些新生滋养血管对于DEspR和αSMA是双重免疫染色的。图22C显示了相应的DIC-图像,显示了颈动脉和滋养血管的结构层。图22D显示了在展示CEU阴性显像的大鼠颈动脉中的代表性最少DEspR表达至无DEspR表达(此处显示非转基因大鼠R2)。对CEU阴性转基因大鼠颈动脉获得相似的图像。
αSMA-免疫染色检测到在中间层中SMC内的表达。在中间层中的αSMA-免疫染色低水平指示在两种颈动脉中的合成SMC表型,与高血压重塑一致。图22D显示了相应的DIC-图
像,显示了颈动脉和外膜的结构层,没有滋养血管扩张。比例尺=20微米(22B,22C),10微米(22D,22E)。m,中间层;adv,外膜;白色小箭头,内皮;白色大箭头,滋养血管。
[0122] 图23A-图23G描绘了与人内皮细胞HUVEC体外结合的抗人DEspR靶向的微泡(MBD)的相差-荧光显微分析。增加DEspR靶向的微泡(MBD)对细胞的比率(23A)8x、(23B)
80x、以及(23C)800x。(23D)在800x下的同种型对照(MBC);(23E)在800x下的未靶向的对照MBO。(23F)具有结合的MB(■)和没有MB结合(□)的HUVEC%。图23G显示了随着MB对细胞的比率增加的每个结合细胞的MB数(均值+/-sem):MBD与同种型对照MBC和对照未靶向的MBO比较。***,ANOVA P<0.0001。
[0123] 图24A-图24F显示了在肝(24A-24C)和胰(24D-24F)非癌组织和癌组织中的DEspR表达。(24A)相邻的正常肝脏组织;(24B,24C)来自两位患者的肝癌T-2;(24D),邻近的正常胰腺组织;(24E,24F)来自两位患者的胰腺导管癌III-IV期。黑色箭头,微血管;DEspR阳性免疫染色的DAB检测,颜色强度大体上与表达成正比;苏木精胞核复染。比例尺,
20微米。
[0124] 图25A-图25F显示了在人组织阵列中的DEspR表达:胃(25A-25C)和乳腺(25D-25F)非癌组织和癌组织。(25A)邻近的正常胃组织;(25B)胃腺癌T-3,(25C)胃腺癌转移至肺;(25D)伴有纤维化的邻近正常乳腺组织;(25E)乳腺髓样癌T-2;(25F)乳腺肿瘤转移至淋巴结。黑色箭头,血管内皮;DEspR阳性免疫染色的DAB检测,颜色强度大体上与表达成正比;苏木精胞核复染。比例尺,20微米。
[0125] 图26A-图26F显示了在肺和结肠非癌组织和癌组织中的DEspR表达。(26A)邻近的正常肺;(26B)I级肺腺癌;(26C),III级T2肺腺癌;(26D)邻近的正常结肠;(26E、26F)结肠腺癌III-IV级,T2。白色箭头,内皮;黑色箭头→,癌细胞中的核膜的DEspR免疫染色,DEspR-免疫染色的DAB-检测,颜色强度大体上与表达成正比;苏木精胞核复染。比例尺,20微米(26A-26C);25微米(26D);10微米(26E、26F)。
[0126] 图27A-图27F显示了在不同组织类型的癌细胞系中的DEspR表达。(27A)非小细胞肺癌细胞系,#NCI-H727;(27B)结肠癌,SW480Duke B型;(27C)胰腺癌,PANC-1;(27D)乳腺腺癌转移,MDA-MB-231;(27E)膀胱癌253J BV;(27F)前列腺腺癌PC-3mm2。→,癌细胞中的核膜的DEspR免疫染色,DEspR-免疫染色的DAB-检测,颜色强度大体上与表达成正比;苏木精胞核复染。比例尺,20微米(A-F)。
[0127] 图28A-图28B显示了人特异性抗DEspR单克隆抗体的表征。(28A)显示了通过间接ELISA对10个候选单克隆抗体克隆的分析。如下测试来自含有1μg/ml mAb的上清液的连续稀释物:1=1/2;2=1/4;3=1/8;4=1/16;5=1/32;6=1/64;7=1/128;8=1/256;9=1/512;10=1/1024;11=1/2048和12=1/4096。白色菱形,选择的Mab7c5b2克隆;空心符号,所有其他克隆。(28B)描绘了纯化的Mab(泳道1-3)、以及“超级克隆”上清液(泳道4-6)的蛋白质印迹分析,以PBS用作对照(泳道7)。选择的7C5B2Mab在泳道1和4中(菱形)。用抗DEspR Mab免疫染色和抗VEGFsp免疫染色进行HUVEC的双重免疫染色,并且确定DEspR和VEGFsp共定位。
[0128] 图29A-图29C展示,在体外HUVEC测定中通过单克隆抗体对DEspR的抑制而减少了血管生成。使用抗DEspR Mab进行HUVEC的DEspR免疫染色。(29A)针对抗DEspR Mab抑制血管生成的剂量反应曲线,测量了每孔总的管长度(○),其中EC50=4.34nM+/-0.45nM;以及管分支点数目(●),其中EC.503.97nM+/-0.51nM。(29B)分别与对照的未处理的细胞(30C)、免疫前血清(PI)以及Pab和Mab的IgG2b同种型(Iso)对照相比,通过抗DEspR多克隆抗体(Pab)和单克隆抗体(Mab)对DEspR的抑制的总的管长度变化的分析。(29C)与对照(C、PI、Iso)相比,被多克隆和单克隆抗DEspR抗体抑制作用抑制的平均分支点数目(#)的分析。数据表示为均值+/-sem;4次重复;*,P<0.01(ANOVA接着是全配对多重比较Tukey检验)。
[0129] 图30A-图30C展示,在体外HUVEC测定中通过单克隆抗体对DEspR的抑制而减少了血管生成。通过抗DEspR Mab进行MDA-MB-231乳腺癌细胞和PANC-1胰腺癌细胞系的DEspR阳性免疫染色。(30A)针对通过MDA=MB-231乳腺癌细胞侵袭力的抗DEspR Mab的DEspR抑制作用增加的剂量反应曲线(黑色),EC50=3.55nM+/-0.32nM。(30B-30C)与对照的未处理的细胞、以及MDA-MB-231乳腺癌细胞(31B)的IgG2b同种型对照和PANC-1胰细胞系(31C)相比的被抗DEspR Mab抑制作用抑制的细胞侵袭力的分析。所有数据均显示为4次重复的均值+/-sem;*,P<0.01;**,P<0.001(单因素ANOVA接着是全配对多重比较Tukey检验)。
[0130] 图31A-图31F显示了在人乳腺组织中的DEspR表达的免疫组织化学分析。(31A-31C)正常;(31D-31F)1级T1浸润性导管癌。31A.正常乳腺组织:DEspR、aSMA和DAPI核染色的3X叠加检测到在乳腺肌上皮细胞细胞中的aSMA表达,但是在上皮细胞(白色三形箭头→)和微血管(白色圆箭头)中没有DEspR表达。31B,DEspR和DAPI核染色的2X-免疫荧光叠加证实了在正常乳腺组织中不存在DEspR表达。31C,DEspR、aSMA、DAPI免疫荧光和扩散对比成像(DIC)的4X叠加描绘了组织形态、aSMA的表达以及DEspR在正常乳腺上皮和内皮中无表达/最少表达。31D,在1期-T1浸润性导管癌中的DAPI、aSMA和DEspR免疫荧光的3X叠加检测到血管内皮中的DEspR表达、以及与aSMA在乳腺组织中的共定位。31E,在图d中所显示的乳腺癌的DAPI和DEspR的2X叠加突出显示了DEspR表达。31F,DAPI、
aSMA、DEspR、DIC的4X叠加用组织形态阐明了DEspR空间表达。(白色三角形箭头→),上皮细胞;(白色圆箭头),微血管。DEspR阳性;aSMA阳性;DAPI核染色;aSMA和DEspR的共定位;比例尺=20微米。
[0131] 图32A-3图2F展示了使用抗DEspR Mab的胰腺组织中的DEspR表达的免疫组织化学分析。(32A-32C)正常;(32D-32F)3级T3胰腺导管癌。(32A)正常胰腺组织:DEspR、aSMA和DAPI核染色的3X叠加检测到在微血管中的最少DEspR表达(在图中更好地看出)。
(32B)DEspR、aSMA、DAPI与组织形态DIC成像的4X-免疫荧光叠加。(32C)左:DEspR、aSMA、DAPI免疫荧光的3X叠加;右:组织形态的DEspR、aSMA、DAPI和扩散对比成像(DIC)的4X叠加显示了在正常内皮中的aSMA表达和DEspR不表达/最少表达。(32D)在3级-T3胰腺导管癌中的DAPI、aSMA和DEspR免疫荧光的3X叠加检测到在血管内皮中的DEspR表达、以及与aSMA的共定位。(32E)在图32D中所显示的图像的DAPI和DEspR的2X叠加突出显
示了DEspR表达。(32F)DAPI、aSMA、DEspR的3X叠加显示了在胰腺导管癌细胞中的DEspR表达增加。(白色→),上皮细胞;(白色圆箭头),微血管。DEspR阳性;aSMA阳性;DAPI核染色;aSMA和DEspR的共定位;比例尺=20微米。
[0132] 图33显示了从7C5B2杂交瘤获得的抗体的RT-PCR产物的1%琼脂糖凝胶分离。凝胶用 Safe DNA凝胶染液(Invitrogen目录号S33102)染色并且在紫外光下照相。TM
大小标记(L)是GeneRuler 1Kb Plus(Fermentas目录号SM1331)。使用鼠信号序列的简并引物池进行RT-PCR,这些简并引物池具有针对IgGVH、IgMVH、IgκVL和IgλVL中的每一者的恒定区引物。
[0133] 图34显示了7C5B2抗体的可变重链氨基酸序列(SEQ ID NO:4)和核苷酸序列(SEQ ID NO:3)。根据Kabat进行CDR定义和蛋白质序列编号。
[0134] 图35显示了复合7C5B2抗体的可变轻链氨基酸序列(SEQ ID NO:9)和核苷酸序列(SEQ ID NO:8)。根据Kabat进行CDR定义和蛋白质序列编号。
[0135] 图36显示了使用在此所述的方法产生的复合抗DEspR人源化7C5B2抗体的示例性可变重链氨基酸序列(SEQ ID NO:13)和核苷酸序列。根据Kabat进行CDR定义和蛋白质序列编号。
[0136] 图37显示了使用在此所述的方法产生的复合抗DEspR人源化7C5B2抗体的示例性可变重链氨基酸序列(SEQ ID NO:14)和核苷酸序列。根据Kabat进行CDR定义和蛋白质序列编号。
[0137] 图38显示了使用在此所述的方法产生的复合抗DEspR人源化7C5B2抗体的示例性可变重链氨基酸序列(SEQ ID NO:15)和核苷酸序列。根据Kabat进行CDR定义和蛋白质序列编号。
[0138] 图39显示了使用在此所述的方法产生的复合抗DEspR人源化7C5B2抗体的示例性可变重链氨基酸序列(SEQ ID NO:16)和核苷酸序列。根据Kabat进行CDR定义和蛋白质序列编号。
[0139] 图40显示了使用在此所述的方法产生的复合抗DEspR人源化7C5B2抗体的示例性可变重链氨基酸序列(SEQ ID NO:17)和核苷酸序列。根据Kabat进行CDR定义和蛋白质序列编号。
[0140] 图41显示了使用在此所述的方法产生的复合抗DEspR人源化7C5B2抗体的示例性可变轻链氨基酸序列(SEQ ID NO:18)和核苷酸序列。根据Kabat进行CDR定义和蛋白质序列编号。
[0141] 图42显示了使用在此所述的方法产生的复合抗DEspR人源化7C5B2抗体的示例性可变轻链氨基酸序列(SEQ ID NO:19)和核苷酸序列。根据Kabat进行CDR定义和蛋白质序列编号。

具体实施方式

[0142] 在此提供了包含抗DEspR抗体及其DEspR结合片段的新颖组合物、以及它们在抗血管生成和抗肿瘤增殖与侵袭疗法(如癌症的治疗)、以及在治疗其中病理性血管生成发挥作用的那些血管疾病中使用的方法,这些血管疾病例如颈动脉疾病、新生滋养血管形成(因此影响中风)、以及易损斑块新血管形成(因此例如影响心脏病)。另外,包含在此所述的抗DEspR抗体及其DEspR结合片段的组合物用于评定和成像方法中,如用于确定肿瘤活检样品中的DEspR表达以鉴定个体化医疗手段的可能响应者的搭配诊断、血管生成的DEspR靶向分子成像,所述方法可以例如用于连续监测对治疗的反应、体内检测肿瘤“血管生成开关”或血管拟态。另外,这样的诊断提供了用于个体化医疗应用中的抗血管生成治疗的新手段。此外,与递送剂如纳米粒子、多聚复合物(polyplexes)、微粒子等组合时,包含在此所述的抗DEspR抗体和其DEspR结合片段的组合物用作其他诊断和治疗组合物的靶向部分。
[0143] 靶向VEGF和VEGFR2受体通路的疗法,如贝伐珠单抗、舒尼替尼和索拉非尼治疗,最近已经显示仅仅具有短暂益处并且显得促进或诱导反馈性血管生成反应(feedback angiogenic response),以至于在抗VEGF治疗后已经检测到VEGF水平增加10倍(Willett等人,2005和Carmelie等人,2005)并且在VEGFR2抑制剂(舒尼替尼)治疗之后已经观察到转移恶化。
[0144] 相反,诸位发明人已经发现VEGF系统的另一个血管生成通路(angiogenesis arm),这是基于他们的发现:通过VEGF信号肽(VEGFsp)与其受体“DEspR”或“双重内皮素-1/VEGFsp受体”的相互作用发挥了关键的、非冗余的和不同的作用。诸位发明人已经发现:a)DEspR无效突变导致由于异常胚胎血管形成和血管生成引起的E10.5-E12.5胚胎致死性(Herrera等人,2005);b)VEGFsp以高亲和力结合DEspR,所述高亲和力等于针对ET1结合所观察到的亲和力(Herrera等人,2005);c)DEspR抗体在大鼠乳腺肿瘤模型和DEspR单倍体缺陷(DespR+/-)小鼠中介导的抑制作用减弱了体内肿瘤生长(Herrera等人,2005);d)VEGFsp刺激成年大鼠主动脉环血管生成(Decano等人,2010);和e)如在此所述,DEspR介导成年血管生成并且其表达在颈动脉动脉粥样硬化性新生滋养血管形成期间增加。
[0145] 如在此所述,诸位发明人进一步证明:a)DEspR表达在男性和女性中的几种人癌症肿瘤血管(例如,乳腺、肺、肝脏、膀胱、胰、胃、食道、结肠,等等)中增加,并且令人惊讶的是,分别使用肿瘤组织阵列和肿瘤细胞系阵列时,也在多种肿瘤细胞中增加,包括乳腺肿瘤细胞、肺肿瘤细胞、胶质母细胞瘤、膀胱肿瘤细胞、黑色素瘤和胰腺肿瘤细胞;以及在癌干细胞或癌干细胞样细胞或肿瘤起始细胞中增加;b)DEspR和VEGFsp共定位于培养的肿瘤细胞中的细胞核和细胞膜中;c)VEGFsp刺激肿瘤细胞增殖和侵袭;并且d)通过多克隆和单克隆抗人DEspR抗体的DEspR抑制作用有力地抑制了血管生成和肿瘤细胞侵袭力,并且降低了肿瘤生长速率以及显著减小了肿瘤大小。
[0146] DEspR
[0147] 双重内皮素-1/VEGF信号肽活化受体(DEspR),正式被称作DEAR,最初从Dah1盐敏感性高血压大鼠脑cDNA文库中克隆并且显示是一种单次跨膜受体,其与Ca2+-动员转导通路结合内皮素-1(ET-1)和血管紧张素-II(Ang II)以同等亲和力结合
(Ruiz-Opazo N.等人,(1998),“双重内皮素-1/血管紧张素II受体的分子表征”
(Molecular characterization of a dual Endothelin-1/Angiotensin II Receptor),Mol Med.4:96-108)。后续的分子研究阐明,小鼠直向同源物不与AngII相互作用,但是反-/-
而以相等亲和力结合ET-1和血管内皮生长因子信号肽(VEGFsp)。小鼠中的DEspR 双突-/-
变缺陷导致胚胎致死性,原因在于血管形成受损、异常血管生成和血管网形成。DEspR 胚也显示异常的神经发生,特征在于神经上皮高度卷绕(hyperconvoluted)和从端脑到末脑的神经管分化失调(Herrera VLM等人,(2005),“Dear基因缺陷小鼠中的胚胎致死性:血管生成中的新参预者”(Embryonic lethality in Dear gene deficient mice:new player +/-
in angiogenesis),Physiol.Genomics23:257-268)。这种表型引人注目地与VEGF 缺陷小鼠中正在发育的神经管内所观察到的促凋亡作用相反,虽然血管形成和血管生成的异常是相似的(Herrera VLM等人,(2005))。
[0148] 因此,如在此所使用的,术语“DEspR”是指85个氨基酸双重内皮素/VEGF信号肽受体(DEspR),其具有人氨基酸天然序列:MTMFKGSNEMKSRWNWGSITCIICFTCVGSQLSMSSSKASNFSGPLQLYQR ELEIFIVLTDVPNYRLIKENSHLHTTIVDQGRTV(SEQ ID NO:1),如由例如Glorioso等人,2007所描述,连同天然存在的等位基因变体、剪接变体及其加工形式。
[0149] 如在此所使用的,DEspR“天然序列”或DEspR“野生型序列”多肽包括与从自然界衍生的DEspR多肽具有相同的氨基酸序列的多肽。因此,天然序列多肽可以具有来自任何哺乳动物的天然存在的多肽的氨基酸序列。这样的天然序列多肽可以从自然界分离或可以通过重组或合成手段产生。术语“天然序列”多肽特别地包括这种多肽的天然存在的截短或分泌形式(例如,胞外结构域序列)、这种多肽的天然存在的变体形式(例如,可替代地,剪接的形式)和天然存在的等位基因变体。
[0150] DEspR多肽“变体”表示生物活性DEspR多肽,其与DEspR多肽的天然序列具有至少大约80%的氨基酸序列一致性。这样的变体包括,例如,其中在这种多肽的N-或C-末端添加或缺失一个或多个氨基酸残基的多肽。通常,变体与天然序列多肽具有至少大约80%氨基酸序列一致性、更优选至少大约90%氨基酸序列一致性、并且甚至更优选至少大约95%氨基酸序列一致性。
[0151] DEspR是G蛋白偶联受体家族的部分并且与内皮素-1和VEGF信号肽(VEGFsp)结合。VEGFsp具有人序列MNFLLSWVHWSLALLLYLHHAKWSQA(SEQ ID NO:2)。典型地,如在此所使用的,DespR是指人DEspR。术语“DespR”也用来指多肽的截短形成或片段,它们包含85个氨基酸的人双重内皮素/VEGF信号肽受体的特定氨基酸序列。可以在本申请中例如通过“DEspR(1-9)”来标识任何这种形式的DEspR中的指代。
[0152] DEspR拮抗剂和抗DEspR抗体
[0153] 在此提供的是包含DEspR拮抗剂的组合物和方法,其中所述DEspR拮抗剂能够中和、阻断、抑制、消除、降低或干扰DEspR活性(包括其与内皮素-1或VEGFsp的结合)。
DEspR拮抗剂包括但不限于与DEspR特异性结合,从而抑制、阻止或掩蔽DEspR与其配体(如VEGFsp和内皮素-1)结合的抗DEspR抗体及其抗原结合片段、受体分子、小分子、纳米粒子、多聚复合物组合(polyplex combination)和其衍生物。
[0154] 抗DEspR抗体和抗体产生
[0155] 因此,在一些方面,在此提供了一种对DEspR靶标特异的抗DEspR抗体或其抗体片段,其中该抗DEspR抗体或其抗体片段与DEspR靶标特异性结合并且降低或抑制DEspR生物活性。在一些实施方案中,DEspR是人DEspR。在一些实施方案中,DEspR靶标包含SEQ ID NO:1的氨基酸序列或其等位基因变体或剪接变体。
[0156] 如在此所使用的,“抗DEspR抗体”是指以足够亲和力和特异性与DEspR结合的抗-5体。选择的抗体通常将具有针对DespR的结合亲和力,例如,该抗体可以与人DEspR以10 M-10
至10 M之间的KD结合。如在此所使用的,“选择性地结合”或“特异性结合”是指在此所-5 -6 -7 -8 -9
述的抗DEspR抗体或其抗体片段以10 M(10000nM)或更小,例如10 M、10 M、10 M、10 M、-10 -11 -12
10 M、10 M、10 M或更小的KD与DEspR结合的能力。
[0157] 可以例如通过基于表面等离子体共振的测定(如PCT申请公开号WO2005/012359中描述的BIAcore测定);酶联免疫吸附测定(ELISA);和竞争测定(例如RIA)来确定抗体亲和力。在在此所述的某些方面,可以使用抗DEspR抗体作为靶向和干扰其中涉及DEspR活性的疾病或病症的治疗剂。同样,抗DEspR抗体可以经历其他生物活性测定,例如,以便评价其作为治疗剂的有效性或其作为诊断助剂的有效性,等等。这样的测定是本领域已知的并且取决于针对抗体的靶抗原和预期用途。实例包括HUVEC抑制测定;肿瘤细胞生长抑制测定(例如,如在WO89/06692中所述);抗体依赖的细胞毒性(ADCC)和补体介导的细胞毒性(CDC)测定(美国专利号5,500,362);和激动活性或血细胞生成测定(参见WO95/27062)。在此在实例部分中描述了可以用来评定抗DEspR抗体的其他生物活性测定。
[0158] 因此,在在此所述的组合物和方法中使用的抗DEspR抗体或其抗体片段包括以足够亲和力和特异性与DEspR结合(即,对DespR是特异的)并且可以降低或抑制DEspR的生物活性的任何抗体或其抗体片段。
[0159] 因此,在一些方面,在此提供的是一种与DEspR结合并且抑制DEspR的生物活性或阻断DEspR与VEGFsp相互作用的抗DEspR抗体或其抗体片段。在这些方面和在此所述的所有这样的方面的一些实施方案中,VEGFsp具有包含SEQ ID NO:2的序列的序列。在这些方面和在此所述的所有这样的方面的一些实施方案中,抗DEspR抗体或其抗体片段对育包含DEspR的胞外部分的DEspR表位是特异的。在这些方面和在此所述的所有这样的方面的一些实施方案中,抗DEspR抗体或其抗体片段对于包含SEQ ID NO:1的氨基酸1-9的DEspR表位是特异的。
[0160] 下文提供了与在此所述的组合物和方法一起使用的抗DEspR抗体及其抗体片段的其他描述和实例、以及产生和表征它们的方法:
[0161] 多克隆抗体
[0162] 优选地通过多次皮下(sc)或腹膜内(ip)注射相关抗原(例如,DEspR(1-9))和佐剂在动物中激发多克隆抗体。在一些实施方案中,可以有用的是使用双功能试剂或衍生化试剂,例如,马来酰亚胺苯甲酰磺基琥珀酰亚胺酯(通过半胱氨酸残基偶联)、N-羟基琥珀酰1 1
亚胺(通过赖氨酸残基)、戊二醛、琥珀酸酐、SOCl2或RN=C=NR(其中R和R 是不同烷基),使相关抗原偶联于蛋白质,例如,钥孔虫戚血蓝蛋白、血清白蛋白、牛甲状腺球蛋白或大豆胰蛋白酶抑制剂,其中所述蛋白质在有待免疫的种类中是免疫原性的。
[0163] 可以通过将例如100μg或5μg蛋白质或偶联物(分别用于兔或小鼠)与3体积的弗氏完全佐剂组合并且在多个部位皮内注射该溶液,使动物针对抗原、免疫原性偶联物或衍生物而被免疫。1个月后,通过用弗氏完全佐剂中的1/5至1/10初始量的肽或偶联物在多个部位皮下注射对这些动物进行强化。7天至14天后,将动物放血并且测定血清的抗体滴度。对动物进行强化直到滴度达到平台期。优选地,用相同抗原的偶联物强化动物,但是所述抗原与不同的蛋白质偶联和/或借助不同的交联试剂偶联。也可以在重组细胞培养物中作为蛋白质融合物而产生偶联物。同样,使用聚集剂如明矾来增强免疫应答。
[0164] 单克隆抗体
[0165] 优选地,与在此所述的组合物和方法一起使用的抗DEspR抗体或其抗体片段是抗DEspR单克隆抗体或其片段。术语“单克隆抗体”是指从基本上同质的抗体群中获得的抗体,即,构成这个群的各个抗体是基本上相同的,除了可能少量存在的可能天然存在的突变之外。单克隆抗体是高度特异的,即针对单一抗原。此外,与典型地包括针对不同的决定簇(表位)的不同抗体的多克隆抗体制剂相反,每种单克隆抗体是针对抗原上的单个决定簇。用于制造针对如在此所述的DEspR特异的单克隆抗体的各种方法是本领域可获得的。例如,可以使用由Kohler等人,Nature,256:495(1975)首次描述的杂交瘤方法制造,或可以通过重组DNA方法(美国专利号4,816,567)制造单克隆抗体。也可以使用例如在Clackson等人,Nature352:624-628(1991)或Marks等人,J.Mol.Biol.222:581-597(1991)中描述的技术从噬菌体抗体文库分离“单克隆抗体”。
[0166] 术语抗DEspR“抗体片段”是指蛋白质片段,其至少包含完整抗体的抗原结合部位并且因此保留结合抗原的能力。由术语“抗体片段”涵盖的抗体片段的实例包括:(i)Fab片段,其具有VL、CL、VH和CH1结构域;(ii)Fab’片段,其是在CH1结构域的C末端具有一个或多个半胱氨酸残基的Fab片段;(iii)Fd片段,具有VH和CH1结构域;(iv)Fd’片段,具有VH和CH1结构域以及在CH1结构域的C末端处的一个或多个半胱氨酸残基;(v)Fv片段,其具有抗体的单臂的VL和VH结构域;(vi)dAb片段(Ward等人,Nature341,544-546(1989)),由VH结构域组成;(vii)分离的CDR区;(viii)F(ab’)2片段,包括在铰链区由二硫桥连接的两个Fab片段的双价片段;(ix)单链抗体分子(例如,单链Fv;scFv)(Bird等人,Science242:423-426(1988);和Huston等人,PNAS(USA)85:5879-5883(1988));(x)带有两个抗原结合部位的“双体抗体”,包括在相同多肽链中与轻链可变域(VL)连接的重链可变域(VH)(参见,例如,EP404,097;WO93/11161;和Hollinger等人,Proc.Natl.Acad.Sci.USA,90:6444-6448(1993));(xi)“线性抗体”,其包含一对串联Fd区段(VH-CH1-VH-CH1),所述Fd区段与互补轻链多肽一起形成一对抗原结合区(Zapata等人,Protein Eng.8
(10):1057-1062(1995);和美国专利号5,641,870)。
[0167] 在制造抗DEspR单克隆抗体的杂交瘤方法中,将小鼠或其他适宜的宿主动物(如仓鼠或猕猴)如上所述那样免疫,以便激发产生或能够产生抗体的淋巴细胞,其中所述抗体将与用于免疫的DEspR蛋白或其片段特异性结合。可替代地,可以在体外免疫淋巴细胞。随后使用适合的融合剂如聚乙二醇,使淋巴细胞与骨髓瘤细胞融合以形成杂交瘤细胞(Goding,“单克隆抗体:原理与实践”(Monoclonal Antibodies:Principles and Practice),第59-103页(Academic Press,1986))。
[0168] 将如此制备的杂交瘤细胞接种在适合的培养基中并使其生长,其中所述培养基优选地含有一种或多种抑制未融合的亲本骨髓瘤细胞生长或存活的物质。例如,如果亲本骨髓瘤细胞缺乏次黄嘌呤鸟嘌呤磷酸核糖转移酶(HGPRT或HPRT),则用于杂交瘤的培养基典型地将包含次黄嘌呤、氨基蝶呤、以及胸苷(HAT培养基),所述物质阻止HGPRT缺陷型细胞的生长。
[0169] 优选的骨髓瘤细胞是这些骨髓瘤细胞,它们有效地融合、支持由选择的抗体产生细胞稳定高水平地产生抗体并且对培养基(如HAT培养基)敏感。在这些细胞当中,优选的骨髓瘤细胞系是小鼠骨髓瘤系,如从美国加利福尼亚州圣地亚哥Salk Institute Cell Distribution Center获得的从MOPC-21和MPC-11小鼠肿瘤可衍生的那些,以及从美国马里兰州罗克维尔美国典型培养物保藏中心可获得的SP-2或X63-Ag8-653细胞。也已经描述了用于产生人单克隆抗体的人骨髓瘤和小鼠-人异源骨髓瘤细胞系(Kozbor,J.Immunol,133:3001(1984);Brodeur等人,“单克隆抗体生产技术及应用”(Monoclonal Antibody Production Techniques and Applications),第51-63页,(Marcel Dekker,Inc.,纽约,
1987))。
[0170] 对其中杂交瘤细胞正在生长的培养基分析针对抗原的单克隆抗体的产生。优选地,通过免疫沉淀或通过体外结合测定如放射免疫测定(RIA)或酶联免疫吸附测定(ELISA)确定由杂交瘤细胞产生的单克隆抗体的结合特异性。
[0171] 在鉴定了产生具有所希望的特异性、亲和力和/或活性的抗体的杂交瘤细胞之后,这些克隆可以通过有限稀释程序亚克隆并且通过标准方法使其生长(Goding,Brodeur等人,“单克隆抗体:原理与实践”(Monoclonal Antibodies:Principles and Practice),第59-103页(Academic Press,1986))。用于这个目的的适合的培养基包括例如D-MEM或RPMI-1640培养基。另外,杂交瘤细胞可以作为腹水肿瘤在动物中体内生长。
[0172] 通过常规免疫球蛋白纯化方法例如像蛋白A-琼脂糖凝胶、羟基磷灰石层析、凝胶电泳透析法、或亲和层析,将由这些亚克隆分泌的单克隆抗体从培养基、腹水液、或血清恰当地分开。
[0173] 可以使用常规程序(例如,通过使用能够与编码单克隆抗体重链和轻链的基因特异性结合的寡核苷酸探针)容易地分离编码这些单克隆抗体的DNA并且进行测序。这些杂交瘤细胞用作这种DNA的优选来源。一旦分离,可以将这种DNA置入表达载体中,随后将所述表达载体转染到不另外地产生免疫球蛋白的宿主细胞(如大肠杆菌细胞、猴COS细胞、中国仓鼠卵巢(CHO)细胞、或骨髓瘤细胞)中,以实现单克隆抗体在重组宿主细胞中的合成。下文更详细地描述了抗体的重组生产。
[0174] 抗DEspR杂交瘤及其单克隆抗体
[0175] 在在此所述的某些方面,抗DEspR单克隆抗体包括但不限于由在此所述的杂交瘤7C5B2产生或表达并且被称为“7C5B2抗体”的单克隆抗DEspR抗体7C5B2及其衍生物或抗原结合片段,例如包括“7C5B2可变重链”或“7C5B2”可变轻链。
[0176] 如在此所述的,7C5B2杂交瘤产生对DEspR高度特异的并且可以强力抑制DEspR生物活性的单克隆抗体,在此称作“7C5B2抗DEspR抗体”或“7C5B2抗体”。7C5B2抗DEspR抗体的生物学特征使得它在在此所述的组合物和方法中是特别有用的,包括治疗应用和诊断应用。因此,如在此所述进行7C5B2抗体的序列分析,以便鉴定用于在此所述的组合物和方法中的7C5B2抗体的重链和轻链可变域序列、以及互补决定区(CDR)序列。
[0177] 贯穿本说明书和权利要求书,免疫球蛋白重链中的残基的编号按照如Kabat等人,“免疫学感兴趣的蛋白质序列”(Sequences of Proteins of Immunological Interest),第5版,公众健康服务局,国立卫生研究院,贝塞斯达,马里兰州,(1991)中的EU index进行,所述文献也在环球网上可获得并且通过引用以其全文明确地结合在此。“如在Kabat中的EU index”是指人IgG1EU抗体的残基编号。
[0178] 如在此所使用的,“抗体可变域”是指抗体分子轻链和重链的部分,其包括互补决定区(CDR;即,CDR1、CDR2、以及CDR3)、以及框架区(FR)的氨基酸序列。VH是指重链的可变域。VL是指轻链的可变域。根据在此所使用的方法,赋予CDR和FR的氨基酸位置可以根据Kabat(“免疫学感兴趣的蛋白质序列”(Sequences of Proteins of Immunological Interest),国立卫生研究院,贝塞斯达,马里兰州,1987和1991))定义。也根据Kabat进行抗体或抗原结合片段的氨基酸编号。
[0179] 如在此所使用的,术语“互补决定区”(CDR),即CDR1、CDR2、以及CDR3)是指其存在对于抗原结合是必要的抗体可变域的氨基酸残基。每个可变域典型地具有标识为CDR1、CDR2和CDR3的三个CDR区。每个互补决定区可以包含来自如由Kabat所定义的“互补决定区”的氨基酸残基(即,在轻链可变域中的大约第24-34(L1)、50-56(L2)和89-97(L3)残基和重链可变域中的第31-35(H1)、50-65(H2)和95-102(H3)残基;Kabat等人,“免疫学感兴趣的蛋白质序列”(Sequences of Proteins of Immunological Interest),第5版,国立卫生研究院,贝塞斯达,马里兰州,1987和1991),(1991))和/或来自“高变环”的那些残基(即,轻链可变域中的大约第26-32(L1)、50-52(L2)和91-96(L3)残基以及在重链可变域中的第26-32(H1)、53-55(H2)和96-101(H3)残基;Chothia和Lesk J.Mol.Biol.196:901-917(1987))。在一些实施方案中,互补决定区可以包含来自根据Kabat所定义的CDR区和高变环两者的氨基酸。
[0180] 如通过从7C5B2杂交瘤获得的序列的序列分析获得的,编码7C5B2抗体重链的VH或可变域的核苷酸序列是:C A GG T G C A A C T G A A G G A G T C A G G A C C T G G C C T G G T G G C G C C C T C A C A G A G C C T G T C C A T T A C C T G C A C T G T C T C T G G G T T C T C A T T A A C C A G C T A T G A T A T A A G C T G G A T T C G C C A G C C A C C A G G A A A G G G T C T G G A G T G G C T T G G A G T A A T A T G G A C T G G T G G A G G C A C A A A T T A T A A T T C A G C T T T C A T G T C C A G A C T G A G C A T C A G C A A G G A C A A C T C C A A G A G C C A A G T T T T C T T A A A A A T G A A C A G T C T G C A A A C T G A T G A C A C A G C C A T A T A T T A C T G T G T A A G A G A T C G G G A T T A C G A C G G G T G G T A C T T C G A T G T C T G G G G C G C A G G G A C C A C G G T C A C C G T C T C C T C A(SEQ ID NO:3)。
[0181] 7C5B2抗体的VH结构域的相应氨基酸是:Q V Q L K E S G P G L V A P S Q S L S I T C T V S G F S L T S Y D I S W I R Q P P G K G L E W L G V I W T G G G T N Y N S A F M S R L S I S K D N S K S Q V F L K M N S L Q T D D T A I Y Y C V R D R D Y D G W Y F D V W G A G T T V T V S S(SEQ ID NO:4)。
[0182] 7C5B2抗体的VH结构域的10氨基酸互补决定区1或CDR1是:G F S L T S Y D I S(SEQ ID NO:5)。7C5B2抗体的VH结构域的16氨基酸CDR2是:V I W T G G G T N Y N S A F M S(SEQ ID NO:6)。7C5B2抗体的VH 结构域的11氨基酸CDR2是:D R D Y D G W Y F D V(SEQ ID NO:7)。
[0183] 如通过从7C5B2杂交瘤获得的序列的序列分析获得的,编码7C5B2抗体轻链的VL或可变域的核苷酸序列是:G A T G T T T T G A T G A C C C A A A C T C C A C T C T C C C T G C C T G T C A G T C T T G G A G A T C A A G C C T C C A T C T C T T G C A G A T C T A G T C A G A G C A T T G T A C A T A G T A A T G G A A A C A C C T A T T T A G A A T G G T A C C T G C A G A A A C C A G G C C A G T C T C C A A A G C T C C T G A T C T A C A A A G T T T C C A A C C G A T T T T C T G G G G T C C C A G A C A G G T T C A G T G G C A G T G G A T C A G G G A C A G A T T T C A C A C T C A A G A T C A G C A G A G T G G A G G C T G A G G A T C T G G G A G T T T A T T A C T G C T T T C A A G G T T C A C A T G T T C C G T A C A C G T T C G G A G G G G G G A C C A A G C T G G A A A T A A A A(SEQ ID NO:8)。
[0184] 7C5B2抗体的VL结构域的相应氨基酸是:D V L M T Q T P L S L P V S L G D Q A S I S C R S S Q S I V H S N G N T Y L E W Y L Q K P G Q S P K L L I Y K V S N R F S G V P D R F S G S G S G T D F T L K I S R V E A E D L G V Y Y C F Q G S H V P Y T F G G G T K L E I K(SEQ ID NO:9)。
[0185] 7C5B2抗体的VL结构域的16氨基酸互补决定区1或CDR1是:R S S Q S I V HS N G N T Y L E(SEQ ID NO:10)。7C5B2抗体的VL结构域的7氨基酸CDR2是:K V S N R F S(SEQ ID NO:11)。7C5B2抗体的VL结构域的9氨基酸CDR2是:F Q G S H V P Y T(SEQ ID NO:12)。
[0186] 如在表1中所示,7C5B2抗体的重链和轻链可变区的序列分析指示与人种系序列的强同源性:
[0187] 表1
[0188] 抗体序列分析a
[0189]
[0190]最接近的人种系b IGHV4-59*01(64%) IGKV2-30*01(82%)
最接近的人FW1b IGHV4-31*01(84%) IGKV2-30*01(78%)
最接近的人FW2b IGHV4-61*01(93%) IGKV2-40*01(93%)
最接近的人FW3b IGHV3-66*01(60%) IGKV2-30*01(97%)
最接近的人Jb IGHJ6(91%) IGKJ2(90%)
[0191] a根据Kabat进行CDR定义和序列编号
[0192] b所指示的种系ID遵循同源性%
[0193] 因此,在在此提供的多个方面的一些实施方案中,7C5B2抗体的重链和/或轻链可变域序列,即,SEQ ID NO:3、SEQ ID NO:4、SEQ ID NO:8和/或SEQ ID NO:9可以用来例如产生,如本文中别处描述的人源化抗体。
[0194] 在一些方面,提供了与DEspR特异性结合的单克隆抗体,它们具有7C5B2单克隆抗体的一个或多个生物学特征。如在此所使用的,具有所指定的抗体(如7C5B2抗体)的“生物学特征”的抗体是这样一种抗体,它具有这种抗体的一个或多个生物学特征,所述生物学特征使所述抗体与相同抗原结合的其他抗体区分。
[0195] 因此,在这些方面的一些这样的实施方案中,具有7C5B2单克隆抗体的生物学特征可以包括对于给定群体具有在7C5B2抗体的ED50值处或其附近的ED50值(即,在50%的群体中治疗有效的剂量);对于给定参数或表型具有在7C5B2抗体的EC50值处或其附近的EC50值(即,实现给定参数或表型的半数最大抑制的剂量)。可以通过适合的生物测定监测任何特定剂量的作用。例如,在这些方面的一些实施方案中,将要被与DEspR特异性结合的抗体抑制并且具有7C5B2抗体的一个或多个生物学特征的给定参数或表型可以包括但不限于:在体外血管生成测定中的平均总的管数、在体外血管生成测定中的平均总的管长度、在体外血管生成测定中的平均分支点数目、在体外血管生成测定中的平均血管连接数、和/或肿瘤细胞侵袭力。
[0196] 因此,在其中表型将要被抑制的是平均总的管长度的那些实施方案中,如使用体外血管生成测定所测量的,具有7C5B2单克隆抗体的生物学特征的单克隆抗体的EC50值是10nM或更小、9nM或更小、8nM或更小、7nM或更小、6nM或更小、5nM或更小、4nM或更小、3nM或更小、2nM或更小、或1nM或更小。在一些这样的实施方案中,这种单克隆抗体的EC50值处于3.0nM-5.0nM范围内、处于3.1nM-4.9nM范围内、处于3.2nM-4.8nM范围内、处于3.3nM-4.7nM范围内、处于3.4nM-4.6nM范围内、处于3.5nM-4.5nM范围内、处于
3.6nM-4.4nM范围内、处于3.7nM-4.3nM范围内、处于3.8nM-4.2nM、或处于3.9nM-4.1nM范围内。在一些实施方案中,抑制具有7C5B2单克隆抗体的生物学特征的单克隆抗体的平均总的管长度的EC50值处于3.8nM-4.8nM范围内。
[0197] 例如,在其中将要被抑制的表型是分支点数目的那些实施方案中,如使用体外血管生成测定所测量的,具有7C5B2单克隆抗体的生物学特征的单克隆抗体的EC50值是10nM或更小、9nM或更小、8nM或更小、7nM或更小、6nM或更小、5nM或更小、4nM或更小、3nM或更小、2nM或更小、或1nM或更小。在一些这样的实施方案中,这种单克隆抗体的EC50值处于3.0nM-5.0nM范围内、处于3.1nM-4.9nM范围内、处于3.2nM-4.8nM范围
内、处于3.3nM-4.7nM范围内、处于3.4nM-4.6nM范围内、处于3.5nM-4.5nM范围内、处于
3.6nM-4.4nM范围内、处于3.7nM-4.3nM范围内、处于3.8nM-4.2nM、或处于3.9nM-4.1nM范围内。在一些实施方案中,抑制具有7C5B2单克隆抗体的生物学特征的单克隆抗体的分支点总数的EC50值处于3.4nM-4.5nM范围内、处于3.5nM-4.4nM范围内、处于3.6nM-4.3nM范围内、处于3.7nM-4.2nM范围内、处于3.8nM-4.1nM范围内、处于3.9nM-4.0nM范围内。
[0198] 例如,在其中将要被抑制的表型是肿瘤细胞侵袭力的那些实施方案中,如在体外测量的,具有7C5B2单克隆抗体的生物学特征的单克隆抗体的EC50值是10nM或更小、9nM或更小、8nM或更小、7nM或更小、6nM或更小、5nM或更小、4nM或更小、3nM或更小、2nM或更小或1nM或更小。在一些这样的实施方案中,这种单克隆抗体的EC50值处于3.0nM-5.0nM范围内、处于3.1nM-4.9nM范围内、处于3.2nM-4.8nM范围内、处于3.3nM-4.7nM范围内、处于3.4nM-4.6nM范围内、处于3.5nM-4.5nM范围内、处于3.6nM-4.4nM范围内、处于3.7nM-4.3nM范围内、处于3.8nM-4.2nM、或处于3.9nM-4.1nM范围内。在一些实施方案中,抑制具有7C5B2单克隆抗体的生物学特征的单克隆抗体的肿瘤细胞侵袭力的EC50值处于3.2nM-3.9nM范围内、处于3.3nM-3.8nM范围内、处于3.4nM-3.7nM范围内、或处于
3.5nM-3.6nM范围内。
[0199] 在在此所述的多个方面的一些实施方案中,用于在此所述的组合物和方法中的抗DEspR抗体包括与单克隆抗DEspR7C5B2抗体相同的DEspR表位或多个表位结合的单克隆抗体。
[0200] 在在此所述的其他方面,用于在此所述的组合物和方法中的抗DEspR抗体包括:由在此所述的杂交瘤7C5C5产生或表达的单克隆抗DEspR抗体7C5C5(称为“7C5C5抗体”)及其衍生物或片段;与单克隆抗DEspR7C5C5抗体相同的DEspR表位或多个表位结合的单克隆抗体;由在此所述的杂交瘤5G12E8产生或表达的单克隆抗DEspR抗体5G12E8(称为“5G12E8抗体”)及其衍生物或片段;与单克隆抗DEspR5G12E8抗体相同的DEspR表位或多个表位结合的单克隆抗体;以及由杂交瘤2E4A8、2E4B11、2E4H10、8E7D11、8E2F6、E2G4和
8E7F8产生的单克隆抗体。
[0201] 除了通过杂交瘤产生和生产之外,特异性结合DEspR的抗体或抗体片段可以从使用McCafferty等人,Nature,348:552-554(1990)中所述的技术产生的抗体噬菌体文库中分离。Clackson等人,Nature,352:624-628(1991)和Marks等人,J.Mol Biol,222:581-597(1991)描述了使用噬菌体文库分别分离出小鼠抗体和人抗体。后续出版物描述了通过链改组产生高亲和力(nM范围)人抗体(Marks等人,Bio/Technology,10:779-783(1992))、以及组合感染和体内重组作为构建超大容量噬菌体文库的策略(Waterhouse等人,Nuc.Acids.Res.,21:2265-2266(1993))。因而,这些技术是分离单克隆抗体的传统单克隆抗体杂交瘤技术的可行的替代。
[0202] 也可以例如通过以下方式修饰编码特异性结合DEspR的抗体或抗体片段的DNA序列:用人重链和轻链恒定域的编码序列置换同源鼠序列(美国专利号4,816,567;Morrison等人,Proc.Natl Acad.Sci.USA,81:6851(1984)),或也如本文中别处所述,将非免疫球蛋白多肽的全部或部分编码序列共价连接至免疫球蛋白编码序列。
[0203] 可以用这样的非免疫球蛋白多肽置换抗体的恒定域,或可以用它们置换抗体的一个抗原结合部位的可变域以产生一种嵌合双价抗体,所述嵌合双价抗体包含对一种抗原具有特异性的一个抗原结合部位和对一种不同的抗原具有特异性的另一个抗原结合部位。
[0204] 人源化和人抗体
[0205] 在一些方面,在此提供了用于在此所述的组合物和方法中的人源化抗DEspR抗体。非人(例如,小鼠)抗体的人源化形式是指含有衍生自非人免疫球蛋白的最少序列的嵌合抗体。对大部分情况而言,人源化抗体是人免疫球蛋白(受体抗体),其中来自受体的高变区中的残基由来自非人种类(供体抗体)如小鼠、大鼠、兔或非人灵长类动物的具有所希望的特异性、亲和力、以及容量的高变区中的残基替换。在一些情况下,人免疫球蛋白的Fv框架区(FR)残基由相应的非人残基替换。此外,人源化抗体可以包含未发现于受体抗体中或供体抗体中的残基。作出这些修饰以进一步改进抗体性能。通常,人源化抗体将包含基本上所有的至少一个、并且典型地二个可变域,其中所有或基本上所有的高变环与非人免疫球蛋白的那些高变环相应并且所有或基本上所有的FR区是人免疫球蛋白序列的那些FR区。人源化抗体任选地也可以包含免疫球蛋白恒定区(Fc)的至少一部分,典型地是人免疫球蛋白恒定区的部分。对于进一步的详情,参见Jones等人,Nature321:522-525(1986);Reichmann等人,Nature332:323-329(1988);和Presta,Curr.Op.Struct.Biol.2:593-596(1992)。
[0206] 人源化抗体使具有从非人类来源引入其中的一个或多个氨基酸残基。这些非人类氨基酸残基经常被称为“输入”残基,它们典型地取自“输入”可变域。可以基本上按照Winter和合作者(Jones等人,Nature,321:522-525(1986);Reichmann等人,Nature,332:323-327(1988);Verhoeyen等人,Science,239:1534-1536(1988))的方法,通过将啮齿类CDR或CDR序列置换为相应的人抗体序列进行人源化。因此,这样的人源化抗体是嵌合抗体(美国专利号4,816,567),其中显著小于完整人可变域的区域已经被来自非人种类的相应序列置换。在实践中,人源化抗体典型地是其中一些CDR残基并且可能地一些FR残基被来自啮齿动物抗体中的类似位点的残基置换的人抗体。在一些实施方案中,提供了包含一个或多个可变域的人源化抗体,其中可变域包含鼠抗DEspR抗体7C5B2的可变重链结构域(SEQ ID NO:4)和/或可变轻链结构域(SEQ ID NO:9)的氨基酸序列。
[0207] 因此,在在此所述的多个方面的一些实施方案中,人源化抗DEspR抗体或其抗体片段的一个或多个重链CDR区和/或一个或多个轻链CDR区包含在此所述的7C5B2抗体的序列。在一些这样的实施方案中,一个或多个可变重链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:5、SEQ ID NO:6、或SEQ ID NO:7。在一些这样的实施方案中,一个或多个可变轻链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:10、SEQ ID NO:11、或SEQ ID NO:12。在一些这样的实施方案中,一个或多个可变重链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:5、SEQ ID NO:6、或SEQ ID NO:7,并且一个或多个可变轻链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:10、SEQ ID NO:11、或SEQ ID NO:12。
[0208] 在在此所述的多个方面的一些实施方案中,人源化抗DEspR单克隆抗体包含突变的人IgG1框架区以及来自在此所述的阻断人DEspR与其配体结合的鼠抗人DEspR单克隆抗体7C5B2的一个或多个重链CDR区和/或一个或多个轻链CDR区。在一些这样的实施方案中,一个或多个可变重链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:5、SEQ ID NO:6、或SEQ ID NO:7。在一些这样的实施方案中,一个或多个可变轻链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:10、SEQ ID NO:11或SEQ ID NO:12。
在一些这样的实施方案中,一个或多个可变重链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:5、SEQ ID NO:6、或SEQ ID NO:7,并且一个或多个可变轻链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:10、SEQ ID NO:11、或SEQ ID NO:12。
[0209] 在一些实施方案中,人源化抗DEspR单克隆抗体包含突变的人IgG4框架区以及来自在此所述的阻断人DEspR与其配体结合的鼠抗人DEspR单克隆抗体7C5B2的一个或多个重链CDR区和/或一个或多个轻链CDR区。在一些这样的实施方案中,一个或多个可变重链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:5、SEQ ID NO:6、或SEQ ID NO:7。在一些这样的实施方案中,一个或多个可变轻链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:10、SEQ ID NO:11、或SEQ ID NO:12。在一些这样的实施方案中,一个或多个可变重链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:5、SEQ ID NO:6、或SEQ ID NO:7,并且一个或多个可变轻链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:10、SEQ ID NO:11、或SEQ ID NO:12。
[0210] 有待用于产生人源化抗体的人可变域(重链和轻链两者)的选择对于降低抗原性是十分重要的。根据所谓“最佳配合”法,将啮齿类抗体的可变重和轻链结构域的氨基酸序列(如7C5B2抗体的可变重和轻链结构域的氨基酸序列(分别是SEQ ID NO:4和SEQ ID NO:9))针对已知的人可变域序列的完整文库进行筛选。然后将与啮齿类序列最接近的人类序列接受为用于人源化抗体的人框架区(FR)(Sims等人,J.Immunol,151:2296(1993);Chothia等人,J.Mol.Biol.,196:901(1987))。另一种方法使用从具有特定重链或重链亚组的所有人类抗体的共有序列中衍生的特定框架。相同的框架可以用于几种不同的人源化抗体(Carter等人,Proc.Natl.Acad.Sci.USA,89:4285(1992);Presta等人,J.Immunol,151:2623(1993))。
[0211] 更重要的是抗体应当人源化,同时保留针对抗原的高结合亲和力和其他有利的生物学特性,例如,在此所述的抗DEspR抗体7C5B2的抗血管生成特性。为了实现这个目标,根据优选的方法,通过使用亲本序列和人源化序列的三维模型,分析亲本序列和多种概念性人源化产物的过程而制备人源化抗体。三维免疫球蛋白模型通常是可获得的并且是本领域技术人员熟悉的。说明并展示所选择的候选免疫球蛋白序列的可能三维构象结构的计算机程序是可获得的。对这些显示结果的检验允许分析残基在候选免疫球蛋白序列的功能中的可能作用,即,分析影响候选免疫球蛋白结合其抗原的能力的残基。以这种方式,可以从受体序列和输入序列选出并且组合FR残基,从而实现所希望的抗体特征,如对靶抗原增加的亲和力。通常,CDR残基直接并且最重要地涉及影响抗原结合。
[0212] 在例如2005年2月26日颁布的美国专利号6,884,879中描述了示例性的人源化抗体及其针对VEGF抗原的亲和力成熟的变体。
[0213] 可替代地,现在可能产生在免疫后能够在不存在内源免疫球蛋白产生的情况下产生全套人抗体库的转基因动物(例如,小鼠)。例如,已经描述了在嵌合和种系突变小鼠中的抗体重链连接区(JH)基因的纯合性缺失导致内源抗体产生的完全抑制。将人种系免疫球蛋白基因排列转移到这样的种系突变小鼠中将导致在抗原激发后人抗体的产生。参见,例如,Jakobovits等人,Proc.Natl.Acad.Sci.USA,90:2551(1993);Jakobovits等人,Nature,362:255-258(1993);Bruggermann等人,Year in Immuno.,7:33(1993);和Duchosal等人,Nature355:258(1992)。
[0214] 可替代地,可以使用噬菌体展示技术(McCafferty等人,Nature348:552-553(1990))在体外从源自未免疫供体的免疫球蛋白可变(V)域基因库中产生人抗体和人抗体片段。根据这项技术,将抗体V结构域基因框内克隆到中丝状噬菌体(如M13或fd)的主要或次要衣壳蛋白基因中并且作为有功能的抗体片段展示在噬菌体颗粒的表面上。由于丝状颗粒含有噬菌体基因组的单链DNA拷贝,基于抗体功能性特性的选择也导致编码展示那些特性的抗体的基因的选择。因而,噬菌体模拟B细胞的一些特征。噬菌体展示可以按多种模式进行;对于它们的综述,参见例如,Johnson,Kevin S.和Chiswell,David J.,Current Opinion in Structural Biology3:564-571(1993)。可以将几个来源的V-基因区段用于噬菌体展示。Clackson等人,Nature,352:624-628(1991)从衍生自免疫小鼠的脾的V基因的小的随机组合文库分离了多种多样的抗噁唑酮抗体。可以从未免疫的人供体构建V基因库,并且可以基本上按照由Marks等人,J.Mol.Biol.222:581-597(1991)或Griffith等人,EMBO J.12:725-734(1993)描述的技术分离针对多种多样的抗原(包括自身抗原)的抗体。还参见美国专利号5,565,332和5,573,905。
[0215] 也可以通过体外活化的B细胞产生人抗体(参见美国专利号5,567,610和5,229,275)。
[0216] 复合人抗体的设计和产生
[0217] 在在此所述的多个方面的一些实施方案中,在开始可以使用产生去免疫化100%工程化人抗体的复合人抗体技术(使用例如,如由Antitope所描述的一项技术)来制备用于在此所述的组合物和方法中的人源化复合抗DEspR抗体。
[0218] 简言之,如在此所使用的,“复合人抗体”包含源自无关人抗体的V区的多个序列区段(“复合物”),V区被选择为维持对于起始鼠前体抗人DEspR单克隆抗体(如7C5B2抗体)的抗原结合关键的单克隆抗体序列,并且均已经使用“计算机工具”针对潜在T-细胞表位的存在进行了筛选(Holgate和Baker,2009)。人序列区段与初始抗体V区的全部节段密切配合和从一开始就消除CD4+T细胞表位允许这项技术绕过开发‘100%工程化人类’治疗性抗体时的免疫原性问题,同时通过现有技术分析对抗原特异性必需的序列,维持最佳亲和力和特异性(Holgate和Baker2009)。
[0219] 如在此所述,使用Swiss PDB产生小鼠抗hDEspR抗体V区的结构模型并且对其进行分析,以便鉴定在V区中重要的“约束性”氨基酸,这些氨基酸可能对于抗体结合特性是必需的。认为CDR(使用Kabat定义)内部含有的残基连同许多框架残基是重要的。抗hDEspR的VH和VL(Vκ)序列(如在此描述为SEQ ID NO:4和SEQ ID NO:9)包含典型的框架残基,并且如本文中别处描述,CDR1、CDR2、以及CDR3基序与许多鼠抗体是可比较的。
[0220] 根据以上分析,确定可以产生抗hDEspR的复合人序列,其具有CDR外部的广泛范围的替代物,但是在CDR序列内仅具有窄范围的可能替代性残基。分析表明,可以组合来自几种人抗体的相应序列区段以产生与鼠序列中那些CDR相似或相同的CDR。对于CDR外部或侧翼的区域,鉴定了广泛的人序列区段选项作为与在此所述的组合物和方法一起使用的新颖的抗DEspR复合人抗体V区的可能组分(参见,例如,表1)。
[0221] 基于这些分析,使用用于计算机分析肽与人II类MHC等位基因结合的iTopeTM技TM术(Perry等人,2008)并且使用已知抗体序列相关性T细胞表位的TCED (T细胞表位数据库)(Bryson等人,2010),选择并且分析了可能用来产生新颖的抗DEspR复合人抗体变体的序列区段的大型初步集合。弃去被鉴定为人II类MHC的重要的非人种系结合物或针对TM
TCED 评定为重要命中的序列区段。这产生缩减的区段集合,并且再次如上文分析这些的组合,以确保在区段之间的交界的确不含潜在的T细胞表位。然后将选择的区段组合以产生用于合成的重链V区序列和轻链V区序列。
[0222] 因此,在此提供了在抗DEspR复合人抗体或工程化人抗体生产中使用的可变重链和轻链序列。在一些实施方案中,抗DEspR复合人抗体可以包含选自下组的可变重链(VH)氨基酸序列,该组由以下各项组成:Q V Q L Q E S G P G L V K P S Q T L S L T C T V S G F S L T S Y D I S W I R Q P P G K G L E W L G V I W T G G G T N Y N S A F M S R L T I S K D N S K S T V Y L Q M N S L R A E D T A I Y Y C V R D R D Y D G W Y F D V W G Q G T T V T V S S(SEQ ID NO:13);
[0223] Q V Q L Q E S G P G L V K P S Q T L S L T C T V S G F S L T S Y D I S W I R Q P P G K G L E W L G V I W T G G G T N Y N S A F M S R L T I S K D N S K N T V Y L Q M N S L R A E D T A I Y Y C V R D R D Y D G W Y F D V W G Q G T T V T V S S(SEQ ID NO:14);
[0224] V Q L Q E S G P G L V K P S Q T L S L T C T V S G F S L T S Y D I S W I R Q P P G K G L E W L G V I W T G G G T N Y N S A F M S R F T I S K D N S K N T V Y L Q M N S L R A E D T A I Y Y C V R D R D Y D G W Y F D V W G Q G T T V T V S S(SEQ ID NO:15);
[0225] Q V Q L Q E S G P G L V K P S Q T L S L T C T V S G F S L T S Y D I S W I R Q P P G K G L E W L G V I W T G G G T N Y N S A F M S R L T I S K D N S K N T V Y L Q M N S L R A E D T A V Y Y C V R D R DY D G W Y F D V W G Q G T T V T V S S(SEQ ID NO:16);和
[0226] Q V Q L Q E S G P G L V K P S Q T L S L T C T V S G F S L T S Y D I S W I R Q P P G K G L E W L G V I W T G G G T N Y N S A F M S R F T I S K D N S K N T V Y L Q M N S L R A E D T A V Y Y C V R D R D(SEQ ID NO:17)。
[0227] 在一些实施方案中,抗DEspR复合人抗体可以包含选自下组的可变轻链(VL)氨基酸序列,该组由以下各项组成:D V L M T Q S P L S L P V T L G Q P A S I S C R S S Q S I V H S N G N T Y L E W Y L Q K P G Q S P Q L L I Y K V S N R F S G V P D R F S G S G S G T D F T L K I S R V E A E D V G V Y Y C F Q G S H V P Y T F G Q G T K L E I K(SEQ ID NO:18)和
[0228] D V V M T Q S P L S L P V T L G Q P A S I S C R S S Q S I V H S N G N T Y L E W Y L Q K P G Q S P Q L L I Y K V S N R F S G V P D R F S G S G S G T D F T L K I S R V E A E D V G V Y Y C F Q G S H V P Y T F G Q G T K L E I K(SEQ ID NO:19)。
[0229] 在一些实施方案中,抗DEspR复合人抗体可以包含一个重链CDR1区,其包含SEQ ID NO:5的氨基酸序列。在一些实施方案中,抗DEspR复合人抗体可以包含一个重链CDR2区,其包含SEQ ID NO:6的氨基酸序列。在一些实施方案中,抗DEspR复合人抗体可以包含一个重链CDR3区,其包含SEQ ID NO:7的氨基酸序列。
[0230] 在一些实施方案中,抗DEspR复合人抗体可以包含一个轻链CDR1区,其包含SEQ ID NO:10的序列。在一些实施方案中,抗DEspR复合人抗体可以包含一个轻链CDR2区,其包含SEQ ID NO:11的氨基酸序列。在一些实施方案中,抗DEspR复合人抗体可以包含一个轻链CDR3区,其包含SEQ ID NO:12的氨基酸序列。
[0231] 抗体片段
[0232] 在在此所述的多个方面的一些实施方案中,可以将以下抗体处理或加工成其抗体片段:对DEspR特异的抗体(例如像,抗DEspR7C5B2抗体);包含一个或多个重链CDR区的抗DEspR抗体,所述重链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:5、SEQ ID NO:6、或SEQ ID NO:7;包含一个或多个轻链CDR区的抗DEspR抗体,所述轻链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:10、SEQ ID NO:11、或SEQ ID NO:12;包含可变重链(VH)氨基酸序列的抗DEspR复合人抗体,该可变重链(VH)氨基酸序列选自下组,该组由以下各项组成:SEQ ID NO:4和SEQ ID NO:13-SEQ ID NO:17;或包含可变轻链(VL)氨基酸序列的抗DEspR复合人抗体,该可变轻链(VL)氨基酸序列选自下组,该组由以下各项组成:SEQ ID NO:9、SEQ ID NO:18、以及SEQ ID NO:19。
[0233] 已经开发了用于产生抗体片段的多项技术并且它们是可获得的。传统上,这些片段经由蛋白酶解消化完整抗体而衍生(参见,例如,Morimoto等人,Journal of Biochemical and Biophysical Methods24:107-117(1992);和Brennan等人,Science,
229:81(1985))。然而,现在可以通过重组宿主细胞直接产生这些片段。例如,抗体片段可以从上文讨论的抗体噬菌体文库分离。可替代地,可以从大肠杆菌直接回收Fab'-SH片段并且将其以化学方法偶联以形成F(ab’)2片段(Carter等人,Bio/Technology10:163-167(1992))。根据另一种方法,可以从重组宿主细胞培养物中直接分离F(ab’)2片段。用于产生抗体片段的其他技术对于技术熟练的行业者将是显而易见的。在其他实施方案中,选择的抗体片段是单链Fv片段(scFv)。见WO93/16185。
[0234] 在在此所述的多个方面的一些实施方案中,人DEspR特异性抗体片段是包含VL、CL、VH和CH1结构域的Fab片段。Fab片段包含轻链的可变域和恒定域以及重链的可变域和第一恒定域(CH1)。在一些这样的实施方案中,VH结构域选自下组,该组由以下各项组成:SEQ ID NO:4和SEQ ID NO:13-SEQ ID NO:17。在一些这样的实施方案中,VH结构域包含一个或多个重链CDR区,所述重链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:5、SEQ ID NO:6、以及SEQ ID NO:7。在一些这样的实施方案中,VL结构域选自下组,该组由以下各项组成:SEQ ID NO:9、SEQ ID NO:18、以及SEQ ID NO:19。在一些这样的实施方案中,VL结构域包含一个或多个轻链CDR区,所述轻链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:10、SEQ ID NO:11、或SEQ ID NO:12。
[0235] 在在此所述的多个方面的一些实施方案中,人DEspR特异性抗体片段是Fab’片段,所述Fab’片段是在CH1结构域的C端具有一个或多个半胱氨酸残基的Fab片段。
[0236] 在在此所述的多个方面的一些实施方案中,人DEspR特异性抗体片段是包含VH和CH1结构域的Fd片段。在一些这样的实施方案中,VH结构域选自下组,该组由以下各项组成:SEQ ID NO:4和SEQ ID NO:13-SEQ ID NO:17。在一些这样的实施方案中,VH结构域包含一个或多个重链CDR区,所述重链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:5、SEQ ID NO:6、以及SEQ ID NO:7。
[0237] 在在此所述的多个方面的一些实施方案中,人DEspR特异性抗体片段是Fd’片段,所述Fd’片段包含VH和CH1结构域和在CH1结构域C端的一个或多个半胱氨酸残基。在一些这样的实施方案中,VH结构域选自下组,该组由以下各项组成:SEQ ID NO:4和SEQ ID NO:13-SEQ ID NO:17。在一些这样的实施方案中,VH结构域包含一个或多个重链CDR区,所述重链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:5、SEQ ID NO:6、以及SEQ ID NO:7。
[0238] 单链Fv或scFv抗体片段包括抗体的VH和VL结构域,使得这些结构域以单一多肽链存在。通常,Fv多肽进一步包含在VH和VL结构域之间的多肽接头,所述多肽接
头使scFv能够形成所希望的用于抗原结合的结构。关于scFv的综述,参见Pluckthun,The Pharmacology of Monoclonal Antibodies,第113卷,Rosenburg和Moore编著,
Springer-Verlag,纽约,第269-315页(1994)。因此,在在此所述的多个方面的一些实施方案中,人DEspR特异性抗体片段是包含抗体的单臂的VL和VH结构域的Fv片段。在一
些这样的实施方案中,VH结构域选自下组,该组由以下各项组成:SEQ ID NO:4和SEQ ID NO:13-SEQ ID NO:17。在一些这样的实施方案中,VH结构域包含一个或多个重链CDR区,所述重链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:5、SEQ ID NO:6、以及SEQ ID NO:7。在一些这样的实施方案中,VL结构域选自下组,该组由以下各项组成:SEQ ID NO:9、SEQ ID NO:18、以及SEQ ID NO:19。在一些这样的实施方案中,VL结构域包含一个或多个轻链CDR区,所述轻链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:10、SEQ ID NO:11、或SEQ ID NO:12。
[0239] 术语“双体抗体”是指具有两个抗原结合位的小抗体片段,所述片段包括与在相同多肽链(VH和VL)中的轻链可变域(VL)连接的重链可变域(VH)。通过使用太短以至于不允许在相同链上的两个结构域之间配对的接头,这些结构域被迫与另一条链的互补结构域配对并且产生两个抗原结合部位。在例如EP404,097;WO93/11161;和Hollinger等人,Proc.Natl.Acad.Sci.USA90:6444-6448(1993)中更充分地描述双体抗体。
[0240] 因此,在在此所述的多个方面的一些实施方案中,人DEspR特异性抗体片段是包含两个抗原结合部位的双体抗体(diabody),所述双体抗体包括与在相同肽链中的轻链可变域(VL)连接的重链可变域(VH)。在一些这样的实施方案中,VH结构域选自下组,该组由以下各项组成:SEQ ID NO:4和SEQ ID NO:13-SEQ ID NO:17。在一些这样的实施方案中,VH结构域包含一个或多个重链CDR区,所述重链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:5、SEQ ID NO:6、以及SEQ ID NO:7。在一些这样的实施方案中,VL结构域选自下组,该组由以下各项组成:SEQ ID NO:9、SEQ ID NO:18、以及SEQ ID NO:19。在一些这样的实施方案中,VL结构域包含一个或多个轻链CDR区,所述轻链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:10、SEQ ID NO:11、或SEQ ID NO:12。
[0241] 在在此所述的多个方面的一些实施方案中,人DEspR特异性抗体片段是包含VH结构域的dAb片段。在一些这样的实施方案中,VH结构域选自选自下组,该组由以下各项组成:SEQ ID NO:4和SEQ ID NO:13-SEQ ID NO:17。在一些这样的实施方案中,VH结构域包含一个或多个重链CDR区,所述重链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:5、SEQ ID NO:6、以及SEQ ID NO:7。
[0242] 在在此所述的多个方面的一些实施方案中,人DEspR特异性抗体片段包含分离的CDR区。在一些这样的实施方案中,分离的CDR区包含一个或多个重链CDR区,所述重链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:5、SEQ ID NO:6、以及SEQ ID NO:7。在一些这样的实施方案中,分离的CDR区包含一个或多个轻链CDR区,所述轻链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:10、SEQ ID NO:11、或SEQ ID NO:12。
[0243] 在在此所述的多个方面的一些实施方案中,人DEspR特异性抗体片段是包含双价片段的F(ab’)2片段,所述双价片段包含在铰链区由二硫桥连接的两个Fab'片段。
[0244] 线性抗体是指如Zapata等人,Protein Eng.,8(10):1057-1062(1995)中所描述的抗体。简言之,这些抗体包含一对串联Fd区段(VH-CH1-VH-CH1),它们与互补轻链多肽一起形成一对抗原结合区。线性抗体可以是双特异或单特异的。
[0245] 在在此所述的多个方面的一些实施方案中,人DEspR特异性抗体片段是包含一对串联Fd区段(VH-CH1-VH-CH1)的线性抗体,其中所述Fd区段与互补轻链多肽一起形成一对抗原结合区。在一些这样的实施方案中,VH结构域选自下组,该组由以下各项组成:SEQ ID NO:4和SEQ ID NO:13-SEQ ID NO:17。在一些这样的实施方案中,VH结构域包含一个或多个重链CDR区,所述重链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:5、SEQ ID NO:6、以及SEQ ID NO:7。在一些这样的实施方案中,VL结构域选自下组,该组由以下各项组成:SEQ ID NO:9、SEQ ID NO:18、以及SEQ ID NO:19。在一些这样的实施方案中,VL结构域包含一个或多个轻链CDR区,所述轻链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:10、SEQ ID NO:11、或SEQ ID NO:12。
[0246] 在这些方面的其他实施方案中,人DEspR特异性抗体片段具有针对在此所述的并且由杂交瘤7C5B2产生的单克隆抗DEspR抗体7C5B2的相同表位的特异性。
[0247] 在PCT/US2005/041594中描述了抑制DEspR的抗体的一些其他实例,所述文献的内容通过引用以其全文结合在此。
[0248] 其他氨基酸序列修饰
[0249] 在在此所述的多个方面的一些实施方案中,考虑了对在此所述的DEspR特异的抗体或其抗体片段的氨基酸序列修饰。例如,可能令人希望的是改进这种抗体的结合亲和力和/或其他生物学特性。通过将适当的核苷酸变化引入编码抗体的核酸中或通过肽合成制备抗体的氨基酸序列变体。这样的修饰包括例如,从抗体的氨基酸序列内部缺失残基和/或将残基插入所述氨基酸序列中和/或置换所述氨基酸序列中的残基。产生缺失、插入、以及置换的任何组合以实现最终构建体,条件是最终构建体拥有所希望的特征,例如,结合特异性、生物活性的抑制。氨基酸变化也可以改变抗体的翻译后过程,如改变糖基化位点的数目或位置。
[0250] 一种用于鉴定抗体的作为优选诱变位置的某些残基或区域的有用方法称作“丙氨酸扫描诱变”,如由Cunningham和Wells Science,244:1081-1085(1989)所述。这里,残基或靶残基的组(例如,带电荷的残基,如arg、asp、his、lys、以及glu)被鉴定并且被中性或带负电荷的氨基酸(最优选选地,丙氨酸或聚丙氨酸)替换以影响这些氨基酸与抗原的相互作用。然后通过在置换位点引入另外或其他的变体来改进对置换显示功能敏感性的那些氨基酸位置。因而,虽然用于引入氨基酸序列变异的部位是预定的,但是突变本身的性质不必是预定的。例如,为了分析突变在给定位点的性能,在靶密码子或靶区实施丙氨酸扫描或随机诱变,并且对表达的抗体变体针对所希望的活性进行筛选。
[0251] 氨基酸序列插入包括长度从一个残基至含有百个或更多个残基的多肽范围的氨基端和/或羧基端融合,以及单个或多个氨基酸残基的序列内插入。末端插入的实例包括具有N端甲硫氨酰残基的抗体或与细胞毒性多肽融合的抗体。抗体分子的其他插入变体包括抗体的N端或C端与酶(例如针对ADEPT的酶)或增加该抗体的血清半衰期的多肽融合。
[0252] 变体的另一种类型是氨基酸置换变体。这些变体使抗体分子中的至少一个氨基酸残基被不同的残基替换。对于置换型诱变最感兴趣的位点包括高变区,但是也考虑了用于对在此所述的DEspR特异的抗体或其抗体片段中的FR变化。
[0253] 对DEspR特异的抗体或其抗体片段的生物学特性的重要修饰是通过选择它们在维持以下各项的作用中明显不同的置换而实现的:(a)多肽主链在置换区域内的结构(例如片层或螺旋构象)、(b)该分子在靶位点处的电荷或疏水性、或(c)侧链大小。可以根据其侧链的特性的相似性将氨基酸分组(A.L.Lehninger,in Biochemistry,第2版,第73-75页,Worth Publishers,纽约(1975)):(1)非极性氨基酸:Ala(A)、Val(V)、Leu(L)、Ile(I)、Pro(P)、Phe(F)、Trp(W)、Met(M);(2)不带电的极性氨基酸:Gly(G)、Ser(S)、Thr(T)、Cys(C)、Tyr(Y)、Asn(N)、Gln(Q);(3)酸性氨基酸:Asp(D)、Glu(E);(4)碱性氨基酸:Lys(K)、Arg(R)、His(H)。
[0254] 可替代地,可以基于常见的侧链特性将天然存在的残基划分成以下组:(1)疏水性氨基酸:正亮氨酸、Met、Ala、Val、Leu、Ile;(2)中性亲水性氨基酸:Cys、Ser、Thr、Asn、Gln;(3)酸性氨基酸:Asp、Glu;(4)碱性氨基酸:His、Lys、Arg;(5)影响链取向的残基:Gly、Pro;(6)芳香族氨基酸:Trp、Tyr、Phe。非保守性置换将需要这些类之一的成员交换为另一类的成员。
[0255] 也可以将不涉及维持对DEspR特异的抗体或其抗体片段的正确构象的任何半胱氨酸残基置换,通常用丝氨酸置换,以改进这种分子的氧化稳定性并且防止异常交联相反,可以将半胱氨酸键添加至抗体以改进其稳定性(尤其在这种抗体是抗体片段如Fv片段的情况下)。
[0256] 特别优选的置换型变体类型涉及置换亲本抗体(例如,如在此提供的对DEspR特异的单克隆抗DEspR抗体7C5B2、或人源化或人抗体或其抗体片段)的一个或多个高变区残基。通常,被选择为用于进一步开发的的所得到的变体相对于它们从其产生的亲本抗体将具有改进的生物学特性。用于产生这样的置换型变体的便利方式涉及使用噬菌体展示的亲和力成熟。简言之,将几个高变区位点(例如6-7个位点)突变以在每个位点产生所有可能的氨基置换。将如此产生的抗体变体以单价形式从丝状噬菌体颗粒中展示为与包装在每个颗粒内的M13的基因III产物的融合物。然后如在此所披露针对噬菌体展示的变体的生物活性(例如结合亲和力)对它们进行筛选。为了鉴定用于修饰的候选高变区位点,可以进行丙氨酸扫描诱变来鉴定显著有助于抗原结合的高变区残基。
[0257] 可替代地或另外地,可能有益的是分析抗原-抗体复合物的晶体结构以鉴定在对DEspR和人DEspR特异的抗体或其抗体片段之间的接触点。这样的接触残基和邻近残基是根据在此详述的技术的置换候选者。一旦产生这样的变体,这组变体如在此所述那样经历筛选,并且可以选择在一种或多种相关的测定中具有优良特性的抗体或其抗体片段用于进一步的开发。
[0258] 这种抗体的氨基酸变体的另一种形式改变了抗体的初始糖基化模式(original glycosylation pattern)。对于变化表示缺失一个或多个发现于抗体中的碳水化合物部分和/或添加一个或多个未发现于抗体中的糖基化位点。
[0259] 抗体的糖基化典型地是N连接或O连接的。N-连接是指碳水化合物部分与天冬酰胺残基的侧链的连接。三肽序列天冬酰胺-X-丝氨酸和天冬酰胺-X-苏氨酸,其中X是除脯氨酸之外的任何氨基酸,是碳水化合物部分与天冬酰胺侧链的酶促连接的识别序列。因而,这些三肽序列的任一个在多肽中的存在产生了潜在的糖基化位点。O-连接的糖基化是指以下糖的连接:N-乙酰半乳糖胺、半乳糖或木糖之一与羟氨基酸、最常见与丝氨酸或苏氨酸的连接,虽然也可以使用5-羟脯氨酸或5-羟赖氨酸。
[0260] 通过变更氨基酸序列,实现向DEspR特异性抗体或其抗体片段添加糖基化位点,使得这种抗体含有一个或多个上述的三肽序列(对于N-连接的糖基化位点而言)。也可以通过对初始抗体的序列添加或置换入一个或多个丝氨酸或苏氨酸残基产生这种变更(对于O-连接糖基化位点而言)。
[0261] 在抗体包含Fc区的情况下,可以改变与之连接的碳水化合物。例如,美国专利申请号US2003/0157108A1,Presta,L中描述了具有成熟的碳水化合物结构的抗体,所述碳水化合物结构缺少与抗体Fc区连接的岩藻糖。还参见US2004/0093621A1(日本协和发酵工业株式会社(Kyowa Hakko Kogyo Co.,Ltd))。在Jean-Mairet等人的WO03/011878和Umana等人的美国专利号6,602,684中提到在与抗体的Fc区连接的碳水化合物中具有平分型N-乙酰葡糖胺(GlcNAc)的抗体。在Patel等人的WO97/30087中报道了在与抗体的Fc区连接的寡糖中具有至少一个半乳糖残基的抗体。还参见涉及抗体的WO98/58964(Raju,S.)和WO99/22764(Raju,S.),其中所述抗体具有与其Fc区连接的改变的碳水化合物。
[0262] 在一些实施方案中,可能令人希望的是就效应子功能而言修饰对在此所述的DEspR特异的抗体或其抗体片段,例如,从而增强这种抗体的抗原依赖性细胞介导的细胞毒性(ADCC)和/或补体依赖性细胞毒性(CDC)。这可以通过在所述抗体或其抗体片段的Fc区中引入一个或多个氨基酸置换来实现。可替代或另外地,可以在Fc区中引入
半胱氨酸残基,由此允许在这个区域中的链间二硫键形成。如此产生的同型二聚体抗体(homodimeric antibody)可以具有改进的内化能力和/或增加的补体介导的细胞杀伤作用和抗体依赖性细胞毒性(ADCC)。参见Caron等人,J.Exp Med.176:1191-1195(1992)和Shopes,B.J.Immunol.148:2918-2922(1992)。也可以使用如Wolff等人,Cancer Research53:2560-2565(1993)中所述的异双功能交联剂制备具有增强的抗肿瘤活性的同型二聚体抗体。可替代地,具有双Fc区的抗体可以被工程化并且由此可以具有增强的补体溶解能力和ADCC能力。参见Stevenson等人,Anti-Cancer Drug Design3:219-230(1989)。
[0263] 例如,WO00/42072(Presta,L.)描述了在人效应细胞存在的情况下具有改进的ADCC功能的抗体,其中所述抗体在其Fc区中包含氨基酸置换。优选地,具有改进的ADCC的抗体在Fc区的位置298、333和/或334(残基的Eu编号)包含置换。优选地,改变的Fc区是包含在这些位置中的一个、二个或三个位置的置换或由其组成的人IgG1Fc区。这样的置换任选地与增加C1q结合和/或CDC的置换组合。
[0264] 在WO99/51642,美国专利号6,194,551B1、美国专利号6,242,195B1、美国专利号6,528,624B1和美国专利号6,538,124(Idusogie等人)中描述了具有改变的C1q结合和/或补体依赖性细胞毒性(CDC)的抗体。这些抗体在其Fc区的氨基酸位置270、322、326、
327、329、313、333和/或334(残基的Eu编号)中的一个或多个位置包含氨基酸置换。
[0265] 为了增加对在此所述的DEspR特异的抗体的血清半衰期,可以将挽救受体结合表位结合到抗体(尤其抗体片段)中,例如,如在美国专利号5,739,277中描述。如在此所使用的,术语“挽救受体结合表位”是指IgG分子(例如,IgG1亚类、IgG2亚类、IgG3亚类、或IgG4亚类)的Fc区表位,其负责增加IgG分子的体内血清半衰期。
[0266] 在WO00/42072(Presta,L.)和US2005/0014934A1(Hinton等人)中描述了具有改进的与新生Fc受体(FcRn)结合和增加的半衰期的抗体。这些抗体包含其中具有一个或多个置换的Fc区,其中所述置换改进了Fc区与FcRn的结合。例如,Fc区可以在位置238、250、256、265、272、286、303、305、307、311、312、314、317、340、356、360、362、376、378、380、
382、413、424、428或434(残基的Eu编号)中的一个或多个位置处具有置换。具有改进的FcRn结合的包含Fc区的优选抗体变体在其Fc区的位置307、380和434(残基的Eu编号)中的一个或多个位置包含氨基酸置换。在一个实施方案中,抗体具有307/434突变。
[0267] 还考虑了具有3个或更多个(优选4个)功能性抗原结合部位的对DEspR特异的工程化抗体(美国专利申请号US2002/0004587A1,Miller等人)。
[0268] 通过本领域已知的多种方法制备编码这种抗体的氨基酸序列变体的核酸分子。这些方法包括但不限于,从天然来源分离(在天然存在的氨基酸序列变体情况下)或通过寡核苷酸介导的(或定点)诱变、PCR诱变、以及先前制备的抗体变体或抗体的非变体形式的盒式诱变进行制备。
[0269] 免疫偶联物
[0270] 在这些方面的一些实施方案中,可以使用包含对在此所述的DEspR特异的抗体及抗体片段的免疫偶联物,其中所述抗体及抗体片段与一种物质如化疗剂、毒素(例如细菌源、真菌源、植物源或动物源的酶活性毒素、或其片段)、小分子、siRNA、纳米粒子、靶向剂(例如,微泡)、或放射性同位素(即,放射偶联物(radioconjugate))偶联。这样的免疫偶联物可以用于例如诊断方法、治疗诊断方法、或靶向方法中。
[0271] 在此描述了用于产生这样的免疫偶联物的化疗剂。可以使用的酶活性毒素或其片段包括白喉A链、白喉毒素的非结合活性片段、外毒素A链(来自绿假单胞菌
(Pseudomonas aeruginosa)、蓖麻毒蛋白A链、相思豆毒蛋白A链、蒴莲根毒蛋白A链、α-帚曲菌素、油桐(Aleurites fordii)蛋白、香石竹毒蛋白、垂序商陆(Phytolaca americana)蛋白(PAPI、PAPII、以及PAP-S)、苦瓜(momordica charantia)抑制剂、麻疯树毒蛋白、巴豆毒蛋白、肥皂草(sapaonaria officinalis)抑制剂、多花白树毒蛋白、mitogellin、局限曲菌素、酚霉素、伊诺霉素和单端孢霉烯族化合物(tricothecenes)。多种
212 131 131 90 186
放射性核素可用于放射偶联物抗体的产生。实例包括 Bi、 I、In、Y和 Re。
[0272] 可以使用多种双功能蛋白质偶联剂的任何一种来制造对在此所述的DEspR特异的抗体与细胞毒性剂的偶联物,这些偶联剂如N-琥珀酰亚胺基-3-(2-吡啶基二硫基)丙酸酯(SPDP)、亚氨基硫烷(IT)、亚氨酸酯的双功能衍生物(如己二亚氨盐酸二甲酯)、活性酯(如双琥珀酰亚胺辛二酸酯)、醛(如戊二醛)、双-叠氮化合物(如双(对-叠氮苯甲酰基)己二胺)、双-重氮盐衍生物(如双-(对-重氮基苯甲酰基)-乙二胺)、二异氰酸酯(如2,6-二异氰酸甲苯酯(tolyene2,6-diisocyanate))、以及双活性氟化合物(如1,5-二氟-2,4-二硝基苯)。例如,可以如Vitetta等人,Science238:1098(1987)中所述制备蓖麻毒蛋白免疫毒素。碳-14-标记的1-异硫氰基苄基-3-甲基二乙烯三胺五乙酸(MX-DTPA)是用于放射性核素与抗体偶联的示例性螯合剂。见WO94/11026。
[0273] 在其他实施方案中,DEspR特异性抗体或其抗体片段可以与用于肿瘤预靶向(tumor pretargeting)的“受体”(例如像,链霉亲和素)偶联,其中将抗体-受体偶联物给予受试者,随后使用清除剂从循环中移除未结合的偶联物并且然后给予与细胞毒性剂(例如,放射性核苷酸(radionucleotide))偶联的“配体”(例如抗生物素蛋白)。在一些实施方案中,DEspR特异性抗体或其抗体片段可以是与生物素偶联,并且生物素偶联的抗体或其抗体片段可以进一步偶联于或连接至结合或包被链霉亲和素的物质,如链霉亲和素包被的微泡,用于例如血管生成的分子成像中。
[0274] 免疫脂质体
[0275] 对在此所述的DEspR特异的抗体和其抗体片段也可以配制为免疫脂质体。通过本领域已知的方法(例如在Epstein等人,Proc.Natl.Acad.Sci.USA,82:3688(1985);Hwang等人,Proc.Natl.Acad.Sci.USA,77:4030(1980);以及美国专利号4,485,045和4,544,545中描述的方法)制备含有这种抗体的脂质体。在美国专利号5,013,556中披露了具有增强的循环时间的脂质体。
[0276] 可以例如通过反相蒸发法,采用包含磷脂酰胆碱、胆固醇和PEG衍生化磷脂酰乙醇胺(PEG-PE)的脂质组合物产生特别有用的脂质体。使脂质体挤出通过具有限定孔径的滤器以产生具有所希望的直径的脂质体。可以如Martin等人,J Biol Chem.257:286-288(1982)中所述,通过二硫键交换反应将本发明的抗体的Fab'片段与脂质体偶联。化疗剂任选地包含在脂质体内。参见Gabizon等人,J.National Cancer Inst.81(19)1484(1989)。
[0277] 维持并贮存杂交瘤细胞系7C5B2、7C5C5、以及5G12E8。
[0278] 抗DEspR抗体和其片段的组合物及其治疗和诊断用途
[0279] 在此所述的某些方面部分地基于诸位发明人的以下发现:DEspR有助于成体组织血管供应并且在胚胎发育期间在血管生成中发挥关键作用,以及进一步发现:DEspR令人惊讶地在某些肿瘤细胞、癌干细胞或癌干细胞样细胞、或肿瘤起始细胞中,以及在肿瘤周围血管的内皮细胞、周细胞、和平滑肌细胞中表达。诸位发明人进一步发现,使用DEspR特异性抑制剂(如在此所述的抗DEspR抗体和其抗体片段)抑制DEspR可以抑制表征肿瘤转移的多种参数,包括细胞侵袭力、肿瘤生长如肿瘤体积或肿瘤质量,以及表征血管生成的参数,包括新血管的管长度、新血管分支、以及血管互相连接的形成。在此所述的抗DEspR抗体和其抗体片段进一步高度适用于抗体-靶标声孔效应并且当使用例如超声方法给予时展示出增强的渗透力和功效。另外,诸位发明人已经确定,DEspR用作多种疾病状况的诊断标记。
[0280] 抗血管生成治疗剂和治疗
[0281] 血管生成是涉及新产生的血管长入组织中(新血管形成)和现有血管共择(co-opting)靶部位的组织血管化过程。血管是借以向活组织供应氧和营养素并且从活组织中排除废物的手段。血管生成可能是关键的生物学过程。例如,血管生成在繁殖、发育和伤口修复中是必需的。相反,不适当的血管生成可能具有严重的不良后果。例如,仅在实体瘤因血管生成而血管化后肿瘤才具有足够的氧和营养素供应,所述供应允许肿瘤迅速生长和转移。
[0282] 在新血管生长是与疾病相关的病理的原因或有助于这种病理的情况下,使用在此所述的组合物和方法抑制血管生成可以减少疾病的有害作用。非限制性实例包括肿瘤、颈动脉疾病、类风湿性关节炎、糖尿病性肾病、炎性疾病、再狭窄,等等。在需要新血管生长来支持有害组织生长的情况下,使用在此所述的组合物和方法抑制血管生成可以减少抵达组织的血液供应并且由此有助于降低基于血液供应需要的组织质量。非限制性实例包括其中新血管形成是持续要求的肿瘤生长,以便肿瘤生长超过几个毫米厚度,并且建立实体瘤转移。另一个实例是冠状动脉斑块扩大。
[0283] 存在着其中血管生成被认为导致不良结果的多种疾病或失调,称为病理性血管生成或依赖于血管生成或受其调节的疾病或失调,包括但不限于,炎性失调如免疫和非免疫炎症、慢性关节风湿和银屑病、与不适当或不适合的血管侵袭相关的失调如糖尿病性肾病、新生血管性青光眼、再狭窄、在动脉粥样硬化斑块中的毛细血管增生和骨质疏松症、以及与多种失调相关的癌症,如实体瘤、实体瘤转移、纤维血管瘤、晶状体后纤维增生症、血管瘤、卡波西肉瘤以及需要新血管形成来支持肿瘤生长的类似癌症。在在此所述的多个方面的一个优选实施方案中,这些方法是针对抑制癌症受试者中的血管生成。
[0284] 可以在抗血管生成治疗的组合物和方法中使用对在此所述的DEspR特异的抗体和抗体片段,例如抗DEspR7C5B2抗体;包含一个或多个重链CDR区的抗DEspR抗体,所述重链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:5、SEQ ID NO:6、或SEQ ID NO:7;包含一个或多个轻链CDR区的抗DEspR抗体,所述轻链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:10、SEQ ID NO:11、或SEQ ID NO:12;包含可变重链(VH)氨基酸序列的抗DEspR复合人抗体,该可变重链(VH)氨基酸序列选自下组,该组由以下各项组成:SEQ ID NO:4和SEQ ID NO:13-SEQ ID NO:17;或包含可变轻链(VL)氨基酸序列的抗DEspR复合人抗体,该可变重链(VH)氨基酸序列选自下组,该组由以下各项组成:SEQ ID NO:9、SEQ ID NO:18、以及SEQ ID NO:19的;及其片段。可以使用这些抗血管生成治疗作为新颖的癌症治疗策略,旨在抑制现有的肿瘤血管以及为提供营养素以支持肿瘤生长所需要的肿瘤血管的发育。由于血管生成涉及原发肿瘤生长和转移,使用对在此所述的对DEspR特异的抗体和抗体片段的抗血管生成治疗能够抑制肿瘤在原发部位的肿瘤生长,以及防止肿瘤在继发部位的微转移和宏观转移(macro-metastasis),因此允许其他治疗剂攻击肿瘤。
[0285] 另外,可以在抗转移治疗的方法中使用对在此所述的DEspR特异的抗体和抗体片段,例如像,抗DEspR7C5B2抗体;包含一个或多个重链CDR区的抗DEspR抗体,所述重链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:5、SEQ ID NO:6、或SEQ ID NO:7;包含一个或多个轻链CDR区的抗DEspR抗体,所述轻链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:10、SEQ ID NO:11、或SEQ ID NO:12;包含可变重链(VH)氨基酸序列的抗DEspR复合人抗体,该可变重链(VH)氨基酸序列选自下组,该组由以下各项组成:选自SEQ ID NO:4和SEQ ID NO:13-SEQ ID NO:17;或包含可变轻链(VL)氨基酸序列的抗DEspR复合人抗体,该可变轻链(VL)氨基酸序列选自下组,该组由以下各项组成:SEQ ID NO:9、SEQ ID NO:18、以及SEQ ID NO:19;及其片段。这样的抗转移治疗提供了新颖的癌症治疗策略,旨在抑制、同时抑制肿瘤血管化和肿瘤细胞侵袭力,用于治疗和/或抑制微转移和宏观转移,如在此进一步描述。另外,由于DEspR也在肿瘤细胞(包括癌干细胞)中表达,如在在此展示的,因此可以通过偶联至任何物质如毒素、细胞毒性剂或促凋亡剂而产生如在此所述的DEspR特异性抗体或其抗体片段的免疫偶联物,并且这些免疫偶联物可以通过直接靶向/杀死肿瘤细胞癌干细胞而进一步抑制肿瘤生长。
[0286] 因此,可以使用包含对在此所述的DEspR特异的抗体和抗体片段的方法和组合物予以治疗的血管生成依赖性疾病和病症是受血管生长影响的那些疾病和病症,其中所述抗体和抗体片段例如是抗DEspR7C5B2抗体;包含一个或多个重链CDR区的抗DEspR抗体,所述重链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:5、SEQ ID NO:6、或SEQ ID NO:7;包含一个或多个轻链CDR区的抗DEspR抗体,所述轻链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:10、SEQ ID NO:11、或SEQ ID NO:12;包含可变重链(VH)氨基酸序列的抗DEspR复合人抗体,该可变重链(VH)氨基酸序列选自下组,该组由以下各项组成:SEQ ID NO:4和SEQ ID NO:13-SEQ ID NO:17;或包含可变轻链(VL)氨基酸序列的抗DEspR复合人抗体,该可变轻链(VL)氨基酸序列选自下组,该组由以下各项组成:SEQ ID NO:9、SEQ ID NO:18、以及SEQ ID NO:19;及其片段。换言之,“血管生成依赖性疾病或失调”是指依赖于丰富血液供应和血管增殖以便疾病的病理进展(例如,转移性肿瘤)的那些疾病或失调、或作为异常血管增殖的直接后果的疾病或失调(例如,糖尿病性肾病和血管瘤)。
[0287] 可以使用在此所述的组合物和方法治疗的血管生成依赖性疾病或失调的非限制性实例包括异常血管增殖、腹水形成、银屑病、年龄相关性黄斑变性、甲状腺增生、先兆子痫、类风湿性关节炎和骨关节炎、颈动脉疾病、新生滋养血管形成、易损斑块新血管形成、神经变性失调、阿尔茨海默病、肥胖症、胸腔积液、动脉粥样硬化、子宫内膜异位症、糖尿病性/其他视网膜病变、眼部新血管形成如新生血管性青光眼和角膜新血管形成、与不适当或不适合的血管侵袭相关的失调如糖尿病性肾病、黄斑变性、新生血管性青光眼、再狭窄、在动脉粥样硬化斑块中的毛细血管增生和骨质疏松症、以及与多种失调相关的癌症,如实体瘤、实体瘤转移、纤维血管瘤、晶状体后纤维增生症、血管瘤、卡波西肉瘤、以及需要新血管形成来支持肿瘤生长的癌症,等等。
[0288] 因此,在此描述了在患有依赖于血管生成或受其调节的疾病或失调的受试者或个体的组织中抑制血管生成的方法,其中可以通过抑制血管生成治疗所述疾病或失调。通常,这些方法包括向受试者给予治疗有效量的一种组合物,其包含抑制血管生成量的DEspR抑制剂。在一些实施方案中,这些方法进一步包括选择或诊断患有受血管生成调节的疾病或失调或存在患病风险的受试者。
[0289] 在这些方法和在此所述的所有这样的方法的一些实施方案中,DEspR抑制剂是抗体或其抗体片段。因此,在一些方面,提供了一种对DEspR靶标特异的抗DEspR抗体或其抗体片段,其中所述抗DEspR抗体或其抗体片段与DEspR靶标特异性结合并且降低或抑制DEspR生物活性,从而抑制患有血管生成依赖性疾病或失调的受试者中的血管生成。
[0290] 在一些实施方案中,DEspR是人DEspR。在一些这样的实施方案中,DEspR靶标具有一个序列,所述序列包含SEQ ID NO:1或其等位基因变体。在这些方法的一些这样的实施方案中,提供了一种与DEspR特异性结合并且抑制DEspR的生物活性或阻断DEspR与VEGFsp相互作用的抗DEspR抗体或其抗体片段。在一些这样的实施方案中,VEGFsp具有包含SEQ ID NO:2的序列的序列。在一些这样的实施方案中,这种抗体或其抗体片段对于包含DEspR的胞外部分的DEspR表位是特异的。在一些实施方案中,这种抗体或其抗体片段对于包含SEQ ID NO:1的氨基酸1-9的DEspR表位是特异的。
[0291] 在用于抑制血管生成的这些组合物和方法的一些这样的实施方案中,抗DEspR抗体或其抗体片段是抗DEspR7C5B2抗体或其片段。在一些这样的实施方案中,抗DEspR抗体或其抗体片段包含一个或多个重链CDR区,所述重链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:5、SEQ ID NO:6、或SEQ ID NO:7。在一些这样的实施方案中,抗DEspR抗体或其抗体片段包含一个或多个轻链CDR区,所述轻链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:10、SEQ ID NO:11、或SEQ ID NO:12。在一些这样的实施方案中,抗DEspR抗体或其抗体片段包含一个或多个重链CDR区和一个或多个轻链CDR区,所述重链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:5、SEQ ID NO:6、或SEQ ID NO:7,所述轻链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:10、SEQ ID NO:11、或SEQ ID NO:12。在一些这样的实施方案中,抗DEspR抗体或其抗体片段包含选自SEQ ID NO:4和SEQ ID NO:13-SEQ ID NO:17的可变重链(VH)氨基酸序列。在一些这样的实施方案中,抗DEspR抗体或其抗体片段包含可变重链(VL)氨基酸序列及其片段,该可变重链(VL)氨基酸序列选自下组,该组由以下各项组成:SEQ ID NO:9、SEQ ID NO:18、以及SEQ ID NO:19。
[0292] 在用于抑制血管生成的这些组合物和方法的其他实施方案中,提供了与DEspR特异性结合的单克隆抗DEspR抗体或其抗体片段,它们具有7C5B2单克隆抗体的一个或多个生物学特征。在一些这样的实施方案中,具有7C5B2单克隆抗体的生物学特征可以包括对于给定群体具有在7C5B2抗体的ED50值处或其附近的ED50值(即,在50%的群体中治疗有效的剂量);对于给定参数或表型具有在7C5B2抗体的EC50值处或其附近的EC50值(即,实现给定参数或表型的半数最大抑制的剂量)。例如,在这些方面的一些实施方案中,将要被与DEspR特异性结合的抗体抑制的给定参数或表型可以包括但不限于:在体外血管生成测定中的平均总的管数、在体外血管生成测定中的平均总的管长度、在体外血管生成测定中的平均分支点数目、在体外血管生成测定中的平均血管连接数、以及肿瘤细胞侵袭力。
[0293] 在用于抑制血管生成的这些组合物和方法的一些实施方案中,提供了人源化抗DEspR单克隆抗体或其抗体片段,以供在如在此所述的用于抑制血管生成的组合物和方法中使用。在一些这样的实施方案中,人源化抗DEspR抗体或其抗体片段的一个或多个可变重链CDR区包含选自下组的序列,该组由SEQ ID NO:5-SEQ ID NO:7组成。在一些这样的实施方案中,人源化抗DEspR抗体或其抗体片段的一个或多个可变轻链CDR区包含选自下组的序列,该组SEQ ID NO:10-SEQ ID NO:12组成。在一些这样的实施方案中,抗DEspR抗体或其抗体片段包含一个或多个重链CDR区和一个或多个轻链CDR区,所述重链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:5、SEQ ID NO:6、或SEQ ID NO:7,所述轻链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:10、SEQ ID NO:11、或SEQ ID NO:12。在一些实施方案中,人源化抗DEspR单克隆抗体包含突变的人IgG1框架区和抗原结合互补决定区(CDR),这些抗原结合互补决定区选自由SEQ ID NO:5-SEQ ID NO:7组成的组和由SEQ ID NO:10-SEQ ID NO:12组成的组,其阻断人DEspR与其配体结合。在一些实施方案中,人源化抗DEspR抗体包含突变的人IgG4框架区和抗原结合互补决定区(CDR),这些抗原结合互补决定区选自由SEQ ID NO:5-SEQ ID NO:7组成的组和由SEQ ID NO:10-SEQ ID NO:12组成的组,其阻断人DEspR与其配体结合。
[0294] 在这些方面的其他实施方案中,抗DEspR抗体是对在此所述并且由杂交瘤7C5B2产生的单克隆抗DEspR抗体7C5B2的相同表位具有特异性的抗体片段。在一些这样的实施方案中,抗DEspR抗体是包含一个或多个可变重链CDR序列和/或一个或多个可变轻链CDR序列的抗体片段,其中所述可变重链CDR序列选自由SEQ ID NO:5-SEQ ID NO:7组成的组,所述可变轻轻CDR序列选自由7C5B2单克隆抗体的SEQ ID NO:10-SEQ ID NO:12组成的组。在一些实施方案中,抗体片段是Fab片段。在一些实施方案中,抗DEspR抗体片段是Fab’片段。在一些实施方案中,抗DEspR抗体片段是Fd片段。在一些实施方案中,抗DEspR抗体片段是Fd’片段。在一些实施方案中,抗体片段是Fv片段。在一些实施方案中,抗DEspR抗体片段是dAb片段。在一些实施方案中,抗DEspR抗体片段包含分离的CDR区。在一些实施方案中,抗DEspR抗体片段是F(ab’)2片段。在一些实施方案中,抗DEspR抗体片段是单链抗体分子。在一些实施方案中,抗DEspR抗体片段是包含两个抗原结合部位的双体抗体(diabody)。在一些实施方案中,抗DEspR抗体片段是包含一对串联Fd区段(VH-CH1-VH-CH1)的线性抗体。
[0295] 因此,在一些方面,依赖于血管生成或受其调节的疾病或失调是癌症,其中快速分裂的肿瘤癌细胞需要有效的血液供应以维持它们的持续的肿瘤生长。使用在此所述的组合物和治疗方法在原发肿瘤部位和继发性肿瘤部位抑制血管生成或肿瘤细胞侵袭力或其组合起到防止和限制疾病的转移和进展的作用。
[0296] 在一些方面,在此提供了治疗患有癌症或肿瘤或存在这种风险的受试者的方法,所述方法包括给予有效量的抗DEspR抗体或其抗体片段。在用于治疗癌症的这些方法的一些这样的实施方案中,抗DEspR抗体或其抗体片段是抗DEspR7C5B2抗体或其片段。在一些这样的实施方案中,抗DEspR抗体或其抗体片段包含一个或多个重链CDR区,所述重链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:5、SEQ ID NO:6、以及SEQ ID NO:7。在一些这样的实施方案中,抗DEspR抗体或其抗体片段包含一个或多个轻链CDR区,所述轻链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:10、SEQ ID NO:11、以及SEQ ID NO:12。在一些这样的实施方案中,抗DEspR抗体或其抗体片段包含一个或多个重链CDR区和一个或多个轻链CDR区,所述重链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:5、SEQ ID NO:6、以及SEQ ID NO:7,所述轻链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:10、SEQ ID NO:11、以及SEQ ID NO:12。在一些这样的实施方案中,抗DEspR抗体或其抗体片段包含可变重链(VH)氨基酸序列,该可变重链(VH)氨基酸序列选自下组,该组由以下各项组成:SEQ ID NO:4和SEQ ID NO:13-SEQ ID NO:17。在一些这样的实施方案中,抗DEspR抗体或其抗体片段包含可变重链(VL)氨基酸序列及其片段,该可变重链(VL)氨基酸序列选自下组,该组由以下各项组成:SEQ ID NO:9、SEQ ID NO:18、以及SEQ ID NO:19。
[0297] 在一些实施方案中,这些方法可以进一步包括首先选择或诊断患有癌症或肿瘤或存在这种风险的受试者。在一些这样的实施方案中,诊断受试者可以包含向受试者给予如本文中别处描述的与标记(例如,放射性标记或用于分子成像的标记)偶联的抗DEspR抗体或其抗体片段。在这样的实施方案中,检测到标记的抗DEspR抗体或抗体片段指示受试者患有癌症或肿瘤。
[0298] 术语“癌症”和“癌性的”是指或描述在哺乳动物中典型地以失调的细胞增殖为特征的生理状况。这个定义中包括良性肿瘤和恶性癌症、以及休眠肿瘤或微转移。因而,如在此所使用的的术语“癌症”或“肿瘤”是指长干扰身体器官和系统正常功能的不受控制的细胞生长,包括癌干细胞和肿瘤血管小生境(tumor vascular niche)。患有癌症或肿瘤的受试者是其具有可客观量度的在受试者身体内存在的癌细胞的受试者。这个定义中包括良性肿瘤和恶性癌症、以及休眠肿瘤或微转移。从它们的初始位置迁移并且接种重要器官的癌可以通过受累器官的功能恶化而最终导致受试者死亡。造血系统癌症,如白血病,能够胜过受试者中的正常造血区室,由此导致造血衰竭(呈贫血、血小板减少和中性粒细胞减少的形式),最终造成死亡。
[0299] “转移”表示癌症从其原发部位扩展至身体中的其他位置。癌细胞能够从原发肿瘤中脱离、渗透至淋巴管和血管中、通过血流循环、并且在身体别处的正常组织中的远处病灶中生长(转移)。转移可以是局部或远距离的。转移是一个顺序过程,可能发生于肿瘤细胞从原发肿瘤中脱离、穿行通过血流、并且在远距离部位处停顿。在这个新的部位,细胞建立血液供应并且可以生长以形成威胁生命的团块。肿瘤细胞内部的刺激性和抑制性分子途径均调节这种行为,并且在远距离部位处的肿瘤细胞与宿主细胞之间的相互作用也是重要的。
[0300] 除了监测特定的症状之外,最经常通过单独或联合使用磁共振成像(MRI)扫描、计算机断层成像(CT)扫描、血液和血小板计数、肝功能研究、胸部X射线和骨扫描来检测转移。
[0301] 癌症的实例包括但不限于癌瘤、淋巴瘤、母细胞瘤、肉瘤、以及白血病。这类癌症的更具体的实例包括但不限于基底细胞癌,胆道癌;膀胱癌;骨癌;脑和CNS癌,乳腺癌;腹膜癌;宫颈癌;绒毛膜癌;结肠直肠癌;结缔组织癌;消化系统癌症;子宫内膜癌;食管癌;眼癌;头颈癌;胃癌(包括胃肠癌);胶质母细胞瘤;肝癌;肝细胞瘤;上皮内肿瘤;肾脏或肾癌;喉癌;白血病;肝癌;肺癌(例如,小细胞肝癌、非小细胞肺癌、肺腺癌、以及肺鳞状癌);淋巴瘤,包括霍奇金淋巴瘤和非霍奇金淋巴瘤;黑色素瘤;骨髓瘤;神经母细胞瘤;胶质母细胞瘤;口腔癌(例如,唇、舌、口、以及咽);卵巢癌;胰腺癌;前列腺癌;视网膜母细胞瘤;横纹肌肉瘤;直肠癌;呼吸系统癌症;唾液腺癌;肉瘤;皮肤癌;鳞状细胞癌;胃癌;睾丸癌;甲状腺癌;子宫或子宫内膜癌;泌尿系统癌症;外阴癌;以及其他癌和肉瘤;以及B细胞淋巴瘤(包括低级/滤泡型非霍奇金淋巴瘤(NHL);小淋巴细胞型(SL)NHL;中级/滤泡型NHL;中级扩散型NHL;高级免疫母细胞型NHL;高级淋巴母细胞型NHL;高级小无核裂细胞NHL;巨大肿块NHL(bulky disease NHL);套细胞淋巴瘤(mantle cell lymphoma);AIDS相关性淋巴瘤;和华氏巨球蛋白血症(Waldenstrom's Macroglobulinemia));慢性淋巴细胞白血病(CLL);急性淋巴细胞性白血病(ALL);多毛细胞白血病;慢性髓性白血病;和移植后淋巴增生性疾病(PTLD),以及与斑痣性错构瘤病、水肿(如与脑肿瘤相关的水肿)、和麦格综合征(Meigs'syndrome)相关的异常血管增生。
[0302] 在其他方面,在此所述的组合物和方法用于治疗或抑制动脉粥样硬化斑块和动脉粥样硬化或其成像。动脉粥样硬化是最常见形式的血管疾病并且是大部分冠状动脉病、主动脉瘤、脑血管病和下肢动脉病的基础的大动脉疾病(Libby,在“内科医学原理”(The Principles of Internal Medicine)中,第15版,Braunward等人(编者),桑德斯,费城,Pa.,2001,第1377-1382页)。动脉粥样硬化的发病机理作为对损伤的反应而出现(Libby,在“内科医学原理”(The Principles of Internal Medicine)中,第15版,Braunward等人(编者),桑德斯,费城,Pa.,2001,第1377-1382页)。对内皮的损伤可以是不易察觉的,导致细胞正常发挥作用的能力丧失。内皮损伤类型的实例包括高胆固醇血症和机械应力(Ross,1999,N.Engl.J.Med.,340:115)。
[0303] 动脉粥样硬化过程涉及炎症,并且白细胞(例如,淋巴细胞、单核细胞、和巨噬细胞)常常贯穿动脉粥样硬化的发展过程而存在。当单核细胞被活化并且从血流中移出进入动脉壁时,动脉粥样硬化开始。在那里,它们转化成泡沫细胞,这些泡沫细胞收集胆固醇和其他脂性物质。最后,这些脂肪超负载的泡沫细胞积聚并且在动脉壁的衬层中形成粥样斑,引起动脉壁增厚和硬化。粥样斑可以散布遍及中等大小的动脉和大动脉,但是通常在动脉分支的地方形成。治疗和诊断动脉粥样硬化是重要的,因为它常常导致心脏病并且也可以引起中风或其他血管问题如跛行。
[0304] 因此,在在此所述的多个方面的一些实施方案中,将病理性血管生成在动脉粥样硬化斑块中和在动脉粥样硬化动脉的滋养血管(冠状动脉和颈动脉疾病)中被考虑为易损斑块进展和破裂的风险因素和/或致病因素。因此,在一些这样的实施方案中,将要使用在此所述的组合物和方法治疗的患有血管生成失调的受试者可能患有动脉粥样硬化或存在这种风险。如在此所使用的,“动脉粥样硬化”是指由在动脉内的多个动脉粥样化斑形成引起的导致动脉硬化的动脉血管疾病。动脉粥样硬化可以与其他疾病状况相关,包括但不限于冠状动脉心脏病事件、脑血管事件、急性冠状动脉综合征、以及间歇性跛行。例如,冠状动脉的动脉粥样硬化通常引起冠状动脉病、心肌梗死、冠状动脉血栓形成、以及心绞痛。供应中枢神经系统的动脉的动脉粥样硬化经常引起中风和短暂脑缺血。在外周循环中,动脉粥样硬化引起间歇性跛行和坏疽,并且可以危及肢体活力。内脏循环动脉的动脉粥样硬化可以引起肠系膜缺血。动脉粥样硬化还可以直接影响肾(例如,肾动脉狭窄)。同样,先前经历过一个或多个非致命动脉粥样硬化性疾病事件的人是存在这种事件的复发可能的那些人。
[0305] 有时,其他这些疾病可以由动脉粥样硬化以外的情况引起或与之相关。因此,在一些实施方案中,在给予在此所述的组合物至受试者之前,首先诊断动脉粥样硬化的存在。如果动脉粥样硬化症状的至少一个标记存在,则受试者“诊断为患有动脉粥样硬化”或“选择为患有动脉粥样硬化”。在一个这样的实施方案中,如果受试者具有动脉粥样硬化家族史或携带已知的针对高胆固醇的基因突变或多态性,则“选择”这个人。在一个实施方案中,通过在其他炎性疾病不存在的情况下测量C反应蛋白(CRP)的增加水平来诊断受试者。在其他实施方案中,通过测量高半胱氨酸、纤维蛋白原、脂蛋白(a)、或小LDL颗粒的血清水平来诊断动脉粥样硬化。可替代地,测量冠状动脉中的水平的计算机断层成像扫描可以用来选择患有动脉粥样硬化的受试者。在一个实施方案中,通过炎性细胞因子的增加来诊断动脉粥样硬化。在一个实施方案中,使用增加的白细胞介素-6水平作为选择患有动脉粥样硬化的个体的指标。在其他实施方案中,使用增加的白细胞介素-8和/或白细胞介素-17水平作为选择患有动脉粥样硬化的个体的指标。
[0306] 在其他方面,在此所述的组合物和方法用于阻断或抑制在年龄相关性黄斑变性中发生的血管生成。例如已知,VEGF有助于异常血管从眼脉络膜层生长入视网膜中,与湿性或新生血管型年龄相关性黄斑变性过程中的情况相似。黄斑变性,经常称作AMD或ARMD(年龄相关性黄斑变性),在年龄65岁或以上的美国人中是视力丧失和致盲的主导因素。新血管在视网膜下方生长(新血管形成)并且使血液和流体泄漏。这种泄漏引起光敏视网膜细胞的永久性损伤,这些视网膜细胞死亡并且在中央视觉或黄斑中产生盲点。因此,包括在在此披露的方法中的是针对年龄相关性黄斑变性用抗血管生成疗法治疗的受试者。
[0307] 在其他方面,在此所述的组合物和方法用于阻断或抑制在患有糖尿病性肾病的受试者中发生的血管生成,其中异常血管生长与糖尿病性眼病和糖尿病性黄斑水肿相关。当视网膜中的正常血管受糖尿病所致的很小的血块损害时,引发新血管生长达到高峰的连反应。然而,后备血管是有缺点的;它们泄漏(引起水肿)、出血、并且刺激使视网膜脱离的瘢痕组织,导致视力严重丧失。这样的生长是糖尿病性视网膜病变(在发达国家年轻人当中的主要致盲原因)的标志。因此,包括在在此披露的方法中的是针对糖尿病性肾病和/或糖尿病性黄斑水肿进行治疗的受试者。
[0308] 在其他方面,在此所述的组合物和方法用于阻断或抑制在患有类风湿性关节炎的受试者中发生的血管生成。类风湿性关节炎(RA)以滑膜组织肿胀、白细胞流入以及血管生成、或新血管生长为特征。在类风湿性关节炎(RA)中的关节滑膜衬里扩张和后续被下方软骨和骨的血管翳侵袭使滑膜的血管供应增加成为必需,以便应付增加的氧和营养素需要。现在将血管生成视为RA中血管翳的形成和维持的关键事件(Paleolog,E.M.,Arthritis Res.2002;4Suppl3:S81-90;Afuwape AO,Histol Histopathol.2002;17(3):961-72)。甚至在早期RA中,一些早期组织学观察是血管。单核细胞浸润表征了滑膜组织连同丰富的血管。血管生成是炎性血管翳形成是不可或缺的并且在没有血管生成情况下,白细胞流入不能发生(Koch,A.E.,Ann.Rheum.Dis.2000,59Suppl1:165-71)。新血管形成的破坏不仅将阻止营养素递送至炎性部位,它还可能因VEGF(在RA中的有效的促血管生成因子)作为血管通透性因子的另外活性而减轻关节肿胀。抗VEGF六肽RRKRRR(dRK6)可以抑制并且缓和关节炎的严重性(Seung-Ah Yoo等人,2005,上文)。因此,包括在在此披露的方法中的是患有类风湿性关节炎或正在因类风湿性关节炎接受治疗的受试者。
[0309] 在其他方面,在此所述的组合物和方法用于阻断或抑制在阿尔茨海默病中发生的血管生成。阿尔茨海默病(AD)是全世界最常见的痴呆病因。AD是以导致神经元变性并最终导致痴呆的过度脑部淀粉样沉积为特征。AD的确切病因仍然是未知的。已经通过流行病学研究显示,长期使用非甾体抗炎药、他汀类、组胺H2-受体阻滞剂、或钙通道阻滞剂(它们均是具有抗血管生成作用的心血管药物)似乎阻止阿尔茨海默病和/或影响AD患者的结局。因此,在脑血管中的AD血管生成可能在AD中发挥重要作用。在阿尔茨海默病中,脑内皮分泌β-淀粉样蛋白斑的前体基质和选择性杀死皮质神经元的神经毒性肽。而且,在血管中的淀粉样蛋白沉积导致引起新血管形成的内皮细胞凋亡和内皮细胞激活。可以通过VEGF拮抗剂SU4312以及通过他汀类阻断血管形成,这表明抗血管生成策略可以干扰AD中的内皮细胞激活(Schultheiss C.等人,2006;Grammas P.等人,1999)并且可以用于预防和/或治疗AD。因此,包括在在此披露的方法中的是因阿尔茨海默病而正在治疗的受试者。
[0310] 在其他方面,在此所述的组合物和方法用于阻断或抑制在脑中的缺血区内发生的血管生成,血管生成可能促进水肿、有漏隙的新血管、以及使受试者在缺血性中风事件之后倾向于出血性转化,因此恶化因中风事件所致的发病率和死亡率风险。使用在此所述的组合物和方法抑制有漏隙的血管可以减少因缺血性中风事件所致的神经功能缺损、以及防止进展到出血性中风。目前,不存在用于缺血性出血性转化的疗法,也不存在减少因中风所致的神经功能缺损的有效疗法。
[0311] 在其他方面,在此所述的组合物和方法用于阻断或抑制在肥胖症中发生的血管生成。肥胖症中的脂肪生成涉及在正在分化的脂肪细胞、间质细胞、以及血管之间的互相作用。在血管形成与脂肪生成之间的紧密空间和时间相互关系、以及新血管从事先存在的血管中长出与脂肪细胞分化耦合。脂肪生成性/血管生成性细胞簇可以在形态学和免疫组织化学上与经常在脂肪组织肥胖症晚期阶段中见到的冠样结构区分。给予抗血管内皮生长因子(VEGF)抗体不仅抑制血管生成,而且抑制脂肪生成性/血管生成性细胞簇的形成,这表明脂肪生成和血管生成的耦合对于肥胖症中的脂肪细胞分化是必需的并且VEGF是这个过程的关键介质。(Satoshi Nishimura等人,2007,Diabetes56:1517-1526)。已经显示血管生成抑制剂TNP-470能够预防小鼠中的膳食诱导的肥胖症和遗传性肥胖症(Ebba 等人,Circulation Research,2004;94:1579)。TNP-470减少脂肪组织
中的血管供应,从而抑制脂肪组织增长的速率和肥胖症的发展。因此,包括在在此披露的方法中的是患有肥胖症的受试者。
[0312] 在其他方面,在此所述的组合物和方法用于阻断或抑制在子宫内膜异位症中发生的血管生成。过度的子宫内膜血管生成被提出作为子宫内膜异位症发病中的重要机制(Healy,DL.等人,Hum Reprod Update.1998Sep-Oct;4(5):736-40)。子宫内膜异位症患者的子宫内膜显示增强的内皮细胞增生。而且,当与正常女性相比时,在患有子宫内膜异位症的女性的子宫内膜中更多的血管内存在升高的细胞粘附分子整联蛋白vβ3表达。美国专利号6,121,230描述了抗VEGF剂在治疗子宫内膜异位症中的用途并且特此将该专利通过引用进行结合。因此,包括在在此披露的方法中的是患有子宫内膜异位症或正在因子宫内膜异位症接受治疗的受试者。
[0313] 如在此所述,由机化组织构成的多种组织或器官的任一者可以支持其中血管可能在血管生成刺激之后侵袭的疾病状况中的血管生成,这些组织或器官包括皮肤、肌肉、肠、结缔组织、关节、骨等组织。
[0314] 在各种实施方案中如在此所述的将要治疗的个体或受试者令人希望地是人类患者,虽然应当理解这些方法对于所有哺乳动物是有效的,所述哺乳动物预期包含在术语“患者”或“受试者”中。在这种情况下,将哺乳动物理解为包括其中希望治疗与血管生成相关的疾病的任何哺乳动物种类。术语“受试者”和“个体”在此可互换地使用,并且是指在此所述的DEspR特异性抗体和抗体片段的动物(例如人类)受体。对于治疗特定动物(如人类受试者)特有的疾病状态,术语“受试者”是指这种特定的动物。术语“非人动物”和“非人哺乳动物”在此可互换地使用并且包括哺乳动物如大鼠、小鼠、兔、羊、猫、犬、牛、猪、以及非人灵长类。术语“受试者”也包括任何脊椎动物,其包括但不限于哺乳动物、爬行动物、两栖动物和鱼类。然而,有利地,受试者是哺乳动物如人,或者其他哺乳动物,如家养哺乳动物,例如犬、猫、马等,或生产用哺乳动物,例如牛、羊、猪等也包含在术语“受试者”中。
[0315] 给药模式
[0316] 在此所述的DEspR特异性拮抗剂,如抗DEspR抗体或其抗体片段,可以通过在受试者中产生有效治疗的任何适当的途径给予对其有需要的受试者。如在此所使用的,术语“给予”和“引入”可互换地使用并且是指将抗DEspR抗体或其抗体片段通过一种方法或途径置于受试者中,所述方法或途径导致这样的药剂至少局部局限于所希望的部位(如炎症或癌症部位),从而产生所希望的效果。
[0317] 在一些实施方案中,向患有将要通过任何给药模式抑制的血管生成失调的受试者给予抗DEspR抗体或其抗体片段,其中所述给药模式全身性递送该药剂或递送至所希望的表面或靶点,并且可以包括,但不限于注射、输注、滴注、以及吸入给药。为了达到可以保护抗DEspR抗体或其抗体片段免于在肠道内失活的程度,还考虑了口服给药形式。“注射”包括,而不限于静脉内、肌内、动脉内、鞘内、心室内、囊内、眶内、心内、皮内、腹膜内、经气管、皮下、表皮下、关节内、被膜下、蛛网膜下、椎管内、脑脊髓内和胸骨内注射和输注。在优选的实施方案中,通过静脉输注或注射给予用于在此所述方法中的抗DEspR抗体或其抗体片段。
[0318] 如在此所使用的,短语“肠胃外给药”和“肠胃外方式给药”是指除了肠内和局部给药之外的给药模式,通常通过注射给药。如在此所使用的的短语“全身性给药”、“经全身给药”、“外周给药”和“经外周给药”是指将双特异性或多特异性多肽药剂并非直接给予到靶部位、组织或器官(如肿瘤部位)中,使得它进入受试者的循环系统,并且因此经受新陈代谢和其它相似的过程。
[0319] 根据已知的方法,如作为推注的静脉内给药或通过经一段时间连续输注,通过肌内、腹膜内、脑脊髓内、皮下、关节内、滑膜内、鞘内、口服、局部、或吸入途径,向受试者(例如,人类受试者)给予在此所述的DEspR特异性拮抗剂。如果广泛的副作用或毒性与DEspR拮抗剂的使用相关,则局部给药例如到其中血管生成正在发生的肿瘤或癌症部位是特别希望的。也可以将离体策略在一些实施方案中用于治疗应用。离体策略包括用编码DEspR拮抗剂的多核苷酸转染或转导从受试者获得的细胞。然后将转染或转导的细胞回输给这位受试者。细胞可以是广泛类型细胞的任何一种,包括而不限于造血细胞(例如,骨髓细胞、巨噬细胞、单核细胞、树突细胞、T细胞、或B细胞)、成纤维细胞、上皮细胞、内皮细胞、角化细胞、或肌肉细胞。
[0320] 在一些实施方案中,当DEspR特异性拮抗剂是抗DEspR抗体或其抗体片段时,通过任何适合的手段给予抗体或其抗体片段,所述手段包括肠胃外、皮下、腹膜内、肺内、和鼻内,以及病灶内给药(如果希望局部免疫抑制治疗的话)。肠胃外输注包括肌内、静脉内、动脉内、腹膜内、或皮下给药。在一些实施方案中,通过脉冲输注适当地给予抗体或其抗体片段,尤其采用递减剂量的抗体。优选地,通过注射、最优选地静脉内或皮下注射给药,这部分地取决于给药是否为短暂或长期的。
[0321] 在一些实施方案中,当失调或肿瘤位置允许时,局部给予DEspR特异性拮抗剂化合物,例如,通过直接注射,并且注射可以定期地重复。可以将DEspR特异性拮抗剂全身性递送至受试者或直接递送至肿瘤细胞,例如,在手术切除肿瘤后递送至肿瘤或肿瘤床,目的是预防或减少局部复发或转移,例如休眠肿瘤或微转移。
[0322] 通过声孔效应给药
[0323] 考虑了抗体靶向的声孔效应方法,以供用于抑制血管生成的在此所述方法的一些实施方案中,以便增强包含在此提供的抗DEspR抗体和其抗体片段的治疗组合物的功效和效力。
[0324] 诸位发明人已经发现,包含抗DEspR单克隆抗体和抗体片段的药物组合物的DEspR靶向声孔效应提供了令人惊讶地增强的肿瘤生长和转移减少,表明这些组合物的渗透和递送增强,并且增强了抵达病理性血管生成部位、以及抵达肿瘤细胞和肿瘤起始细胞或癌干细胞或癌干细胞样细胞的递送。此外,诸位发明人已经发现与其他治疗剂(如小分子化合物或其他药物化合物)组合的抗DEspR抗体和其抗体片段的声孔效应可以用来增强其他治疗剂的递送,因而提供一种定向和增强递送的手段。
[0325] 因此,在在此所述的抑制血管生成的方法的一些实施方案中,通过声孔效应向对其有需要的受试者给予抗DEspR抗体和其抗体片段。
[0326] 如在此所使用的,“声孔效应”是指使用声波,优选地以超声频率,或超声与造影剂(例如,稳定化的微泡)的相互作用以便暂时调节细胞质膜的通透性,因而允许摄取大分子(如治疗剂)。由声孔效应引起的膜通透性是暂时的,从而在超声暴露之后留下捕集在细胞内部的药剂。声孔效应采用微泡的声空化来增强大分子的递送。
[0327] 因此,在这些方法的一些实施方案中,与超声造影剂(如微泡)混合的治疗性抗DEspR剂(如在此所述的抗DEspR抗体和其抗体片段)可以局部或全身注射到因血管生成失调而需要治疗的受试者,并且可以将超声耦合并且甚至集中于限定区域(例如,肿瘤部位),以实现在此所述的抗DEspR抗体和其抗体片段的靶向递送。另外,已知抗DEspR抗体或其抗体片段靶向肿瘤血管内皮,因而将声孔效应导引至在肿瘤内皮细胞中的DEspR表达增加的区域。除了操作员决定的聚焦超声之外,微泡的抗DEspR靶向可以用来使声孔效应介导的任何治疗剂(包括抗DEspR单克隆抗体本身)增强进入靶向到所述靶向的癌区域中。
[0328] 在一些实施方案中,这些方法使用聚焦超声法来实现在此所述的抗DEspR抗体和其抗体片段的靶向递送。如在此所使用的,HIFU或“高强度聚焦超声”是指一种非侵袭性治疗方法,其使用高强度超声加热并破坏恶性或病变组织,而不引起对覆盖或周围的健康组织的损伤。典型地,HIFU已经用于组织消融技术中,由此可以在需要消融的组织(如实体瘤部位)中诱导HIFU治疗的生物效应(包括凝固坏死和结构性破坏)。然而,如其内容通过引用以其全文结合在此的Khaibullina A.等人,J Nucl Med.2008Feb;49(2):295-302和WO2010127369中所述,也可以使用HIFU作为递送治疗剂(如抗体或其抗体片段)的手段。
[0329] 还考虑了使用对比度增强超声(CEUS)的方法与在此所述的抗DEspR抑制剂一起使用。对比度增强超声(CEUS)是指将超声造影介质和超声造影剂应用于传统的医学超声检查。超声造影剂是指依赖于其中声波从物质间的界面反射的不同方式的试剂。这种可以是小气泡或更复杂结构的表面。商业可得的造影介质包括静脉内给予至全身循环的含气微泡。微泡具有高的回声反射性程度(即,物体至反射超声波的能力)。在微泡中的气体和身体周围的软组织之间的回声反射性差异是巨大的,并且增强了超声反散射或超声波反射,以产生独特的具有因高回声反射性差异而增加的对比度的超声图。对比度增强超声可以与在此所述的组合物和方法一起使用,以便对如在此所述的多种病症和失调(如血管生成依赖性失调)成像。
[0330] 多种微泡造影剂可供与在此所述的组合物和方法一起使用。微泡可以在它们的壳组成、气芯组成、以及它们是否被靶向方面不同。
[0331] 微泡壳材料决定微泡如何容易地被免疫系统摄取。更亲水的壳材料趋向于更容易地被摄取,这减少了微泡在循环中的滞留时间。这减少了可用于对比成像的时间。壳材料也影响微泡的机械弹性。材料弹性越大,它在爆裂之前可以经受住的声能越多。用于当前微泡壳中的材料的实例包括白蛋白、半乳糖、脂质、以及聚合物,如在Lindner,J.R.2004年的“医学成像中的微泡:当前应用和未来方向”(Microbubbles in medical imaging:current applications and future directions)(Nat Rev Drug Discov.3:527-32)中描述,所述文献的内容通过引用以其全文结合在此。
[0332] 微泡气芯是超声对比微泡的重要部分,因为它决定回声反射性。当气泡在超声频率域中截获时,它们压缩、振荡、和反射特征性回声-这以对比度增强超声产生强而独特的超声图。气芯可以由例如空气或重气体如全氟碳或氮组成。重气体是具有较小水溶性,因此它们较不可能从微泡泄漏以损害回声反射性。因此,具有重气芯的微泡可能在循环中持续较长时间。
[0333] 无论壳或气芯组成如何,微泡尺寸典型地是相当均匀的。它们可以在直径上处于1-4微米的范围。这使得它们小于红细胞,从而允许它们容易地流动通过循环以及微循环。
[0334] 与特征为血管生成失调的受体结合的靶向配体如DEspR可以与微泡偶联,从而使微泡复合物选择性积聚在感兴趣的区域内,如患病或异常的组织。这种形式的分子成像,称作定向对比度增强超声,如果靶向微泡结合在感兴趣的区域中,则将仅产生强的超声信号。定向对比度增强超声在医学诊断和医学治疗中都具有许多应用。用与DEspR结合的药剂(如抗DEspR抗体或其抗体片段)靶向的微泡以小量推注(small bolus)全身性注射。这些DEspR靶向的微泡可以穿行经过循环系统,最终找到它们各自的靶标并且特异性地结合。然后可以将超声波导向到感兴趣的区域上。如果足够数目的DEspR靶向的微泡已经在该区域内结合,则它们的可压缩气芯响应于高频声能域而振荡。DEspR靶向的微泡也反射独特的回声,所述回声与周围组织形成鲜明对比,原因在于微泡与组织回声反射性之间的数量级失配。超声系统将强的回声反射性转化成对比度增强的感兴趣的区域的图像,从而揭示结合的DEspR靶向的微泡的位置。然后检测结合的微泡可以显示感兴趣的区域正在表达DEspR,这可以指示某种疾病状态或鉴定感兴趣的区域内的特定细胞。另外,可以在连接有DEspR靶向的微泡的部位完成靶向声孔效应,从而实现靶向递送包封在回声反射微泡内或在其上携带的任何治疗剂(药物、siRNA、DNA、小分子)。
[0335] 在在此所述的多种方法的一些实施方案中,使用靶向超声递送向需要治疗血管生成失调(例如,癌症)的受试者给予抗DEspR抗体或其抗体片段,例如抗DEspR7C5B2抗体或其片段;包含一个或多个重链CDR区的抗DEspR抗体或其抗体片段,所述重链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:5、SEQ ID NO:6、或SEQ ID NO:7;包含一个或多个轻链CDR区的抗DEspR抗体或其抗体片段,所述轻链CDR区包含选自下组的序列,该组由以下各项组成:SEQ ID NO:10、SEQ ID NO:11、或SEQ ID NO:12;包含可变重链(VH)氨基酸序列的抗DEspR抗体或其抗体片段,该可变重链(VH)氨基酸序列选自下组,该组由以下各项组成:SEQ ID NO:4和SEQ ID NO:13-SEQ ID NO:17;和/或包含可变轻链(VL)氨基酸序列的抗DEspR抗体或其抗体片段,该可变轻链(VL)氨基酸序列选自下组,该组由以下各项组成:SEQ ID NO:9、SEQ ID NO:18、以及SEQ ID NO:19。在一些这样的实施方案中,靶向超声递送包括使用微泡作为抗DEspR抗体或其抗体片段与之结合的造影剂。在一些这样的实施方案中,定向超声是HIFU。
[0336] 药物制剂
[0337] 对于在此所述方法的临床用途,给予DEspR拮抗剂(如在此所述的抗DEspR抗体或其抗体片段)可以包括配制成用于肠胃外(例如静脉内)、粘膜(例如,鼻内)、眼部给药或其他给药模式的药物组合物或药物制剂。在一些实施方案中,在此所述的抗DEspR抗体或其抗体片段可以连同在受试者中产生有效治疗的任何药学上可接受的载体化合物、材料、或组合物一起给予。因此,用于在此所述方法中的药物制剂可以含有与一种或多种药学上可接受的成分组合的如在此所述的抗DEspR抗体或其抗体片段。
[0338] 短语“药学上可接受的的”是指这些化合物、材料、组合物和/或剂型,它们在合理的医学判断力范围内适合用于与人和动物的组织接触而没有过度的毒性、刺激性、过敏反应、或其他问题或并发症,与合理益处/风险比相称。如在此所使用的短语“药学上可接受的载体”表示涉及维持抗DEspR抗体或其抗体片段的稳定性、溶解度、或活性的药学上可接受的材料、组合物或载体,如液体或固体填充剂、稀释剂、赋形剂、溶剂、介质、包封材料、制造助剂(例如,润滑剂、滑石、硬脂酸镁、硬脂酸钙或硬脂酸锌、或硬脂酸)或溶剂包封材料。每种载体必须在与制剂的其他组分相容的意义上是“可接受的”并且对患者无害。术语“赋形剂”、“载体”、“药学上可接受的载体”等等在此可互换地使用。
[0339] 可以特别配制在此所述的抗DEspR抗体或其抗体片段,以便向受试者以固体、液体或凝胶形式(包括适合于以下形式的那些)给予化合物:(1)肠胃外给药,例如,通过皮下、肌内、静脉内或硬膜外注射,例如,无菌溶液剂或混悬剂、或持续释放制剂;(2)局部施用,例如,作为施用至皮肤的乳膏、软膏控释贴剂或喷雾剂;(3)阴道内或直肠内,例如,作为子宫托、乳膏或泡沫;(4)眼部给药;(5)透皮给药;(6)经粘膜给药;或(7)经鼻给药。另外,可以将抗DEspR抗体或其抗体片段植入患者中或使用药物递送系统注射。参见,例如,Urquhart等人,Ann.Rev.Pharmacol.Toxicol.24:199-236(1984);Lewis编著的“农药和药物的控制释放”(Controlled Release of Pesticides and Pharmaceuticals)(Plenum Press,New York,1981);美国专利号3,773,919;和美国专利号353,270,960。
[0340] 可以通过将具有所希望的纯度的DEspR特异性拮抗剂与任选的药学上可接受的载体、赋形剂或稳定剂(Remington's Pharmaceutical Sciences第16版,Osol,A.编著(1980))混合来制备在此所述的DEspR特异性拮抗剂(如抗DEspR抗体或其抗体片段)的治疗制剂以便以冻干制剂或水溶液剂的形式储存。可接受的载体、赋形剂、或稳定剂是在所采用的剂量和浓度对接受者无毒的,并且包括缓冲剂如磷酸盐柠檬酸盐、以及其他有机酸;抗氧化剂(包括抗坏血酸和甲硫氨酸);防腐剂(如十八烷基二甲基苄基氯化铵;氯化六甲双铵;苯扎氯铵、苄索氯铵;苯酚、丁醇或苄醇;尼泊金烷基酯如尼泊金甲酯或丙酯;儿茶酚;
雷琐辛;环己醇;3-戊醇和间甲酚);低分子量(少于大约10个残基)多肽;蛋白质,如血清白蛋白、明胶或免疫球蛋白;亲水聚合物如聚乙烯吡咯烷酮;氨基酸如甘氨酸、谷氨酰胺、天冬酰胺、组氨酸、精氨酸、或赖氨酸;单糖、二糖、和其他碳水化合物包括葡萄糖、甘露糖或糊精;螯合剂如EDTA;糖如蔗糖、甘露醇、海藻糖、或山梨醇;形成盐的反离子如钠;金属络合物(例如Zn-蛋白质络合物);和/或非离子表面活性剂如 、
或聚乙二醇(PEG)。示例性的冻干抗VEGF抗体制剂描述于WO97/04801中,将该文献通过引用明确地结合在此。
[0341] 任选地,但是优选地,包含在此所述的组合物的这些制剂含有药学上可接受的盐,典型地,例如,氯化钠,并且优选处于大约生理浓度。任选地,本发明的制剂可以含有药学上可接受的的防腐剂。在一些实施方案中,防腐剂浓度的范围是从0.1%至2.0%,典型地按v/v计。适合的防腐剂包括制药领域已知的那些。苄醇、苯酚、间甲酚、尼泊金甲酯和尼泊金丙酯是防腐剂的实例。任选地,本发明的制剂可以包含处于0.005%至0.02%浓度的药学上可接受的表面活性剂。
[0342] 按照正在治疗的具体特定适应症的需要,包含在此所述的DEspR特异性拮抗剂(如抗DEspR抗体及其抗体片段)的组合物的治疗制剂也可以含有一种以上的活性化合物,优选具有不彼此不利地影响的互补活性的那些活性化合物。例如,在一些实施方案中,可能令人希望的是进一步提供与EGFR、VEGF(例如结合VEGF上的不同表位的抗体)、VEGFR、或TMErbB2(例如,赫赛汀 )结合的抗体。可替代地或另外地,组合物可以包含细胞毒性剂、细胞因子、生长抑制剂剂和/或VEGFR拮抗剂。这样的分子以有效用于预期目的的量适当地组合存在。
[0343] 包含在此所述的DEspR特异性拮抗剂的组合物的治疗制剂的有效成分也可以被捕集在例如分别通过凝聚技术或界面聚合制备的微胶囊(例如,羟甲基纤维素微胶囊或明胶微胶囊和聚(甲基丙烯酸甲酯)微胶囊)中、在胶体给药系统(例如,脂质体、白蛋白微球体、微乳液、纳米粒子和纳米胶囊)中或在乳浊液(macroemulsion)中。这样的技术披露于Remington's Pharmaceutical Sciences第16版中9(Osol,A.编著(1980))。
[0344] 在一些实施方案中,可以使用持续释放制剂。适合的持续释放制剂的实例包括含有DEspR特异性拮抗剂(如抗DEspR抗体)的固体疏水聚合物半透性基质,其中这些基质处于成型物品(例如薄膜或微胶囊)的形式。持续释放基质的实例包括聚酯、水凝胶(例如,聚(甲基丙烯酸2-羟乙酯)、或聚(乙烯醇)、聚乳酸(美国专利号3,773,919)、L-谷氨酸和γ-乙基-谷氨酸酯的共聚物、不可降解性乙烯-乙酸乙烯酯、可降解性乳酸-乙醇酸共TM
聚物如LUPRON DEPOT (由乳酸-乙醇酸共聚物和醋酸亮丙瑞林组成的可注射微球)、以及聚-D-(-)-3-羟基丁酸。虽然聚合物如乙烯-乙酸乙烯酯和乳酸-乙醇酸能够释放分子持续100天以上,但是某些水凝胶释放蛋白质持续较短的时段。当包封的抗体长时间留在体内时,它们可能因在37°C暴露于水分而变性或聚集,导致生物活性丧失和可能的免疫原性改变。可以根据所涉及的机制设计用于稳定的合理策略。例如,如果发现聚集机制是因巯基-二硫键交换所致的分子内S--S键形成,可以通过修饰硫氢基残基、从酸性溶液冻干、控制水分含量、使用适当的添加剂、以及开发特定的聚合物基质组合物来实现稳定。
[0345] 在在此所述的方法中将要用于体内给药(如肠胃外给药)的治疗制剂可以是无菌的,这是通过经无菌滤膜过滤或或本领域技术人员已知的其他方法而容易地完成的。
[0346] 剂量和持续时间
[0347] 以符合良好医学实践的方式配制、给药、以及给予在此所述的DEspR特异性拮抗剂,如抗DEspR抗体和其抗体片段。在这种情况下的考虑因素包括正在治疗的具体失调、正在治疗的具体受试者、个体受试者的临床状况、失调的原因、药剂的送递部位、给药方法、给药方案、以及医疗从业者已知的其他因素。将要给予的DEspR特异性拮抗剂的“治疗有效量”将由这样的考虑事项决定,并且是指为了改善、治疗或稳定癌症,为了增加至进展的时间(无进展存活持续时间)或为了治疗或预防肿瘤、休眠肿瘤或微转移的发生或复发所必需的最小量。DEspR特异性拮抗剂任选地与目前用来预防或治疗癌症或产生癌症风险的一种或多种另外的治疗剂一起配制。这样的其他药剂的有效量取决于该制剂中存在的VEGF特异性拮抗剂的量、失调或治疗的类型、以及上文讨论的其他因素。这些药剂通常以相同的剂量并且以如在此之前所使用的给药途径或以大约从1%至99%的先前采用的剂量而使用。
[0348] 取决于疾病的类型和严重性,大约1μg/kg至100mg/kg(例如,0.1-20mg/kg)的DEspR特异性拮抗剂是用于给予受试者的初始候选剂量,无论是否例如通过一次或多次分开给药或通过连续输注来给药。典型的每日剂量范围可能是从大约1μg/kg至大约100mg/kg或更多,取决于上文提到的因素。特别希望的剂量包括例如5mg/kg、7.5mg/kg、10mg/kg、以及15mg/kg。对于经几天或更长时间的重复给药,取决于病症,维持治疗直到例如癌症被治疗,如通过上文描述或本领域已知的方法所测量的。然而,可以使用其他给药方案。在一个非限制性实例中,如果DEspR特异性拮抗剂是抗DEspR抗体或其抗体片段,则将抗DEspR抗体或其抗体片段以范围从大约5mg/kg至大约15mg/kg,包括但不限于5mg/kg、7.5mg/kg、10mg/kg或15mg/kg的剂量每一周、每二周、或每三周给予一次。可以通过常规技术和测定容易地监测使用在此所述方法的进程。
[0349] 使用在此所述方法的疗法的持续时间将继续,只要医学上指示或直到实现所希望的疗效(例如,在此所述的那些)。在某些实施方案中,DEspR特异性拮抗剂疗法(如在此所述的DEspR特异性抗体或抗体片段)持续1个月、2个月、4个月、6个月、8个月、10个月、1年、2年、3年、4年、5年、10年、20年、或持续直到受试者的终生。
[0350] 治疗的功效
[0351] 可以通过评价在癌症治疗中通常使用的各种终点来量度包含组合物的治疗制剂的癌症治疗方法的功效,这些组合物包含在此所述的DEspR特异性拮抗剂,其中所述终点包括但不限于肿瘤消褪、肿瘤重量或尺寸缩小、进展时间、存活持续时间、无进展存活期、总缓解率、缓解持续时间、以及生活质量。由于在此所述的DEspR特异性拮抗剂(例如,抗DEspR抗体和其抗体片段)靶向肿瘤血管、癌细胞、以及一些癌干细胞亚类,它们代表独特的一类多靶向抗癌药物,并且因此可能需要独特的针对药物的临床缓解的量度和定义。例如,在2-二维分析中肿瘤缩小大于50%是说明缓解的标准截断值。然而,在此所述的抗DEspR或其抗体片段可以在原发肿瘤不收缩的情况下引起转移性扩散的抑制,或可以只是发挥肿瘤抑制作用。因此,应当采用确定抗血管生成疗法功效的新方法,包括例如,使用例如与标记物(如微泡)偶联的DEspR-抗体或抗体片段,测量血管生成的血浆或尿标记物并且通过分子成像测量缓解。在癌症的情况下,治疗有效量的DEspR-抗体或其抗体片段可以减少癌细胞的数目、减小肿瘤尺寸、抑制(即,某种程度减缓并且优选地终止)癌细胞浸润到外周器官中、抑制(即,某种程度减缓并且优选地终止)肿瘤转移、以某种程度抑制肿瘤生长、和/或以某种程度减轻一种或多种与这种失调相关的症状。到DEspR-抗体或其抗体片段可以阻止生长和/或杀死现有的癌细胞的程度,它可以是细胞生长抑制的和/或细胞毒性的。对于癌症疗法,可以例如通过评定存活持续时间、无进展存活持续时间(PFS)、缓解率(RR)、缓解持续时间、和/或生活质量来量度体内功效。
[0352] 在其他实施方案中,在此描述了用于增加易患或诊断患有癌症的人类受试者的无进展存活期的方法。疾病进展时间被定义为从给予药物直到疾病进展或死亡的时间。在一个优选的实施方案中,当与单独用化学疗法治疗相比,使用DEspR特异性拮抗剂(如抗DEspR抗体或其抗体片段)和一种或多种化疗剂的本发明的联合治疗显著地增加了无进展存活期至少大约1个月、1.2个月、2个月、2.4个月、2.9个月、3.5个月、优选地大约1个月至大约5个月。在另一个实施方案中,在此所述的方法在增加易患或诊断患有癌症的人类受试者中显著地增加了缓解率,其中所述癌症用各种治疗剂治疗。缓解率定义为接受治疗的对治疗有反应的受试者的百分比。在一个实施方案中,与单独用化疗疗法治疗的组相比,使用DEspR特异性拮抗剂(如抗DEspR抗体或其抗体片段)和一种或多种化疗剂的本发明的联合治疗显著地增加了在接受治疗的受试者组中的缓解率。
[0353] 如在此所使用的,术语“治疗”(treat)、“治疗”(treatment)、“治疗”(treating)或“改善”(amelioration)是指治疗性治疗,其中目的在于逆转、减轻、改善、抑制、减缓或停止与疾病或失调相关的状况的进展或严重性。术语“治疗”包括减少或减轻与长期免疫病症(如,但不限于,慢性感染或癌症)相关的病症、疾病或失调的至少一种副作用或症状。如果一种或多种症状或临床标记物减少,则治疗总体上是“有效的”。可替代地,如果疾病的进展减慢或停止,则治疗是“有效的”。即,“治疗”不只包括症状或标记物的改善,还包括在治疗不存在的情况下将预期出现的症状进展或恶化的停止或至少减慢。有益的或所希望的临床结果包括,但不限于一种或多种症状减轻、疾病的程度减弱、疾病状态稳定(即,未恶化)、疾病进展的延迟或减慢、疾病状态的改善或缓和、以及缓解(无论是部分缓解完全缓解),无论是可检测的或不可检测的。术语“治疗”疾病也包括提供疾病的症状或副作用的减轻(包括姑息疗法)。
[0354] 例如,在一些实施方案中,在此所述的方法包括向受试者给予有效量的在此所述的抗DEspR抗体或其抗体片段,以便减轻以过度或不需要的血管生成为特征的癌症或其他这样的失调的症状。如在此所使用的,“减轻癌症的症状”是缓解或减少与癌症相关的任何病症或症状。与等同的未治疗的对照相比,这样的减少或阻止的程度是至少5%、10%、20%、40%、50%、60%、80%、90%、95%或100%,如通过任何标准技术所量度的。理想地,将癌症彻底地清除,如通过本领域已知的任何标准方法检测到,在这种情况下,认为癌症已经得到治疗。
正在因癌症接受治疗的患者是医学从业者已经诊断其患有这样一种病症的一位患者。可以通过任何适合的手段进行诊断。诊断和监测可以包括例如检测在生物样品(例如,组织或淋巴结活检、血液试验或尿检样品)中的癌细胞的水平、检测生物样品中的癌症替代标记物的水平、检测与特定癌症相关的症状、或检测涉及这种癌症感染的典型的免疫应答的免疫细胞。
[0355] 如在此所使用的的术语“有效量”是指为减轻疾病或失调的至少一种或多种症状所需要的抗DEspR抗体或其抗体片段的量,并且涉及足够量的药理学组合物以提供所希望的作用,即,抑制新血管的形成。术语“治疗有效量”因此是指当给予典型的受试者时使用如在此披露的方法足以实现特定效果的抗DEspR抗体或其抗体片段的量。如在此所使用的的有效量还将包括足以延迟疾病症状的产生、改变疾病症状的过程(例如但不限于,减慢疾病症状的进展)、或逆转疾病症状的量。因此,不可能规定确切的“有效量”。然而,对于任何给定的病例,可以通过本领域的普通技术人员仅使用常规实验确定适当的“有效量”。
[0356] 可以通过标准药学程序在细胞培养物或实验动物中确定有效量、毒性和治疗效果,例如,确定LD50(对50%的群体致死的剂量)和ED50(在50%的群体中治疗有效的剂量)。这种剂量可以根据所采用的剂型和所利用的给药途径而变化。在毒性作用与疗效之间的剂量比是治疗指数并且可以表示为LD50/ED50比。优选展示大的治疗指数的组合物和方法。可以最初从细胞培养测定中估计治疗有效剂量。同样,可以在动物模型中配制剂量以实现循环血浆浓度范围,包括如在细胞培养物中或在适当的动物模型中所测定的实现症状的半数最大抑制的IC5(0 即,抗DEspR抗体或其抗体片段的浓度)。例如,可以通过高效液相色谱测量血浆中的水平。可以通过适合的生物测定来监测任何特定剂量的效果。剂量可以由医师决定并根据需要调节以适合于观察到的治疗作用。
[0357] 组合抗血管生成疗法
[0358] 在其他实施方案中,提供的用于在患有依赖于血管生成或受其调节的疾病或失调的受试者或个体的组织中通过向受试者给予治疗有效量的组合物(其包含抑制血管生成量的抗DEspR抑制剂,如抗DEspR抗体或其抗体片段)抑制血管生成的方法可以进一步包含给予一种或多种另外的治疗如血管生成抑制剂、化学疗法、辐射、手术、或本领域的技术人员已知的抑制血管生成的其他治疗。
[0359] 在一些实施方案中,在此所述的方法进一步包括给予至少一种DEspR特异性拮抗剂(如抗DEspR抗体或其抗体片段)与一种或多种另外的抗癌疗法的组合。另外的抗癌疗法的实例包括而不限于手术、放射疗法(放疗)、生物疗法、免疫疗法、化学疗法、或这些疗法的组合。另外,细胞毒性剂、抗血管生成和抗增殖剂可以与DEspR特异性拮抗剂组合使用。
[0360] 在这些方法和用途的某些方面,本发明提供了向受试者给予有效量的抗DEspR抗体和一种或多种化疗剂而治疗癌症,其中所述受试者易患或诊断患有局部复发或先前未治疗的癌症。多种化疗剂可以在本发明的组合治疗方法和用途中使用。在“定义”下提供或在此描述了考虑用于在此所述方法中的化疗剂的示例性和非限制性清单。
[0361] 在一些实施方案中,在此所述的方法包括给予DEspR特异性拮抗剂连同一种或多种化疗剂(例如,混合物)或其任何组合。在某些实施方案中,化疗剂例如是卡培他滨、紫杉TM烷、蒽环类、紫杉醇、多西紫杉醇、蛋白质结合的紫杉醇粒子(例如,Abraxane )、多柔比星、表柔比星、5-氟尿嘧啶、环磷酰胺或其组合疗法。如在此所使用的,组合给药可以包括使用分开的制剂或单一药物制剂的同时给予,以及以任何顺序连续给药,其中优选地存在两种(或所有)活性剂同时发挥其生物活性的时段。这样的化疗剂的制剂和给药方案可以根据制造商的说明书或如技术人员根据经验确定而使用。在“Chemotherapy Servicee”,编者M.C.Perry,Williams&Wilkins,Baltimore,Md.(1992)中也描述了用于化学疗法的制剂和给药方案。因此,在一些实施方案中,化疗剂可以先于给予DEspR特异性拮抗剂或在其之后,或可以与其同时给予。
[0362] 在在此所述的多种方法的一些其他实施方案中,与本发明的DEspR拮抗剂(如抗体)一起用于组合肿瘤疗法的其他治疗剂包括涉及肿瘤生长的其他因子如EGFR、ErbB2(也称作Her2)、ErbB3、ErbB4、或TNF的拮抗剂。在一些实施方案中,可以有益的是还向受试者给予一种或多种细胞因子。在一些实施方案中,DEspR拮抗剂与生长抑制剂共同给予。例如,可以首先给予生长抑制剂,随后给予DEspR拮抗剂。然而,也考虑了同时给予或首先给予DEspR拮抗剂。生长抑制剂的适合剂量是目前使用的那些剂量并且可以因生长抑制剂剂和DEspR拮抗剂的联合作用(协同作用)而降低。
[0363] 可以与在此所述的DEspR抑制剂(如抗DEspR抗体和其抗体片段)组合给予的额另的生血管抑制剂实例包括但不限于:直接血管生成抑制剂、血管抑素、贝伐珠单抗( )、Arresten、癌抑素(Canstatin)、考布他汀、内皮抑素、NM-3、血小板反应蛋白、TM
肿瘤抑素(Tumstatin)、2-甲氧雌二醇、西妥昔单抗( )、帕尼单抗(Vectibix )、曲妥珠单抗(赫赛汀)和Vitaxin;和间接血管生成抑制剂:ZD1839(易瑞沙(Iressa))、ZD6474、OSI774(特罗凯(Tarceva))、CI1033、PKI1666、IMC225(爱必妥(Erbitux))、PTK787、SU6668、SU11248、赫赛汀、以及IFN-α、 (塞来昔布)、 (沙立
度胺)、以及IFN-α。
[0364] 在一些实施方案中,用于在此所述的方法中的另外的血管生成抑制剂包括但不限于多种促血管生成生长因子受体的小分子酪氨酸激酶抑制剂(TKI)。目前批准作为抗癌疗法的3种TKI是厄洛替尼(特罗凯 )、索拉替尼(多吉美(Nexavar) )、以及舒尼替尼(索坦(Sutent) )。
[0365] 在一些实施方案中,用于在此所述的方法中的另外的血管生成抑制剂包括但不限TM于mTOR(哺乳动物雷帕霉素靶蛋白)抑制剂,如坦罗莫司(Toricel )、替佐米(
)、沙立度胺( )、以及多西环素。
[0366] 在其他实施方案中,用于在此所述的方法中的血管生成抑制剂包括靶向VEGF通路的一种或多种药物。贝伐珠单抗( )是被批准用于对抗癌症的靶向新血管的第一种药物。它是与VEGF结合从而阻断VEGF抵达VEGF受体(VEGFR)的单克隆抗体。其他药物,如舒尼替尼( )和索拉替尼( ),是与VEGF受体本身连接防止它被激发
的小分子。这样的药物统称为VEGF抑制剂。当VEGF/VPF蛋白与VEGFR相互作用时,例如通过减少可用于与受体相互作用的量或抑制受体的内在酪氨酸激酶活性而抑制配体VEGF,这条途径的功能被阻断。这条途径控制内皮细胞生长以及通透性,并且通过VEGFR介导这些功能。
[0367] 因此,如在此所述,用作血管生成抑制剂的“VEGF抑制剂”包括通过抑制VEGF蛋白的功能(包括抑制VEGF受体蛋白的功能)对促进细胞生长、增殖和存活的信号通路产生直接或间接影响的任何化合物或药剂。这些包括任何有机或无机分子,包括但不限于抑制VEGF信号通路的修饰和未修饰的核酸,如反义核酸、RNAi剂如siRNA或shRNA、肽、模拟肽、受体、配体、以及抗体。siRNA靶向VEGF通路的组分并且可以抑制VEGF通路。优选的VEGF抑制剂例如包括 (贝伐珠单抗),为Genentech,Inc.of South San Francisco,CA,VEGF Trap(Regeneron/Aventis)的抗VEGF单克隆抗体。另外的VEGF抑制剂包括
CP-547,632(3-(4-溴-2,6-二氟-苄氧基)-5-[3-(4-吡咯烷-1-基-丁基)-脲基]-异
噻唑-4-羧酸胺盐酸盐;辉瑞公司,纽约)、AG13736,AG28262(辉瑞公司)、SU5416、SU11248和SU6668(先前的苏根公司,纽约,现在的辉瑞,纽约)、ZD-6474(阿斯利康)、抑制VEGF-R2和-R1的ZD4190(阿斯利康)、CEP-7055(瑟法隆公司,弗雷泽,宾夕法尼亚州)、PKC412(诺华)、AEE788(诺华)、AZD-2171)、 (BAY43-9006,索拉非尼;拜医药保健有限公司和Onyx制药公司)、瓦他拉尼(vatalanib)(也称作PTK-787,ZK-222584:诺华公司和先灵公司:AG)、 (哌加他尼钠,NX-1838,EYE-001,辉瑞公司/吉利德科学公
司/眼科技术制药公司)、IM862(glufanide disodium,柯克兰Cytran公司,华盛顿,美国)、VEGFR2选择性单克隆抗体DC101(英克隆系统公司)、血管酶(angiozyme)、来自核酶的合成核酶(博尔德,科罗拉多)和Chiron(爱莫利维尔,加利福尼亚)、Sirna-027(一种基于siRNA的VEGFR1抑制剂,Sirna治疗剂,旧金山,加利福尼亚)、Caplostatin,VEGF受体的可溶性胞外结构域,新伐司他( Zentaris公司,魁北克市,加拿大)、ZM323881(CalBiochem.,加利福尼亚,美国)、哌加他尼(Macugen)(眼科技术制药公司)、抗VEGF适配体和其组合。
[0368] 在美国专利号6,534,524和6,235,764中也披露了VEGF抑制剂,两者都以其全文结合在此。例如在以下专利中描述了另外的VEGF抑制剂:WO99/24440(1999年5月20日公布)、国际申请PCT/IB99/00797(1999年5月3日提交)、WO95/21613(1995年8月17日公开)、WO99/61422(1999年12月2日公开)、美国专利公开号20060094032的“靶向VEGF的siRNA药物”(siRNA agents targeting VEGF)、美国专利6,534,524(公开AG13736)、美国专利5,834,504(1998年11月10日颁布)、WO98/50356(1998年11月12日公开)、美国专利5,883,113(1999年3月16日颁布)、美国专利5,886,020(1999年3月23日颁布)、美国专利5,792,783(1998年8月11日颁布)、美国专利号US6,653,308(2003年11月25日颁布)、WO99/10349(1999年3月4日公开)、WO97/32856(1997年9月12日公开)、WO97/22596(1997年6月26日公开)、WO98/54093(1998年12月3日公开)、WO98/02438(1998年1月22日公开)、WO99/16755(1999年4月8日公开)和WO98/02437(1998年1月
22日公开)、WO01/02369(2001年1月11日公开);美国临时申请号60/491,771(2003年
7月31日提交);美国临时申请号60/460,695(2003年4月3日提交);和WO03/106462A1(2003年12月24日公开)。在1999年12月9日公开的国际专利出版物WO99/62890、2001年12月13日公开的WO01/95353和2002年6月6日公开的WO02/44158中了披露了VEGF
抑制剂的其他实例。
[0369] 在其他实施方案中,用于在此所述的方法中的血管生成抑制剂包括抗血管生成因子、如α-2抗纤溶酶(片段)、血管抑素(纤维蛋白溶酶原片段)、抗血管生成抗凝血酶III、软骨源抑制剂(CDI)、CD59互补片段、内皮抑素(胶原蛋白XVIII片段)、纤连蛋白片段、gro-β(C-X-C趋化因子)、肝素酶、肝素六糖片段、人绒毛膜促性腺激素(hCG)、干扰素α/β/γ、干扰素诱导蛋白(IP-10)、白细胞介素-12、kringle5(纤维蛋白溶酶原片段)、β-血小板球蛋白、EGF(片段)、VEGF抑制剂、内皮抑素、纤连蛋白(45kD片段)、高分子量激肽原(结构域5)、HGF的NK1、NK2、NK3片段、PF-4、丝氨酸蛋白酶抑制剂蛋白酶抑制剂8(serpin proteinase inhibitor8)、TGF-β-1、血小板反应蛋白-1、鞘脂激活蛋白原、p53、人血管生成素相关家族蛋白-1(angioarrestin)、金属蛋白酶抑制剂(TIMP)、2-甲氧雌二醇、胎盘核糖核酸酶抑制剂、纤维蛋白溶酶原激活物抑制剂、催乳素16kD片段、增殖蛋白相关蛋白(proliferin-related protein)(PRP)、维生素A酸类、四氢皮质醇-S转化生长因子β(tetrahydrocortisol-S transforming growth factor-beta,TGF-b)、血管抑制素(vasculostatin)和人血管内皮抑制素(vasostatin)(钙网蛋白片段)、沙立度胺帕米膦酸盐(pamidronate thalidomide)、TNP470、二膦酸盐家族如氨基二膦酸盐唑来膦酸(amino-bisphosphonate zoledronic acid)、铃蟾肽/胃泌素释放肽(GRP)拮抗剂如RC-3095和RC-3940-II(Bajol AM等人,British Journal of Cancer(2004)90,245-252)、抗VEGF肽RRKRRR(dRK6)(Seung-Ah Yoo,J.Immuno,2005,174:5846-5855)。
[0370] 因而,关于给予DEspR抑制剂(如抗DEspR抗体和其抗体片段),抑制血管生成的化合物表明,以临床上适当的方式给药对于至少统计显著部分的患者产生了有益作用,如症状改善、治愈、疾病负荷降低、肿瘤质量或细胞数减少、生命延长、生活质量改善、或被熟悉治疗特定类型的疾病或病症的医生通常认为是积极的其他作用。
[0371] 另外的DEspR抑制剂的实例包括但不限于阻断VEGFsp、ET-1和/或其他ET-1或VEGFsp样配体与DEspR结合的分子、干扰DEspR的下游信号事件的化合物、或抑制该受体激活的其他化合物或药剂。这样的化合物可以与DEspR结合并且阻止VEGFsp、ET-1或其他模拟配体的结合。还考虑了其他抑制剂,包括与结合VEGFsp的DEspR结构域结合的小分子、可溶性DEspR受体、含有DEspR ET-1的肽和/或VEGFsp结合结构域,等等。
[0372] 按照正在治疗的具体特定适应症的需要,在此所述的组合物的治疗制剂也可以含有一种以上的活性化合物,并且这些化合物优选地是具有不彼此不利地影响的互补活性的那些活性化合物。例如,可能需要进一步提供与EGFR、VEGF、VEGFR或ErbB2(例如,赫赛汀TM)结合的抗体或拮抗剂。可替代地或另外地,该组合物可以包含细胞毒性剂、细胞因子、生长抑制剂剂和/或VEGFR拮抗剂。这样的分子以有效用于预期目的的量适当地组合存在。
[0373] 在任何在此所述的方法和用途的某些方面,与本发明的抗体一起用于组合癌症疗法的其他治疗剂包括其他抗血管生成剂。许多抗血管生成剂已经被鉴定并且是本领域已知的,包括由Carmeliet和Jain(2000)列出的那些。在一些实施方案中,DEspR拮抗剂,如在此所述的人源化抗DEspR抗体或其抗体片段与VEGF拮抗剂或VEGF受体拮抗剂如VEGF变体、可溶性VEGF受体片段、能够阻断VEGF或VEGFR、中和抗VEGFR抗体的适配体、VEGFR酪氨酸激酶的低分子量抑制剂及其任何组合按组合方式使用。可替代地或另外地,两种或更多种抗DEspR拮抗剂可以共同给予受试者。
[0374] 为了治疗疾病,如在此所述,DEspR特异性拮抗剂的适当剂量将取决于如上文定义的将要治疗的疾病的类型、疾病的严重性和病程、是否出于预防或治疗目的而给予DEspR特异性拮抗剂、先前的治疗适应症、受试者临床病史和对DEspR特异性拮抗剂的反应、以及主治医师的考虑。将DEspR特异性拮抗剂按一次或经过一系列治疗适当地给予受试者。在联合治疗方案中,在此所述的DEspR特异性拮抗剂和一种或多种抗癌治疗剂以治疗有效或增效的量给予。如在此所使用的,治疗有效量是这样的量,DEspR特异性拮抗剂和一种或多种其他治疗剂的共同给药或在此所述组合物的给药导致减轻或抑制如在此所述的癌症。治疗增效的量是DEspR特异性拮抗剂和一种或多种其他治疗剂的量,这个量是协同或显著地减少或消除与特定疾病相关的病症或症状所必需的。
[0375] DEspR特异性拮抗剂和一种或多种其他治疗剂可以按足以减少或消除肿瘤、休眠肿瘤、或微转移的出现或复发的量和时间同时或依次给予。DEspR特异性拮抗剂和一种或多种其他治疗剂可以作为维持疗法给予以防止肿瘤复发或降低其可能性。
[0376] 如本领域的普通技术人员将理解的,化疗剂或其他抗癌药的适当剂量将通常大约是在临床治疗(例如,其中这些化疗剂单独或与其他化疗剂组合给予的情况下)中已经采用的那些剂量。取决于正在被治疗的病症,将可能出现剂量的变动。给予治疗的医师将能够决定各位受试者的适当剂量。
[0377] 除了以上治疗方案之外,受试者可以经历放射疗法。
[0378] 在在此所述的方法、用途和组合物中任一项的某些实施方案中,给予的DEspR抗体是完整的裸抗体(naked antibody)。然而,在一些实施方案中,DEspR抗体可以与细胞毒性剂偶联。在任何这些方法和用途的某些实施方案中,偶联的DEspR抗体和/或其DEspR抗体片段被细胞内化,导致偶联物在杀死与其结合的癌细胞的治疗效果增加。在一些实施方案中,与DEspR抗体和/或其DEspR抗体片段偶联的细胞毒性剂靶向或干扰癌细胞中的核酸。这样的细胞毒性剂的实例包括美登素类化合物(maytansinoids)、刺孢霉素、核糖核酸酶和DNA核酸内切酶,并且在本文中别处进一步描述。
[0379] 除非在此另外定义,与本申请相关的所使用的科学和技术术语应当具有本披露所属领域的普通技术人员通常所理解的含义。应当理解的是,本发明不限于在此所述的特定方法学、方案、以及试剂,等等,并且它们可以像这样变动。在此使用的术语的目的仅在于描述具体的实施方案,并且不意在限制本发明的范围,本发明的范围仅由权利要求书限定。免疫学和分子生物学中常用术语的定义可以在以下文献中找到:The Merck Manual of Diagnosis and Therapy,第18 版,由 Merck Research Laboratories 于2006年出版(ISBN0-911910-18-2);Robert S.Porter等人(编著),The Encyclopedia of Molecular Biology,Blackwell Science Ltd.,1994年出版(ISBN0-632-02182-9);
和Robert A.Meyers(编著),Molecular Biology and Biotechnology:a Comprehensive Desk Reference,VCH Publishers,Inc.,1995年出版(ISBN1-56081-569-8);Immunology by Werner Luttmann,由Elsevier于2006年出版。分子生物学中常用术语的定义存
在于以下文献中:Benjamin Lewin,Genes IX,Jones&Bartlett Publishing,2007年出版(ISBN-13:9780763740634);Kendrew等 人(编 著),The Encyclopedia of Molecular Biology,Blackwell Science Ltd.,1994 年 出 版(ISBN0-632-02182-9);和 Robert A.Meyers(编著),Maniatis等人Molecular Cloning:A Laboratory Manual,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.,USA(1982);Sambrook 等 人,Molecular Cloning:A Laboratory Manual 第 2 版,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.,USA(1989);Davis等人,Basic Methods in Molecular Biology,Elsevier Science Publishing,Inc.,New York,USA(1986); 或 Methods in Enzymology:Guideto Molecular Cloning Techniques 第 152 卷,S.L.Berger 和A.R.Kimmerl(编著),Academic Press Inc.,San Diego,USA(1987);Current Protocols in Molecular Biology(CPMB)(Fred M.Ausubel等人编著,John Wiley and Sons,Inc.),Current Protocols in Protein Science(CPPS)(John E.Coligan等人编著,John Wiley and Sons,Inc.)和Current Protocols in Immunology(CPI)(John E.Coligan等人编著,John Wiley and Sons,Inc.),所有文献通过引用以其全文结合在此。
[0380] 如在此所使用的,术语“包含”表示除了提出的限定要素之外,其他要素也可以存在。“包含”的用途表明包括而非限制。
[0381] 如在此所使用的的术语“基本上由……组成”是指给定实施方案所需要的那些要素。该术语允许不实质影响本发明的这个实施方案的基本特征和新颖的或功能性特征的要素存在。
[0382] 术语“由……组成”是指如在此所述的组合物、方法、及其对应的组分,其排除在该实施方案的这个描述中没有列举的任何要素。
[0383] 此外,除非上下文另外需要,单数术语应当包括复数并且复数术语应当包括单数。如在本说明书和所附权利要求书中所使用的,单数形式“一个/一种(a/an)”、以及“该(the)”包括复数指代,除非上下文另外清楚地指示。因此例如,对“该方法”的指代包括在此所述类型的和/或在阅读本披露等等时对于那些本领域的技术人员而言显而易见的一个或多个方法和/或步骤。
[0384] 除了在操作实例中或在另外说明的情况下,表述在此所使用的成分的量或反应条件的所有数字应当在所有情况下理解为受术语“大约”的修饰。当与百分数一起使用时,术语“大约”可以表示±1%。
[0385] 应当理解的是,本发明不限于在此所述的特定方法、方案、以及试剂,等等,并且它们可以像这样变动。在此所使用的术语的目的仅在于描述具体的实施方案,并且不意在限制本发明的范围,本发明的范围仅由权利要求书限定。
[0386] 经鉴定的所有专利和其他出版物明确地通过引用结合在此,其目的在于描述和披露例如在这样的出版物中所述的可能与本发明一起使用的方法。这些出版物仅由于它们的披露先于本申请的提交日而被提供。就这一方面而言任何内容均不得解释为承认发明人由于在先发明或由于其他任何原因而无权优先于这样的披露。就这些文献的日期而言的所有陈述或就这些文献的日期而言的描述是基于申请人可获得的信息,并且不构成对这些文献的日期或内容的正确性的任何承认。
[0387] 通过以下实例进一步说明本发明,这些实例不应当解释为限制性的。
[0388] 实例
[0389] 实例1
[0390] 开发新颖的抗人双重内皮素受体-1/VEGFsp受体(抗hDEspR)单克隆抗体治疗作为肿瘤血管生成和肿瘤细胞侵袭力的抑制剂
[0391] DEspR是在胚胎发育中的关键性血管生成参预者,如在DEspR-/-敲除小鼠中所见(Herrera等人,2005),并且有助于成体组织血管供应,如在单倍体缺陷(+/-)成年小鼠中所见,其中所述小鼠展示由能量多普勒分析显示的组织血管供应减少(图2)。
[0392] 基于肿瘤侵袭和转移与针对VEGF-靶向疗法的内在和逃避性抵抗的关联,分析抗侵袭和抗转移性药物与抗血管生成疗法的组合是重要的(Bergers和Hanahan2008)。可以通过包含DEspR抑制作用的新颖的疗法来解决针对抗癌疗法的这种新治疗要求,因为在人内皮细胞中检测到DEspR和VEGFsp表达,在肿瘤血管中其表达增加,在肿瘤组织阵列中的癌细胞内和在建立的不同转移性癌细胞系中检测到其表达,并且因为如在此使用相应建立的体外测定显示,DespR的抑制减弱了血管生成和肿瘤细胞侵袭力。
[0393] 通过在基础条件和血管生成性管形成条件下在脐静脉内皮细胞(HUVEC)和微血管内皮细胞(HMECS)中的免疫染色,检测到DEspR和VEGFsp(图3A-3E)。重要的是,使用抗DEspR(Ab1)和抗VEGFspv(Ab2)抗体两者在HUVEC(图3D)和HMEC(图3E)血管生成测定中看到血管生成新血管的管长度的抑制(对于HUVEC和HMEC两者,Tukey配对多重比较P<0.001)。使用其他血管生成参数(如产生的新血管分支和相互连接)观察到相似的发现。同样重要的是,也在肿瘤细胞中检测到DEspR和VEGFsp,其中VEGFsp和DEspR共定位于细胞膜和核膜内。在图3A-3C中显示了代表性免疫染色。
[0394] 在多个肿瘤细胞类型中检测到DEspR细胞膜和核膜表达,表明抗DEspR疗法对不同的癌类型有效。简言之,在人非小细胞肺癌NCI-H727、肺巨细胞瘤TIB-223/GCT、乳腺腺癌MDA-MB-231(图4A-4C)和MDA-MB-468、膀胱癌253J BV、结肠腺癌SW480、肝细胞癌HEP3B、黑色素瘤SK-MEL-2、骨肉瘤MG-63、卵巢腺癌HTB-161/NIH:OVCA R3、前列腺腺癌PC-3mm2、以及胰腺癌CRL-1469/PANC-1(图4D)中检测到DEspR表达。在HCI-H292肺粘液表皮样癌和HEPG2肝细胞癌(图5A)、以及CCL-86/Raji伯基特淋巴瘤中未检测到DEspR表达,因此显示阳性观察结果的特异性。在Gr.III肺腺癌的肿瘤切片免疫染色(图5C)上证实了NCI-727肺癌细胞中的发现(图5B)。
[0395] 如在图6A-6B中所示,与对照(C)和免疫前抗体处理(PI)相反,通过抗人DEspR抗体处理对DEspR的抑制在测试的两个细胞系、转移性乳腺肿瘤MDA-MB-231和胰腺腺癌PANC-1细胞系中抑制了肿瘤细胞侵袭力。通过DEspR抑制靶向肿瘤血管生成和肿瘤细胞侵袭力两者的能力可以更有效地解决在侵袭性肿瘤中以及在对于当前抗VEGF疗法的逃避性抵抗中所见到的联合血管生成-转移表型。
[0396] 也已经使用抗ratDEspR抗体在具有正常免疫功能的大鼠中辐射诱导的乳腺瘤模型中展示体内证明(Herrera等人,2005)。如在7图中所示,与模拟治疗的对照相比较,抗DEspR治疗的大鼠展示最少的肿瘤生长。
[0397] 一致地,乳腺瘤的免疫组织化学分析显示在与人MDA-MB231乳腺癌细胞相似的乳腺瘤细胞中的DEspR表达(图8A),而在正常的乳腺组织中无表达(图8B)。重要的是,残余肿瘤在治疗的大鼠中展示血管的正常化(图8C),相反,模拟治疗的肿瘤在肿瘤血管中显示出破坏的内皮,同时肿瘤细胞侵蚀到管腔内(图8D)。
[0398] 临床上,相对于当前VEGF/VEGFR2靶向疗法增加VEGFsp/DEspR靶向抗血管生成疗法可以加性地或协同地在癌症患者中导致所希望的总生存期终点增加。鉴于临床中已经存在几种VEGF/VEGFR2疗法,进行如在此所述的抗DEspR疗法的转化开发(translational development)以便提供这种增加。
[0399] 在逻辑上,在此所述的实验展示了显示稳健亲和力、特异性和功能性的前体多克隆抗大鼠DEspR抗体(图7和8A-8D;Herrera等人,2005)和多克隆抗人DEspR抗体的成功开发(图5A-5C和6A-6B;Glorioso等人,2007)。
[0400] 对于选择在此所述的人单克隆抗体治疗方法用于DEspR靶向抗血管生成疗法和靶特异性分子成像存在重大优点。人源化人单克隆抗体疗法(Ab-Rx)是快速增长类型的人类疗法(Carter2006)并且与5%成功率的新化学实体(包括小分子药物)相比具有18%-24%的相对高的成功率(Imai和Takaoka2006)。
[0401] 使用位于hDEspR的胞外氨基末端的9个氨基酸(aa)长的表位,我们已经开发并验证了对人DEspR特异的鼠单克隆抗体,在此称作7C5B2抗体(Glorioso等人,2007)。
[0402] 简言之,用KLH偶联的抗原肽免疫小鼠,所述抗原肽包含hDEspR的NH2端的9个氨基酸,即DEspR(1-9)。在四次注射之后,收集血清以便使用游离抗原肽作为抗原来筛选抗体滴度。将展示最好滴度的小鼠用于融合实验。使用游离抗原肽作为抗原,通过ELISA筛选融合克隆的上清液。将所有阳性克隆转移到24孔平板上并且通过ELISA再测试/确认。选择10个最好的克隆用于进一步测试,所述克隆包含候选单克隆抗体,抗hDEspR单克隆抗体。使用来自鉴定的10个最好的克隆的上清液,通过ELISA测定有希望的单克隆抗体的相对亲和力。
[0403] 针对抗原性hDEspR9-aa肽的单克隆抗体的相对亲和力的分析,鉴定了克隆7C5C5和7C5B2作为具有最强亲和力的单克隆抗体。基于它们对抗原肽的亲和力较高,选择这两个克隆用于扩增和后续大规模生产。
[0404] 为了确定特异性,通过测试亚克隆上清液和后续的纯化抗体,用蛋白质印迹分析测试了低亲和力(5G12E8)、中等亲和力(2E4H6)、以及高亲和力(7C5B2)单克隆抗体。候选抗hDEspR单克隆抗体对hDEspR的预测10kD蛋白质是特异性的。使用从Cos1hDEspR转染的细胞分离的总细胞蛋白作为抗原进行蛋白质印迹分析,第一抗体包括纯化的抗体和
3个选择克隆的亚克隆上清液,凝胶浓度为10%,以便检测hDEspR的预期10kD分子量蛋
白质。使用硝酸纤维素(PIERCE)连同具有3.07g Tris、14.4g甘氨酸、200ml甲醇、800ml dH2O的转移缓冲液。以1:100,000使用HRP抗小鼠多价免疫球蛋白(Sigma#0412);ECL试剂(SuperSignal West Femto试剂盒#34094)、Stain试剂Kodak RP-X-Omat、以及X胶片(Kodak X胶片#XBT-1)。
[0405] 无论相对亲和力是多少,蛋白质印迹结果证明了抗人DEspR单克隆抗体的特异性,并且鉴定了一种以上的成功的抗人DEspR单克隆抗体。在所测试的抗体中,具有最高相对亲和力和特异性的单克隆抗体克隆是克隆7C5B2。
[0406] 对第一候选抗hDEspR单克隆抗体测试血管生成参数的抑制,以便使用建立的体外测定来鉴定候选抗hDEspR mAb-Rxtic作为抗血管生成药。
[0407] 为了评定对人细胞特异的抗生血管特性,使用了基于人脐静脉细胞(HUVEC)的商业可得的、预先验证的建立的血管生成测定。监测多个体外测定血管生成参数,如形成的血管生成管的数目、“新血管”或管分支的能力(分支点数目#)、所述新血管分支连接并且形成复杂连接的能力(分支数目#=连接)、由新血管的管长度代表的血管生成稳健性(管长度以mm表示)。因此评定了纯化的7C5B2抗DESPR单克隆抗体在体外抑制HUVECS血管生成潜力的能力。
[0408] 首先评定了可以抑制>80%的新血管的管长度和分支点数目的抗hDEspR7C5B2单克隆抗体的最佳有效浓度。发现用于抗血管生成效果的这个最佳抑制剂浓度是500nM的抗hDEspR7C5B2单克隆抗体。这个浓度然后用于一系列实验中来评价血管生成的其他体外参数。
[0409] 抗hDEspR7C5B2单克隆抗体有效地抑制不同的血管生成体外参数,如形成的新血管的管数目、分支点、分支连接以及管长度。如果不优于先前验证的多克隆抗体,抗hDEspR7C5B2单克隆抗体也良好地发挥作用,因此验证了其作为单克隆治疗剂的潜力。
[0410] 还针对与人癌组织阵列中的肿瘤血管内皮和/或肿瘤细胞的特异性结合测试了抗hDEspR7C5B2单克隆抗体。在相同载玻片上由代表肿瘤和正常组织的芯活检标本组成的人肿瘤组织阵列的免疫组织化学分析中评估了抗hDEspR7C5B2单克隆抗体。使用福尔马林固定、石蜡包埋的芯活检切片测试了优化的特异性和检测灵敏度的条件。进行双重免疫荧光实验,以便评价hDEspR表达和CD133表达,其中后者用作假定癌干细胞的标记。进行抗原修复,并且以1:10使用抗hDEspR单克隆抗体,以1:20使用商业可得的抗CD133单克隆抗体。
[0411] 如在14A-14B图中所示,使用抗hDEspR7C5B2单克隆抗体的人肿瘤组织阵列的代表性免疫组织化学分析检测到在II期肺癌肿瘤细胞中hDEspR的表达增加(图14A)。一些肿瘤细胞对于hDEspR和CD133两者为双免疫染色阳性,其中其他肿瘤细胞针对CD133而被免疫染色。这些观察结果展示,hDEspR也存在于假定的CD133阳性癌干细胞、以及CD133阴性肿瘤细胞中。相反,正常肺标本对于hDEspR或CD133不展示出任何免疫染色(图14B)。另外,如通过免疫荧光法用抗DEspR、抗CD133和抗CXCR4单克隆抗体的组合检测,在多种CD133+癌干细胞亚类中观察到增加的DEspR表达,包括NBC mda-mb-231细胞、胰腺导管腺癌Panc1细胞、胶质母细胞瘤细胞、以及乳腺癌细胞。因此,在一些实施方案中,在此所述的组合物和方法可以通过靶向癌干细胞或癌症起始细胞而用于针对肿瘤抵抗和/或复发的靶向治疗中。
[0412] 因此,总而言之,这种鼠抗体“7C5B2”通过ELISA展示与9个氨基酸长的表位的高亲和力结合(图9),通过蛋白质印迹证明了特异性(图10),将正在经历管形成的HUVEC(图3A-3E)和胰腺腺癌PANC-1、以及乳腺癌MDA-MB-231细胞进行免疫染色。
[0413] 通过显示对人DEspR特异的多克隆(Pab)和单克隆抗DEspR7C5B2两者抑制HUVEC中不同的血管生成参数(图10A-10C):作为新血管复杂性的量度的平均分支点数目(图10A)和作为新血管密度的量度的总的管长度(图10B),我们证明了体外功能性效果。对于抑制的剂量反应曲线(图10C),显示了抑制两种血管生成参数的等同稳健性。重要的是,鼠7C5B2也抑制了在MDA-MB-231人乳腺癌和PANC-1胰腺癌细胞系中的肿瘤细胞侵袭力。
[0414] 这种鼠抗人DEspR单克隆抗体7C5B2因此显示具有用作初始抗体以便开发在此所述的抗DEspR复合去免疫化全人抗体的高亲和力、特异性和功能性。
[0415] 因此,在此描述了用作新颖的抗体疗法的抗hDEspR复合去免疫化全人单克隆抗体(cdHMAb)的开发、表征、以及体外效果测试,旨在解决针对当前的抗VEGF/VEGFR2抗血管生成疗法的逃避性抵抗和内在抵抗。
[0416] 我们已经选择Antitope的复合人抗体技术,以便产生用于抗体疗法的抗hDEspR去免疫化人单克隆抗体(Antitope,2010)。这项技术在开始产生去免疫化100%人抗体,与源自体吞噬菌体技术和转基因小鼠技术的非去免疫化人抗体相反。简言之,选择包含源自无关人抗体的V区的多个序列区段(“复合物”)的复合人抗体,以维持对于起始鼠前体抗人DEspR单克隆抗体的抗原结合关键的单克隆抗体序列,并且使用专有“计算机工具”针对潜在的T-细胞表位的存在对这些复合人抗体进行筛选(Holgate和Baker,2009)。人序列区段与初始抗体V区的所有部分的紧密配合以及从一开始的CD4+T细胞表位的消除避免了在‘100%人’治疗性抗体的开发中的免疫原性,同时通过对于抗原特异性必需的现有技术序列分析维持了最佳亲和力和特异性(Holgate和Baker2009)。免疫原性可能阻碍100%人单克隆抗体的临床应用(Chester等人,2009)。
[0417] 简言之,“复合人抗体”包含源自无关人抗体的V区的多个序列区段(“复合物”),其被选择为维持对于初始鼠前体抗人DEspR单克隆抗体(如7C5B2抗体)的抗原结合关键的单克隆抗体序列,并且均已经使用“计算机工具”针对潜在T-细胞表位的存在进行筛选(Holgate和Baker,2009)。人序列区段与初始抗体V区的所有部分的紧密配合以及从一开始的CD4+T细胞表位的消除允许这种技术避免在‘100%人’治疗性抗体的开发中的免疫原性,同时通过对于抗原特异性必需的现有技术序列分析维持了最佳亲和力和特异性(Holgate和Baker2009)。
[0418] 如在此所述,使用Swiss PDB产生小鼠抗hDEspR抗体V区的结构模型并且对其进行分析,以便鉴定在V区中重要的“约束性”氨基酸,这些氨基酸可能对于抗体结合特性是必需的。认为CDR(使用Kabat定义)内部含有的残基连同许多框架残基是重要的。抗hDEspR的VH和VL(Vκ)序列(如在此描述为SEQ ID NO:4和SEQ ID NO:9)包含典型的框架残基,并且CDR1、CDR2、以及CDR3基序与许多鼠抗体是可比较的。
[0419] 根据以上分析,确定可以产生抗hDEspR的复合人序列,其具有CDR外部的广泛范围的替代物,但是在CDR序列内仅具有窄范围的可能替代性残基。分析表明,可以组合来自几种人抗体的相应序列区段以产生与鼠序列中那些CDR相似或相同的CDR。对于CDR外部或侧翼的区域,鉴定了广泛的人序列区段选项作为与在此所述的组合物和方法一起使用的新颖的抗DEspR复合人抗体V区的可能组分(参见,例如,表1)。
[0420] 基于这些分析,使用用于计算机分析肽与人II类MHC等位基因结合的iTopeTM技TM术(Perry等人,2008)并且使用已知抗体序列相关性T细胞表位的TCED (T细胞表位数据库)(Bryson等人,2010),选择并且分析了可能用来产生新颖的抗DEspR复合人抗体变体的序列区段的大型初步集合。弃去被鉴定为人II类MHC的重要的非人种系结合物或针对TM
TCED 评定为重要命中的序列区段。这产生缩减的区段集合,并且再次如上文分析这些的组合,以确保在区段之间的交界的确不含潜在的T细胞表位。然后将选择的区段组合以产生用于合成的重链V区序列和轻链V区序列。在此提供和使用上述方法产生的示例性重链V区序列包括SEQ ID NO:13-SEQ ID NO:17。在此提供并且使用上述方法产生的示例性重链V区序列包括SEQ ID NO:18-SEQ ID NO:19。
[0421] 通过在血管生成测定中检验HUVEC(人脐静脉细胞)和HMEC(成年人微血管内皮细胞)的血管生成的剂量反应-抑制作用评定了在此所述的抗体的体外功效(参见图3A-3E,10A-10C),其中在一些实施方案中,所述血管生成测定是用共培养的癌细胞(如PANC-1和MDA-MB-231)建立的,并且在一些实施方案中是在常氧条件和缺氧(2%O2)条件下建立的。
出于以下原因使用HUVEC和HMEC:HUVEC是本领域的标准品,但是由于这些细胞是脐静脉来源的,还使用了成人微血管内皮细胞(HMEC)。另外,除了通常在血管生成测定中添加的胎牛血清之外,用共培养的癌细胞评定血管生成,以便更好地模拟癌细胞产生的有助于逃避性抵抗和内在抵抗的血管生成因子。
[0422] 在一些实施方案中,由于缺氧是血管生成触发因素之一以及疑似针对当前抗VEGF疗法的逃避性抵抗的基础的促成因素之一,在常氧和2%O2缺氧下实施体外功效测定。使用MDA-MB-231和PANC-1细胞并且通过使用建立的定量测定,分析了复合去免疫化单克隆抗体介导的体外肿瘤细胞侵袭力的抑制。在常氧条件和2%O2-缺氧条件下进行这些分析,以便测定已知与缺氧相关的一种侵袭性更强的肿瘤细胞表型。
[0423] 将抗hDEspR抑制的效果与对照比较,所述对照可以包括未处理对照、同种型对照、鼠前体抗hDEspR单克隆抗体对照、以及贝伐珠单抗对照。使用至少5次重复,对每个点进行血管生成和肿瘤细胞侵袭力测定。此外,对于前2个候选先导物(candidate-lead),也进行了剂量反应曲线抑制应答(dose response curve inhibition response),其中使用至少5次重复研究每个剂量。
[0424] 可以通过单因素ANOVA和多重配对比较来分析测定,以评定显著性变化。来自每种候选先导物的对照的平均抑制%水平(例如,5-10)用来根据不同的测定法将它们分级,并且最高级的两个标识为前2个先导物,与分别在例如常氧条件和缺氧条件下以及在例如MDA-MB-231和PANC-1癌细胞系两者中的最佳血管生成及肿瘤细胞侵袭力抑制剂相对应。
[0425] 进行肿瘤阵列分析以确证每种先导物在来自不同癌组织类型的人活检芯样品的组织阵列中检测肿瘤细胞和肿瘤新血管的特异性和灵敏度。对代表来自脑、胰、肺、乳腺、卵巢、前列腺、膀胱、结肠、胃的实体瘤的组织阵列小组(tissue array panel)进行这种分析。假定在验证鼠前体抗hDEspR Mab-H1中所使用的免疫化学条件相同,分析针对结果的特异性。如所示,在正常人胰中存在最少的DEspR表达,而在IV期胰腺癌中展示在胰腺肿瘤细胞和肿瘤血管中的DEspR表达增加。将复合去免疫化单克隆抗体候选先导物分级,并且确定了具有在肿瘤组织阵列免疫组织化学中具有最佳信噪比的肿瘤细胞和肿瘤新血管的最佳检测的前2个。这可以与用鼠前体抗hDEspR单克隆抗体获得的肿瘤阵列免疫染色观察结果比较。
[0426] 除了使用计算机筛选T-细胞表位对在此所述的抗体去免疫化以便最小化和减少免疫原性之外,还在体外测试了复合人源化抗hDEspR复合去免疫化单克隆抗体的免疫原性,以便选择免疫原性最小的复合全人单克隆抗体。可以使用代表性的50位供体进行免疫原性筛选,已经证明这与临床观察结果相关(Baker和Jones2007)。
[0427] 免疫原性测试连同特异性和功效的其他体外测定,允许基于多种因素的组合来选择首选抗hDEspR先导物,所述因素包括最佳亲和力(ELISA)、特异性(蛋白质印迹分析)、体外功效(抑制血管生成和肿瘤细胞侵袭力)和最低免疫原性。通过复合抗体人源化过程中消除T细胞表位先验地确定低免疫原性,并且通过使用离体T细胞分析技术确定低免疫原性是重要的转化研究步骤,因为尽管具有靶特异性和总体人源化,但高免疫原性限制了抗体治疗功效(Iwai和Takaoka2006),如已经在临床研究中对英利昔单抗(infliximab)、阿伦珠单抗(Baker和Jones2007综述)所讨论那样。
[0428] 通过在免疫受损的小鼠中在建立的人癌细胞系异种移植物和转移模型中测试抗DEspR介导对肿瘤生长、血管生成和转移的抑制,测试了首选复合去免疫化单克隆抗体先导物的体内功效。还测试了代表如公开的报道中所观察到的逃避性抵抗(乳腺癌)和内在抵抗(胰腺癌)的癌组织类型。例如,使用MDA-MB-231乳腺癌和PANC-1胰腺癌细胞系,因为两者均可以用来产生异种移植和转移脾输注模型。对于MDA-MB-231原位模型和转移模型,使用裸鼠(Oh等人2009,Roland等人2009)。对于PANC-1异种移植皮下模型,如(Zheng等人2008)所述使用裸鼠,而对于PANC-1转移模型,如(Suemizu等人2007)所述使用NOG小鼠。
[0429] 通过策略性使用抗人DEspR特异性抗体(例如,复合去免疫化单克隆抗体初级先导物)和抗人VEGF特异性抗体(贝伐珠单抗)、以及鼠DEspR特异性单克隆抗体,1)可以评定与单独的抗VEGF疗法相比较的抗DEspR疗法的功效,并且2)使用抗DEspR和抗VEGF抗体的组合来确定协同功效。
[0430] 当肿瘤为200-300mm大小时,开始异种移植模型中的治疗,以便模拟临床癌症疗法的情景。为了评定在转移模型中的抗DEspR疗法功效,如所述评定了在脾内输注癌细胞之后5天开始的一项持续治疗方案(Oh等人2009)。为了评定抗DEspR疗法是否诱导用舒尼替尼观察到的转移风险增加(Ebos等人2009),进行了Ebos的实验,由此在癌细胞输注之前7天开始每天输注抗鼠DEspR单克隆抗体持续7次给药。对于每种抗体治疗剂,
使用250μg,如对贝伐珠单抗所述,腹膜内给予每周2次(Roland等人2009),并且对于抗DEspR,腹膜内给予每周3次(Herrera等人2005)。
[0431] 通过多层面参数:原位乳腺肿瘤和皮下胰腺肿瘤的肿瘤体积和肿瘤血管生成的连续成像(例如通过高分辨率Vevo770超声成像和能量多普勒分析)评定了治疗结果。确定总生存期,并且在这个终点处进行了肿瘤尺寸和血管生成的重复超声成像和组织学分析,连同恶性肿瘤表型的组织学分析:细胞核分级、间质的肿瘤细胞侵袭、肿瘤细胞血管拟态、肿瘤新血管的完整性丧失和巨噬细胞浸润。
[0432] 杂合DEspR+/-小鼠存活超过1年并且繁殖,这与在E11.5发生胚胎致死的VEGF+/-单倍缺陷小鼠相反。然而,由于已经在正在进行抗VEGF(贝伐珠单抗)和抗VEGFR2(舒尼替尼,索拉非尼)疗法的患者中观察到副作用,对在此所述的抗人DEspR特异性抗体也检验这些作用。在用cdHMAb-H1和mDEspR-Mab治疗的PANC-1和MDA-MB-231异种移植模
型中进行潜在副作用的参数的分析。例如,潜在的a)心脏毒性可以通过连续非侵袭性超声心脏功能分析进行监测;b)高血压可以通过尾套BP进行监测;c)肠穿孔可以在终点尸体解剖学检验时进行监测;d)出血、血栓形成可以通过检验和血管超声和多普勒血流分析进行监测,并且e)可以进行毒性筛查,如肝功能试验、肾功能试验、全血细胞计数、在研究终点的血液化学。在模拟治疗的年龄匹配的肿瘤模型对照中比较这些参数。
[0433] 与VEGFR2-靶向的肿瘤新血管相比,通过DEspR靶向的新血管的对比增强超声成像,分析响应于疗法的肿瘤血管生成和肿瘤细胞血管拟态变化的分子成像
[0434] 已经通过使用抗VEGFR2抗体导向的微泡的对比增强超声成像展示肿瘤中血管生成的分子成像,其中使用VisualSonics Vevo770高分辨率超声系统进行成像和对比增强分析(Willmann等人2007)。我们已经使用相同的这种系统在与颈动脉疾病进展和中风风险相关的转基因大鼠动脉粥样硬化性模型中检测了在颈动脉疾病新生滋养血管形成中的抗DEspR抗体导向微泡(Decano等人,2010)。如在图16A-16D中所示,DEspR靶向分子成像(16A)检测到DEspR+内皮损伤(16B)和新生滋养血管形成(16C)。使用集成的软件进行对比强度的定量(16D)。
[0435] 由于用于分子成像的靶向模块适用于异种移植肿瘤细胞血管拟态,使用DEspR靶向的分子成像来测试复合去免疫化单克隆抗体,并且将微泡限制于血管管腔。使用如在此所述的复合去免疫化单克隆抗体进行小鼠DEspR特异性分子成像以便监测小鼠源肿瘤血管生成,并且与VEGFR2特异性分子成像比较。在此所述的观察结果提供以下证明:对DEspR特异的复合去免疫化单克隆抗体可以在小鼠模型中用作肿瘤细胞血管拟态分子成像的靶向模块;DEspR表达的分子成像提供了可转化的诊断性体内成像模态以评定肿瘤血管生成,并且DEspR特异性分子成像的对比分析提供了针对肿瘤细胞血管拟态和肿瘤血管生成的差异性贡献的新认识。
[0436] 将MDA-MB-231原位异种移植肿瘤模型和PANC-1异位异种移植肿瘤模型、以及PANC-1脾内输注肝脏转移模型用于分子成像实验。使用同种型抗体分子成像作为对照以证明DEspR阳性分子成像的特异性。遵循用于抗DEspR和抗VEGFR2分子成像的相同条件来验证对比分析。例如,一种复合去免疫化单克隆抗体可以用来靶向肿瘤细胞血管拟态;一种抗DEspR复合去免疫化单克隆抗体可以用来靶向在人异种移植肿瘤中的鼠新血管形成单克隆抗体;抗VEGFR2可以用作比较基准,并且同种型抗体可以用作阴性对照。
[0437] 参考文献
[0438] Baker MP,Jones TD.2007.“鉴定和去除治疗 性蛋白中的免疫原 性”(Identification and removal of immunogenicity in therapeutic proteins),Curr Opin Drug Disc Dev10:219-227。
[0439] Bergers G,Hanahan D.2008.“抗血管生成疗法的抵抗模式”(Modes ofresistance to anti-angiogenic therapy),Nature Reviews-Cancer8:592-603。
[0440] Bocci G,Man S,Green SK,Francia G,Ebos JM,du Manoir JM,Weinerman A,Emmenegger U,Ma L,Thorpe P,Davidoff A,Huber J,Hicklin DJ,Kerbel RS.,2004.“增加的血浆VEGF作为VEGF受体-2单克隆抗体的最佳治疗性给药的替代标记”(Increased plasma VEGF as a surrogate marker for optimal therapeutic dosing of VEGFreceptor-2monoclonal antibodies),Cancer Res64:6616-6625。
[0441] Butler JM,Kobayashi H,Rafii S.2010.“血管小生境在通过血管生成因子促进肿瘤生长和组织修复中的指导作用”(Instructive role of the vascular niche in promoting tumor growth and tissue repair by angiogenic factors)。Nature Reviews-Cancer10:138-146。
[0442] Carmeliet P.2005.“在生命、疾病和医学中的血管生成”(Angiogenesis in life,disease and medicine)Nature438:932-936。
[0443] Carter PJ.2006.“设计强力抗体治疗剂”(Potent antibody therapeutics by design),Nature Reviews Immunology6:343-357。
[0444] Chester KA,Baker M,Mayer A.2005.“在癌症疗法中克服针对外来酶的免疫应答”(Overcoming the immunologic response to foreign enzymes in cancer therapy),Expert Rev Clin Immunol1:549-559。
[0445] Crawford Y,Ferrara N.2008.“研究VEGF抑制剂的抗癌作用的小鼠模型”(Mouse models to investigate anti-cancer effects of VEGF inhibitors),Methods Enzymol445:125-139。
[0446] Decano JL,Matsubara Y,Moran AM,Ruiz-Opazo N,Herrera VLM.2010.“在despr+/-敲除小鼠和颈动脉疾病大鼠模型中的双重内皮素-1/VEGFsp受体(DEspR)在成人血管生成中的作用”(Dual endothelin-1/VEGFsp receptor (DEspR)roles in adult angiogenesis in despr+/-knockout mice and carotid artery disease rat model)(向Circulation杂志提交的原稿)。
[0447] Ebos JM,Lee CR,Cruz-Munoz W,Bjarnason GA,Christensen JG,Kerbel RS.2009.“在用肿瘤血管生成的强力抑制剂短期治疗之后转移加速”(Acceleratedmetastasis after short-term treatment with a potent inhibitor of tumor
angiogenesis),Cancer Cell15:232-239。
[0448] Ferrara N.2009.“介导VEGF非依赖性肿瘤血管生成的途径”(Pathwaysmediating VEGF-independent tumor angiogenesis),Cytokine Growth Factor
doi:10.1016/j.cytogfr.2009.11.003。
[0449] Glorioso N,Herrera VLM,Bagamasbad P,Filigheddu F,Troffa C,Argiolas G,Bulla E,Decano JL,Ruiz-Opazo N.2007.“ATP1A1和Dear SNP-单倍型与原发性高血压的关联:性别特异性和单倍型特异性作用”(Association of ATP1A1and Dear SNP-haplotypes with essential hypertension:sex-specific and haplotype-specific effects),Circ Res100:1522-1529。
[0450] Herrera VLM,Ponce LR,Bagamasbad PD,VanPelt BD,Didishvili T,Ruiz-Opazo N.2005.“在Dear基因缺陷型小鼠中的胚胎致死性:在血管生成中的新参预者”(Embryonic lethality in Dear gene-deficient mice:new player in angiogenesis),Physiol Genomics2005;23:257-268。
[0451] Holgate RGE,Baker MP.2009.“在治疗性抗体的开发中避免免疫原性”(Circumventing immunogenicity in the development of therapeutic antibodies),IDrugs12:233-237。
[0452] Imai K,Takaoka A.2006.“癌症 的抗 体疗 法和 小分 子疗 法的 比 较”(Comparing antibody and small-molecule therapies for cancer),Nature Reviews Cancer6:714-727。
[0453] Jubb AM,Oates AJ,Holden S,Koeppen H.2006.“抗血管生成剂在恶性肿瘤中的益处的预测”(Predicting benefit from anti-angiogenic agents in malignancy),Nature Reviews-Cancer6:626-635。
[0454] Loges S,Schmidt T,Carmeliet P.2010.“抗血管生成疗法抵抗的机制和第三代抗血管生成候选药物的开发”(Mechanisms of resistance to anti-angiogenic therapy and development of third-generation anti-angiogenic drug candidates),Genes&Cancer1:12-25。
[0455] Oh S,Stish B,Sachdev D,Cehn H,Dudek A,Vallera DA.2009.“同 时 识别在转移性乳腺癌小鼠模型中的人表皮生长因子和白细胞介素-4受体的新颖的免疫原性降低的双特异性靶向毒素”(A novel reduced immunogenicity bispecific
targeted toxin simultaneously recognizing human epidermal growth factor and interleukin-4receptors in a mouse model of metastatic breast carcinoma),Clin Cancer Res15:6137-6147(PMCID:PMC2756320[在2010/10/1上可获得])。
[0456] Paez-Ribes M,Allen E,Hudock J,Takeda T,Okuyama H,Vinals F,Inoue M,Bergers G,Hanahan D,Casanovas O.2009.“抗血管生成疗法激发肿瘤恶性进展到局部侵袭增加和远处转移”(Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis),Cancer Cell15:220-231。
[0457] Roland CL,Dineen SP,Lynn KD,Sullivan LA,Dellinger MT,Sadegh L,Sullivan JP,Shames DS,Brekken RA.2009.“血管内皮生长因子的抑制减少了血管生成并且调节了原位乳腺癌异种移植的免疫细胞浸润”(Inhibition of vascular endothelial growth factor reduces angiogenesis and modulates immune cell infiltration of orthotopic breast cancer xenografts),Mol Cancer Ther8:1761-1771。
[0458] Stewart DJ,Kutryk MJ,Fitchett D,Freeman M,Camack N,Su Y,Della Siega A,Bilodeau L,Burton JR,Proulx G,Radhakrishnan S;NORTHERN TrialInvestigators.2009.“VEGF基因治疗未能在晚期冠状动脉病患者中改善缺血性心肌的灌注:NORTHERN试验结果”(VEGF gene therapy fails to improve perfusion of ischemic myocardium in patients with advanced coronary disease:results of the NORTHERN trial),Mol Ther.17:1109-1115。
[0459] Suemizu H,Monnai M,Ohnishi Y,Ito M,Tamaoki N,Nakamura M.2007.“在NOD/SCID/γc裸(NOG)小鼠中使用新颖的定量转移模型鉴定人胰腺癌中的肝脏转移的关键分子调节物”(Identification of a key molecular regulator of liver metastasis in human pancreatic carcinoma using a novel quantitative model of metastasis in NOD/SCID/γc null(NOG)mice),Int J Oncology31:741-751。
[0460] Willett CG,Boucher Y,Duda DG,diTomaso E,Munn LL,Tong RT,Kozin SV,Petit L,Jain RK,Chung DC,Sahani DV,Kalva SP,Cohen KS,Scadden DT,Fischman AJ,Clark JW,Ryan DP,Zhu AX,Blaszkowsky LS,Shellito PC,Mino-Kenudson M,Lauwers GY.2005.“抗血管生成疗法的替代标记以及针对采用放疗和化学疗法的贝伐珠单抗的剂量限制性毒性:直肠癌患者中的I期试验的持续经验”(Surrogate markers for antiangiogenic therapy and doselimiting toxicities for Bevacizumab with radiation and chemotherapy:continued experience of a phase I trial in rectal cancer patients),J Clin Oncol.23:8136-8139。
[0461] Willmann JK,Paulmurugan R,Chen K,Gheysens O,Rodriguez-Porcel M,Lutz AM,Chen IY,Chen X,Gambhir SS.2008.“小鼠中用靶向2型血管内皮生长因子受体的微泡对肿瘤血管生成的US成像”(US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type2in mice),Radiology246:508-518。
[0462] Zheng X,Cui XX,Huang MT,Liu Y,Shih WJ,Lin Y,Lu YP,Wagner GC,Conney AH.2008.“自发转轮锻炼对人胰腺PACN-1和前列腺PC-3异种移植肿瘤在免疫缺陷小鼠中的生长的抑制作用”(Inhibitory effect of voluntary running wheel exercise on the growth of human pancreatic PACN-1and prostate PC-3xenograft tumors in immuno-deficient mice),Oncology Rep19:1583-1588(PMCID:PMC2825748)。
[0463] 实例2
[0464] 在转基因动脉粥样硬化大鼠模型中通过DEspR靶向的对比度增强超声微成像对新生滋养血管形成进行分子成像
[0465] 已知颈动脉新生滋养血管形成与增加的中风和心脏事件风险相关,将在此所述的体内研究设计成通过靶特异性对比度增强超声(CEU)微成像来研究颈动脉新生滋养血管形成的分子成像。因此,使用DEspR(双重内皮素受体1/VEGFsp)靶向微泡(MBD)和Vevo770微成像系统和CEU成像软件,在患有颈动脉疾病(CAD)的雄性转基因大鼠和非转基因对照中进行分子成像。
[0466] 发现DEspR靶向的CEU阳性显像在7/13转基因大鼠中显示显著较高的对比强度信号(CIS)水平和破坏前/破坏后CIS差异,与对照同种型靶向的微泡(MBC)-CEU显像(n=8)中和5/5非转基因对照大鼠的MBD CEU-显像中的显著较低的CIS水平和差异相反(P<0.0001)。离体免疫荧光分析证明MBD与DEspR阳性内皮细胞结合、以及DEspR靶向的增加对比强度信号与新生滋养血管和内膜损伤中的DEspR表达相关。体外分析证明MBD与DEspR阳性人内皮细胞的剂量依赖性结合,其中结合的细胞%和每细胞MBD数增加,这与MBC或未标记的微泡相反(P<0.0001)。
[0467] 双重内皮素-1(ET1)/血管内皮生长因子信号肽(VEGFsp)受体或DEspR(以前作为dear基因保藏于GenBank中)[1]在发育性血管生成中发挥重要作用,这是根据由于缺-/-乏胚胎及胚外血管生成、中断的背部主动脉血管形成、以及异常心脏发育由despr 敲除小+/-
鼠展示的胚胎致死表型而推断的[2]。虽然用VEGF 单倍不足的小鼠展示相似的异常血管-/-
形成和血管生成表型,despr 裸小鼠展示了不同的神经管表型[2-4]。与其在发育性血管生成中的作用一致,DEspR抑制导致成年大鼠乳腺瘤和小鼠黑色素瘤中的肿瘤血管生成和肿瘤生长减弱[2]。
[0468] 开发靶特异性对比增强超声检查(CEU)-成像(在称为血管疾病新血管形成的“分子成像”)是重要的,因为颈动脉新生滋养血管形成与中风风险增加相关[5,6]。然而,未曾报到新生滋养血管的成功分子成像,虽然已经报道了通过非靶向CEU成像的检测[7]。另一方面,在不同疾病模型中检测不同靶标的成功分子成像[8,9]已经显示分子成像在不同疾病背景下的潜力,这些靶标如在肿瘤和后肢缺血血管生成中的αvβ3[10,11]、在肿瘤血管生成中的VEGFR2[12]、在移植排斥中的ICAM-1[13]、在恶性淋巴结中的L-选择素[14]、以及在动脉粥样硬化中的VCAM-1和ICAM-1[15]、在心肌缺血中的P-选择素[16,17]、在血栓形成中的GIIb/IIIa和纤维蛋白原[18,19]。在损伤诱导的新血管形成的高血脂症兔模型中,在靶向VEGFR2-、ICAM-1和VCAM-1的研究中的血管疾病新血管形成的分子成像没有检测到新生滋养血管[9,20]。
[0469] 在此展示了在转基因-高血脂症高血压颈动脉疾病大鼠模型中的颈动脉损伤和扩张的新生滋养血管中的DEspR的分子成像。
[0470] 材料与方法
[0471] 动物。为了促进血管病变中或扩张的新生滋养血管中的病理性血管生成的分子成像研究,选择了患有高血压-动脉粥样硬化作为风险因素的颈动脉疾病大鼠模型
(Tg25[hCETP]Dahl-S大鼠模型),Tg25对于人胆固醇酯转移蛋白是转基因的,所述模型产生加速的中风[21]或晚期发作的冠状动脉心脏病[22]。研究4月龄转基因雄性大鼠(n=13)用于DEspR靶向分子成像(n=13),所述大鼠设计为处于中风[21]或冠状动脉动脉粥样硬化表型[22]病程的早期中点附近。输注MBD的非转基因、非动脉粥样硬化的同窝仔作为阴性生物学对照进行研究(n=5)。同时研究作为阴性成像对照的输注同种型特异性MBC的转基因大鼠(n=8),其具有以下亚组:展示MBD特异性CEU阳性显像的4只转基因大鼠、和4只新生转基因大鼠。
[0472] 靶特异性CEU分子成像。使用具有对比模式软件和链霉亲和素包被的“即用型靶”MicroMarker微泡的Vevo770高分辨率超声系统(VisualSonics Inc,加拿大),所述系统对小鼠中的肿瘤血管生成的VEGFR2的分子成像进行了预先验证[12]。为了将微泡靶向到大鼠DEspR阳性内皮细胞,即用型靶-MicroMarker微泡通过链霉亲和素-生物素偶联与生物素酰化的抗DEspR抗体(MBD)连接。对于对照,即用型靶-MicroMarker微泡与生物素8
酰化的同种型抗体(MBC)连接。每次推注由200微升盐水中的3-4x10 个微泡组成,在经过
8秒输注至大鼠尾静脉中。
[0473] 大鼠颈动脉的CEU成像包含一系列旨在优化MB靶结合、消除混淆因素、以及确定可重复CEU成像的步骤。首先获得颈动脉的基线图像并且固定扫描头以便在一幅2D图像中维持颈总动脉、颈外动脉、以及颈内动脉的最佳B模式视野。在MB快速推注输注1分钟之后,对于所有大鼠通过B模式成像记录MB血池以便确证MB输注并且显示在周围组织中不存在对比强度。等待4-5分钟以允许MBD粘附于DEspR阳性内皮靶标[12]并且以便允许清除未结合的循环微泡[23]。清除大多数循环微泡有利于增加的对比强度信号的检测,这归因于使用Vevo770成像系统用于检测的验证的粘附性MB[23]。粘附性MB由声学破坏后对比强度的丧失而定义,其中声学破坏使用如所述的预置对比增强软件(超声波技术公司(VisualSonics,Inc),加拿大)来进行[12]。
[0474] 监测颈动脉上的4个感兴趣的区域(ROI):颈总动脉、分叉处、颈外动脉和颈内动脉。使用对比增强的分析程序进行因靶向的粘附性微泡的反散射而产生的对比强度信号(CIS)的定量,其中所述分析程序被验证以便用于检测声学破坏前和破坏后对比强度信号Vevo770的成像平台(VisualSonics Inc,加拿大)。立即检查对侧颈动脉并且遵循相同的CEU成像方案。在允许完全清除任何残余MB的20分钟间隔之后,进行预置破坏顺序以便遵循相同程序用同种型特异性MBC进行后续CEU成像。对于定量比较分析,针对每只大鼠的每根颈动脉,研究在声学破坏前与声学破坏后的对比强度信号之间的差异、CIS差异、以及它们的对应的破坏前CIS峰水平。
[0475] 大鼠颈动脉的组织学类型和免疫荧光染色。在CEU成像之后,收集颈动脉,整块保存在颈总动脉(CCA)、颈外动脉(ECA)和颈内动脉(ICA)(包括颈动脉分叉处)周围的外围组织。将ECA切得比ICA长,以便能够区分二者。获得每根颈动脉的纵向连续切片(50-100个切片)并且每隔10个载玻片用马松三色的染色允许与CEU成像中的ROI相应
的正确取向和位点特异性分析。然后将感兴趣的MT染色的载玻片旁侧的连续切片免疫染色。依次通过以下方式对脱石蜡的切片进行双重免疫荧光染色:抗原修复、降低背景处理、封闭、与第一抗体在4°C孵育过夜、与AlexaFluor568山羊抗小鼠IgG和AlexaFluor488
山羊抗兔IgG在4°C第二抗体孵育过夜、洗涤并且使用含有DAPI的Prolong Gold(英
杰生命技术有限公司,CA)封片。使用抗大鼠DEspR抗体的兔同种型抗体设立阴性对
照。将Zeiss Axioskop2plus显微镜用于荧光成像和微分干涉相衬(DIC)显微照相术
(photomicroscopy)以提供与免疫染色切片叠加的形态学信息。低2.5x放大率用于沿着颈动脉正确取向和位点特异性鉴定。
[0476] MBD和DEspR阳性内皮细胞相互作用的体外分析遵循用于大鼠特异性DEspR分子成像的相同方法产生靶向人特异性DEspR的MBD,除了使用抗人DEspR单克隆抗体之外。将固定数目的人脐静脉内皮细胞(HUVEC)接种到IBIDI灌注6道μ载玻片VI上(ibidiGmbH,德国)。在24小时之后,按以下MB细胞比:8x、80x和800x输注MBD型微泡。阴性对照由800x MBC和800x非靶向的微泡MBO组成。这些均在相同的6道微流室载玻片(micro-flow
2
chamber slide)上以20达因/cm 剪切应力单向流(1-way flow)进行输注。在孵育45分钟之后,进行DAPI核染色,并且将过多的MB用HUVEC培养基以相同的剪切应力洗去。在6个随机高倍视野中进行相差和落射荧光显微术。通过显微照相术记录细胞和微泡并且将其计数为结合有MB的细胞百分比和每细胞的MB数。我们比较了MBD、MBC和未靶向的微泡MBO。
[0477] 统计分析。这些值表示为均值±S.E.M。数据用Prism5统计学软件(GraphPad Software公司,CA)分析。在适用的情况下,使用非参数ANOVA和Dunn多重比较检验或ANOVA和Tukey多重配对比较检验。对于两个组群比较,使用Prism5(GraphPad Software公司,CA)进行非参数Kruskal Wallis检验。
[0478] 结果
[0479] 颈动脉的DEspR靶向分子成像。已知在颈动脉疾病中需要检测血管疾病相关性血管生成[5,6],测试了DEspR以确定它是否可以用作内皮靶标用于在颈动脉疾病损伤或新生滋养血管形成中的病理性血管生成的对比增强超声(CEU)成像。使用颈动脉疾病的Tg25大鼠模型,将设计处于动脉粥样硬化病程中点的4月龄雄性Tg25大鼠[21、22]与年龄匹配的非转基因雄性同窝仔比较。与冠状动脉病相比,颈动脉疾病的研究提供了具有较少移动伪像的巧妙的实验系统。
[0480] 使用Vevo770超声对比增强成像系统和与对照同种型微泡(MBC)相比的DEspR靶向微泡(MBD),在7/13转基因大鼠中沿颈总动脉(CCA)、颈动脉分叉、近端颈内动脉/或颈外动脉检测在不同的感兴趣的区域(ROI)中的MBD特异性CEU阳性显像。MBD特异性CEU阳性显像定义为在循环微泡已经清除之后检测到并且在声学破坏后即下降的稳定增加的对比强度信号(图19A)。与在输注同种型MBC的大鼠(图19B)中以及在输注MBD的非转基因对照大鼠(n=5)中观察到的CEU显像(这两者经验地定义为CEU阴性显像)相比,峰破坏前对比强度信号和峰破坏前/破坏后对比强度信号的差异(CIS差异)在MBD特异性CEU阳性图像中显著更高(图19A,表2)。值得注意的是,在展示MBD特异性CEU阳性显像的7只转基因大鼠中,四只在两侧颈动脉中展示CEU阳性显像,而三只在对侧颈动脉中展示CEU阴性显像,表明MBD特异性CEU阳性显像的选择性并且与特异性一致(表2)。而且,六只转基因大鼠展示具有低的峰对比强度信号、“平整-线”破坏前/破坏后CIS图模式、以及最小CIS差异的CEU阴性显像(图19D、19E、表2),与在MBC对照大鼠(图19B)中以及在输注MBD的非转基因对照(图19C)中观察到的CEU阴性显像相似。
[0481] 总之,这些观察结果提供了以下有说服力的证据:基于MBD的CEU阳性图像是特异的并且是由于在所述颈动脉中的粘附性MBD所致。通过单因素方差分析(ANOVA)和事后多重比较检验的统计分析而确立的是,分别与每个CEU阴性显像研究组相比,MBD特异性CEU阳性显像的CIS差异是显著更高的,P<0.0001(表2,图19D)。有趣的是,由于仅在转基因大鼠中检测到CEU阳性显像,并且其中54%的转基因大鼠在等同于雄性中的典型模型病程的早期中点的4月龄展示MBD特异性CEU阳性显像[21、22],在转基因大鼠与它们的非转基因对照之间的平均CIS差异是显著不同的(P<0.0001)(图19E)。在输注MBD后7/13转基因大鼠展示CEU阳性显像,并且6/13显示CEU阴性显像,基于在病程中点的4月龄的MBD CEU显像CIS差异对转基因大鼠分小组是显而易见的(图19E)。
[0482] 有趣的是,具有最高MBD特异性CIS差异的三只转基因大鼠的CIS图展示了预期的声学破坏后信号强度降低,但是具有对比强度信号的次峰,随后降至低/基线水平(图20A-20H)。这种声学破坏后/破裂模式与特定顺序的微泡事件一致:微泡破裂解释这种降低,残余微泡声学刺激解释次峰,随后声学方式驱动的扩散解释了后续稳定下降至基线水平。
[0483] 组织学分析检测在DEspR阳性内皮细胞上的MBD微泡。出乎意料地,马松三色染色的组织学分析检测到仍然与内皮细胞连接或在内膜损伤内部的少量微泡(图21A),其中所述内皮细胞或内膜损伤从具有显示的CEU阳性显像的R1:MBD大鼠获得。在相邻连续切片上的相应DEspR免疫染色证实MBD微泡与DEspR阳性内皮细胞粘附(图21B、21C)。采用同种型抗体的免疫染色证实了DEspR阳性免疫染色的特异性(图21D)。总之,这些观察结果确证了MBD结合和MBD与DEspR阳性内皮结合的特异性。PEG包覆的即用型靶MicroMarker微泡(VisualSonics公司,加拿大)经受得住PBS缓冲的4%多聚甲醛固定、石蜡包埋和脱石蜡,这与我们的观察平行:基于PEG的生物材料经受得住固定、石蜡包埋、脱石蜡和马松三色染色[24]。
[0484] 在图20A-20H中显示的R3:MBD大鼠的组织学分析也检测到增加的内皮DEspR阳性表达和管腔内皮病变,以及因新血管形成所致的显著颈动脉滋养血管扩张(图21E、21F),其中在新生滋养血管中具有DEspR阳性表达(图21G)。用DEspR和α-平滑肌肌动蛋白
(αSMA)的双重免疫荧光免疫染色在颈动脉滋养血管中检测到DEspR+αSMA阳性免疫染色的一些共定位(图21H)。
[0485] 增加的DESPR表达与DEspR阳性分子成像相关。为了确定DEspR表达的增加的水平和/或区域是否与由较高CIS差异(图19D)和较高的破坏前CIS峰水平(图22A)定义的MBD特异性CEU阳性显像相关,用抗DEspR抗体和抗α平滑肌α肌动蛋白(αSMA)抗体进行双重免疫荧光染色,后一种抗体用作中间层中的血管平滑肌细胞的免疫染色的阳性对照。用MBD特异性双侧CEU阳性显像、输注MBD的双侧CEU阴性显像,并且用单侧CEU阳性/CEU阴性显像分析来自代表性大鼠的连续切片(n=3/组)。免疫荧光和微分干涉相衬(DIC)显微术的分析显示,MBD特异性CEU阳性显像与颈动脉内膜损伤中的DEspR+表达、新生滋养血管形成和新生滋养血管中的DEspR+表达相关(图21B、21C、22B、22C、表2)。相反,展示MBD-CEU阴性分子成像的大鼠颈动脉与最少的(如果有的话)DEspR+内皮表达相关(图22D、表2)。与扩张的滋养血管相比,颈动脉中间层平滑肌细胞(SMC)中的低水平αSMA表达也是显著的(图22A),在不希望受理论约束或限制的情况下,原因最可能在于在这些高血压大鼠中SMC的合成状态,因为在合成或增殖的SMC中αSMA表达被去诱导(deinduced)[25]。这些观察结果使这种大鼠模型中的MBD特异性CEU阳性显像与两者的内膜损伤中增加的
DEspR表达强度和区域以及新生滋养血管密度关联。
[0486] MBD与DEspR阳性内皮细胞以剂量反应方式粘附的体外分析。为了进一步剖析MBD与DEspR阳性细胞的相互作用,测试了MBD体外粘附作用的剂量反应。为了利用标准化内皮细胞原代培养物并且获得分子成像在人中的转化性认识,使用如通过人特异性抗DEspR单克隆抗体检测到的在增殖和促血管生成培养条件下表达DEspR的人脐静脉内皮细胞(HUVEC)。使用8x、80x和800x的MBD对细胞比率的渐增数目的MBD,观察到HUVEC渐增地被MBD结合,在80x MBD:细胞比时为100%结合(图23A-23C),与分别结合6.8%和8.2%HUVEC(图23F)的800x MBC(图23D)和非靶向MBO(图23E)相反。而且,在孵育45分钟并且以
2
>20达因/cm 的主动脉样剪切应力的流速洗涤之后,分析每细胞结合的MB数,揭示每细胞结合的MB数显著性差异,如下从8x、80x增加至800x:2.3、17和49个MB/细胞,对于非靶向MB和同种型MBC仅为0.6和1.1MB/细胞(ANOVA P<0.0001)。这些观察结果反映MB细
胞相互作用的相对稳定性和特异性。重要的是,在MB与细胞接触后未观察到细胞毒性,甚至在高剂量800x MBD时也是如此。
[0487] 虽然已经报道了肿瘤血管生成的VEGFR2靶向分子成像[12],先前的新生滋养血管形成的VEGFR2(连同其他血管粘附分子靶标)靶向的分子成像是不成功的,导致这些报道的作者提出,滋养血管血流可能是靶特异性CEU分子成像的技术障碍[9]。因而,在此展示的颈动脉疾病中的DEspR阳性内皮细胞的分子成像(图19A-22E)为颈动脉疾病内皮和扩张滋养血管的体内分子成像提供了新的研究工具和诊断工具。在不希望受理论约束或限制的情况下,给定最佳超声成像参数,靶特异性CEU分子成像中的差异性成功的可能因素可能是在由靶标的表达水平和/或区域所限定的分子阈值方面的差异和/或在由靶血管的密度和尺寸以及靶血管中的流量所限定的技术阈值方面的差异。对于可检测的靶向CEU阳性显像或分子成像而言,必须同时超越这些阈值。更具体地说,DEspR表达水平、管腔内皮病变的程度、以及新生滋养血管形成的密度、连同这里所使用的大鼠颈动脉疾病模型的较大尺寸,构成了有助于在颈动脉疾病的Tg25大鼠模型中的颈动脉滋养血管的靶向DEspR的成功CEU阳性显像的因素,这与靶向VEGFR2的阴性分子成像结果(针对在颈动脉损伤诱导的小鼠模型中的新生滋养血管形成而报道)相反[9]。此外,在CEU阳性转基因大鼠与CEU阴性转基因大鼠之间的差异揭示了CIS差异(图19E)和破裂前CIS峰水平(图22A)的假定阈值。这个观察到的CEU阳性显像阈值提供了以下证据:靶向DEspR的CEU阳性显像可能是病理性血管生成的非侵袭性生物标记并且具有针对疾病进展的预测价值。
[0488] 超越靶特异性分子成像的成功检测的分子阈值和技术阈值与以下原理一致:反射率与微泡本身的浓度成正比[26]。更具体地说,如果DEspR在管腔上或在滋养血管内,则在在此所述的方法中更多的DEspR表达和更大的DEspR阳性内皮细胞密度可以转化成更高的结合微泡浓度。在不希望受理论约束或限制的情况下,这进而被预期转化成更高的反射率和检测水平,因为微泡-细胞结合不抑制微泡反射率,这与微泡的白细胞吞噬相反[27]。在清除大部分循环微泡后并且在声学破坏之前,靶特异性微泡的稳定结合展示相对稳定的对比强度水平,其显著大于阴性对比强度或背景对比强度(图20d,ANOVA P<0.0001)。由于高频成像本身可能诱导微泡破裂或气体扩散,在不希望受理论约束或限制的情况下,在声学破坏之前也可以观察到对比强度轻微下降。然而,在声学破裂后,观察到对比强度因破裂而降低以证实微泡结合(图19A-19E)。声学破裂可以不是完全的,在不希望受理论约束或限制的情况下,这归因于高密度ROI内的可能抑制微泡共振的微泡相互作用[28]或由于微血管内的微泡不能达到作为声学破裂基础的10倍直径波动[29]。此外,在不希望受理论约束或限制的情况下,如与颈动脉管腔相比在滋养血管中所预期的,不完全破裂连同气体释放和相对低的流量可能解释在大鼠R3中观察到的次峰,随后缓慢降低返回基线水平。次峰可能不是由于再填充所致,因为在这个实验时间点存在最少的(如果有的话)循环微泡(图
19A-19E、20A-20H)。大鼠R3达到比大鼠R1更高的对比强度水平的事实显示更高的微泡浓度,这也可能因微泡间相互作用而抑制声学破坏[28]。值得注意的是,尽管声学破裂确证微泡结合,但是声学破裂或扩散的模式也可以提供对微泡浓度以及结合部位血管口径和流量的进一步认识。这为据报道用于小鼠主动脉根动脉粥样硬化的范式提供了一种新颖的替代性分子成像范式[30]。虽然CEU-成像在当前的环境下是成功的,但是在其他实施方案中,粘附性微泡的非线性成像可以用来提供更高的灵敏度和/或改进的定量,如对滋养血管流量成像的血管内超声所观察的[31]。
[0489] 被MBD靶向的细胞百分比的剂量依赖性增加和每细胞MB数目的剂量依赖性增加(图23A-23G)的检测赋予了对靶向DEspR的MB细胞相互作用的稳定相互作用、动力学、特异性和无毒性的认识。更重要的是,鉴于使用人内皮细胞和用于靶向的人特异性抗DEspR单克隆抗体进行体外研究,鉴于MB细胞偶联在45分钟之后经受住高剪切应力洗涤并且在接触时未引起细胞毒性,MBD细胞相互作用的这些体外观察结果证明病理性血管生成的DEspR靶向分子成像可以作为一种有用的治疗工具和诊断工具。
[0490] 总之,分子成像对比强度水平的比较分析、微泡与内皮结合的组织学证实、DEspR阳性分子成像与DEspR阳性内皮细胞表达相关的免疫染色证实、以及在声学破坏之后的结合微泡行为的一致模式证明:使用在此所述的靶向DEspR的方法和试剂,在颈动脉疾病大鼠模型中的颈动脉内皮和新生滋养血管形成的靶特异性分子成像是可行的。DEspR作为新生滋养血管形成和颈动脉疾病损伤的体内分子成像的成功靶标的鉴定可以促进动物模型中的在颈动脉疾病进展方面的新生滋养血管形成和内皮变化的纵向研究。连同MBD-HUVEC稳定结合的体外观察结果,这些数据展示了在此所述的分子成像技术在早期检测心血管疾病中的病理生理变化以便评估疾病进展和并发症的风险中的用途。
[0491] 参考文献:
[0492] 1.Ruiz-Opazo,N.;Hirayama,K.;Akimoto,K.;Herrera,V.LM.“双重内皮素-1/血管紧张素II受体的分子表征”(Molecular characterization of a dual Endothelin-1/Angiotensin II Receptor),Mol.Med.4:96-108,1998。
[0493] 2.Herrera,V.L.M.;Ponce,L.R.B.;Bagamasbad,P.D.;VanPelt,B.D.;Didishvili,T.;Ruiz-Opazo,N.“在Dear基因缺陷小鼠中的胚胎致死性:在血管生成中的新参预者(”Embryonic lethality in Dear gene-deficient mice:new player in angiogenesis),Physiol.Genomics.23:257-268,2005。
[0494] 3.Ferrara,N.;Carver-Moore,K.;Chen,H.等人,“由VEGF基因的靶向失活诱导的杂合胚胎致死性”(Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene),Nature.380:439-442,1996。
[0495] 4.Carmeliet,P.;Ferreira,V.;Breir,G.等人,“在缺乏单个VEGF等位基因的胚胎中的异常血管发育和致死性”(Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele),Nature.380:435-439,1996。
[0496] 5.Dunmore,B.J.;McCarthy,M.J.;Naylor,A.R.;Brindle,N.P.“颈动脉斑块不稳定性和缺血症状与斑块内的微血管不成熟有关”(Carotid plaque instability and ischemic symptoms are linked to immaturity of microvessels within plaques),J.Vasc.Surg.45:155-159,2007。
[0497] 6.Giannoni,M.F.;Vicenzini,E.;Citone,M.等人,“用于检测具有新血管生成的不稳定斑块的对比颈动脉超声:初步研究”(Contrast carotid ultrasound for the detection of unstable plaques with neoangiogenesis:a pilot study),Eur.J.Vasc.Endovasc.Surg.2009;doi:10.10.16/j.ejvs.2008.12.028。
[0498] 7.Vincenzini,E.;Giannoni,M.F.;Benedetti-Valentini,F.;Lenzi,G.L.“颈动脉斑块血管生成的成像”(Imaging of carotid plaque angiogenesis),Cerbrovasc.Dis.27(Suppl2):48-54,2009。
[0499] 8.Kaufmann,B.A.;Lindner,J.R.“采 用 定 向 对 比 超 声 的 分 子 成 像”(Molecular imaging with targeted contrast ultrasound),Current Opinion in Biotech.18:11-16,2007。
[0500] 9.Lindner,J.R.“采用对比增强超声检查的心血管疾病的分子成像”(Molecular imaging of cardiovascular disease with contrast-enhanced ultrasonography),Nat.Rev.Cardiol.6:475-481,2009。
[0501] 10.Ellegala,D.B.;Leong-Poi,H.;Carpenter,J.E. 等 人,“用 对 比 超 声和靶向α(v)β3的微泡对肿瘤血管生成成像”(Imaging tumor angiogenesiswith contrast ultrasound and microbubbles targeted to alpha(v)beta3),
Circulation.108:336-341,2003。
[0502] 11.Leong-Poi,H.;Christiansen,J.;Heppner,P.等人,“借助于整联蛋白表达的对比超声分子成像评定内源性和治疗性动脉生成”(Assessment of endogenous and therapeutic arteriogenesis by contrast ultrasound molecular imaging of integrin expression),Circulation.111:3248-3254,2005。
[0503] 12.Willmann,J.H.;Paulmurugan,R.;Chen,K.等人,“在小鼠中用靶向血管内皮生长因子2型受体的微泡的肿瘤血管生成的US成像”(US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptortype2in mice),Radiology.246:508-518,2008。
[0504] 13.Weller,G.E.;Lu,E.;Csikari,M.M.;等人,“用靶向细胞间粘附分子-1的微泡的急性心脏移植排斥的超声成像”(Ultrasound imaging of acute cardiac transplant rejection with microbubbles targeted to intercellular adhesion molecule-1),Circulation.108:218-224,2003。
[0505] 14.Hauff,P.;Reinhardt,M.;Briel,A.;Debus,N.;Schirner,M.“用L-选择素配体特异性US造影剂的淋巴结的分子靶向:在小鼠和犬中的可行性研究”(Molecular targeting of lymph nodes with L-selectin ligand-specific US contrast agent:a feasibility study in mice and dogs),Radiology.231:667-673,2004。
[0506] 15.Kaufmann,B.A.;Sanders,J.M.;Davis,C.等人,“用定向超声检测血管细胞粘附分子-1对动脉粥样硬化中炎症的分子成像”(Molecular imaging of inflammation in atherosclerosis with targeted ultrasound detection of vascular cell adhesion molecule-1),Circulation.116:276-284,2007。
[0507] 16.Christiansen,J.P.;Leong-Poi,H.;Klibanov,A.L.;Kaul,S.;Lindner,J.R.Noninvasive imaging of myocardial reperfusion injury using
leukocyte-targeted contrast echocardiography(使用靶向白细胞的造影超声心动图的心肌再灌注损伤的非侵袭性成像),Circulation.105:1764-1767,2002。
[0508] 17.Villanueva,F.S.;Wagner,W.R.“心血管疾病的超声分子成像”(Ultrasound molecular imaging of cardiovascular disease),Nat.Clin.Pract.Cardiovasc.Med.5:S26-S32,2008。
[0509] 18.Schumann,P.A.;Christiansen,J.P.;Quigley,R.M. 等 人,“选 择 性结合于血小板性血栓的GPIIb/IIIa受体的靶向微泡”(Targeted-microbubblebinding selectively to GPIIb/IIIa receptors of platelet thrombi),Invest.
Radiol.37:587-593,2002。
[0510] 19.Hamilton,A.;Huang,S.L.;Warninck,D.等人,“在静脉内注射回声免疫脂质体之后左心室血栓增强:在新实验模型中的研究”(Left ventricular thrombus enhancement after intravenous injection of echogenic immunoliposomes:studies in a new experimental model),Circulation.105:2772-2778,2002。
[0511] 20.Lee,S.;Carr,C.L.;Belcik,T.A.等人,“由腔壁出血和血小板沉积引起的炎症和滋养血管增生的对比增强超声表征”(Contrast-enhanced ultrasoundcharacterization of inflammation and vasa vasoral proliferation caused by mural hemorrhage and platelet deposition),Circulation.118:S644,2008(摘要1074)。
[0512] 21.Decano,J.L.;Viereck,J.C.;McKee,A.C.;Hamilton,J.A.;Ruiz-Opazo,N.;Herrera V.L.M.“生命早期钠暴露揭示在人胆固醇酯转移蛋白转基因的高血脂、高血压杂合Tg25大鼠中的中风易感性”(Early-life sodium exposure unmasks susceptibility to stroke in hyperlipidemic,hypertensive heterozygous Tg25rats transgenic for human cholesteryl ester transfer protein),Circulation.119:1501-9,2009。
[0513] 22.Herrera,V.L.M.;Tsikoudakis,A.;Didishvili,T. 等 人,“分 析 转S基因[hCETP]25D 大鼠模型中的性别特异性动脉粥样硬化易感性”(Analysis of
S
gender-specific atherosclerosis susceptibility in transgenic[hCETP]25D rat model),Atherosclerosis.177:9-18,2004。
[0514] 23.Loveless,M.E.;Li,X.;Huamani,J. 等 人,A method for assessing the microvasculature in a murine tumor model using contrast-enhancedultrasonography(使用对比增强超声检查评定鼠肿瘤模型中的微血管的方法),
J.Ultrasound Med.27:1699-1709,2008。
[0515] 24.Herrera,V.L.;Viereck,J.C.;Lopez-Guerra,G.等人,“喉组 织结 构 的11.7Tesla磁共振微成像”(11.7Tesla magnetic resonance microimaging of laryngeal tissue architecture),Laryngoscope.119:2187-94,2009。
[0516] 25.Blindt,R.;Vogt,F.;Lamby,D.等人,“在静息和侵袭性人动脉平滑肌细胞中的差异性基因表达的表征”(Characterization of differential gene expression in quiescent and invasive human arterial smooth muscle cells),J.Vasc.Res.39:340-352,2002。
[0517] 26.Calliada,F.;Campani,R.;Bottinelli,O.;Bozzini,A.;Sommaruga,M.G.“超声造影剂:基本原理”(Ultrasound contrast agents:basic principles),Eur.J.Radiol.27Suppl2:S157-160,1998。
[0518] 27.Lankford,M.;Behm,C.Z.;Yeh,J.;Klibanov,A.L.;Robinson,P.;Lindner,J.R.“微泡与细胞连接对超声信号增强的影响:对靶向成像的意义”(Effect ofmicrobubble ligation to cells on ultrasound signal enhancement:implications for targeted imaging),Invest.Radiol.41:721-728,2006。
[0519] 28.Yasui,K.;Lee,J.;Tuziuti,T.;Towata,A.;Kozuka,T.;Iida,Y.“超声下气泡-气泡相互作用对包囊化微泡的破坏的影响”(Influence of the bubble-bubble interaction on destruction of encapsulated microbubbles under ultrasound),J.Acoust.Soc.Am.126:973-982,2009。
[0520] 29.Chomas,J.E.;Dayton,P.;Allen,J.;Morgan,K.;Ferrara,K.W.“造 影 剂破坏的机制”(Mechanisms of contrast agent destruction),IEEE Trans.Ultrason.Ferroelectr.Freq.Control.48:232-248,2001。
[0521] 30.Kaufmann,B.A.;Carr,C.L.;Belcik,T.等人,“在动脉粥样硬化中的初始炎症应答的分子成像”(Molecular imaging of the initial inflammatory response in atherosclerosis),Arterioscler.Thromb.Vasc.Biol.30:54-59,2010。
[0522] 31.Goertz,D.E.,Frijlink,M.E.,Tempel,D.等人,“滋养血管成像的次谐波造影血管内超声”(Subharmonic contrast intravascular ultrasound for vasa vasorum imaging),Ultrasound Med.Biol.33:1859-1872,2007。
[0523] 32.Kaufmann,B.A.“动脉粥样硬化的超声分子成像”(Ultrasound molecular imaging of atherosclerosis),Cardiovasc.Research.83:617-625,2009。
[0524] 表2.颈动脉疾病转基因大鼠模型中的DEspR靶向分子成像
[0525]
[0526]
[0527] 实例3
[0528] 在癌症中的双重内皮素受体-1/VEGFsp受体(DEspR):双重抗血管生成/抗肿瘤细胞侵袭力疗法的靶标
[0529] 已经观察到对当前抗VEGF/VEGFR2疗法的内在与外在抵抗的产生。如在此所述,发现DEspR表达在原发性和转移性肿瘤αSMA阳性和αSMA阴性血管内皮中、以及在不同人癌组织类型和细胞系的肿瘤细胞膜和核膜中增加。此外,使用在此所述的人特异性抗DEspR抗体疗法对DEspR的抑制降低了人内皮细胞血管生成和肿瘤细胞侵袭力。此外,发现配体特异性DEspR信号波形(signaling-profile)不同于VEGF/VEGFR2的DEspR信号波形。因此,在此描述了展示用于肿瘤细胞和内皮双重递送、以及用于双重抗血管生成/抗侵袭力疗法的DesPR的靶向的数据。
[0530] 导言
[0531] 虽然已经认识到血管生成开关在癌症发病中的重要作用[1],单独或与其他抗癌疗法组合的导向血管内皮生长因子和/或其受体的抗血管生成疗法(以VEGF/VEGFR2为中心的抗血管生成疗法)未曾达到希望的长期有效治疗目的,使得癌症变成一种休眠的慢性的可控制的疾病[2-5]。累积观察结果表明,FDA批准的所有三种VEGF通路抑制剂(抗VEGF贝伐单抗或阿瓦斯汀、抗VEGFR2舒尼替尼、和索拉非尼)仅导致短暂改善肿瘤淤滞或缩小的形式并且仅用于某些癌症,尽管大部分癌症类型(如果不是所有癌症类型的话)展示病理性血管生成[2,6]。而且,虽然在临床前试验中抗VEGF通路疗法已经减少原发肿瘤生长和转移[7],最近的小鼠肿瘤模型研究已经报道,尽管在一些情况下舒尼替尼和抗VEGFR2抗体DC101抑制原发肿瘤生长并且增加总生存期,肿瘤细胞的转移却增加了[8,9]。累积观察结果提示了内在和逃避性抵抗的几种机制,如,在不希望受理论约束或限制的情况下,预先存在的大量冗余的促血管生成信号、替代性促血管生成途径的上调、骨髓源促血管生成细胞的募集、周细胞对肿瘤血管的覆盖增加避免了VEGF信号转导的需要、以及在没有必需的血管生成的情况下正常血管的侵袭性和转移性共择[2-5]。另外,在人类中进行贝伐珠单抗抗VEGF疗法[10]以及在小鼠中进行抗VEGFR2抗体疗法[11]后已经检测到VEGF水平增加10倍,在不希望受理论约束或限制的情况下,这可能促成了逃避性抵抗。
[0532] VEGF和VEGFsp(血管内皮生长因子信号肽)两者源自相同的前肽,并且在不希望受理论约束或限制的情况下,VEGF‘反弹’增加10倍也可能伴随VEGFsp增加10倍,因此导致VEGFsp在裂解后活化其受体(双重内皮素受体1//VEGFsp受体或DEspR,以前称作Dear并且作为Dear保藏GenBank中)的功能增加10倍[12]。DEspR敲除小鼠展示血管形成停滞和血管生成缺乏,导致E10.5-E12.5天的胚胎致死性[13]。一致地,DEspR单倍不足导致同系黑色素瘤肿瘤生长减少,并且抗DEspR抗体抑制作用在具有照射诱导的乳腺肿瘤的大鼠中减少了肿瘤生长和肿瘤血管生成[13]。此外,DEspR的其他配体是内皮素-1(ET1)[12],并且所有其他已知的ET1受体ETa和ETb在它们的对应的敲除小鼠模型中并不展示胚胎致死性血管生成表型[14、15、16]。
[0533] 在此描述了新颖的抗血管生成策略,所述策略使用抗人DEspR抗体抑制作用并且表征抗DEspR抗体治疗剂的鼠前体。发现DEspR在一些实体瘤细胞和肿瘤血管内皮中上调,并且发现人特异性抗DEspR多克隆和单克隆抗体在体外抑制人内皮细胞管形成和肿瘤细胞侵袭力,以及发现DEspR利用已知介导血管生成和癌细胞侵袭力的配体特异性信号通路。
[0534] 材料与方法
[0535] 细胞系和抗体开发MDA-MB-231和PANC-1细胞从美国典型培养物保藏中心(罗克维尔,马里兰州)获得。将MDA-MB-231细胞维持在补充有10%FBS、L-谷氨酰胺、青霉素、以及链霉素(GPS)的DMEM培养基(西格马化工有限公司,圣路易斯,密苏里州)中。将PANC-1细胞维持在含有高浓度葡萄糖、10%FBS和GPS的DMEM培养基(西格马化工有限公司,圣路易斯,密苏里州)中。人脐静脉内皮细胞HUVEC从Cascade Biologics公司获得并且维持在含有2%FBS和GPS的内皮生长培养基-2(EGM-2)中。使用9氨基酸DEspR NH2端肽即hDEspR的M1TMFKGSNE9作为抗原,由ProMab Biotechnologies公司(里士满,加利福尼亚)定制进行单克隆抗体开发。使用游离hDEspR抗原肽作为抗原,通过ELISA进行杂交瘤上清液的筛选和候选单克隆抗体的初始表征。
[0536] 通过ELISA和蛋白质印迹分析表征单克隆抗体。将M1TMFKGSNE9抗原肽直接包被在微量滴定板的孔上。将适当稀释度的第一抗体在37°C孵育1小时。这些孔然后与1:9000的HRP标记抗IgG(Sigma目录号#A0168)在37°C孵育1小时。通过添加3,3'5,5'-四甲基联苯胺底物(在37°C孵育10分钟)显现反应并且在450nm以分光光度形式读取。使用等量的来自Cos1细胞转染子的全细胞蛋白提取物(40μg),如描述进行蛋白质印迹分析[17],其中所述Cos1细胞转染子稳定表达hDEspR[17],并且针对hDEspR特异性合成肽激发相应的候选单克隆抗体。使用ECL蛋白质印迹检测试剂盒(通用电气医疗集团),通过化学发光检测到免疫反应性hDEspR(10kDa多肽)。
[0537] 用于血管生成的HUVEC管形成测定。获得经验证的第2代人脐静脉内皮细胞-HUVEC(Cascade Biologics公司,俄勒冈)并且将它培养直到第四代,并且然后在80%汇合度时使用温和的胰蛋白酶消化收获。然后将细胞团块在含有M-200(Cascade Biologics公司,俄勒冈)、1μg/ml氢化可的松、10ng/mL EGF、3ng/mL bFGF和10μg/ml肝素的无血清培养基(基础培养基)中洗涤2次。然后将细胞重悬于这种无血清培养基中并且以20,000TM
个细胞/孔(100μL)接种到96孔平板血管生成系统:内皮细胞管形成基质胶 基质(BD生物科学事业部,MA)上。如所指示,使用单独或含有以下一种或多种成分的基础培养基:
2%FBS,20nM VEGF、20nM VEGFsp、20nMET1,一式四份测定不同的血管生成条件和抗血管生成条件。用于抑制的抗体均经过亲和纯化并且按以下浓度使用:500nM抗hDEspR多克隆抗体(Pab)、500nM抗hDEspR7C5B2单克隆抗体(Mab)、500nM抗VEGFspPab,并且对于相应的同种型对照,Pab的对照是500nM免疫前IgG(75μg/mL)并且抗hDEspR Mab的对照是500nM IgG2b。一式四份如下测试不同的实验条件:单独的基础培养基(BM),含有2%FBS的BM;含有20nM VEGF的BM;含有20nM VEGFsp的BM;含有20nM ET1的BM;含有20nM VEGF和500nM(75μg/ml)免疫前IgG的BM;含有20nM VEGF和500nM抗VEGFsp的BM;含有20nM VEGF和
500nM抗hDEspR的BM;含有20nM VEGFsp和500nM抗hDEspR的BM;含有20nM ET1和500nM
抗hDEspR的BM;含有2%FBS和500nM抗VEGFsp的BM;和含有2%FBS加500nM抗hDEspR的
BM。在其他实验中,测试了渐增浓度的抗hDEspR7C5B2mAb(0.05-500nM)。然后在按照说明的不同条件下在37°C将HUVEC孵育16小时;此后,在显微镜下观察所产生的血管生成性管形成,并且拍摄约70%的孔(中央部分)的图像用于分析。使用ImageJ(NIH-http://rsb.info.nih.gov/ij/),针对每种血管生成条件测量多种参数,即总的管长度、平均管长度、平均管厚度、分支点数目(其定义为拥有经测量超过细胞聚集物2倍长度的管样延长部分的细胞簇)、定义为在成串或平行的管样结构之间的3个或更多个连接的连接数目以及由管状结构约束的封闭多边形的数目。
[0538] 侵袭测定。使用BD Bio-Coat基质胶侵袭测定系统(BD生物科学公司,富兰克林湖,新泽西州),如所述进行MDA-MB-231和PANC-1细胞侵袭测定[18]。将MDA-MB-231和4
PANC-1细胞悬浮在生长培养基中并且接种到预包被transwell小室(3x10 个细胞/孔)上。
然后将transwell小室置于24孔平板中,向其仅添加基础培养基或添加含有各个浓度的抗体的基础培养基。将细胞孵育16小时,并且将侵袭性细胞固定并用Diff-Quick染液染色。
在显微镜下计数每孔侵袭性细胞数。以一式四份评定各条件。
[0539] 肿瘤组织阵列和肿瘤细胞的免疫染色。人癌细胞系阵列DEspR免疫染色由Pantomics公司使用我们内部的多克隆人抗DEspR抗体定制进行。肿瘤组织阵列从
Pantomics公司获得并且在显示浓度依赖性免疫染色1:10、1:50、1:100之后,使用1:20的多克隆和单克隆抗hDEspR抗体进行针对DEspR的免疫染色。如所述使用多克隆抗体进行脱氧氨基联苯胺(deoxyaminobenzidine)免疫染色[13]。通过以下步骤对脱石蜡的切片进行双重免疫荧光染色:抗原修复、减少背景处理、封闭、与第一抗体在4°C孵育过夜、与AlexaFluor568山羊抗小鼠IgG和AlexaFluor488山羊抗兔IgG在4°C第二抗体孵育过
夜、洗涤并且使用含有DAPI的Prolong Gold(英杰公司)封片。使用抗大鼠DEspR抗体的兔同种型抗体设立阴性对照。将Zeiss Axioskop2plus显微镜用于荧光成像和显微照相术。
[0540] 通过抗体微阵列的信号蛋白的多路分析。由Kinexus公司(Kinexus,加拿大)使TM用Kinex 抗体微阵列系统定制进行DEspR对不同信号通路的配体依赖性调节的分析,其中所述抗体微阵列系统跨越一式两份或一式多份的506种磷蛋白特异性抗体、以及740种信号分子的泛特异性抗体。使用Cos1-hDEspR永久细胞转染子,与未处理的对照控制中未激活的对应DEspR相比,在30分钟配体处理(ET1,10nM;VEGFsp,10nM)之后,分析ET1-DEspR和VEGFsp-DEspR激活对多重信号通路的影响。所有荧光信号相对于背景标准化。数据显示为分别与未处理的转染子匹配的对照相比,距对照(%CFC)的变化百分比或在30分钟ET1平均数 平均数 平均数
或VEGFsp处理之后检测到的变化。%CFC=[处理 -对照 ]/对照 x100。虽然建
议%CFC>25%作为显著差异,但是仅提供这些值,它们显示>50%CFC并且具有对于测试样品n
和对照样品而言小于20%的重复间误差范围%。误差范围%=[重复 -平均数]/平均数。如果在计算%CFC中使用较少的重复的情况下%CFC保持>50%,则接受误差%>20%。
[0541] 统计分析在使用SigmaStat2.03软件包确定正态性之后,进行单因素方差分析(ANOVA),随后进行全配对多重比较Tukey检验。P<0.05视为是统计显著的。
[0542] 结果
[0543] DEspR表达在肿瘤细胞和肿瘤血管中增加。在人癌组织和细胞中研究了DEspR特异性表达模式。使用人特异性抗DEspR多克隆抗体进行肿瘤组织阵列分析[17]。与大鼠特异性抗DEspR抗体[13]免疫染色的大鼠照射诱导的乳腺瘤模型观察结果一致,分别与正常组织活检样品芯中的血管内皮(它应当是动脉内皮或微血管内皮)相比(图24A-24F、25A-25F和26A-26F),在人肿瘤组织阵列中的DEspR表达的免疫组织化学分析检测到DEspR表达在肝癌、胰腺癌(图24A-24F)、胃癌、乳腺癌(图25A-25F)、结肠癌和肺癌(图26A-26F)中的薄壁肿瘤血管内皮中增加。值得注意的是,在肺中的胃癌转移灶内(图25C)和淋巴结中的乳腺癌转移灶(图25F)内的血管内皮也展示增加的DEspR免疫染色。而且,胰腺肿瘤细胞(图24E、24F)、胃肿瘤细胞(图25B、25C)、乳腺肿瘤细胞(图25E)、肺肿瘤细胞(图26C)和结肠肿瘤细胞(图26E、26F)展示具有在细胞膜、细胞质和核膜中的亚细胞定位的增加的DEspR表达。在此展示的这种在肿瘤新血管和肿瘤细胞中增加的DEspR表达表明,DEspR在肿瘤新血管形成中和在肿瘤形成中均发挥作用。
[0544] 为了进一步证实在肿瘤细胞中的表达,接下来进行癌细胞阵列的DEspR免疫染色,所述癌细胞阵列测试不同类型的先前表征过的建立的癌细胞系(表3)。与经测试具有最少(如果有的话)DEspR表达的少数细胞系相反,几种癌细胞系展示这样的DEspR表达,其具有与高核分级相关的核膜DEspR表达(表3,图27A-27F)。代表性显微照片展示在大部分肿瘤细胞(但并非所有肿瘤细胞)的核膜中具有最强DEspR免疫染色的肿瘤细胞表达。选择性核膜免疫染色(图27A-27F)证实DEspR免疫染色的特异性,连同一些癌细胞系的阴性免疫染色(表3)。重要的是,这些观察结果与在此所述的癌组织切片中的观察结果(图24A-24F,25A-25F和26A-26F)一致。核膜定位表明,除了受体介导的信号转导外,DEspR可能在细胞膜和核膜之间的交互作用(crosstalk)中发挥作用。
[0545] 针对N端9氨基酸胞外结构域产生的高亲和力抗hDEspR单克隆抗体。为了研究抗作为抗血管生成策略的DEspR抑制作用,使用跨越人DEspR的N端细胞外结构域的9氨
基酸肽,开发人特异性抗DEspR单克隆抗体,这与用来在开发DEspR免疫染色中使用的人特异性抗DEspR多克隆抗体的策略相同(图24A-24F、25A-25F、26A-26F和27A-27F)[17]。
从67个杂交瘤克隆中,初步筛选鉴定了前10个候选单克隆抗体杂交瘤克隆,然后通过间接ELISA分析它们对9氨基酸肽N端结构域的亲和力(图28A)。通过蛋白质印迹分析单克隆抗体介导与分离自Cos1-hDEspR转染子的hDEspR蛋白(10kDa)结合的特异性,与未转染的对照Cos1细胞相比,鉴定杂交瘤克隆7C5B2。如在28B图中所示,7C5B2抗hDEspR单克隆抗体杂交瘤克隆作为“超级克隆”上清液和纯化的单克隆抗体两者展示特异性。对7C5B2的同种型分型显示,这种单克隆抗体属于抗体的鼠IgG2b同种型类别。
[0546] DEspR及其配体VEGFsp在人脐血管内皮细胞中的(HUVEC)的共定位。通过在HUVEC中的双重免疫染色分析受体-配体共定位显示内皮细胞膜上的DespR的特异性检测,其中内皮细胞是使用抗hDEspR单克隆抗体在促血管生成条件下培养的。使用抗VEGFsp多克隆抗体,双重免疫染色检测DEspR与其配体VEGFsp的共定位,因此证明抗hDEspR单克隆抗体特异性靶向DEspR。抗DEspR多克隆抗体也产生相同的结果。
[0547] 借助抗hDEspR多克隆抗体和7C5B2单克隆抗体的抗DEspR抑制作用减少血管生成。然后使用建立的基于HUVEC的体外血管生成测定,评定7C5B2单克隆抗体抑制DEspR对血管生成的影响。首先显示,7C5B2单克隆抗体检测到在促血管生成条件下由HUVEC形成的“管/新血管”中的细胞膜DEspR表达,因此确认使用这种血管生成测定系统。接下来,分析两个建立的体外血管生成参数:促血管生成条件下由HUVEC形成的新血管-管的总的管长度和分支。使用从0.05至500nM的不同剂量的7C5B2单克隆抗体,展示了对于总的管长度和分支点数目两者的血管生成抑制作用的浓度依赖性,并且鉴定500nM7C5B2单克隆抗体作为完全强度的抑制剂量(图29A)。然后应用这个剂量来重复独立的抑制实验,所述抑制实验将新开发的7C5B2单克隆抗体与先前表征的抗hDEspR多克隆抗体进行比较。分别与多克隆抗体和7C5B2单克隆抗体的未处理对照、以及免疫前和IgG2b同种型特异性阴性对照相比,500nM抗hDEspR抗体显著抑制了作为总的管长度和平均分支点数目的量度的血管生成(ANOVA连同全配对多重比较Tukey检验,P<0.01)。还显著抑制了其他血管生成参数、管数和分支互相连接数。一致地,多克隆抗VEGFsp抗体也抑制在HUVEC中的血管生成。
[0548] 抗hDEspR7C5B2单克隆抗体免疫染色和肿瘤细胞侵袭力抑制的分析。已经显示DEspR抑制减少了血管生成,接下来评定7C5B2单克隆抗体介导的抗DEspR抑制对肿瘤细胞侵袭力的功效,因为在不同的肿瘤细胞系(图27A-27F)和癌组织(图24A-24F、25A-25F和26A-26F)中检测到DEspR。分别检查了代表侵袭性乳腺癌和胰腺癌的两个癌细胞系,MDA-MB-231和PANC-1癌细胞系。用7C5B2单克隆抗体免疫染色在两个细胞系中均检测到核膜和细胞膜DEspR表达、以及细胞质表达。功能性分析检测了肿瘤细胞侵袭力的从0.05至500nM7C5B2单克隆抗体的浓度依赖性抑制,具有3.55±0.32nM的EC50。使用500nM7C5B2单克隆抗体,分别与未处理的对照细胞和IgG2b同种型处理的细胞相比,在MDA-MB-231(图
30B)和PANC1(图30C)细胞中均观察到DEspR抑制(ANOVA,随后全配对多重比较检验,分别地P<0.001和p<0.01)。这些观察结果表明DEspR抑制对血管生成(图29B-29C)和肿瘤细胞侵袭力(图30B-30C)的双重作用。
[0549] 肿瘤血管内皮和肿瘤细胞的抗hDEspR7C5B2单克隆抗体免疫染色。已经显示DEspR抑制对血管生成和肿瘤细胞侵袭力的功效,接下来与正常相比,在乳腺癌组织和胰腺癌组织中评估7C5B2单克隆抗体免疫染色,以便证实在肿瘤血管内皮和肿瘤细胞中增加的DEspR表达,如使用抗hDEspR多克隆抗体所所检测的(图24A-24F、25A-25F和26A-26F),以及阐明7C5B2单克隆抗体的DEspR靶向谱。
[0550] 进行DEspR和α平滑肌肌动蛋白(αSMA)的双重免疫染色以便追踪微血管周细胞和癌组织间质肌成纤维细胞,在正常乳腺组织血管和乳腺上皮细胞中检测到最小DEspR表达,并且在突出显示最少至无DEspR表达的乳腺肌上皮细胞和小动脉平滑肌细胞中检测到正常αSMA表达(图31A-31C)。相反,在导管浸润癌的代表性乳腺癌组织切片中,双重免疫染色在肿瘤微血管内皮中、在共表达αSMA的微血管和小动脉中、以及在导管癌上皮细胞中检测到显著的DEspR表达(图31D-31F)。与非癌‘正常’对照组织相比,增加的肿瘤血管化也是显著的(图31A-31C)。
[0551] 同样,在正常胰中,在微血管(图32A-32C)中以及在动脉内皮中检测到最少DEspR表达,与动脉中层平滑肌细胞中的强αSMA表达相反(图32C)。相反,DEspR表达在胰腺癌αSMA阴性的微血管和αSMA阳性微血管和小动脉内皮中增加了(图32D-32E)。如在乳腺癌上皮细胞中和在PANC-1癌细胞系所观察,胰腺癌导管癌上皮细胞展示了显著的DEspR阳性免疫染色(图32F)。
[0552] DEspR信号转导的磷酸化蛋白质组分析。使用磷蛋白特异性抗体阵列,在永久Cos1细胞DEspR转染子中鉴定了由DEsp分别与其双重配体ET1和VEGFsp结合后所激活的配体特异性信号转导途径(表4)。使用了Cos1细胞,因为这些细胞没有内源性DEspR、ET1或VEGFR2表达。比较了未处理和处理的Cos1-DEspR转染子。如在表4中所示,无论配体是什么,DEspR的磷酸化蛋白质组(限于具有>50%CFC的信号磷蛋白)激活已知涉及血管生成、肿瘤细胞侵袭力或转移的机制的信号通路。另外,用于DespR的ET1或VEGFsp激活的一些DEspR磷酸化的信号分子已经直接与神经元或造血干细胞连接,一些信号分子还牵涉癌干细胞更新,如ERK1/2、FAK、Met、PKC-α、SHP2、Smad、STAT1、以及STAT3(表3)。在此指出,对于一些信号分子如FAK、ERK1/2、Raf、PKCα,DEspR的磷酸化蛋白质组与VEGFR2/VEGF重叠[19]。然而,DEspR/ET1和DEspR/VEGFsp的共同信号复合物(表3)完全不同于对VEGFR2/VEGFa描述的共同信号复合物[19],因此证实非冗余血管生成作用,正如从DEspR[13]和VEGF[20、21]的无效突变体异常血管生成表型中所推导,所述表型在E10.5与E12.5胚胎龄之间具有相同的胚胎致死性,虽然VEGFR2或Flk1无效突变体在E8.5-E9.5胚胎龄之间更早死亡[22]。
[0553] 讨论
[0554] 作为抗肿瘤血管化疗法的新靶标的DEspR。在肿瘤血管内皮中检测到增加的DEspR表达,与正常组织匹配的对照相反,在肿瘤间质中的αSMA阴性毛细血管/微血管和αSMA阳性小动脉和动脉中检测到DEspR表达,并且通过DEspR抑制作用成功抑制了血管生成,这些均表明,DEspR是针对肿瘤血管生成和现有的或‘成熟的’肿瘤微血管的疗法的新靶标。更具体地说,靶向αSMA阳性微血管上的DEspR可以解决对于抗VEGF疗法具有抵抗的肿瘤的问题,在不希望受理论限制或约束的情况下,这些肿瘤被认为具有由于它们的‘成熟’(如由αSMA阳性周细胞鞘所标志)而不再依赖于VEGF或由于“现有微血管的共择“而不依赖于VEGF的间质血管[2]。此外,靶向DEspR与抗VEGF疗法联合在一起可以解决预期的VEGFsp同时增加10倍的问题,其中所述增加伴随在抗VEGF疗法时观察到的VEGF增加
10倍[10],因为VEGF和VEGFsp源于共同的前肽。
[0555] 来自配体特异性DEspR磷酸化蛋白质组的认识。鉴于缺氧诱导因子-1α(HIF1α)稳定作用在缺氧时诱导VEGF并因此诱导VEGFsp,通过VEGFsp-DEspR活化使BRCA1磷酸化并诱导PCNA表达(表3),表明DEspR可能有助于缺氧时激活的所需要的DNA修复反应[24],因此允许DEspR阳性内皮细胞和癌细胞增殖,尽管处于缺氧微环境,而不是经历缺氧诱导的细胞周期停滞和凋亡[24、25]。在ET1/DEspR刺激后诱导了肝细胞生长因子受体MET并且在DEspR/VEGFsp激活后Smad1/5/9被磷酸化,因此表明与内皮细胞中的血管生成和癌细胞中的侵袭力相关的在VEGFsp/DEspR、MET/HGF、以及TGFβ/Smad途径之间的交互作用和/或冗余机制。重要的是,DEspR使BRCA1和STAT3磷酸化,BRCA1和STAT3两者均已经显示出使HIF1α稳定,并且与Raf1一起导致诱导VEGF并且因此诱导VEGFsp。此外,通过VEGFsp/DespR和STAT3以及通过ET1/DEspR和VEGFsp/DespR两者所致的BRCA1[26]的磷
酸化,均可以在无需缺氧下导致DEspR介导的HIF1-α稳定作用,从而导致HIF1-α介导的组成型促血管生成和促DNA修复反应,这种反应可能促成了肿瘤对常规疗法的抵抗。
[0556] 作为双重抗血管生成/抗癌细胞侵袭力治疗范式的靶标的DEspR抑制。除了在肿瘤血管内皮上表达之外,DEspR在实体瘤上皮细胞中表达,在建立的癌细胞系和乳腺癌、胰腺癌、肺癌、胃癌、膀胱癌和结肠癌的组织学切片中均见到所述实体瘤上皮细胞(图
24A-24F,25A-25F,26A-26F和27A-27F)。正如抗DEspR抑制作用减少了体外血管生成(图
28A-28B),7C5B2单克隆抗体抑制作用在两个侵袭性癌细胞系(乳腺癌细胞系MDA-MB-231(和-468)和胰腺癌细胞系PANC-1)中降低了肿瘤细胞侵袭力(图29A-29C)。因此,使用在此所述的组合物和方法,通过抗hDEspR单克隆抗体抑制作用靶向作为一种涉及血管生成和肿瘤细胞侵袭力两者的受体的DespR,提供了一种稳健的新的抗肿瘤新疗法,并且展示了在此所述的抗hDEspR7C5B2单克隆抗体作为抗hDEspR单克隆抗体治疗前体的用途。
[0557] 此外,血管生成和转移机制的双重靶向构成了新颖的用于下一代抗癌治疗策略的方法[2]。在此所述的数据证明,靶向DEspR可以用来实现双重治疗范式。在胰腺肿瘤新血管和肿瘤细胞两者中增加的表达连同借助抗DEspR抑制作用抑制血管生成和胰腺癌细胞系PANC-1细胞侵袭力完全表明,抗DEspR疗法可以为胰腺癌提供一种新的治疗方法。在一些实施方案中,由DEspR抑制引起的组合性抗血管生成和抗侵袭力(如在此所示)以及用于双重肿瘤内皮和肿瘤细胞靶向送递的靶向DEspR可以用作下一代双重抗肿瘤/抗血管生成癌症治疗及其方法的治疗基础[2]。
[0558] 表3.不同癌和癌细胞系中的DEspR表达的肿瘤阵列分析
[0559]
[0560]
[0561] 表4.分别基于ET1和VEGFsp刺激的hDEspR的磷酸化蛋白质组
[0562]
[0563]
[0564]
[0565]
[0566] [1]D.Hanahan,R.A.Weinberg,“癌 的 标 志”(The hallmarks of cancer),Cell100(2000)57-70。0}
[0567] [2]G.Bergers,D.Hanahan,“针对抗血管生成疗法的抵抗模式”(Modes of resistance to anti-angiogenic therapy),Nature Reviews-Cancer8(2008)592。
[0568] [3]A.Abdollahi,J.Folkman,“逃避性肿瘤的避免:抗血管生成癌症疗法的当前概念和展望”(Evading tumor evasion:current concepts and perspectives of anti-angiogenic cancer therapy),Drug Resist.Updat.13(2010)16-28。
[0569] [4]N.Ferrara,“介导VEGF非依赖性肿瘤血管生成的途径”(Pathways mediating VEGF-independent tumor angiogenesis),Cytokine Growth Factor Rev.21(2010)21-26。
[0570] [5]S.Loges,T.Schmidt,P.Carmeliet,“针对抗血管生成疗法的抵抗机制和第三代抗血管生成候选药物的开发”(Mechanisms of resistance to anti-angiogenic therapy and development of third-generation anti-angiogenic drug candidates),Genes&Cancer1(2010)12-25。
[0571] [6]P.Carmeliet,“在生命、疾病和医学中的血管生成”(Angiogenesis in life,disease and medicine),Nature438(2005)932-936。
[0572] [7]Y.Crawford,N.“研究 VEGF抑 制剂 抗 癌 作 用的 小 鼠 模 型”(Mouse models to investigate anti-cancer effects of VEGF inhibitors),MethodsEnzymol.445(2008)125-139。
[0573] [8]J.M.Ebos,C.R.Lee,W.Cruz-Munoz,G.A.Bjarnason,J.G.Christensen,R.S.Kerbel,“用肿瘤血管生成强力抑制剂进行短期治疗之后转移加速”(Accelerated metastasis after short-term treatment with a potent inhibitor of tumorangiogenesis),Cancer Cell15(2009)232-239。
[0574] [9]M.Paez-Ribes,E.Allen,J.Hudock,T.Takeda,H.Okuyama,F.Vinals,M.Inoue,G.Bergers,D.Hanahan,O.Casanovas,“抗血管生成疗法激发肿瘤恶性进展到局部侵袭增加和远处转移”(Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis),Cancer Cell15(2009)220-231。
[0575] [10]C.G.Willett,Y.Boucher,D.G.Duda,E.diTomaso,L.L.Munn,R.T.Tong,S.V.Kozin,L.Petit,R.K.Jain,D.C.Chung,D.V.Sahani,S.P.Kalva,K.S.Cohen,D.T.Scadden,A.J.Fischman,J.W.Clark,D.P.Ryan,A.X.Zhu,L.S.Blaszkowsky,P.C.Shellito,M.Mino-Kenudson,G.Y.Lauwers,“抗血管生成疗法的替代标记以及针对采用放疗和化学疗法的贝伐珠单抗的剂量限制性毒性:直肠癌患者中的I期试验的持续经验”(Surrogate markers for antiangiogenic therapy and doselimiting toxicities for Bevacizumab with radiation and chemotherapy:continued experience of a phase I trial in rectal cancer patients).J.Clin.Oncol.23(2005)8136-8139.
[0576] [11]G.Bocci,S.Man,S.K.Green,G.Francia,J.M.Ebos,J.M.du Manoir,A.Weinerman,U.Emmenegger,L.Ma,P.Thorpe,A.Davidoff,J.Huber,D.J.Hicklin,R.S.Kerbel,“增加的血浆VEGF作为VEGF受体-2单克隆抗体的最佳治疗性给药的替代标记”(Increased plasma VEGF as a surrogate marker for optimal therapeutic dosing of VEGF receptor-2monoclonal antibodies),Cancer Res.64(2004)6616-6625。
[0577] [12]N.Ruiz-Opazo,K.Hirayama,K.Akimoto,V.L.M.Herrera,“双重内皮素-1/血管紧张素II受体的分子表征”(Molecular characterization of a dual Endothelin-1/Angiotensin II Receptor),Molecular Medicine4(1998)96-108。
[0578] [13]V.L.M.Herrera,L.R.B.Ponce,P.D.Bagamasbad,B.D.VanPelt,T.Didishvili,N.“在Dear基因缺陷小鼠中的胚胎致死性:在血管生成中的新参预者”(Embryonic lethality in Dear gene-deficient mice:new player in angiogenesis),Physiol.Genomics23(2005)257-268。
[0579] [14]K.Hosoda,R.E.Hammer,J.A.Richardson,A.G.Baynash,J.C.Cheung,A.Giaid,M.Yanagisawa,“内皮素-B受体基因的靶向和天然(致死性花斑)突变在小鼠中产生与斑点皮毛颜色相关的巨结肠”(Targeted and natural (piebald-lethal)mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice),Cell79(1994)1267-1276。
[0580] [15]D.E.Clouthier,K.Hosoda,J.A.Richardson,S.C.Williams,H.Yanagisawa,T.Kuwaki,M.Kumada,R.E.Hammer,M.Yanagisawa,“在内皮素-A受体缺陷小鼠中的颅及心脏神经嵴缺陷”(Cranial and cardiac neural crest defects in endothelin-A receptor-deficient mice),Development125(1998)813-824。
[0581] [16]A.Bagnato,L.Rosano,“癌症中的内皮素轴”(The endothelin axis in cancer),Int.J.Biochem.Cell Biol.40(2008)1443-1451。
[0582] [17]N.Glorioso,V.L.M.Herrera,P.Bagamasbad,F.Filigheddu,C.Troffa,G.Argiolas,E.Bulla,J.L.Decano,N.Ruiz-Opazo,“ATP1A1和Dear SNP-单倍型与原发性高血压的关联:性别特异性和单倍型特异性作用”(Association of ATP1A1and Dear SNP-haplotypes with essential hypertension:sex-specific and haplotype-specific effects),Circ.Res.100(2007)1522-1529。
[0583] [18]Y.Matsuo,M.Raimondo,T.A.Woodward,M.B.Wallace,K.R.Gill,Z.Tong,M.D.Burdick,Z.Yang,R.M.Strieter,R.M.Hoffman,S.Guha,“CXC-趋化因子/CXCR2生物学轴在体外和在体内促进胰腺癌中的血管生成”(CXC-chemokine/CXCR2biological axis promotes angiogenesis in vitro and in vivo in pancreatic cancer),Int.J.Cancer125(2009)1027-1037。
[0584] [19]A.K.Ollson,A.Dimberg,J.Kreuger,L.Claesson-Welsh,“VEGF受体信号转导-在血管功能控制中”(VEGF receptor signaling-in control of vascular function),Nat Reviews:Mol.Cell Biol.7(2006)359-371.
[0585] [20]P.Carmeliet,V.Ferreira,G.Breier,S.Pollefeyt,L.Lieckens,M.Gertsenstein,M.Fahrig,A.Vandenhoeck,H.Kendraprasad,C.Eberhardt,C.Declercq,J.Pawling,L.Moons,D.Collen,W.Risau,A.Nagy,“在缺乏单个VEGF等位基因的胚胎中的异常血管发育和致死性”(Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele),Nature380(1996)435-439。
[0586] [21]N.Ferrara,K.Carver-Moore,H.Chen,M.Dowd,L.Lu,K.S.O’Shea,L.Powell-Braxton,K.J.Hillan,M.W.Moore,“由VEGF基因的靶向失活引起的杂合胚胎致死性”(Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene),Nature380(1996)439-442。
[0587] [22]F.Shalaby,J.Rossant,T.P.Yamaguchi,M.Gertsenstein,X.F.Wu,M.L.Bretman,A.C.Schuh,Nature376(1995)62-66。
[0588] [23]M.Hidalgo,“胰 腺 癌”(Pancreatic Cancer),New Engl.J.Med.362(2010)1605-1617。
[0589] [24]M.L.Coleman,P.J.Ratcliffe,“血管生成:逃避缺氧”(Angiogenesis:escape from hypoxia),Nat.Med.15(2009)491-492。
[0590] [25]E.M.Hammond,A.J.Biaccia,“ATM和ATR在对缺氧和再氧合的细胞反应中的作用”(The role of ATM and ATR in the cellular response to hypoxia and re-oxygenation),DNA Repair3(2004)117-1122。
[0591] [26]H.J.Kang,H.J.Kim,J.K.Rih,T.L.Mattson,K.W.Kim,C.H.Cho,J.S.Isaacs,I.Bae,“BRCA1在缺氧反应中通过调节HIF-1α稳定性并且通过调节血管内皮生长因子表达而发挥作用”(BRCA1plays a role in the hypoxic response by regulating HIF-1αstability and by modulating vascular endothelial growth factor
expression),J.Biol.Chem.281(2006)13047-13056。
[0592] [27]C.Hesling,M.D’Incan,C.D’Incan,P.Souteyrand,J.C.Monboisse,S.Pasco,J.C.Madelmont,Y.J.Bignon,“A375黑色素瘤细胞系中BRCA1的下调增加了辐射敏感性并调节转移性和血管生成基因表达”(Downregulation of BRCA1in A375melanoma cell line increases radio-sensitivity and modifies metastatic and angiogenic gene expression),J.Invest.Dermatol.122(2004)369-380。
[0593] [28]N.Johnson,D.Cai,R.D.Kennedy,S.Pathania,M.Arora,Y.C.Li,A.D.D’Andrea,J.D.Parvin,G.I.Shapiro,“Cdk1参与响应于DNA损伤的BRCA1依赖性S期检查点控制”(Cdk1participates in BRCA1-dependent S phase checkpoint control in response to DNA damage),Mol.Cell35(2009)327-339。
[0594] [29]J.Xu,X.Liu,Y.Jiang,L.Chu,H.Hao,Z.Liu,C.Verfaillie,J.Zweier,K.Gupta,Z.Liu,“MAPK/ERK信号转导介导VEGF诱导的骨髓干细胞分化成内皮细胞”(MAPK/ERK signaling mediates VEGF-induced bone marrow stem cell differentiation into endothelial cell),J.Cell.Mol.Med.12(2008)2395-2406。
[0595] [30]E.M.Langenfeld,Y.Kong,J.Langenfeld,“骨形态发生蛋白-2诱导的转化涉及哺乳动物雷帕霉素靶蛋白的激活”(Bone morphogenetic protein-2-induced transformation involves the activation of mammalian target of rapamycin),Mol.Cancer Res.3(2005)679-684。
[0596] [31]J.A.Gollob,S.Wilhelm,C.Carter,S.L.Kelley,“Raf 激 酶 在 癌 症 中的作用:靶向Raf/MEK/ERK信号转导通路的治疗潜力”(Role of Raf kinase incancer:therapeutic potential of targeting the Raf/MEK/ERK signal transduction pathway),Semin.Oncol.33(2006)392-406。
[0597] [32]K.Balmano,S.J.Cook,“借 助ERK1/2通 路 的肿 瘤 细胞 存 活信 号 转导”(Tumor cell survival signaling by the ERK1/2pathway),Cell DeathDiffer.16(2009)368-377。
[0598] [33]C.Fremin,S.Meloche,“从用于癌症疗法的MEK1/2抑制剂的基础研究到临床开发”(From basic research to clinical development of MEK1/2inhibitors for cancer therapy),J.Hematol.Oncology3(2010)8-18。
[0599] [34]R.Morishita,H.Ueda,H.Ito,J.Takasaki,K.Nagata,T.Asano,“Gq/11 在调节内皮素诱导的神经祖细胞增殖的整联蛋白信号依赖性和非依赖性途径中的参与”(Involvement of Gq/11in both integrin signal-dependent and-independent pathways regulating endothelin-induced neural progenitor proliferation),Neurosci.
Res.59(2007)205-214。
[0600] [35]Y.Wang,Y.Zhu,F.Qiu,T.Zhang,Z.Chen,S.Zheng,J.Huang,“Akt 和 MAPK途径的激活增强了CD133+原发性结肠癌细胞的致瘤性”(Activation of Akt and MAPK pathways enhances the tumorigenicity of CD133+primary colon cancer cells),Carcinogenesis2010Jun8.[电子版先于印刷版]
[0601] [36]K.Vadali,X.Cai,M.D.Schaller,“粘着斑激酶:一种调节心血管功能的重要激酶”(Focal adhesion kinase:an essential kinase in the regulation of cardiovascular functions),IUBMB Life59(2007)709-716。
[0602] [37]M.Luo,J.L.Guan,“粘着斑激酶:乳腺癌起始、进展和转移中的突出决定因素”(Focal adhesion kinase:a prominent determinant in breast cancer initiation,progression and metastasis),Cancer Lett.289(2010)127-139。
[0603] [38]P.P.Provenzano,D.R.Inman,K.W.Eliceiri,H.E.Beggs,P.J.Keely,“粘着斑激酶的乳腺上皮特异性破坏在人乳腺癌转基因小鼠模型中延迟了肿瘤形成和转移”(Mammary epithelial-specific disruption of focal adhesion kinase retards tumor formation and metastasis in a transgenic mouse model of human breast cancer),Am.J.Pathol.173(2008)1551-1565。
[0604] [39]S.Fan,Y.Xian,J.A.Wang,R.Q.Yuan,Q.Meng,Y.Cao,J.J.Laterra,I.D.Goldberg,E.M.Rosen,“细胞因子肝细胞生长因子/分散因子通过涉及经由磷脂酰肌醇3'激酶的信号转导的常见机制抑制凋亡和增强DNA修复”(The cytokine hepatocyte growth factor/scatter factor inhibits apoptosis and enhances DNA repair by a common mechanism involving signaling through phosphatidyl inositol3'kinase),Oncogene19(2000)2212-2223。
[0605] [40]E.S.Colombo,G.Menicucci,P.G.McGuire,A.Das,“肝细胞生长因子/分散因子通过增加的尿激酶表达促进视网膜血管生成”(Hepatocyte growth factor/scatter factor promotes retinal angiogenesis through increased urokinase expression),Invest.Ophthalmol.Vis.Sci.48(2007)1793-1800。
[0606] [41]K.Matsumoto,T.Nakamura,“靶 向 HGF-Met 和 血 管 生 成 的 NK4 基因 治 疗”(NK4gene therapy targeting HGF-Met and angiogenesis),Front.Biosci.13(2008)1943-1951。
[0607] [42]P.C.Ma,M.S.Tretiakova,V.Nallasura,R.Jagadeeswaran,A.N.Husain,R.Salgia,“在小细胞肺癌中的c-MET/HGF通路的下游信号转导和特异性抑制:对于肿 瘤侵 袭的 影响”(Downstream signaling and specific inhibition of c-MET/HGF pathway in small cell lung cancer:implications for tumor invasion),
Br.J.Cancer97(2007)368-377。
[0608] [43]Z.Yang,W.Wang,D.Ma,Y.Zhang,L.Wang,Y.Zhang,S.Xu,B.Chen,D.Miao,K.Cao,W.Ma,“在梗死后心力衰竭中通过经由冠状动脉内基因转染的肝细胞生长因子募集干细胞”(Recruitment of stem cells by hepatocyte growth factor via intracoronary gene transfection in the postinfarction heart failure),Sci.China C.LifeSci.50(2007)748-752。
[0609] [44]R.Stuart-Harris,C.Caldas,S.E.Pinder,P.Pharoah,“早期乳腺癌中的增殖标记和存活:在32,825位患者中的85次研究的系统综述和荟萃分析”(Proliferation markers and survival in early breast cancer:a systematic review andmeta-analysis of85studies in32,825patients),Breast17(2008)323-334。
[0610] [45]M.Wellner,C.Maasch,C.Kupprion,C.Lindschau,F.C.Luft,H.Haller,“血管内皮生长因子的增殖作用需要蛋白激酶C-α和蛋白激酶C-ζ”(The proliferative effect of vascular endothelial growth factor requires protein kinase C-alpha and protein kinase C-zeta),Arterioscler.Thromb.Vasc.Biol.19(1999)178-185。
[0611] [46]H.Xu,P.Czerwinski,M.Hortmann,H.Y.Sohn,U.Forstermann,H.Li,“蛋白激酶Cα通过诱导血管内皮生长因子促进人内皮细胞的血管生成活性”(Protein kinase C alpha promotes angiogenic activity of human endothelial cells via induction of vascular endothelial growth factor),Cardiovasc.Res.78(2008)349-355。
[0612] [47]G.E.Davis,W.Koh,A.N.Stratman,“控制人内皮管腔形成和在三维胞外基质中的管组装的机制”(Mechanisms controlling human endothelial lumen formation and tube assembly in three-dimensional extracellular matrices),Birth Defects Research81(2007)270-285。
[0613] [48]S.Yamamura,P.R.Nelson,K.C.Kent,“蛋白激酶C在人内皮细胞的附着、播散和迁移中的作用”(Role of protein kinase C in attachment,spreading,and migration of human endothelial cells),J.Surg.Res.63(1996)349-354。
[0614] [49]A.M.Gardner,M.E.Olah,“不同蛋白激酶C同种型在嗜铬细胞瘤PC12细胞中通过A2A腺苷受体激活和佛波醇酯介导血管内皮生长因子表达的调节”(Distinct protein kinase C isoforms mediate regulation of vascular endothelial growth factor expression by A2A adenosine receptor activation and phorbol esters in pheochromocytoma PC12cells),J.Biol.Chem.278(2003)15421-15428。
[0615] [50]M.C.Heidkamp,A.L.Bayer,B.T.Scully,D.M.Eble,A.M.Samarel,“通过新生大鼠心室肌细胞中的蛋白激酶C-ε激活粘着斑激酶”(Activation of focal adhesion kinase by protein kinase C epsilon in neonatal rat ventricular myocytes),Am.J.Physiol.Heart Circ.Physiol.285(2003)H1684-H1696。
[0616] [51]M.Malecki,M.Seneta,J.Miloszewska,H.Trembacz,M.Przbyszewska,P.Janik,“v-Raf和截短形式RAF1在诱导血管内皮生长因子和血管化中的作用”(Role of v-Raf and truncated form RAF1in the induction of vascular endothelial growth factor and vascularization),Oncol.Rep.11(2004)161-165。
[0617] [52]F.J.Hoogwater,M.W.Nijkamp,N.Smakman,E.J.Steller,B.L.Emmink,B.F.Westendorp,D.A.Raats,M.R.Sprick,U.Schaefer,W.J.Van Houdt,M.T.DeBruijn,R.C.Schackmann,P.W.Derksen,J.P.Medema,H.Walczak,I.H.Borel Rinkes,O.Kranenberg,“致癌K-Ras在人和小鼠结直肠癌细胞中使死亡受体转变成转移促进受体”(Oncogenic K-Ras turns death receptors into metastasis-promoting receptors in human and mouse colorectal cancer cells),Gastroenterology138(2010)2357-2367。
[0618] [53]J.Ursini-Siegel,W.R.Hardy,D.Zuo,S.H.L.Lam,V.Sanguin-Gendreau,R.D.Cardiff,T.Pawson,W.Muller,“ShcA信号转导对于人乳腺癌小鼠模型中的肿瘤进展是重要的”(ShcA signaling is essential for tumor progression in mouse models of human breast cancer),EMBO J.27(2008)910-920。
[0619] [54]E.Audero,I.Cascone,F.Maniero,L.Napione,M.Arese,L.Lanfrancone,F.Bussolino,Adaptor ShcA protein binds tyrosine kinase Tie2receptor andregulates migration and sprouting but not survival of endothelial cells(ShcA衔接蛋白结合酪氨酸激酶Tie2受体并且调节内皮细胞的迁移和长出但是不调节其存活),J.Biol.Chem.279(2004)13224-13233。
[0620] [55]C.Saucier,H.Khoury,K.M.Lai,P.Peschard,D.Dankort,M.A.Naujokas,J.Holash,G.D.Yancopoulos,W.J.Muller,T.Pawson,M.Park,“Shc衔接蛋白对于通过Met/HGF和Erb B2受体诱导VEGF和肿瘤血管生成早期开始是关键的”(The Shc adaptor protein is critical for VEGF induction by Met/HGF and Erb B2receptors and for early onset of tumor angiogenesis),Proc.Natl.Acad.Sci.101(2004)2345-2350。
[0621] [56]J.J.Northey,J.Chmielecki,E.Ngan,C.Russo,M.G.Annis,W.J.Muller,P.M.Siegel,“通过ShcA的信号转导对于TGF-β和Neu/ErbB-2诱导的乳腺癌细胞运动性和侵袭是需要的”(Signaling through ShcA is required for TGF-beta
and Neu/ErbB-2induced breast cancer cell motility and invasion),Mol.Cell Biol.28(2008)3162-3176。
[0622] [57]C.Saucier,V.Papavailiou,A.Palazzo,M.A.Naujokas,R.Kremer,M.Park,“信号特异性受体酪氨酸激酶癌蛋白的用途揭示Grb2或Shc下游的途径足够用于细胞转化和转移”(Use of signal specific receptor tyrosine kinase oncoproteins reveals that pathways downstream from Grb2or Shc are sufficient for cell
transformation and metastasis),Oncogene21(2002)1800-1811。
[0623] [58]Y.M.Agazie,N.Movilla,I.Ischenko,M.J.Hayman,“磷酸酪氨酸磷酸酶SHP2是致癌性成纤维细胞生长因子受体3诱导的转化的关键介质”(The phosphotyrosine phosphatase SHP2is a critical mediator of transformation induced by theoncogenic fibroblast growth factor receptor3),Oncogene22(2003)6909-6918。
[0624] [59]R.D.Chernock,R.P.Cherla,R.K.Ganju,“SHP2和cbl参与α-趋化因子受体CXCR4介导的信号通路”(SHP2and cbl participate in alpha-chemokine receptor CXCR4-mediated signaling pathways),Blood97(2001)608-615。
[0625] [60]M.B.Marron,D.P.Hughes,M.J.McCarthy,E.R.Beaumont,N.P.Brindle,“Tie-1受体酪氨酸激酶内结构域与SHP2相互作用:潜在信号机制以及在血管生成 中 的 作 用”(Tie-1receptor tyrosine kinase endodomain interaction with SHP2:potential signaling mechanisms and roles in angiogenesis),Adv.Exp.Med.Biol.476(2000)35-46。
[0626] [61]X.Zhou,J.Coad,B.Ducatman,Y.M.Agazie,“SHP2在乳腺癌细胞中以及在浸润性乳腺导管癌中均被上调,提示它参与乳腺癌肿瘤形成”(SHP2is up-regulated in breast cancer cells and in infiltrating ductal carcinoma of the breast,implying its involvement in breast oncogenesis),Histopathology53(2008)389-402。
[0627] [62]X.Zhou,Y.M.Agazie,“SHP2在促进HER2诱导的信号转导和转化中的分子机 制”(Molecular mechanism for SHP2in promoting HER2-induced signaling and transformation),J.Biol.Chem.284(2009)12226-12234.
[0628] [63]K.Hagihara,E.E.Zhang,Y.H.Ke,G.Liu,J.J.Liu,Y.Rao,G.S.Feng,“Shp2在SDF-1α/CXCR4下游在小脑发育期间引导颗粒细胞迁移中发挥作用”(Shp2actsdownstream of SDF-1alpha/CXCR4in guiding granule cell migration during
cerebellar development),Dev.Biol.334(2009)276-284。
[0629] [64]D.Wu,Y.Pang,Y.Ke,J.Yu,Z.He,L.Tautz,T.Mustelin,S.Ding,Z.Huang,G.S.Feng,“通过shp2酪氨酸磷酸酶控制人和小鼠胚胎干细胞多能性和分化的保守机制”(A conserved mechanism for control of human and mouse embryonic stem cell pluripotency and differentiation by shp2tyrosine phosphatase),PLoS One4(2009)e4914。
[0630] [65]Y.Ke,E.E.Zhang,K.Hagihara,D.Wu,Y.Pang,R.Klein,T.Curran,B.Ranscht,G.S.Feng,“在脑中的Shp2缺失导致神经干细胞中的缺陷性增殖和分化以及出生后早期致死性”(Deletion of Shp2in the brain leads to defective proliferation and differentiation in neural stem cells and early postnatal lethality),Mol.Cell Biol.27(2007)6706-6717。
[0631] [66]I.M.Liu,S.H.Schilling,K.A.Knouse,L.Choy,R.Derynck,X.F.Wang,“TGFβ-刺激的Smad1/5磷酸化需要ALK5L45环并且介导促迁移TGF-β转换”(TGFbeta-stimulated Smad1/5phosphorylation requires the ALK5L45loop and
mediates the pro-migratory TGFbeta switch),EMBO J.28(2009)88-98。
[0632] [67]U.Blank,G.Karlsson,S.Karlsson,“控 制干 细胞 命运 的信 号通 路”(Signaling pathways governing stem-cell fate),Blood111(2008)494-503。
[0633] [68]F.M.Johnson,G.E.Gallick,“作为癌症疗法分子靶标的SRC家族非受体酪氨酸激酶”(SRC family nonreceptor tyrosine kinases as molecular targets for cancer therapy),Anticancer Agents Med.Chem.7(2007)651-659。
[0634] [69]E.H.Lin,A.Y.Hui,J.A.Meens,E.A.Tremblay,E.Schaefer,B.E.Elliott,“Ca2+依赖性细胞基质粘附的破坏增强了在癌细胞中的c-Src激酶活性,但是引起c-Src/FAK复合物解离和FAK的酪氨酸-577去磷酸化”(Disruption of Ca2+-dependentcell-matrix adhesion enhances c-Src kinase activity,but causes dissociation of the c-Src/FAK complex and dephosphorylation of tyrosine-577of FAK in carcinoma cells),Exp.Cell Res.293(2004)1-13。
[0635] [70]B.Mezquita,J.Mezquita,M.Pau,C.Mezquita,“新颖的VEGFR-1胞内同种型在MDA-MB-231乳腺癌细胞中激活Src并促进细胞侵袭”(A novel intracellular isoform of VEGFR-1activates Src and promotes cell invasion in MDA-MB-231breast cancer cells),J.Cell Biochem.110(2010)732-742。
[0636] [71]J.Schultz,D.Koczan,U.Schmitz,S.M.Ibrahim,D.Pilch,J.Landsberg,M.Kunz,“信号转导及转录活化蛋白(Stat)1在晚期黑色素瘤生
长 中 的 肿 瘤 促 进 作 用”(Tumor-promoting role of signal transducer and activator of transcription(Stat)1in late-stage melanoma growth),Clin.Exp.Metastasis27(2010)133-140。
[0637] [72]M.Heuser,R.K.Humphries,Humphries,“测量的癌干细胞的生物及实验变异性”(Biologic and experimental variation of measured cancer stem cells),Cell Cycle9(2010)909-912。
[0638] [73]J.E.Jung,H.G.Lee,I.H.Cho,D.H.Chung,S.H.Yoon,Y.M.Yang,J.W.Lee,S.Choi,J.W.Park,S.K.Ye,M.H.Chung,“STAT3是人肾癌细胞中HIF-1介导的VEGF表达的潜在调节物”(STAT3is a potential modulator of HIF-1-mediated VEGF expression in human renal carcinoma cells),FASEB J.19(2005)1296-1298。
[0639] [74]A.Jarnicki,T.Putoczki,M.Ernst,“Stat3:炎症与上皮癌症相关-不止 是“直 觉”?”(Stat3:linking inflammation to epithelial cancer-more than a“gut”feeling?),Cell Div.5(2010)14。
[0640] [75]H.Yu,D.Pardoll,R.Jove,“在癌性炎症和免疫中的STAT:STAT3的主导作用”(STATs in cancer inflammation and immunity:a leading role for STAT3),Nat.Rev.Cancer9(2009)798-809。
[0641] [76]M.V.Covey,S.W.Levison,“白血病抑制因子参与围产期缺氧/缺血之后的神经干/祖细胞扩增”(Leukemia inhibitory factor participates in the
expansion of neural stem/progenitors after perinatal hypoxia/ischemia),
Neuroscience148(2007)501-509。
[0642] 实例4:7C5B2抗体测序和hDEspR复合人抗体变体产生
[0643] 在此描述了从鼠杂交瘤7C5B2表达的单克隆抗体(抗hDEspR)所获得的测序结果,其中已经确定7C5B2抗体的重链和轻链V区(VH和VL)序列并且已经设计示例性抗hDEspR复合人抗体变体。
[0644] 从有活力的冷冻杂交瘤细胞团块中,提取RNA并且在mRNA的逆转录后进行抗体特异性转录物的PCR扩增。确定抗体重链和轻链的V区的核苷酸序列和氨基酸序列并且分析TM序列数据。然后使用复合人抗体 技术如在此所述设计完全人源化抗体。
[0645] 方法和结果
[0646] RNA提取、RT-PCR和克隆
[0647] 使用 试剂盒(Ambion目录号AM1914)从细胞团块提取RNA。使用针对鼠信号序列的简并引物池,同时使用针对IgGVH、IgMVH、IgκVL和IgλVL中每一者的恒定区引物,进行RT-PCR。使用一组六种简并引物池(HA至HF)扩增重链V区RNA并且使用一组八种简并引物池(7种针对κ类(KA至KG)和一种针对λ类(LA))扩增轻链V区mRNA。
[0648] 对重链V区,从IgGVH逆转录引物和引物池HC获得预期大小的扩增产物。对轻链V区,从IgκVL逆转录引物和轻链引物池KB、KC、KD和KG获得扩增产物(图33)。纯化来自以上池中每一种的PCR产物并且克隆到‘TA’克隆载体(pGEM (R)-T Easy,Promega目录号A1360)中。将六个VH和24个Vκ克隆测序。
[0649] 在来自池HC的5个克隆中鉴定了单功能的VH基因并且在来自池KG的六个克隆中鉴定了单功能的Vκ基因序列。发现来自引物池KB和KC的十二个克隆发现含有通常与杂交瘤融合配偶体SP2/0相关的异常转录物(GenBank登录号M35669),并且发现来自池KD的六个克隆不含功能性Vκ转录本。
[0650] 嵌合抗体
[0651] 使用引入限制性酶位点侧翼用于克隆至Antitope VH和Vκ链表达载体中的引物,PCR扩增VH和Vκ(池KG)基因。使用MluI和HindIII位点克隆VH区并且使用BssHII和BamHI限制性位点克隆Vκ区。通过测序证实所有构建体。
[0652] 使用磷酸钙沉淀法,将嵌合抗体构建体瞬时转染到HEK293细胞中。在收获上清液之前,将瞬时转染物孵育3天。
[0653] 序列分析
[0654] 从杂交瘤7C5B2获得的序列分析总结于表1中。重链V区和轻链V区与其最接近的人种系序列显示良好的同源性(分别是64%和82%)并且各个框架序列在人种系数据库中具有接近的同源物。
[0655] 复合人抗体的设计TM
[0656] 复合人抗体 可变区序列的设计
[0657] 使用Swiss PDB产生小鼠抗hDEspR7C5B2抗体V区的结构模型并且分析之,以便鉴定V区中重要的“约束性”氨基酸,这些氨基酸对于抗体的结合特性可能是必需的。CDR内部(使用Kabat定义)含有的残基连同许多框架残基被认为是重要的。抗hDEspR的VH和Vκ序列两者均含有典型的框架残基,并且CDR1、2和3基序与许多鼠抗体是可比较的。
[0658] 根据以上分析,人们认为可以产生抗hDEspR的复合人序列,其具有CDR外部的广泛范围的替代物,但是在CDR序列内仅具有窄范围的可能替代性残基。分析表明,可以组合来自几种人抗体的相应序列区段以产生与鼠序列中那些CDR相似或相同的CDR。对于CDRTM外部或侧翼的区域,鉴定了广泛的人序列区段选项作为在此所述的新颖的复合人抗体 V区的可能组分(参见表1)。
[0659] 变体的设计
[0660] 基于这些分析,使用用于计算机分析肽与人II类MHC等位基因结合的iTopeTM技TM术(Perry等人,2008),并且使用已知抗体序列相关性T细胞表位的TCED (T细胞表位数TM
据库)(Bryson等人,2010),选择并且分析了可能用来产生抗DEspR复合人抗体 变体的序TM
列区段的大型初步集合。弃去被鉴定为人II类MHC的重要的非人种系结合物或针对TCED评定为重要命中的序列区段。这产生缩减的区段集合,并且再次如上文分析这些的组合,以确保在区段之间的交界的确不含潜在的T细胞表位。
[0661] 然后将选择的区段组合以产生用于合成的重链V区序列和轻链V区序列。对于抗hDEspR,用如在此详述的序列设计五条VH链(SEQ ID NO:13-SEQ ID NO:17)和二条Vκ链(SEQ ID NO:18和SEQ ID NO:19)。
相关专利内容
标题 发布/更新时间 阅读量
磁共振成像系统 2020-05-11 445
磁共振成像装置 2020-05-11 533
磁共振成像设备 2020-05-11 815
磁共振成像装置 2020-05-11 428
磁共振成像装置 2020-05-12 394
磁共振成像装置 2020-05-13 784
磁共振成像装置 2020-05-13 540
磁共振成像 2020-05-11 552
磁共振成像装置 2020-05-11 649
磁共振成像装置 2020-05-11 589
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈