首页 / 专利库 / 疗法 / 过继细胞治疗 / 一种VC-CAR分子及在清除HIV-1感染细胞中的应用

一种VC-CAR分子及在清除HIV-1感染细胞中的应用

阅读:1016发布:2020-07-06

专利汇可以提供一种VC-CAR分子及在清除HIV-1感染细胞中的应用专利检索,专利查询,专利分析的服务。并且本 发明 属于 肿瘤 免疫 治疗 技术领域,具体公开了一种VC-CAR分子及在清除 HIV-1感染细胞中的应用。所述VC-CAR分子是将HIV-1广谱中和 抗体 VRC01来源的scFv序列和传统的CAR分子的胞内段序列连接在一起,分别作为胞外和胞内结构。利用VC-CAR分子改造后的T细胞可以被特异性激活并大量分泌细胞毒性相关的细胞因子,进而强有 力 地介导靶细胞的裂解,能更好的用于抗感染过继免疫治疗。,下面是一种VC-CAR分子及在清除HIV-1感染细胞中的应用专利的具体信息内容。

1.SEQ ID NO:1所示的HIV-1广谱中和抗体VRC01来源的scFv序列在作为CAR分子的胞外抗原结合域中的应用。
2.一种VC-CAR分子,其特征在于,由SEQ ID NO:1所示的HIV-1广谱中和抗体VRC01来源的scFv序列和CAR分子胞内段序列连接而成,HIV-1广谱中和抗体VRC01来源的scFv序列在N端,CAR分子胞内段序列在C端。
3.根据权利要求2所述的VC-CAR分子,其特征在于,所述VC-CAR分子的核苷酸序列如SEQ ID NO:2或SEQ ID NO:3或SEQ ID NO:4所示。
4.根据权利要求2所述的VC-CAR分子,其特征在于,所述VC-CAR分子的核苷酸序列如SEQ ID NO:4所示。
5.一种改造的CD8+ T细胞,其特征在于,使用权利要求2至4任一项所述的VC-CAR分子转导至CD8+ T细胞中制备得到。
+
6.权利要求5所述的改造的CD8 T细胞在制备清除 HIV-1感染细胞的制剂中的应用。
7.根据权利要求5所述的改造的CD8+ T细胞,其特征在于,由以下方法制备得到(:1)收集外周血单个核细胞并分离富集其中的CD8+ T细胞,利用anti-CD3、anti-CD28和IL-2激活CD8+ T细胞(;2)细胞激活48小时后,以1ml/1×106细胞的比例加入VC-CAR分子重组的病毒浓缩液进行感染,同时加入聚凝胺溶液,离心后继续培养;8~12小时后,进行第二轮病毒感染
8.根据权利要求7所述的改造的CD8+ T细胞,其特征在于,所述anti-CD3的浓度为1μg/mL,anti-CD28的浓度为1μg/mL,IL-2的浓度为10ng/mL。
9.一种扩增权利要求5或7或8所述的改造的CD8+ T细胞的方法,其特征在于,包括如下步骤:(1)CD8+ T细胞被VC-CAR分子重组的病毒感染改造后的12小时,离心换液,洗去培养基中的病毒,以新鲜培养基重悬细胞,并加入IL-2和IL-7保持细胞状态(;2)病毒感染改造后的第3天和第5天,根据细胞状态和增殖情况,对细胞添加完全RMPI1640培养基,细胞浓度维持在2×106/ml,并补充IL-2和IL-7,继续培养并及时传代,进一步扩增细胞。
10.根据权利要求9所述的方法,其特征在于,所述IL-2的浓度为10ng/mL, IL-7的浓度为10ng/mL。

说明书全文

一种VC-CAR分子及在清除HIV-1感染细胞中的应用

技术领域

[0001] 本发明涉及肿瘤免疫治疗技术领域,具体地,涉及一种VC-CAR分子及在清除HIV-1感染细胞中的应用。

背景技术

[0002] 人类免疫缺陷病毒1型(Human Immunodificiency Viruse 1,HIV-1)感染后,联合抗逆转录病毒疗法(combined antiretroviral therapy,cART)可以有效地抑制病毒复制。然而,由于病毒整合在被感染细胞中并形成一个稳定的潜伏感染储存库,被感染者一旦停止cART治疗,病毒血症即在短时间内再爆发,这构成了治愈HIV-1感染的主要障碍。
[0003] 当前的研究热点是通过特异性的潜伏感染逆转药物(latency-reversing agents,LRAs)激活潜伏感染的病毒,进而药物治疗或诱导机体免疫系统杀灭被感染细胞。这种干预策略被称为“shock and kill”。然而,HIV-1可以迅速的发生突变以逃避免疫识别。研究显示在经过cART治疗的感染者当中,即使成功激活了其潜伏感染,体内的CD8+T淋巴细胞由于缺乏对HIV-1有效的免疫应答,所以不能完全清除被感染的细胞。因此,在“shock and kill”策略中,为了更好的清除潜伏感染储存库,需要在被感染者体内重建强有的免疫监控机能。
[0004] 近年来,由于具有高亲和力、TCR(T cell  receptor)非依赖和MHC(major histocompatibility complex)非限制等特点,嵌合抗原受体(chimeric antigen receptor,CAR)的免疫细胞疗法成为了杀伤肿瘤细胞的全新途径。CAR是由抗体靶向区域与T细胞激活胞内信号区融合而成,从而赋予细胞特异性抗原识别能力。通过在患者自体免疫细胞中表达识别肿瘤天然抗原的CAR分子并对进行过继免疫回输,可以特异性的靶向杀伤患者体内的肿瘤细胞。CAR-T细胞疗法已在白血病和淋巴瘤的临床治疗中证明了有效性,并且获得了令人鼓舞的成功。该策略也可应用于抗病毒治疗,包括HIV-1、HBV(hepatitis B virus)和HCV(hepatitis C virus)等病毒感染的治疗。但是,传统构建的CAR分子还不能完全满足各种疾病的免疫治疗。

发明内容

[0005] 本发明为了克服现有技术的上述不足,提供一种新的CAR分子,称作VC-CAR分子,VC-CAR分子是将HIV-1广谱中和抗体VRC01来源的scFv序列和传统的CAR分子的胞内段序列连接在一起,分别作为胞外和胞内结构。
[0006] 本发明的另一个目的是提供一种经VC-CAR分子改造的CD8+T细胞。
[0007] 本发明的再一个目的是提供一种经VC-CAR分子改造的CD8+T细胞在清除HIV-1感染细胞的应用。
[0008] 为了实现上述目的,本发明是通过以下技术方案予以实现的:
[0009] SEQ ID NO:1所示的HIV-1广谱中和抗体VRC01来源的scFv序列在作为CAR分子的胞外抗原结合域中的应用。
[0010] 一种VC-CAR分子,由SEQ ID NO:1所示的HIV-1广谱中和抗体VRC01来源的scFv序列和CAR分子的胞内段序列连接而成,HIV-1广谱中和抗体VRC01来源的scFv序列在N端,CAR分子胞内段序列在C端。
[0011] 优选地,一种VC-CAR分子,其核苷酸序列如SEQ ID NO:2或SEQ ID NO:3或SEQ ID NO:4所示。SEQ ID NO:2所示的VC-CAR分子的结构如图1中的VR C01-28BBZ-1所示;SEQ ID NO:3所示的VC-CAR分子的结构如图1中的VR C01-28BBZ-2所示;SEQ ID NO:4所示的VC-CAR分子的结构如图1中的VR C01-28BBZ-3所示。
[0012] 更优选地,一种VC-CAR分子,其核苷酸序列如SEQ ID NO:4所示。
[0013] 一种改造的CD8+T细胞,具体为使用本发明设计的VC-CAR分子转导CD8+T细胞制备得到。VC-CAR改造的CD8+细胞介导表达gp120细胞系的裂解效果更加明显。
[0014] 本发明还要求保护以VC-CAR分子改造的CD8+T细胞在清除HIV-1感染细胞的应用。
[0015] 一种改造的CD8+T细胞,由以下方法制备得到:(1)收集外周血单个核细胞并分离富集其中的CD8+T细胞,利用anti-CD3、anti-CD28和IL-2激活CD8+T细胞;(2)细胞激活48小时后,以1ml/1×106细胞的比例加入VC-CAR分子重组的病毒浓缩液进行感染,同时加入聚凝胺溶液,离心后继续培养;8~12小时后,进行第二轮病毒感染。
[0016] 优选地,所述anti-CD3的浓度为1μg/mL,anti-CD28的浓度为1μg/mL,IL-2的浓度为10ng/mL。
[0017] 优选地,所述聚凝胺溶液的浓度为8μg/mL。
[0018] 一种扩增VC-CAR分子改造的CD8+T细胞的方法,包括如下步骤:(1)CD8+T细胞被VC-CAR分子重组的病毒感染改造后的12小时,离心换液,洗去培养基中的病毒,以新鲜培养基重悬细胞,并加入IL-2和IL-7保持细胞状态;(2)病毒感染改造后的第3天和第5天,根据细胞状态和增殖情况,对细胞添加完全RMPI1640培养基,细胞浓度维持在2×106/ml,并补充IL-2和IL-7,继续培养并及时传代,进一步扩增细胞。
[0019] 优选地,所述IL-2的浓度为10ng/mL,IL-7的浓度为10ng/mL。
[0020] 与现有技术相比,本发明具有如下有益效果:
[0021] 本发明中全新改造的VC-CAR-T细胞与表达HIV-1包膜蛋白的细胞系或HIV-1感染的CD4+T细胞进行共培养,VC-CAR-T细胞可以被特异性激活并大量分泌细胞毒性相关的细胞因子(包括IFN-γ、和Granzyme B),进而强有力地介导靶细胞的裂解。
[0022] 本发明中全新改造的VC-CAR-T细胞相比已报道的CD4-CAR-T细胞,VC-CAR-T细胞介导表达gp120细胞系的裂解效果更加明显。
[0023] 本发明使用的IL-2+IL-7细胞因子组合,相比单独施加IL-2的传统扩增方法,可以进一步提高HIV-1感染患者CD8+T细胞扩增倍数。附图说明
[0024] 图1为构建的VC-CAR分子的结构示意图。
[0025] 图2为pCPPT-IRES-mStrewbeery慢病毒载体结构示意图。
[0026] 图3为VC-CAR在CD8+T细胞中的表达情况。
[0027] 图4为VC-CAR和CD4-CAR改造的CD8+T细胞分别与靶细胞系混合后杀伤效果的比较。
[0028] 图5为VC-CAR-T细胞与表达HIV-1包膜蛋白的靶细胞系混合培养后,IFN-γ和Granzyme-B的分泌情况。
[0029] 图6为VC-CAR-T细胞与表达HIV-1包膜蛋白的靶细胞系混合培养后,通过检测LDH的释放,检测VC-CAR-T细胞的杀伤活性。
[0030] 图7为VC-CAR-T细胞与野生型HIV-1NL4-3感染的CD4+T淋巴细胞进行混合培养,通过流式检测Gag+CD4+T淋巴细胞的比例。验证VC-CAR-T细胞的杀伤活性。

具体实施方式

[0031] 下面结合说明书附图和具体实施例对本发明作出进一步地详细阐述,所述实施例只用于解释本发明,并非用于限定本发明的范围。下述实施例中所使用的试验方法如无特殊说明,均为常规方法;所使用的材料、试剂等,如无特殊说明,为可从商业途径得到的试剂和材料。
[0032] 实施例1
[0033] 一种以VRC01为胞外抗原结合域的VC-CAR分子,其核苷酸序列如SEQ ID NO:2或SEQ ID NO:3或SEQ ID NO:4所示。SEQ ID NO:2所示的VC-CAR分子的结构如图1中的VR C01-28BBZ-1所示;SEQ ID NO:3所示的VC-CAR分子的结构如图1中的VR C01-28BBZ-2所示;SEQ ID NO:4所示的VC-CAR分子的结构如图1中的VR C01-28BBZ-3所示。
[0034] HIV-1广谱中和抗体VRC01来源的scFv序列如SEQ ID NO:1所示。
[0035] 下面以SEQ ID NO:4所示的VC-CAR分子详细介绍一下本发明的VC-CAR分子的结构设计。VC-CAR分子的序列N’端是HIV-1广谱中和抗体VRC01来源的scFv序列,可特异性结合病毒包膜蛋白的CD4结合域;VC-CAR分子序列C’端是以三代CAR结构为基础,包括CD28(nucleotides 460-660,GenBank NM_006139.3),CD137(nucleotides 640-765,GenBank NM_001561.5)和CD3ζ(nucleotides 160-492,Genbank NM_198053.2)胞内结构域串联组成,通过CD28分子的跨膜结构域将scFv和胞内信号分子相连。
[0036] 实施例2
[0037] 一、VC-CAR分子重组pCPPT-IRES-mStrewbeery慢病毒载体:按照SEQ ID NO:4所示序列合成VC-CAR,合成的VC-CAR通过NheI和NotI双酶切,插入pCPPT-IRES-mStrewbeery慢病毒载体中(见图2),酶切、连接的具体步骤参考本领域的常规方法;得到VC-CAR分子重组后的pCPPT-IRES-mStrewbeery慢病毒载体。
[0038] 将一个生长状态的HEK293T细胞平均铺于用多聚赖酸处理的10cm培养皿中(细胞密度约为6.5×104/cm2),要求细胞呈单个均匀分布。培养约24小时后,细胞汇合度应接近80%,此时各皿均以12ml完全培养基换液,同时加入3.75ul氯喹(100mM,4000×)。换液后按表1配制磷酸-DNA混合液,颠倒数次混匀后静置1分钟,然后以3ml/皿迅速加入各皿细胞培养液中,边加边摇匀,逐滴快速加入。
[0039] 表1为磷酸钙-DNA混合液体系配方
[0040]
[0041] 转染后12小时,细胞汇合度应接近100%,此时各皿均以12ml新鲜培养基换液,同时加入90μl丁酸钠(1M,100×)。转染后约48小时,收集全部34ml HEK293T细胞上清液,以0.45μm的过滤器过滤后装入50ml离心管,按下表2比例加入PEG-NaCl-PBS混合液,颠倒混匀后于4℃放置1.5小时,期间每20~30分钟混匀一次或颠倒混匀后于4℃放置过夜。
[0042] 表2
[0043]
[0044] 将混合液于4℃,7000g离心10分钟,管壁上可见白色沉淀,小心去除全部上清液,加入适量体积(300ul~3ml)的新鲜培养基,轻轻摇晃使沉淀溶解,即得到VC-CAR分子重组的病毒浓缩液,立即使用或分装后于-80℃保存。
[0045] 二、VC-CAR在CD8+T细胞中的表达情况:从外周血样本中分离外周血单个核细胞,然后通过偶联生物素的CD8抗体分离富集CD8+T淋巴细胞,计数,离心。用RPMI1640完全培养6
基重悬,然后按2×10/ml的细胞浓度,均匀铺至细胞培养板中。利用anti-CD3(终浓度为1μg/ml)、anti-CD28(终浓度为1μg/ml)抗体和IL2(终浓度为10ng/ml)对细胞进行刺激,作用
48小时后,收集细胞,用于假病毒的感染。
[0046] 取适量生长状态良好的目标细胞悬液,放入离心管中300g离心5分钟。弃去上清液,以1ml/1×106细胞的比例加入假病毒浓缩液,同时加入终浓度8μg/ml的Polybrene,轻轻吹打混匀。将细胞悬液移入培养皿,37℃、350×g离心90分钟,离心结束后,放回培养箱中继续培养。约8~12小时后,进行第二轮感染,步骤同上,约12小时后,离心换液,用PBS洗去培养基中的病毒,以新鲜培养基重悬细胞,并加入终浓度均为10ng/ml的IL-2和IL-7保持细胞状态。继续培养并及时传代,进一步扩增细胞。感染后的第3天,根据细胞状态和增殖情况,对细胞添加完全RMPI1640培养基,细胞浓度维持在2×106/ml。并补充IL-2和IL-7,终浓度均为10ng/ml。感染后的第5天,按照第3天的流程继续扩增细胞。并利用流式检测荧光蛋白mStrewbeery的表达,确定VC-CAR的感染效率,通常需确保感染率达到50%以上(图3)。感染后的第5天,细胞用于后续实验检测或继续培养以及冻存。此后,为了方便起见,以下实验均称其为VC-CAR-T细胞。
[0047] 实施例3
[0048] 一、VC-CAR和CD4-CAR改造的CD8+T细胞分别与靶细胞系混合后杀伤效果的比较:早前有研究利用CD4分子的胞外结构为基础,构建CAR-T细胞(CD4-CAR-T细胞)。由于CD4分子是HIV-1包膜糖蛋白gp120的天然受体,CD4-CAR-T细胞能够裂解表达gp120的靶细胞。为了对比VC-CAR-T细胞和CD4-CAR-T细胞效应,我们根据前人报道,将VC-CAR的scFv序列替换为CD4分子的胞外结构域构建了CD4-CAR。以同样的条件转导CD8+T淋巴细胞,然后与表达HIV-1包膜蛋白的靶细胞系(Jurkat-gp160NL4-3)混合,在U形底的96孔板中进行细胞杀伤实
4
验。靶细胞数量为10 /孔,RMPI1640完全培养基体积为200μl/孔。在给定的效靶比范围内(8:1至2:1),24小时后,通过检测乳酸脱氢酶的释放,以确定每个实验组经过改造CD8+T淋巴细胞的杀伤活性。结果显示:VC-CAR-T细胞比CD4-CAR-T细胞具有更强的靶细胞裂解能力。该结果可能的原因为HIV-1广谱中和抗体来源的scFv对HIV-1gp120亲和力强于天然的CD4分子(见图4)。
[0049] 二、VC-CAR-T细胞与表达HIV-1包膜蛋白的靶细胞系混合培养后特异性细胞因子的分泌情况:为了进一步检测VC-CAR的功能,我们将VC-CAR-T细胞与表达HIV-1包膜蛋白的细胞系Jurkat-gp160NL4-3在预包被IFN-γ抗体的96孔PVDF板中进行混合培养,效应细胞数4
量为10/孔,在给定的效靶比范围内(4:1和2:1),24小时后,利用ELIspot实验检测VC-CAR-T细胞IFN-γ的分泌。结果显示:与两株靶细胞混合培养的VC-CAR-T细胞IFN-γ的分泌显著提高,而与HIV-1包膜蛋白阴性的对照细胞系Jurkat-GFP混合培养的VC-CAR-T细胞则不会分泌IFN-γ。另一方面,与表达HIV-1包膜蛋白的靶细胞系混合培养的对照效应细胞没有明显的IFN-γ分泌,从而进一步证明IFN-γ的分泌是VC-CAR-T细胞特异性的(图5)。
[0050] 将VC-CAR-T细胞与Jurkat-gp160NL4-3分别混合培养24小时,在给定的效靶比范围内(4:1-2:1),granzyme B的ELISA实验也显示,随着靶细胞增加(Jurkat-gp160NL4-3),VC-CAR-T细胞的细胞因子分泌量会以剂量依赖的方式随之增加,而对照靶细胞(Jurkat-GFP)则不会刺激VC-CAR-T细胞分泌IL-2和granzyme B。结果说明,在特异性抗原刺激下,VC-CAR-T细胞具有高效分泌抗病毒细胞因子的能力(图5)。
[0051] 三、VC-CAR-T细胞与表达HIV-1包膜蛋白的靶细胞系混合培养后杀伤活性的检测:为了进一步检测VC-CAR的功能,我们将VC-CAR-T细胞与两株表达HIV-1包膜蛋白的细胞系Jurkat-gp160NL4-3和Jurkat-gp160BaL分别进行混合培养,在U形底的96孔板中进行细胞杀伤实验。靶细胞数量为104/孔,RMPI1640完全培养基体积为200μl/孔。在给定的效靶比范围内(8:1-0.5:1),24小时后,通过LDH的释放,我们检测VC-CAR-T细胞对HIV-1包膜蛋白表达细胞的细胞毒性。结果显示:在从8:1到0.5:1的效靶比区间范围内,VC-CAR-T细胞以剂量依赖的方式显著杀伤两株表达HIV-1gp120的靶细胞(Jurkat-gp160NL4-3和Jurkat-gp160BaL),而对照靶细胞(Jurkat-GFP)没有显著的杀伤效果,说明VC-CAR-T细胞杀伤靶细胞作用是HIV-
1gp120特异性的。无论Jurkat-gp160NL4-3和Jurkat-gp160BaL还是对照靶细胞Jurkat-GFP,对照效应细胞均没有显示明显杀伤作用,从而进一步说明了VC-CAR-T细胞作用的特异性(图
6)。
[0052] 四、VC-CAR-T细胞与野生型HIV-1NL4-3感染的CD4+T淋巴细胞进行混合培养后杀伤活性的检测:为了进一步证明在清除野生型HIV-1感染的细胞方面VC-CAR-T细胞的有效性,利用野生型HIV-1NL4-3,对健康人血液样本中分离的CD4+T淋巴细胞进行感染。进行感染时RMPI1640完全培养基的体积为1ml/孔(24孔板),包含2×106细胞,对应200ng(p24)的野生型病毒。感染后3小时换液。感染后的第8天,该细胞与VC-CAR改造的同源CD8+T淋巴细胞以1:2和1:4的比例混合,在24孔板中进行细胞杀伤实验。靶细胞数量为106/孔,RMPI1640完全培养基体积为500μl/孔。48小时后,通过流式细胞术检测Gag+CD4+T淋巴细胞的比例,验证VC-CAR-T细胞的杀伤作用。结果显示:VC-CAR-T细胞对HIV-1感染的细胞的清除率高达
78%,表现了显著的杀伤效果,同时对照效应细胞的数值不足30%,两者差异具有统计学意义(图7)。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈