首页 / 专利库 / 涡轮机 / 水滴侵蚀 / 改变低排放涡轮气体再循环回路的方法和与此相关的系统和设备

改变低排放涡轮气体再循环回路的方法和与此相关的系统和设备

阅读:1004发布:2020-05-14

专利汇可以提供改变低排放涡轮气体再循环回路的方法和与此相关的系统和设备专利检索,专利查询,专利分析的服务。并且提供了用于改变低排放气体 涡轮 的排气再循环回路的系统和方法。在一个或更多 实施例 中,该系统和方法结合了对直接 接触 冷却器使用的替换。在相同或其他实施例中,该系统和方法结合了意图减小或消除由于酸性 水 滴在再循环气流中的存在而引起的 压缩机 叶片 的侵蚀或 腐蚀 的替换。,下面是改变低排放涡轮气体再循环回路的方法和与此相关的系统和设备专利的具体信息内容。

1.一种集成系统,包括:
气体涡轮系统,其包括配置为在存在压缩的再循环流的情况下燃烧一种或更多种化剂和一种或更多种燃料燃烧室,其中所述燃烧室将第一排放流引导到膨胀器,从而生成排气流并且至少部分驱动主压缩机;以及
排气再循环系统,其中所述主压缩机压缩所述排气流并由此生成所述压缩的再循环流;
其中所述排气再循环系统包括至少一个冷却单元和至少一个鼓机,所述至少一个冷却单元配置为接收并冷却所述排气流,所述至少一个鼓风机配置为在将冷却的再循环气体引导到所述主压缩机之前接收所述排气流并增大所述排气流的压
2.根据权利要求1所述的系统,其中所述至少一个冷却单元是热回收蒸汽发生器即HRSG,该热回收蒸汽发生器配置为在所述排气流被引入到所述至少一个鼓风机之前接收并冷却所述排气流。
3.根据权利要求2所述的系统,其中所述排气再循环系统进一步包括第二冷却单元,所述第二冷却单元配置为从所述至少一个鼓风机接收所述排气流,并且进一步冷却所述排气流以生成所述冷却的再循环气体。
4.根据权利要求3所述的系统,其中所述第二冷却单元包括直接接触冷却器即DCC区段。
5.根据权利要求3所述的系统,其中所述第二冷却单元包括HRSG。
6.根据权利要求5所述的系统,其中所述排气再循环系统进一步包括第三冷却单元,所述第三冷却单元配置为从所述至少一个鼓风机接收所述排气流,并且在所述排气流被引入到所述第二冷却单元之前进一步冷却所述排气流。
7.根据权利要求6所述的系统,其中所述第一冷却单元和所述第三冷却单元包括HRSG。
8.根据权利要求7所述的系统,其中所述第一冷却单元包括包含高压锅炉区段、中压锅炉区段和低压锅炉区段的HRSG,而所述第三冷却单元包括包含低压锅炉区段和节热器区段的HRSG。
9.根据权利要求2所述的系统,其中所述HRSG进一步包括冷却盘管,并且其中所述排气再循环系统进一步包括分离器,所述分离器配置为从所述HRSG的所述冷却水盘管接收所述排气流,并且在所述排气流被引入到所述鼓风机之前,从所述排气流去除水滴。
10.根据权利要求9所述的系统,其中所述分离器包括叶片组。
11.根据权利要求4所述的系统,其中所述HRSG进一步包括冷却水盘管,并且其中所述排气再循环系统进一步包括分离器,所述分离器配置为从所述HRSG的所述冷却水盘管接收所述排气流,并且在所述排气流被引入到所述鼓风机之前从所述排气流去除水滴。
12.根据权利要求11所述的系统,其中所述分离器包括叶片组。
13.根据权利要求3所述的系统,其中
所述第二冷却单元包括HRSG,并且所述第一和第二冷却单元中的每个进一步包括冷却水盘管;以及
所述排气再循环系统进一步包括第一分离器和第二分离器,所述第一分离器配置为从所述第一冷却单元的所述冷却水盘管接收所述排气流,并且在所述排气流被引入到所述鼓风机之前,从所述排气流去除水滴,所述第二分离器配置为从所述第二冷却单元的所述冷却水盘管接收所述冷却的再循环气体,并且在所述冷却的再循环气体被引入到所述主压缩机之前,从所述冷却的再循环气体去除水滴。
14.根据权利要求13所述的系统,其中所述第一分离器、所述第二分离器或所述第一分离器和所述第二分离器均包括叶片组。
15.根据权利要求4所述的系统,其中所述排气再循环系统采用所述排气流的湿度冷却。
16.根据权利要求15所述的系统,其中
水被添加到所述排气流,从而在所述排气流被引入到所述鼓风机之前使所述排气流饱和或近饱和;
所述排气再循环系统进一步包括分离器,所述分离器配置为接收饱和的或近饱和的排气流,并在所述饱和的或近饱和的排气流被引入到所述鼓风机之前从所述饱和的或近饱和的排气流中去除水滴;以及
所述第二冷却单元进一步配置为从所述排气流去除水并且将去除的水的至少部分再循环。
17.根据权利要求16所述的系统,其中在所述第二冷却单元中去除的水的第一部分被再循环并在所述分离器上游添加到所述排气流,并且在所述第二冷却单元中去除的水的第二部分被再循环到所述第二冷却单元。
18.根据权利要求3所述的系统,其中所述排气再循环系统进一步包括在所述第二冷却单元两端的进料/出料交叉式交换器,所述进料/出料交叉式交换器配置为调整所述冷却的再循环气体的温度,以实现至少约20°F的露点裕度。
19.根据权利要求18所述的系统,其中所述冷却的再循环气体的露点裕度是至少约
30°F。
20.根据权利要求4所述的系统,其中
所述第二冷却单元进一步包括乙二醇吸收区段,所述乙二醇吸收区段配置为从所述DCC区段接收所述冷却的再循环气体,并且在被引入到所述主压缩机之前将所述冷却的再循环气体至少部分脱水;以及
所述排气再循环系统进一步包括乙二醇再生系统,所述乙二醇再生系统配置为从所述第二冷却单元的所述乙二醇吸收区段接收富乙二醇,在乙二醇再生塔中热再生所述富乙二醇,从而形成再生的稀乙二醇,并且将所述再生的稀乙二醇返回到所述乙二醇吸收区段。
21.根据权利要求20所述的系统,其中所述乙二醇再生系统在真空条件下操作。
22.根据权利要求20所述的系统,其中所述第二冷却单元包括所述乙二醇再生塔,并且所述乙二醇再生塔配置为在所述排气流被引入到所述DCC区段之前从所述鼓风机接收所述排气流。
23.根据权利要求22所述的系统,其中所述第二冷却单元进一步包括定位在所述乙二醇再生塔和所述DCC区段之间的过热降温区段。
24.根据权利要求1所述的系统,其中所述燃烧室配置为在存在压缩的再循环流和高压蒸汽冷却剂流的情况下燃烧一种或更多种氧化剂和一种或更多种燃料。
25.一种发电的方法,包括:
在存在压缩的再循环排气的情况下在燃烧室中燃烧至少一种氧化剂和至少一种燃料,由此生成排放流;
在膨胀器中膨胀所述排放流,从而至少部分驱动主压缩机并生成排气流;以及将所述排气流引导到排气再循环系统,其中所述主压缩机压缩所述排气流并且由此生成压缩的再循环流;
其中所述排气再循环系统包括至少一个冷却单元和至少一个鼓风机,以使所述排气流在所述至少一个冷却单元中冷却,并且所述排气流的压力在所述至少一个鼓风机中增加,由此生成引导到所述主压缩机的冷却的再循环气体。
26.根据权利要求25所述的方法,其中所述至少一个冷却单元是热回收蒸汽发生器即HRSG,其在所述排气流被引入到所述至少一个鼓风机之前冷却所述排气流。
27.根据权利要求26所述的方法,其中所述排气再循环系统进一步包括第二冷却单元,所述第二冷却单元从所述至少一个鼓风机接收所述排气流并且进一步冷却所述排气流,由此生成所述冷却的再循环气体。
28.根据权利要求27所述的方法,其中所述第二冷却单元包括直接接触冷却器即DCC区段。
29.根据权利要求27所述的方法,其中所述第二冷却单元包括HRSG。
30.根据权利要求29所述的方法,其中所述排气再循环系统进一步包括第三冷却单元,所述第三冷却单元从所述至少一个鼓风机接收所述排气流,并且在所述排气流被引入到所述第二冷却单元之前进一步冷却所述排气流。
31.根据权利要求30所述的方法,其中所述第一冷却单元和所述第三冷却单元包括HRSG。
32.根据权利要求31所述的方法,其中所述第一冷却单元包括包含高压锅炉区段、中压锅炉区段和低压锅炉区段的HRSG,而所述第三冷却单元包括包含低压锅炉区段和节热器区段的HRSG。
33.根据权利要求26所述的方法,其中所述HRSG进一步包括冷却水盘管,并且其中所述排气再循环系统进一步包括分离器,所述分离器从所述HRSG的所述冷却水盘管接收所述排气流,并且在所述排气流被引入到所述鼓风机之前从所述排气流去除水滴。
34.根据权利要求33所述的方法,其中所述分离器包括叶片组。
35.根据权利要求29所述的方法,其中所述HRSG进一步包括冷却水盘管,并且其中所述排气再循环系统进一步包括分离器,所述分离器从所述HRSG的所述冷却水盘管接收所述排气流,并且在所述排气流被引入到所述鼓风机之前从所述排气流去除水滴。
36.根据权利要求35所述的方法,其中所述分离器包括叶片组。
37.根据权利要求27所述的方法,其中
所述第二冷却单元包括HRSG,并且所述第一冷却单元和第二冷却单元中的每个进一步包括冷却水盘管;以及
所述排气再循环系统进一步包括:
第一分离器,所述第一分离器从所述第一冷却单元的所述冷却水盘管接收所述排气流,并且在所述排气流被引入到所述鼓风机之前从所述排气流去除水滴;以及第二分离器,所述第二分离器从所述第二冷却单元的所述冷却水盘管接收所述冷却的再循环气体,并且在所述冷却的再循环气体被引入到所述主压缩机之前从所述冷却的再循环气体去除水滴。
38.根据权利要求37所述的方法,其中所述第一分离器、所述第二分离器或所述第一分离器以及第二分离器均包括叶片组。
39.根据权利要求27所述的方法,其中所述排气再循环系统采用湿度冷却,从而进一步冷却所述排气流。
40.根据权利要求39所述的方法,其中
在所述排气流被引入到所述鼓风机之前用水使所述排气流饱和或近饱和;
所述排气再循环系统进一步包括分离器,所述分离器接收饱和的或近饱和的排气流,并在所述排气流被引入到所述鼓风机之前从所述饱和的或近饱和的排气流去除水滴;以及所述第二冷却单元从所述排气流去除水,并且由所述第二冷却单元去除的水的至少部分被再循环。
41.根据权利要求40所述的方法,其中由所述第二冷却单元去除的水的第一部分被再循环并在所述分离器上游添加到所述排气流,并且在所述第二冷却单元中去除的水的第二部分被再循环到所述第二冷却单元。
42.根据权利要求27所述的方法,其中通过修改在所述第二冷却单元两端的进料/出料交叉式交换器中所述冷却的再循环气体的温度,在所述冷却的再循环气体中实现至少约
20°F的露点裕度。
43.根据权利要求42所述的方法,其中所述冷却的再循环气体的所述露点裕度是至少约30°F。
44.根据权利要求28所述的方法,其中
所述第二冷却单元进一步包括乙二醇吸收区段,所述乙二醇吸收区段从所述DCC区段接收所述冷却的再循环气体,并且在所述冷却的再循环气体被引入到所述主压缩机之前将所述冷却的再循环气体至少部分脱水;以及
所述排气再循环系统进一步包括乙二醇再生系统,所述乙二醇再生系统从所述第二冷却单元的所述乙二醇吸收区段接收富乙二醇,在乙二醇再生塔中热再生所述富乙二醇,从而形成再生的稀乙二醇,并且将所述再生的稀乙二醇返回到所述乙二醇吸收区段。
45.根据权利要求44所述的方法,其中所述乙二醇再生系统在真空条件下操作。
46.根据权利要求45所述的方法,其中所述第二冷却单元包括所述乙二醇再生塔,并且所述乙二醇再生塔在所述排气流被引入到所述DCC区段之前从所述鼓风机接收所述排气流。
47.根据权利要求46所述的方法,其中第二冷却单元进一步包括过热降温区段,所述过热降温区段从所述乙二醇再生塔接收所述排气流,并在所述排气流被引入到所述DCC区段之前将所述排气流冷却到足以将来自所述排气流的乙二醇至少部分冷凝的温度。
48.根据权利要求25所述的方法,其中所述至少一种氧化剂和所述至少一种燃料在存在所述压缩的再循环排气和高压蒸汽的情况下在所述燃烧室中燃烧。
49.根据权利要求1所述的系统,其中所述压缩的再循环流包括补充或代替所述排气流的蒸汽冷却剂。
50.根据权利要求49所述的系统,进一步包括水再循环回路,从而提供所述蒸汽冷却剂。
51.根据权利要求25所述的方法,进一步包括向所述压缩的再循环流添加蒸汽冷却剂,从而补充或代替所述排气流。
52.根据权利要求51所述的方法,进一步包括水再循环回路,从而提供所述蒸汽冷却剂。
1.一种集成系统,包括:
气体涡轮系统,其包括配置为在存在压缩的再循环流的情况下燃烧一种或更多种氧化剂和一种或更多种燃料的燃烧室,其中所述燃烧室将第一排放流引导到膨胀器,从而生成排气流并且至少部分驱动主压缩机;以及
排气再循环系统,其中所述主压缩机压缩所述排气流并由此生成所述压缩的再循环流;
其中所述排气再循环系统包括至少一个冷却单元和至少一个鼓风机,所述至少一个冷却单元配置为接收并冷却所述排气流,所述至少一个鼓风机配置为在将冷却的再循环气体引导到所述主压缩机之前接收所述排气流并增大所述排气流的压力。
2.根据权利要求1所述的系统,其中所述至少一个冷却单元是热回收蒸汽发生器即HRSG,该热回收蒸汽发生器配置为在所述排气流被引入到所述至少一个鼓风机之前接收并冷却所述排气流。
3.根据权利要求2所述的系统,其中所述排气再循环系统进一步包括第二冷却单元,所述第二冷却单元配置为从所述至少一个鼓风机接收所述排气流,并且进一步冷却所述排气流以生成所述冷却的再循环气体。
4.根据权利要求3所述的系统,其中所述第二冷却单元包括直接接触冷却器即DCC区段。
5.根据权利要求3所述的系统,其中所述第二冷却单元包括HRSG。
6.根据权利要求5所述的系统,其中所述排气再循环系统进一步包括第三冷却单元,所述第三冷却单元配置为从所述至少一个鼓风机接收所述排气流,并且在所述排气流被引入到所述第二冷却单元之前进一步冷却所述排气流。
7.根据权利要求6所述的系统,其中所述第一冷却单元和所述第三冷却单元包括HRSG。
8.根据权利要求7所述的系统,其中所述第一冷却单元包括包含高压锅炉区段、中压锅炉区段和低压锅炉区段的HRSG,而所述第三冷却单元包括包含低压锅炉区段和节热器区段的HRSG。
9.根据权利要求2所述的系统,其中所述HRSG进一步包括冷却水盘管,并且其中所述排气再循环系统进一步包括分离器,所述分离器配置为从所述HRSG的所述冷却水盘管接收所述排气流,并且在所述排气流被引入到所述鼓风机之前,从所述排气流去除水滴。
10.根据权利要求9所述的系统,其中所述分离器包括叶片组。
11.根据权利要求4所述的系统,其中所述HRSG进一步包括冷却水盘管,并且其中所述排气再循环系统进一步包括分离器,所述分离器配置为从所述HRSG的所述冷却水盘管接收所述排气流,并且在所述排气流被引入到所述鼓风机之前从所述排气流去除水滴。
12.根据权利要求11所述的系统,其中所述分离器包括叶片组。
13.根据权利要求3所述的系统,其中
所述第二冷却单元包括HRSG,并且所述第一和第二冷却单元中的每个进一步包括冷却水盘管;以及
所述排气再循环系统进一步包括第一分离器和第二分离器,所述第一分离器配置为从所述第一冷却单元的所述冷却水盘管接收所述排气流,并且在所述排气流被引入到所述鼓风机之前,从所述排气流去除水滴,所述第二分离器配置为从所述第二冷却单元的所述冷却水盘管接收所述冷却的再循环气体,并且在所述冷却的再循环气体被引入到所述主压缩机之前,从所述冷却的再循环气体去除水滴。
14.根据权利要求13所述的系统,其中所述第一分离器、所述第二分离器或所述第一分离器和所述第二分离器均包括叶片组。
15.根据权利要求4所述的系统,其中所述排气再循环系统采用所述排气流的湿度冷却。
16.根据权利要求15所述的系统,其中
水被添加到所述排气流,从而在所述排气流被引入到所述鼓风机之前使所述排气流饱和或近饱和;
所述排气再循环系统进一步包括分离器,所述分离器配置为接收饱和的或近饱和的排气流,并在所述饱和的或近饱和的排气流被引入到所述鼓风机之前从所述饱和的或近饱和的排气流中去除水滴;以及
所述第二冷却单元进一步配置为从所述排气流去除水并且将去除的水的至少部分再循环。
17.根据权利要求16所述的系统,其中在所述第二冷却单元中去除的水的第一部分被再循环并在所述分离器上游添加到所述排气流,并且在所述第二冷却单元中去除的水的第二部分被再循环到所述第二冷却单元。
18.根据权利要求3所述的系统,其中所述排气再循环系统进一步包括在所述第二冷却单元两端的进料/出料交叉式交换器,所述进料/出料交叉式交换器配置为调整所述冷却的再循环气体的温度,以实现至少约20°F的露点裕度。
19.根据权利要求18所述的系统,其中所述冷却的再循环气体的露点裕度是至少约
30°F。
20.根据权利要求4所述的系统,其中
所述第二冷却单元进一步包括乙二醇吸收区段,所述乙二醇吸收区段配置为从所述DCC区段接收所述冷却的再循环气体,并且在被引入到所述主压缩机之前将所述冷却的再循环气体至少部分脱水;以及
所述排气再循环系统进一步包括乙二醇再生系统,所述乙二醇再生系统配置为从所述第二冷却单元的所述乙二醇吸收区段接收富乙二醇,在乙二醇再生塔中热再生所述富乙二醇,从而形成再生的稀乙二醇,并且将所述再生的稀乙二醇返回到所述乙二醇吸收区段。
21.根据权利要求20所述的系统,其中所述乙二醇再生系统在真空条件下操作。
22.根据权利要求20所述的系统,其中所述第二冷却单元包括所述乙二醇再生塔,并且所述乙二醇再生塔配置为在所述排气流被引入到所述DCC区段之前从所述鼓风机接收所述排气流。
23.根据权利要求22所述的系统,其中所述第二冷却单元进一步包括定位在所述乙二醇再生塔和所述DCC区段之间的过热降温区段。
24.根据权利要求1所述的系统,其中所述燃烧室配置为在存在压缩的再循环流和高压蒸汽冷却剂流的情况下燃烧一种或更多种氧化剂和一种或更多种燃料。
25.一种发电的方法,包括:
在存在压缩的再循环排气的情况下在燃烧室中燃烧至少一种氧化剂和至少一种燃料,由此生成排放流;
在膨胀器中膨胀所述排放流,从而至少部分驱动主压缩机并生成排气流;以及将所述排气流引导到排气再循环系统,其中所述主压缩机压缩所述排气流并且由此生成压缩的再循环流;
其中所述排气再循环系统包括至少一个冷却单元和至少一个鼓风机,以使所述排气流在所述至少一个冷却单元中冷却,并且所述排气流的压力在所述至少一个鼓风机中增加,由此生成引导到所述主压缩机的冷却的再循环气体。
26.根据权利要求25所述的方法,其中所述至少一个冷却单元是热回收蒸汽发生器即HRSG,其在所述排气流被引入到所述至少一个鼓风机之前冷却所述排气流。
27.根据权利要求26所述的方法,其中所述排气再循环系统进一步包括第二冷却单元,所述第二冷却单元从所述至少一个鼓风机接收所述排气流并且进一步冷却所述排气流,由此生成所述冷却的再循环气体。
28.根据权利要求27所述的方法,其中所述第二冷却单元包括直接接触冷却器即DCC区段。
29.根据权利要求27所述的方法,其中所述第二冷却单元包括HRSG。
30.根据权利要求29所述的方法,其中所述排气再循环系统进一步包括第三冷却单元,所述第三冷却单元从所述至少一个鼓风机接收所述排气流,并且在所述排气流被引入到所述第二冷却单元之前进一步冷却所述排气流。
31.根据权利要求30所述的方法,其中所述第一冷却单元和所述第三冷却单元包括HRSG。
32.根据权利要求31所述的方法,其中所述第一冷却单元包括包含高压锅炉区段、中压锅炉区段和低压锅炉区段的HRSG,而所述第三冷却单元包括包含低压锅炉区段和节热器区段的HRSG。
33.根据权利要求26所述的方法,其中所述HRSG进一步包括冷却水盘管,并且其中所述排气再循环系统进一步包括分离器,所述分离器从所述HRSG的所述冷却水盘管接收所述排气流,并且在所述排气流被引入到所述鼓风机之前从所述排气流去除水滴。
34.根据权利要求33所述的方法,其中所述分离器包括叶片组。
35.根据权利要求29所述的方法,其中所述HRSG进一步包括冷却水盘管,并且其中所述排气再循环系统进一步包括分离器,所述分离器从所述HRSG的所述冷却水盘管接收所述排气流,并且在所述排气流被引入到所述鼓风机之前从所述排气流去除水滴。
36.根据权利要求35所述的方法,其中所述分离器包括叶片组。
37.根据权利要求27所述的方法,其中
所述第二冷却单元包括HRSG,并且所述第一冷却单元和第二冷却单元中的每个进一步包括冷却水盘管;以及
所述排气再循环系统进一步包括:
第一分离器,所述第一分离器从所述第一冷却单元的所述冷却水盘管接收所述排气流,并且在所述排气流被引入到所述鼓风机之前从所述排气流去除水滴;以及第二分离器,所述第二分离器从所述第二冷却单元的所述冷却水盘管接收所述冷却的再循环气体,并且在所述冷却的再循环气体被引入到所述主压缩机之前从所述冷却的再循环气体去除水滴。
38.根据权利要求37所述的方法,其中所述第一分离器、所述第二分离器或所述第一分离器以及第二分离器均包括叶片组。
39.根据权利要求27所述的方法,其中所述排气再循环系统采用湿度冷却,从而进一步冷却所述排气流。
40.根据权利要求39所述的方法,其中
在所述排气流被引入到所述鼓风机之前用水使所述排气流饱和或近饱和;
所述排气再循环系统进一步包括分离器,所述分离器接收饱和的或近饱和的排气流,并在所述排气流被引入到所述鼓风机之前从所述饱和的或近饱和的排气流去除水滴;以及
所述第二冷却单元从所述排气流去除水,并且由所述第二冷却单元去除的水的至少部分被再循环。
41.根据权利要求40所述的方法,其中由所述第二冷却单元去除的水的第一部分被再循环并在所述分离器上游添加到所述排气流,并且在所述第二冷却单元中去除的水的第二部分被再循环到所述第二冷却单元。
42.根据权利要求27所述的方法,其中通过修改在所述第二冷却单元两端的进料/出料交叉式交换器中所述冷却的再循环气体的温度,在所述冷却的再循环气体中实现至少约
20°F的露点裕度。
43.根据权利要求42所述的方法,其中所述冷却的再循环气体的所述露点裕度是至少约30°F。
44.根据权利要求28所述的方法,其中
所述第二冷却单元进一步包括乙二醇吸收区段,所述乙二醇吸收区段从所述DCC区段接收所述冷却的再循环气体,并且在所述冷却的再循环气体被引入到所述主压缩机之前将所述冷却的再循环气体至少部分脱水;以及
所述排气再循环系统进一步包括乙二醇再生系统,所述乙二醇再生系统从所述第二冷却单元的所述乙二醇吸收区段接收富乙二醇,在乙二醇再生塔中热再生所述富乙二醇,从而形成再生的稀乙二醇,并且将所述再生的稀乙二醇返回到所述乙二醇吸收区段。
45.根据权利要求44所述的方法,其中所述乙二醇再生系统在真空条件下操作。
46.根据权利要求45所述的方法,其中所述第二冷却单元包括所述乙二醇再生塔,并且所述乙二醇再生塔在所述排气流被引入到所述DCC区段之前从所述鼓风机接收所述排气流。
47.根据权利要求46所述的方法,其中第二冷却单元进一步包括过热降温区段,所述过热降温区段从所述乙二醇再生塔接收所述排气流,并在所述排气流被引入到所述DCC区段之前将所述排气流冷却到足以将来自所述排气流的乙二醇至少部分冷凝的温度。
48.根据权利要求25所述的方法,其中所述至少一种氧化剂和所述至少一种燃料在存在所述压缩的再循环排气和高压蒸汽的情况下在所述燃烧室中燃烧。
49.根据权利要求1所述的系统,其中所述压缩的再循环流包括补充或代替所述排气流的蒸汽冷却剂。

说明书全文

改变低排放涡轮气体再循环回路的方法和与此相关的系统

和设备

[0001] 相关申请的交叉参考
[0002] 本申请要求提交于2011年3月22日标题为METHODS OF VARYING LOW EMISSION TURBINE GAS RECYCLE CIRCUITS AND SYSTEMS AND APPARATUS RELATED THERETO的美国临时申请61/466381;提交于2011年9月30日标题为METHODS OF VARYING LOW EMISSION TURBINE GAS RECYCLE CIRCUITS AND SYSTEMS AND APPARATUS RELATED THERETO的美国临时申请61/542035的优先权,这两个申请都以其全部内容包括在此作为参考。
[0003] 本申请涉及提交于2011年9月30日标题为SYSTEMS AND METHODS FOR CARBON DIOXIDE CAPTURE IN LOW EMISSION TURBINE SYSTEMS的美国临时申请61/542036;提交于2011年9月30日标题为SYSTEMS AND METHODS FOR CARBON DIOXIDE CAPTURE IN LOW EMISSION TURBINE SYSTEMS的美国临时申请61/542037;提交于2011年9月30日标题为SYSTEMS AND METHODS FOR CARBON DIOXIDE CAPTURE IN LOW EMISSION COMBINED TURBINE SYSTEMS的美国临时申请61/542039;提交于2011年9月30日标题为LOW EMISSION POWER GENERATION SYSTEMS AND METHODS INCORPORATING CARBON DIOXIDE SEPARATION的美国临时申请61/542041;提交于2011年3月22日标题为LOW EMISSION TURBINE SYSTEMS HAVING A MAIN AIR COMPRESSOR OXIDANT CONTROL APPARATUS AND METHODS RELATED THERETO的美国临时申请61/466384;提交于2011年9月30日标题为LOW EMISSION TURBINE SYSTEMS INCORPORATING INLET COMPRESSOR OXIDANT CONTROL APPARATUS AND METHODS RELATED THERETO的美国临时申请61/542030;提交于2011年3月22日标题为METHODS FOR CONTROLLING STOICHIOMETRIC COMBUSTION ON A FIXEDGEOMETRY GAS TURBINE SYSTEM AND APPARATUS AND SYSTEMS RELATED THERETO的美国临时申请61/466385;提交于2011年9月30日标题为SYSTEMS AND METHODS FOR CONTROLLING STOICHIOMETRIC COMBUSTION IN LOW EMISSION TURBINE SYSTEMS的美国临时申请61/542031;这些申请都以其全部内容包括在此作为参考。

技术领域

[0004] 本公开的实施例涉及低排放发电。更特别地,本公开的实施例涉及用于改变低排放涡轮气体再循环回路的方法和设备。

背景技术

[0005] 本部分意图介绍可以与本公开的示例性实施例关联的本领域的各个方面。该讨论被确信为帮助提供框架,从而促进更好地理解本公开的特定方面。因此,应理解应据此阅读本部分,而不必作为对现有技术的陈述。
[0006] 许多产油国经历强劲的国内电需求增长,并且在增加油回收(EOR)中具有改善从其储油层的油回收的兴趣。两种普通EOR技术包括用于储油层压力维持的氮(N2)喷射以及用于EOR的混相驱动(miscible flooding)的二(CO2)喷射。还存在关于温室气体(GHG)排放的全球关注。总量管制和交易(cap-and-trade)政策的实施与该关注的组合在许多国家中使得减少CO2排放在这些国家和其中操作生产系统的公司中享有优先权。
[0007] 降低CO2排放的一些途径包括使用溶剂例如胺的燃料脱碳或补充燃烧捕集。然而,这些解决方案都是昂贵的并且降低发电效率,导致较低的电力生产、增加的燃料需求和满足国内电力需求的增加的电力成本。特别地,氧、SOX和NOX组分的存在使得利用胺溶剂吸收非常成问题。另一途径是在组合循环中的增氧燃料气体涡轮(例如,其中捕集源自气体涡轮布雷顿循环的排气热,从而形成蒸汽并且在兰金循环中产生另外的电力)。然而,没有可以在这样的循环中操作的商业上可用的气体涡轮,并且生产高纯度氧所需要的电力显著降低了工艺的总效率。
[0008] 此外,由于关于全球气候变化和二氧化碳排放影响的日益增长的关注,重点已置于将源自发电厂的二氧化碳排放最小化上。气体涡轮联合循环发电厂是有效的并且具有与核电或炭发电技术比较的更低的成本。因为以下原因,从气体涡轮联合循环发电厂的排气捕集二氧化碳是非常昂贵的:(a)在排气器(exhaust stack)中二氧化碳的低浓度,(b)需要处理的气体的巨大体积,(c)排气流的低压,以及在排气流中存在的巨大量的氧。这些因素中的全部导致从联合循环电厂的二氧化碳捕集的高成本。
[0009] 因此,仍具有对低排放、高效率发电和CO2捕集制造处理的充分需要。发明内容
[0010] 在本文中描述的联合循环发电厂中,在通常的天然气联合循环(NGCC)电厂中排出的源自低排放气体涡轮的排气取而代之地冷却并再循环到气体涡轮主压缩机入口。再循环排气而不是过量的压缩新鲜空气用来将燃烧产物在膨胀器中冷却到材料限制。燃烧可以是化学计量的或非化学计量的。在一个或更多实施例中,通过将化学计量燃烧与排气再循环联合,在再循环气体中CO2的浓度提高,同时将过量O2的存在最小化,这些都使得CO2回收更容易。
[0011] 在本文的一个或更多实施例中,提供了用于改变这样的低排放气体涡轮系统的排气再循环回路的方法和与此相关的设备。这些方法提高了低排放气体涡轮操作的可操作性和成本效益。所述方法、设备和系统考虑了:(a)对使用直接接触冷却器的替换,该直接接触冷却器是一件巨大且资本密集的设备,以及(b)用于在主压缩机的最初数区段中的叶片上减少由酸性滴在再循环气流中的冷凝导致的侵蚀或腐蚀的方法和设备。附图说明
[0012] 本公开的前述和其他优点可以在浏览了以下实施例的非限制性示例的具体实施方式和附图后变得显然,其中:
[0013] 图1示出了根据本公开的一个或更多实施例的用于低排放发电和增加CO2回收的集成系统。
[0014] 图2示出了根据本公开的一个或更多实施例的用于低排放发电和增加CO2回收的集成系统,其中鼓机在热回收蒸汽发生器(HRSG)低压锅炉的下游。
[0015] 图3示出了根据本公开的一个或更多实施例的用于低排放发电和增加CO2回收的集成系统,其利用鼓风机入口的湿度冷却。
[0016] 图4示出了根据本公开的一个或更多实施例的用于低排放发电和增加CO2回收的集成系统,其利用HRSG中的冷却水盘管。
[0017] 图5示出了根据本公开的一个或更多实施例的用于低排放发电和增加CO2回收的集成系统,其消除了直接接触冷却器(DCC)并使到再循环压缩机的入口饱和。
[0018] 图6示出了根据本公开的一个或更多实施例的用于低排放发电和增加CO2回收的集成系统,其消除了DCC并且使到再循环压缩机的入口过热
[0019] 图7A示出了根据本公开的一个或更多实施例的用于低排放发电和增加CO2回收的集成系统,其结合了冷却的再循环气体的乙二醇脱水。
[0020] 图7B说明了在三甘醇(TEG)再生系统中压力和外部热源温度之间的关系。
[0021] 图7C说明了在TEG再生系统中喷射器蒸汽负载和外部热源温度之间的关系。
[0022] 图8示出了根据本公开的一个或更多实施例的用于低排放发电和增加CO2回收的集成系统,其将冷却的再循环气体的乙二醇脱水与集成到冷却单元中的乙二醇再生相结合。
[0023] 图9示出了根据本公开的一个或更多实施例的用于低排放发电和增加CO2回收的集成系统,其将冷却的再循环气体的乙二醇脱水与集成到冷却单元中的乙二醇再生和过热降温器相结合。
[0024] 图10示出了根据本公开的一个或更多实施例的用于低排放发电和增加CO2回收的集成系统,其在再循环气体冷却设备的两端结合进料/出料交叉式交换器(feed/effluent cross exchanger)。

具体实施方式

[0025] 在以下具体实施方式部分中,关于优选实施例描述本公开的具体实施例。然而,就以下说明专用于本公开的特定实施例或特定用途来说,这意图仅用于示例性目的并且仅提供示例性实施例的描述。因此,本公开不限于在下面描述的具体实施例,而是其包括落入所附权利要求的真实精神和范围内的全部替换、修改和等价物。
[0026] 本文使用的各种术语在下面定义。就在权利要求中使用的术语没有在下面定义来说,其应被给予如在至少一部印刷出版物或已公布的专利中反映的相关领域技术人员给予该术语的最广泛定义。
[0027] 如在此使用的,术语“天然气”涉及从原油井(伴生气)和/或从地下含气层(非伴生气)获得的多组分气体。天然气的成分和压力可以显著变化。通常的天然气流含有作为主要组分的甲烷(CH4),即大于50mol%的天然气流是甲烷。天然气流也可以含有乙烷(C2H6)、更高分子量的烃(例如C3-C20烃)、一种或更多种酸性气体(例如硫化氢)或其任意组合。天然气也可以含有较少量的杂质,例如水、氮、硫化、蜡、原油或其任何组合。
[0028] 如在此使用的,术语“化学计量燃烧”指代燃烧反应,该燃烧反应具有包含燃料和氧化剂的大量反应物以及通过燃烧反应物形成的大量产物,其中反应物的全部容量被用来形成所述产物。如在此使用的,术语“基本化学计量燃烧”指代具有范围从约0.9:1到约1.1:1或更优选从约0.95:1到约1.05:1的当量比的燃烧反应。
[0029] 如在此使用的,术语“流”指代大量流体,但是该术语流的使用通常意味着大量移动流体(例如具有速度或质量流率)。然而,术语“流”不必是速度、质量流率或用于包围该流的特定类型的导管
[0030] 目前公开的系统和处理的实施例可以用来为例如增加油回收(EOR)或封存(sequestration)的应用生产超低排放电力和CO2。根据在此公开的实施例,空气和燃料的混合物可以燃烧并同时与再循环排气流混合。一般包括燃烧产物例如CO2的再循环排气流可以用作稀释剂,从而控制或以其他方式缓和进入随后的膨胀器的燃烧气体和烟道气体的温度。
[0031] 燃烧可以是化学计量的或非化学计量的。在近化学计量条件的燃烧(或“稍富集的”燃烧)可以证明有利于消除过量氧去除的成本。通过冷却烟道气体并将水从流中冷凝出来,可以产生相对高含量的CO2流。当再循环排气的一部分可以在闭式布雷顿循环中用于温度缓和时,剩余净化流可以用于EOR应用,并且可以在极少或没有SOX、NOX或CO2被排放到大气的情况下生产电力。例如,净化流可以在适于排出富氮气体的CO2分离器中处理,该富氮气体可以随后在气体膨胀器中膨胀,从而生成另外的机械功率。在此公开的系统使得以更经济高效的水平进行电力生产和另外的CO2的制造或捕集。
[0032] 在一个或更多实施例中,本发明针对包含气体涡轮系统和排气再循环系统的集成系统。气体涡轮系统包含燃烧室以及排气再循环系统,所述燃烧室配置为在存在压缩再循环流的情况下燃烧一种或更多种氧化剂和一种或更多种燃料。燃烧室将第一排放流引导到膨胀器,从而生成排气流并且至少部分驱动主压缩机,并且该主压缩机压缩排气流并由此生成压缩的再循环流。排气再循环系统包含配置为接收并冷却排气流的至少一个冷却单元,以及配置为在将冷却的再循环气体引导到主压缩机之前接收排气流并提高其压力的至少一个鼓风机。
[0033] 在某些实施例中,至少一个冷却单元可以是配置为在排气流被引入到至少一个鼓风机之前接收并冷却排气流的热回收蒸汽发生器(HRSG)。在相同或其他的实施例中,排气再循环系统可以进一步包含第二冷却单元,该第二冷却单元配置为从至少一个鼓风机接收排气流并且进一步冷却所述排气流,从而生成冷却的再循环气体。第二冷却单元可以包含直接接触冷却器(DCC)区段。可替换地,第二冷却单元可以包含HRSG。
[0034] 在一些实施例中,排气再循环系统可以进一步包含第三冷却单元,该第三冷却单元配置为从至少一个鼓风机接收排气流并且在引入到第二冷却单元之前进一步冷却所述排气流。在这样的实施例中,第一冷却单元和第三冷却单元可以包含HRSG。在一个或更多实施例中,第一冷却单元可以包含HRSG,该HRSG包含高压锅炉区段、中压锅炉区段和低压锅炉区段,并且第三冷却单元可以包含HRSG,该HRSG包含低压锅炉区段和节热器(economizer)区段。
[0035] 在一些实施例中,在排气再循环系统中采用的一个或更多HRSG可以进一步包含冷却水盘管。在这样的实施例中,所述系统可以进一步包含分离器,该分离器配置为从HRSG的冷却水盘管接收排气流,并且在引入到鼓风机或主压缩机之前从排气流去除水滴。在一个或更多实施例中,分离器是叶片组、网垫或其他除雾装置。
[0036] 在本发明的一个或更多实施例中,排气再循环系统可以采用排气流的湿度冷却。在一些实施例中,水被添加到排气流,从而在第一冷却单元下游但在引入到鼓风机之前使排气流饱和或近饱和,并且排气再循环系统进一步包含分离器,该分离器配置为接收饱和或近饱和的排气流,并在引入到鼓风机之前从饱和或近饱和的排气流去除水滴。在这样的实施例中,第二冷却单元进一步配置为从排气流去除水并且将所去除的水的至少部分再循环。由第二冷却单元从排气流去除的水可以分成两个或更多部分,以使水的第一部分再循环并在分离器上游添加到排气流,并且水的第二部分被再循环到第二冷却单元。
[0037] 在一个或更多实施例中,排气再循环系统可以进一步包含在第二冷却单元两端的进料/出料交叉式交换器,该进料/出料交叉式交换器配置为调整冷却的再循环气体的温度,以实现至少约20°F,或至少约25°F,或至少约30°F,或至少约35°F,或至少约40°F,或至少约45°F,或至少约50°F的露点裕度。
[0038] 在一个或更多实施例中,第二冷却单元进一步包含乙二醇吸收区段,例如三甘醇(TEG)吸收区段,其配置为从上游的再循环气体冷却设备接收冷却的再循环气体,并且在引入到主压缩机之前将冷却的再循环气体至少部分脱水,并且排气再循环系统进一步包含乙二醇再生系统,该乙二醇再生系统配置为从第二冷却单元的乙二醇吸收区段接收富乙二醇,在乙二醇再生塔中将富乙二醇热再生,从而形成已再生的稀乙二醇,并且将已再生的稀乙二醇返回到乙二醇吸收区段。在一些实施例中,乙二醇再生系统在真空条件下操作。乙二醇再生系统可以与第二冷却单元分离或集成到第二冷却单元。在一个或更多实施例中,第二冷却单元包含乙二醇再生塔,并且该乙二醇再生塔配置为在引入到上游再循环气体冷却设备之前从鼓风机接收排气流。在相同或其他实施例中,第二冷却单元可以进一步包含安置在乙二醇再生塔和上游再循环气体冷却设备之间的过热降温区段。任何合适的乙二醇可以用于在此描述的乙二醇吸收系统中。例如,在一个或更多实施例中,乙二醇是三甘醇(TEG)。进一步地,在本发明的一个或更多其他实施例中,用于将冷却的再循环气体脱水的另一合适的方法可以代替乙二醇脱水使用,例如分子筛或甲醇脱水。
[0039] 在一个或更多实施例中,本发明涉及发电的方法。该方法包含在存在压缩的再循环排气的情况下在燃烧室中燃烧至少一种氧化剂和至少一种燃料,由此生成排放流,在膨胀器中将排放流膨胀,从而至少部分驱动主压缩机并生成排气流,并且将排气流引导到排气再循环系统。主压缩机压缩排气流,并且由此生成压缩的再循环流。在这样的方法中,排气再循环系统包含至少一个冷却单元和至少一个鼓风机,以使排气流在至少一个冷却单元中冷却,并且排气流的压力在至少一个鼓风机中增加,由此生成引导到主压缩机的冷却的再循环气体。
[0040] 在本发明的一个或更多方法中,至少一个冷却单元是直接接触冷却器(DCC)、热回收蒸汽发生器(HRSG)或在排气流被引导到至少一个鼓风机之前冷却排气流的其他合适的冷却装置。在相同或其他的方法中,排气再循环系统进一步包含第二冷却单元,该第二冷却单元从至少一个鼓风机接收排气流并且进一步冷却排气流,由此生成冷却的再循环气体。第二冷却单元可以包含DCC、HRSG或其他合适的冷却装置。
[0041] 在一些方法中,排气再循环系统可以进一步包含第三冷却单元,该第三冷却单元从至少一个鼓风机接收排气流并且在排气流被引入到第二冷却单元之前进一步冷却排气流。在一个或更多方法中,第一冷却单元和第三冷却单元包含HRSG。在相同或其他的方法中,第一冷却单元可以包含HRSG,该HRSG包含高压锅炉区段、中压锅炉区段和低压锅炉区段,并且第三冷却单元可以包含HRSG,该HRSG包含低压锅炉区段和节热器区段。
[0042] 在一些方法中,在排气再循环系统中采用的HRSG中的一个或更多可以进一步包含冷却水盘管。在这样的方法中,分离器可以从HRSG的冷却水盘管接收排气流,并且在排气流被引入到鼓风机或主压缩机之前从排气流去除水滴。在一个或更多实施例中,分离器是叶片组、网垫或其他除雾装置。
[0043] 在本发明的一个或更多方法中,排气再循环系统采用湿度冷却以进一步冷却排气流。在这些方法的一些中,在排气流被引入到鼓风机之前用水使排气流饱和或近饱和,排气再循环系统进一步包含分离器,该分离器接收饱和或近饱和的排气流,并在排气流被引入到鼓风机之前从饱和或近饱和的排气流中去除水滴,并且第二冷却单元从排气流中去除水,并且由第二冷却单元去除的水的至少部分被再循环。在一个或更多方法中,由第二冷却单元从排气流去除的水被分成两个或更多部分,并且水的第一部分被再循环并在分离器上游被添加到排气流,而水的第二部分被再循环到第二冷却单元。
[0044] 在本发明的一个或更多实施例中,通过修改在第二冷却单元两端的进料/出料交叉式交换器中冷却的再循环气体的温度,在冷却的再循环气体中实现至少约20°F,或至少约25°F,或至少约30°F,或至少约35°F,或至少约40°F,或至少约45°F,或至少约50°F的露点裕度。
[0045] 在本发明的一个或更多方法中,第二冷却单元进一步包含乙二醇吸收区段,该吸收区段从上游的再循环气体冷却设备接收冷却的再循环气体,并且在冷却的再循环气体被引入到主压缩机之前将冷却的再循环气体至少部分脱水,并且排气再循环系统进一步包含乙二醇再生系统,该乙二醇再生系统从第二冷却单元的乙二醇吸收区段接收富乙二醇,在乙二醇再生塔中将富乙二醇热再生,从而形成已再生的稀乙二醇,并且将已再生的稀乙二醇返回到乙二醇吸收区段。在一些方法中,乙二醇再生系统在真空条件下操作。乙二醇再生系统可以与第二冷却单元分离或集成到第二冷却单元。在一个或更多方法中,第二冷却单元包含乙二醇再生塔,并且该乙二醇再生塔在排气流被引入到上游的再循环气体冷却设备之前从鼓风机接收排气流。在相同或其他方法中,第二冷却单元可以进一步包含安置在乙二醇再生塔和上游再循环气体冷却设备之间的过热降温区段,该过热降温区段从乙二醇再生塔接收排气流,并在排气流被引入到上游的再循环气体冷却设备之前将排气流冷却到足以将乙二醇从排气流中至少部分地冷凝的温度。
[0046] 现在参考附图。图1说明了配置为提供改进的补充燃烧CO2捕集处理的发电系统100。在至少一个实施例中,发电系统100可以包括可以表征为闭式布雷顿循环的气体涡轮系统102。在一个实施例中,气体涡轮系统102可以具有第一或主压缩机104,其通过共用轴108或其他机械、电气或其他动力耦接来耦接到膨胀器106,由此允许由膨胀器106生成的机械能的一部分驱动压缩机104。膨胀器106也可以为其他用途例如向第二或入口压缩机118供电而生成动力。气体涡轮系统102可以是标准气体涡轮,其中主压缩机104和膨胀器106分别形成标准气体涡轮的压缩机和膨胀器端。然而,在其他实施例中,主压缩机104和膨胀器106可以是在系统102中的个体化部件。
[0047] 气体涡轮系统102也可以包括配置为将与压缩的氧化剂114混合的燃料流112燃烧的燃烧室110。在一个或更多实施例中,燃料流112可以包括任何合适的烃气体或液体,例如天然气、甲烷、石脑油、丁烷、丙烷、合成气、柴油、煤油、航空燃料、煤炭衍生燃料、生物燃料、含氧烃原料或其组合。压缩的氧化剂114可以得自流体耦合到燃烧室110并且适于压缩进料氧化剂120的第二或入口压缩机118。在一个或更多实施例中,进料氧化剂120可以包括任何合适的含氧气体,例如空气、富氧空气或其组合。
[0048] 如在下面更详细描述的,燃烧室110也可以接收包括烟道气体的压缩的再循环流144,该烟道气体主要具有CO2和氮组分。压缩的再循环流144可以得自主压缩机104,并且适于帮助促进压缩的氧化剂114和燃料112的燃烧,并且也提高工作流体中的CO2浓度。在压缩的再循环流144存在的情况下,被引导到膨胀器106入口的排放流116可以作为燃料流112和压缩的氧化剂114的燃烧产物生成。在至少一个实施例中,燃料流112可以主要是天然气,由此生成包含蒸发的水、CO2、氮、氮氧化物(NOX)和氧化硫(SOX)的体积部分的排放物116。在一些实施例中,由于燃烧平衡限制,因此小部分的未燃烧的燃料112或其他化合物也可以存在于排放物116中。当排放流116通过膨胀器106膨胀时,其生成机械动力,从而驱动主压缩机104或其他设施,并且还产生具有增高的CO2含量的排气流122。
[0049] 发电系统100也可以包括排气再循环(EGR)系统124。尽管在附图中说明的EGR系统124结合了各种设备,但说明的配置仅是代表性的,并且将排气122再循环回到主压缩机从而实现本文陈述的目标的任何系统都可以被使用。在一个或更多实施例中,EGR系统124可以包括热回收蒸汽发生器(HRSG)126或相似装置。排气流122可以发送到HRSG126以便生成蒸汽130的流和冷却的排气132。蒸汽130可以任选地发送到蒸汽气体涡轮(未示出),从而生成另外的电力。在这样的配置中,HRSG126和蒸汽气体涡轮的组合可以表征为闭式兰金循环。与气体涡轮系统102联合,HRSG126和蒸汽气体涡轮可以形成联合循环发电厂(例如天然气联合循环(NGCC)电厂)的部分。
[0050] 图1说明了可以在一些实施例中结合的EGR系统124中的另外的设备。冷却的排气132可以发送到配置为降低冷却的排气132的温度并生成冷却的再循环气流140的至少一个冷却单元134。在一个或更多实施例中,冷却单元134在此被认为是直接接触冷却器(DCC),但可以是任何合适的冷却装置,例如直接接触冷却器、调温冷却器、机械制冷单元或其组合。冷却单元134也可以配置为经水滴流(未示出)去除冷凝的水的一部分。在一个或更多实施例中,冷却的排气流132可以被引导到流体耦合到冷却单元134的鼓风机或增压压缩机142。在这样的实施例中,压缩的排气流136离开鼓风机142并且被引导到冷却单元134。
[0051] 鼓风机142可以配置为在冷却的排气流132被引入主压缩机104之前提高该冷却的排气流132的压力。在一个或更多实施例中,鼓风机142提高了冷却的排气流132的总密度,由此将增加的质量流率的相同体积流引导到主压缩机104。因为主压缩机104通常是体积流量受限的,由此引导更多质量流通过主压缩机104可以导致来自主压缩机104的更高的排放压力,因此转换成膨胀器106两端的更高的压力比。膨胀器106两端生成的更高的压力比可以允许更高的入口温度,并因此允许膨胀器106功率和效率的提高。由于富CO2排放物116一般维持较高的特定热容,因此这可以证明是有利的。因此,冷却单元134和鼓风机142在结合时可以每个均适于最优化或改善气体涡轮系统102的操作。应注意,尽管鼓风机142在图1和其他附图以及在此描述的示例中的EGR系统124中的特定位置中示出,但鼓风机可以位于贯穿再循环回路的任何地方。
[0052] 主压缩机104可以配置为将从EGR系统124接收的冷却的再循环气流140压缩到额定高于燃烧室110压力的压力,由此生成压缩的再循环流144。在至少一个实施例中,净化流146可以从压缩的再循环流144捕集并随后在CO2分离器或其他设备(未示出)中被处理,从而获取CO2。已分离的CO2可以用于销售,在需要CO2的其他处理中使用和/或为增加油回收(EOR)、封存或其他目的而被压缩并注入地下储油层。
[0053] EGR系统124如在此描述地可以被实施以在发电系统100的工作流体中实现更高的CO2浓度,由此允许用于随后的封存、压力维持或EOR应用的更有效的CO2分离。例如,在此公开的实施例可以将烟道气体排气流中的CO2的浓度有效提高到约10wt%(重量百分比)或更高。为实现该目的,燃烧室110可以适于按化学计量燃烧引入的燃料112和压缩的氧化剂114的混合物。为缓和化学计量燃烧的温度从而符合膨胀器106入口温度和部件冷却需求,来自压缩的再循环流144的排气的一部分可以被注入燃烧室110中作为稀释剂。因此,本公开的实施例可以从工作流体中基本消除任何过量的氧,同时增加其CO2成分。这样,排气流122可以具有小于约3.0vol%(体积百分比)的氧,或小于约1.0vol%的氧,或小于约0.1vol%的氧,或者甚至小于约0.001vol%的氧。在一些实施方式中,燃烧室110,或更具体地,到燃烧室的入口流可以优选被控制到化学计量燃烧,从而进一步减小排气流122的氧含量。
[0054] 在本文未示出的一些实施例中,高压蒸汽也可以在燃烧过程中代替再循环的排气或除再循环的排气之外被用作冷却剂。在这样的实施例中,蒸汽的添加降低了EGR系统中的功率和尺寸需求(或一并消除了EGR系统),但需要水再循环回路的添加。
[0055] 另外,在本文未示出的进一步实施例中,到燃烧室的压缩的氧化剂进料可以包含氩。例如,氧化剂可以包含从约0.1vol%到约5.0vol%的氩,或从约1.0vol%到约4.5vol%的氩,或从约2.0vol%到约4.0vol%的氩,或从约2.5vol%到约3.5vol%的氩,或约3.0vol%的氩。在这样的实施例中,燃烧室的操作可以是化学计量的或非化学计量的。如本领域技术人员将认识到的,将氩结合到压缩的氧化剂进料可以需要在主压缩机和燃烧室之间添加交叉式交换器或相似装置,该交叉式交换器或相似装置配置为从再循环流去除过量的CO2,并在用于燃烧的适当温度下将氩返回到燃烧室。
[0056] 如可以认识到的,在此公开的任意实施例中的各种部件中实现或经历的具体温度和压力可以基于多种因素而改变,尤其是所使用的氧化剂的纯度,以及膨胀器、压缩机、冷却器等的具体制作和/或模型。因此,将认识到,在此描述的特定数据仅用于说明目的并且不应被视为其唯一解释。例如,在本文的一个示例性实施例中,HRSG126将排气流132冷却到约200°F。排气流132由鼓风机142增压以便克服下游压降,导致温度提高,以使冷却的压缩的排气流136在约229°F离开鼓风机142。排气在冷却单元134中进一步冷却,并且冷却的再循环气流140在约100°F离开冷却单元134。
[0057] 现在参考图2,其示出了实施并描述为系统200的图1的发电系统100的可替换的实施例。这样,图2可以参考图1被最好地理解。相似于图1的系统100,图2的系统200包括耦合到排气再循环(EGR)系统124或以其他方式由EGR系统124支持的气体涡轮系统102。然而,在图2中的EGR系统124可以包括在鼓风机142下游的第二HRSG202,从而回收与鼓风机142关联的压缩热量。在由图2的EGR系统示例的一个或更多实施例中,第一HRSG126是包括高压(HP)、中压(IP)和低压(LP)锅炉区段的三压HRSG,而第二HRSG202包括LP锅炉和节热器区段。在系统200的操作的示例性方法中,排气流132在约279°F的温度离开HRSG126的LP锅炉区段并在鼓风机142中被压缩。冷却的压缩的排气流136在约310°F的温度离开鼓风机142并进入第二HRSG202。再循环气流138然后在约200°F的温度离开第二HRSG202。这样,鼓风机压缩热量由HRSG202回收,并且冷却单元134的冷却负载减小。
[0058] 图3示出了实施为系统300的图1的低排放发电系统100的另一实施例。这样,图3可以参考图1被最好地理解。相似于在图1中描述的系统100,系统300包括由EGR系统
124支持或以其他方式耦合到EGR系统124的气体涡轮系统102。然而,在图3中的EGR系统124采用湿度冷却,从而减小鼓风机142的功耗并且减小冷却单元134的冷却负荷。在由图3的EGR系统示例的一个或更多实施例中,水经流302注入,从而使排气流132饱和或近饱和并冷却,产生饱和的排气流304。饱和的排气流304可以任选地被引导到分离器306,从而去除可以进入其中的任何水滴。分离器306可以是适合去除水滴的任何装置,例如叶片组、网垫或其他除雾装置。饱和的排气流304的压力在鼓风机142中增加。冷却的压缩的排气流136离开鼓风机142并被引导到冷却单元134。在冷却单元中,当流进一步被冷却时,水从冷却的压缩的排气流136中冷凝出来,并且水在水流308中被回收。在本发明的一个或更多实施例中,水流308可以在热交换器310或其他冷却装置中冷却,从而引起冷却的水流312。冷却的水流312可以然后经再循环水流314再循环从而在冷却单元134中提供排气的另外的冷却,可以与将注入鼓风机142上游的排气流132的水流302组合,或该两者均可。尽管水流302可以在图3的系统的操作期间在一些时刻使用,例如在起动期间或在系统中需要补充水时使用,但对本领域技术人员显然的是,可能许多时间(例如在稳态操作期间)注入排气流132中所需要的水量可以完全由冷却的水流312的再循环供应。
[0059] 在系统300的操作的示例性方法中,排气流132在约200°F的温度离开HRSG126。水经流302的注入将排气冷却,引起具有约129°F的温度的饱和的排气流304。一旦在鼓风机142中被压缩,则冷却的压缩的排气流136在约154°F的温度离开鼓风机142并且在冷却单元134中冷却,引起在约100°F的温度的冷却的再循环气流。这样,鼓风机向系统添加较少热量,并且冷却单元134的冷却负载减小。
[0060] 图4示出了实施为系统400的图1的低排放发电系统100的另一实施例。图4可以参考图1和图3被最好地理解。相似于在图1中描述的系统100,系统400包括由EGR系统124支持或以其他方式耦合到EGR系统124的气体涡轮系统102。然而,在图4中的EGR系统124在HRSG中采用冷却水盘管,从而减小冷却单元134的冷却负荷。在由图3的EGR系统示例的一个或更多实施例中,冷却水盘管402在HRSG126内用来提供排气流122的另外的冷却。冷却水盘管可以适于采用冷却淡水海水。为使用冷却淡水,在一些实施例中,封闭淡水系统可以包括在设计中(未示出),该设计带有将淡水对海水冷却从而实现最大冷却的板形和框架交换器。如果海水盘管用于HRSG中,则HRSG导管应具有充分冶金性质,从而处理潜在酸性水冷凝和海水。冷却的排气流132离开HRSG126,并且可以任选地引导到分离器306,从而去除可以进入其中的任何水滴。分离器306可以是适合去除水滴的任何装置,例如叶片组、网垫或其他除雾装置。一旦任何进入水滴由分离器306去除,则冷却的排气流132被引导到鼓风机142,并且鼓风机下游的EGR系统如先前关于图1描述。
[0061] 在系统400的操作的示例性方法中,冷却的排气流132在约118°F的温度离开HRSG126的冷却水盘管402,并且压缩的排气流136在约140°F的温度离开鼓风机142。排气在冷却单元134中冷却,并且冷却的再循环气流140在约100°F离开冷却单元134。因为在图4的系统400中的压缩的排气流136以比在图1-3的先前描述的系统中更低的温度进入冷却单元134,因此冷却单元的负载相对于这些系统减小。
[0062] 图5示出了实施为系统500的图1的低排放发电系统100的另一实施例。图5可以参考图1和图4被最好地理解。相似于在图1中描述的系统100,系统500包括由EGR系统124支持或以其他方式耦合到EGR系统124的气体涡轮系统102。在图5中的EGR系统124在HRSG126中采用冷却水盘管402并且在鼓风机142上游采用分离器306,如关于图4、图5详细描述的。然而,图5也在鼓风机142下游采用另外的HRSG502代替先前关于图1-4描述的直接接触冷却器(CDC)冷却单元。HRSG502包括相似于在第一HRSG126内含有的冷却水盘管402的冷却水区段。分离器区段504也包括在另外的HRSG502内,从而从压缩的排气流136去除任何冷凝的水滴。分离器区段504可以是适合去除水滴的任何装置,例如叶片组、网垫或其他除雾装置。一旦任何水滴由分离器区段504在另外的HRSG502内去除,则冷却的再循环气体流140离开HRSG502并且直接再循环到主压缩机104。
[0063] 在系统500的操作的示例性方法中,冷却的排气流132在约113°F的温度离开第一HRSG126的冷却水盘管402,并且压缩的排气流136在约143°F的温度离开鼓风机142。排气在第二HRSG502中被进一步冷却,并且冷却的再循环气流140在约113°F离开第二HRSG的分离器区段504。在根据图5的一个或更多实施例中,用水使进入主压缩机104的冷却的再循环气流140饱和。
[0064] 在由图1到图5示出的一个或更多实施例中,冷却的再循环气流140可以用水饱和。因此,存在酸性水滴可以在流中形成并且导致主压缩机104的叶片侵蚀或腐蚀的风险。图6示出了实施为系统600的图1的低排放发电系统100的另一实施例,其配置为通过将进入主压缩机104的再循环气流过热来减小或消除酸性水滴的形成。图6可以参考图1、4和5被最好地理解。相似于在图1中描述的系统100,系统600包括由EGR系统124支持或以其他方式耦合到EGR系统124的气体涡轮系统102。相似于在图4中描述的系统400,在图6中的EGR系统124也在HRSG126中采用冷却水盘管402并且在鼓风机142上游采用分离器306。然而,图6的系统消除了鼓风机142下游和主压缩机104上游的冷却单元或其他冷却装置的使用,取而代之地将压缩的排气流136从鼓风机142直接引导到主压缩机104。
[0065] 在系统600的操作的示例性方法中,冷却的排气流132在约113°F的温度离开第一HRSG126的冷却水盘管402。由鼓风机142的压缩热量使排气流132过热,并且压缩的排气流136在约144°F的温度离开鼓风机142。这样,图6的配置实现了约25°F的过热。如在此使用的,术语“过热”指代气体温度高于该气体的露点温度的程度。因此,25°F的过热意味着气体的温度比其露点温度高25°F。压缩的排气流136在没有进一步冷却的情况下被直接路由到主压缩机104。如果希望气流的另外的过热,则这样的另外的加热可以通过各种方法获得,例如通过将鼓风机排放物与在HRSG中的冷却水盘管(未示出)上游的烟道气体交叉式交换。这样的交叉式交换器配置相似于空气预热器,该空气预热器普遍和熔炉或焚化炉安装在一起,并且减小冷却水盘管要求的面积,但添加了大型交叉式交换器的另外的花费。
[0066] 图6中的系统600的配置意图通过将再循环气流过热而减小或消除酸性水滴的形成,并且防止主压缩机的叶片的侵蚀或腐蚀。图7到图9示出了同样意图通过使用乙二醇例如三甘醇(TEG)将再循环气流脱水而减小或消除再循环气流中的酸性水滴的形成的本发明的可替换的实施例。为使这样的乙二醇脱水配置成本有效,废热用来再生乙二醇。废热可以从系统中的各种来源获取,例如从一个或更多热回收蒸汽发生器(HRSG)的背部或从压缩中间冷却来获取。
[0067] 图7A示出了实施为系统700的例如在图1中示出的低排放发电系统的EGR系统124的一部分的实施例,其配置为通过在冷却单元内使用乙二醇接触器区段将进入主压缩机的再循环气流脱水并且在分离的乙二醇真空再生系统中再生乙二醇,从而减小或消除酸性水滴的形成。图7A可以参考图1最好地理解。在系统700中,冷却的排气流132从HRSG126流动并且被引导到鼓风机142,在所述鼓风机142中,该流被压缩。压缩的排气流136离开鼓风机142并且被引导到冷却单元134,该冷却单元134在一个或更多实施例中包含利用水作为冷却介质的直接接触冷却器(DCC)区段。在一个或更多实施例中,冷却单元
134在本文中被认为是直接接触冷却器(DCC),但也可以是任何合适的冷却装置,例如直接接触冷却器、调温冷却器、机械制冷单元或其组合。在冷却单元134内,压缩的排气流136与水接触,从而冷却所述流。水滴出流(water dropout stream)702在接触气流之后离开冷却单元。在一个或更多实施例中,水滴出流702的一部分可以从系统700净化,而水滴出流的剩余部分可以使用热交换器720冷却并且被再循环到冷却单元134,从而提供压缩的排气流136的进一步的冷却。在一个或更多实施例中,热交换器720利用海水提供需要的冷却。在相同或其他实施例中,另外的冷却可以由在热交换器720下游安装的冷冻的水冷却器(未示出)提供,以便当采用乙二醇脱水时,抵消与在冷却单元134内发生的脱水关联的温度上升。因为通过降低馈送到所述处理的脱水部分的气体的温度,再循环的排气温度被相似地降低并且鼓风机和主压缩机的功耗被降低,所以以此方式使用冷冻的水冷却器可以是希望的。本领域技术人员将认识到,在不仅包括由图7A示出的配置而且还包括在图8和图9中示出以及在任何其他脱水系统中的配置的采用乙二醇脱水的任何配置中,使用冷冻的水冷却器均可以是希望的。
[0068] 冷却单元134进一步包含乙二醇吸收区段710。在一个或更多实施例中,乙二醇吸收区段是吸收塔,例如板式塔(tray column)或填充塔。一旦压缩的排气流已用水冷却,则气体进入冷却单元134的乙二醇吸收区段710,其中在排气中的水蒸汽由乙二醇吸收。已由乙二醇至少部分脱水的引起的冷却的再循环气流140离开冷却单元134并且被引导到主压缩机104。一旦乙二醇已从排气吸收水,则其从乙二醇吸收区段710经富乙二醇流712抽取并且被引导到真空再生系统750。
[0069] 在真空再生系统750内,富乙二醇流712在交叉式交换器722中被加热,并且被馈送到其中乙二醇热再生的乙二醇再生塔730。再生器塔顶流736离开乙二醇再生塔730的顶部,而再生的乙二醇流732离开该塔的底部并且被引导到再沸器734。乙二醇蒸汽流733从再沸器734返回到乙二醇再生塔,并且稀乙二醇流714在返回到乙二醇吸收区段710之前被引导通过交叉式交换器722,并任选地被引导通过一个或更多热交换器720。包含水蒸汽和一些剩余排气的再生器塔顶流736在预冷凝冷却单元760中冷却并且被引导到第一分离器740,其中在塔顶流中的充足量的水经水净化流742去除并离开所述系统。排气经流744离开第一分离器740并且被引导到蒸汽喷射器770。在蒸汽喷射器770内,提高压力的蒸汽产生在排气流744中抽取的真空。蒸汽喷射器770可以使用低压、中压或高压蒸汽,并且可以是单级或多级喷射器。可替换地,在图7A中未示出的一个或更多实施例中,真空可以代替蒸汽喷射器用来在真空再生系统750中产生希望水平的真空。
[0070] 包含排气和水蒸汽的喷射器出口流762离开喷射器770,并且在第二分离器740中分离从而将移动蒸汽从喷射器去除并将任何其他剩余水从该流去除之前,在后冷却器冷却单元760中冷却。冷却单元760可以是空气或水冷却器,这取决于真空再生系统750的温度需求和其他参数。在本文的一个或更多实施例中,在预冷凝器冷却单元和后冷却器冷却单元两端的压降小于或等于约2psi(磅/平方英寸),或小于或等于约1.5psi,或小于或等于约1psi,或小于或等于约0.5psi。分离器740可以是经设计从排气去除水的任何类型的分离单元,例如冷凝器、重力分离器、回流罐等。在第二分离器740中从喷射器出口气体去除的水经水净化流742从所述系统去除,而引起的干燥排气离开分离器并且经流748再循环到鼓风机142上游的点。在一个或更多实施例中,水净化流742中的每个都具有小于0.5或小于0.25或小于0.1的百万分体积比(ppmv)的乙二醇浓度。
[0071] 在大气操作压力下,将再生的乙二醇流732再沸的温度要求超过300°F。因此,在一个或更多实施例中,希望在真空条件下操作再生系统750,并且特别是操作乙二醇再生塔730。这样,低水平废热可以用来将乙二醇而不是蒸汽再生。当乙二醇再生塔730中的压力降低时,将水蒸发出乙二醇所需要的再沸器温度也下降,同时热负荷保持相对恒定。因此,真空压力可以基于可用的外部热源的温度(在塔设计的限制内)、真空生成装置的参数和可用的塔顶冷却温度来选择。
[0072] 图7B示出了假设18°F的热交换器接近温度下,在TEG再生塔的压力和外部再沸器热源的温度之间的对应。图7C表明了再次假设了18°F的热交换器接近温度下,在外部热源温度和塔真空压力之间的关系,以及该关系对于两个不同预冷凝器塔顶冷却温度怎样涉及喷射器的蒸汽负载。在图7C中表示的“预期最优”表示达到必需的真空所需要的在外部热源温度和喷射器蒸汽之间的平衡。通过沿曲线进一步向左移动,较低的热源温度可以被使用,但在相同塔顶冷却温度下需要较多的喷射器蒸汽。
[0073] 图8示出了实施为系统800的图1的低排放发电系统100的另一实施例。图8可以参考图1和图7最好地理解。相似于在图7A中描述的系统700,系统800结合乙二醇脱水,从而减少或消除酸性水滴在再循环的排气流中的形成。然而,代替单独的真空再生系统的是,图8的系统800在冷却单元134内结合乙二醇再生区段730,其使用压缩的排气流136的过热来再生乙二醇。这样,系统800的外部加热负荷减小,但是仍可以需要经热交换器720的一些另外的加热。
[0074] 虽然使用到冷却单元的过热入口气体再生乙二醇减小了系统800中的外部热负荷,但其也导致潜在的不可接受的乙二醇损耗。再生区段730中的蒸发的乙二醇直接运送到冷却单元134的冷却区段中,其中蒸发的乙二醇可以被冷凝并且在水滴出流702中去除。所引起的与供应补充乙二醇关联的成本可以使得在图8中示出的配置在一些状况下是不希望的。解决这些潜在的乙二醇损耗的一种方式在图9中示出,其示出了实施为系统900的图1的低排放发电系统100的另一实施例。图9可以参考图1、7和8最好地理解。相似于在图8中描述的系统800,系统900结合乙二醇脱水,从而减少或消除酸性水滴在再循环的排气流中的形成,并且在冷却单元134内包括乙二醇再生区段730。然而,此外,图9的系统
900在乙二醇再生区段730和冷却单元134中的冷却区段之间结合过热降温区段910。过热降温区段910将排气冷却到或接近水饱和温度并将大部分乙二醇冷凝,该乙二醇经冷凝的乙二醇流912从过热降温区段910去除并被添加到稀乙二醇流714。在这样的配置中,过热降温区段910应被控制,使得大量水不与乙二醇一起冷凝。在本发明的一个或更多实施例中,在图9中示出的系统900中从鼓风机142到主压缩机104的入口的总压降小于或等于约2.0psi,或小于或等于约1.5psi,或小于或等于约1.0psi。
[0075] 本领域技术人员应认识到,尽管乙二醇脱水参考图7A、图8和图9被示例并描述,但任何合适的脱水方法均可以在此采用并且被认为在本发明的范围内。例如,采用分子筛或甲醇的脱水方法可以代替在此描述的乙二醇脱水来使用。
[0076] 图10中说明了可以对减小或消除酸性水滴在再循环排气流中的形成有效的进一步的配置,图10示出了实施为系统1000的图1的低排放发电系统100的另一实施例。图10可以参考图1最好地理解。不同于图7到图9的配置,图10的系统1000不采用排气的脱水,而是在冷却单元134两端结合进料/出料交换器50,从而为冷却的再循环气流140的温度实现希望的露点裕度。在一个或更多实施例中,冷却的再循环气流的希望的露点裕度可以是高于气体的露点约50°F,或约45°F,或约40°F,或约35°F,或约30°F,或约25°F,或约20°F,或约15°F。在图10中示出的配置可以导致由于与使用乙二醇脱水的实施例比较的更高的排气温度而引起的鼓风机142和主压缩机104的功耗的提高。然而,系统1000的益处是该配置减小了所需要的设备量,这因此导致系统中的较低的投资成本和较小的复杂度。
[0077] 示例
[0078] 示例1
[0079] 执行改变低排放涡轮的排气再循环回路的研究。模拟对应于图1-6的若干配置,并且结果在表1中报告。模拟和对应结果是基于利用以空气作为氧化剂的框架9FB燃烧涡轮发电机(CTG)的单列车情况。假设主空气压缩机(MAC)是单轴机器。
[0080] 以下假设用于示例1的全部模拟。MAC的多变效率假设为91%(没有用于模拟的压缩机曲线),并且排气鼓风机的多变效率假设为88.6%。燃烧室出口温度和膨胀器入口温度分别假设为3200°F和2600°F。最小DCC出口温度假设为100°F。烟道气体界区(battery limit)压力假设为1900psig。
[0081] 基于再循环压缩机压力比和再循环压缩机出口体积使用相关性预测CTG性能。为确保预测的性能在CTG的已知能力内,维持以下CTG限制:最大膨胀器功率=588.5MW,最大轴耦合扭矩(膨胀器功率-压缩机功率)=320MW,最大膨胀器出口赫数=0.8,最大压缩机入口马赫数=0.6,最小压缩机出口流量=126500实际立方英尺/分钟(acfm),从而防止停转(在冷却剂去除后的压缩机出口流率)。
[0082] 模拟结果在下面表1中提供。
[0083] 表1
[0084]
[0085]
[0086] 如在表1中所示,使用图1的配置作为用于比较的基本情况观察到以下结果。图2的配置在蒸汽涡轮机发电机(STG)中提高发电约2MW。然而,该益处可以由与较高的吸入温度关联的EGR鼓风机的较高的功耗抵消。加热率、功率输出和惰性气体产物基本上等于图1。图3的配置将EGR鼓风机功耗减小约1MW。在图4的配置中,通过在HRSG中以冷却水冷却烟道气体,降低了到EGR鼓风机的吸入温度并因此减小了鼓风机功耗。由于冷却负荷减小,因此DCC水循环也降低。系统加热率的净效应减小<1%。由于到HRSG背部的冷却水盘管的增加,更高的冶金材料可以用来处理冷凝的酸性水。在一个或更多实施例中,HRSG可以包括用于冷凝液体的排水管
[0087] 在图5和图6的配置中,通过在HRSG中以海水冷却烟道气体,降低了到EGR鼓风机的吸入温度并因此减小了相对鼓风机功耗。与泵送水从而冷却排气关联的功率同样比图1降低。系统加热率的净效应减小<0.5%。在图6的情况下,进入主压缩机的过热气体的使用为DCC提供了潜在的成本节省。
[0088] 在表1中示出的总体结果表示了由图1到图6示出的选项对系统加热率具有较小影响。然而,考虑DCC消除的选项可以提供充分的投资成本节省。特别地,消除DCC同时仍向主压缩机提供过热气体的任何选项均可以节省大量投资成本。如果由鼓风机压缩提供的过热(约25°F)是可接受的,则成本节省的机会被增进。否则巨大的低压气体热交换器的添加可以用来实现距气体露点的40°F的裕度。
[0089] 示例2
[0090] 执行第二项研究以改变低排放涡轮的排气再循环回路。模拟对应于图7-10的若干配置,并且结果和与具有图1的配置的基本情况的比较一起在表3中报告。模拟和对应结果是基于利用以空气作为氧化剂的框架9FB燃烧涡轮发电机(CTG)的单列车情况的。假设主空气压缩机(MAC)是单轴机器。
[0091] 在表2中阐述的以下另外的假设用于示例2的全部模拟。
[0092] 表2
[0093]
[0094]
[0095] 除上面假设之外,在真空再生的情况下也假设可冷凝的气体在蒸汽喷射器之前通过冷却和分离来去除,并且该蒸汽喷射器是没有级间冷凝器的单级喷射器。蒸汽喷射器的速率基于由DeFrate和Hoerl,Chem.Eng.Prog.,55,Symp.Ser.21,46(1959)公开的设计曲线。
[0096] 在修改情况具体变量之后,燃料气体和空气流率、稀释剂流率和DCC出口温度/压6 6
力经调整分别实现1.122*10acfm和3.865*10acfm的EGR压缩机和膨胀器体积限制。此后,蒸汽流率经调整实现恒定的HRSG温度接近和约200°F的来自HRSG的烟道气体出口温度。
[0097] 带有和没有过热降温器的集成的再生脱水情况通过调整到再生区段的富TEG的入口温度直到为具体TEG速率实现希望露点来解决。在带有过热降温器的情况下,使用冷却水流将过热降温器出口温度控制到比露点温度高5°F。当再循环的排气成分变化时,需要多次迭代来整合脱水的气体返回到EGR压缩机。
[0098] 真空再生脱水情况(即带有单独的再生塔的情况)通过选择起始再沸器温度并然后调整真空压力从而为具体TEG速率实现希望的露点来解决。可替换地,起始真空压力可以被选择,并且然后再沸器温度被调整以实现希望的露点。一旦真空压力被确定,则必须计算实现该真空所需要的蒸汽量。使用最优单级喷射器的设计曲线,确定蒸汽诱导比,从而实现希望的压缩。该蒸汽流作为源自HRSG的输入(debit)和到塔顶流的输出(credit)而结合到模拟中。当再循环的排气成分变化时,需要多次迭代,从而将非冷凝的再生塔顶馏出物整合回到EGR增压器,并且将脱水的气体整合返回到EGR压缩机。
[0099] 模拟结果在表3中提供。
[0100] 表3
[0101]
[0102]
[0103] 只要塔顶冷却温度和蒸汽喷射器被适当选择,则总体模拟一般不由再生塔的具体真空压力改变。这样,在表3中发现的功率循环数据无关于再生塔顶冷却和外部热源温度而应用。真空压力、外部热源温度和塔顶冷却温度的选择分离地执行。
[0104] 如在表3中所示,在所有评估的配置中,系统加热率基本上不受使用TEG脱水的影响。除结合用来将冷却单元塔顶馏出物冷却的冷冻水的图7A的情况之外,所有评估的脱水配置的加热率自没有脱水的基本情况(图1)改变小于约1.4%。最大改变在带有较高TEG速率的情况中发现。
[0105] 脱水和关联的TEG流率的总体效应在表4中概括。
[0106] 表4
[0107]
[0108] *一般趋势。一些例外。
[0109] 在结合TEG脱水的情况下,横跨脱水吸收器的气体温度升高提高了到主压缩机的入口温度,导致另外的功耗和更高的入口每分钟实际立方英尺(acfm)。为符合主压缩机入口acfm限制,需要更高的入口压力。这提高了提供该压力的排气鼓风机的功耗。
[0110] 尽管功耗提高从而将更暖排气再循环,但其通过在压缩之前从排气去除水,并通过在燃烧室中降低燃料气体点火来平衡。水去除提高了循环流体的密度,这提高了燃烧涡轮发电机(CTG)功率和热回收蒸汽发生器(HRSG)负荷。密度的提高也降低了到主压缩机的入口acfm,其然后必须通过提供较高入口温度的气体,或在仅温度上升不足够的情况下提供较低入口压力的气体来平衡。由于再循环的排气更温暖,因此需要较少燃料气体以在燃烧室中达到温度。较少燃料气体引起燃烧空气压缩机和烟道气体压缩机的较低的压缩功率,但也引起约1%的减少的烟道气体产生。该降低的功率使用以及降低的烟道气体速率帮助补偿在排气再循环中的较高的功耗。一起考虑的是,这些效应导致TEG脱水,该TEG脱水不导致系统加热率的实质变化。
[0111] 在TEG脱水配置中,露点抑制通过TEG从排气流去除水来实现。另外,还具有帮助在出口抑制露点的横跨吸收器的温度上升。在带有较高TEG流的情况下,热量的较大部分由TEG自身吸收,导致横跨吸收器的较低的气体温度上升。这意味着较少的露点抑制由温度上升提供,并因此另外的水必须由TEG吸收。因此,系统加热率作为水去除增加的益处而改善,同时减轻了较高的主压缩机入口温度所需要的另外的功率。发电变化是最小的,但一般具有CTG和蒸汽涡轮发电机(STG)发电的少量增加。CTG发电的增加是较高的入口密度并因此通过膨胀器的较多的质量流的结果。密度提高部分由较低的含水量来解释,但也受源自再循环的压缩机的较高的压力的影响。
[0112] 在较低TEG速率的STG发电的增加由在HRSG和净化气体废热锅炉中的较高的蒸汽产生引起。由于到HRSG的烟道气体的较高的温度和质量流引起HRSG负荷增加。由于克服较低的流量的较高的净化气体温度引起组合的净化气体锅炉负荷的增加。这些增加的负荷将燃烧空气锅炉以及用于真空再生情况的任何喷射器蒸汽中的减小的负荷抵消。然而,由于TEG速率提高,当烟道气体和净化气体温度降低时,喷射器蒸汽使用增加。因此,STG功率开始以较高的TEG速率降低。以2gal TEG/lb H2O泵送TEG中涉及的另外的功率约是0.7MW,并且在5gal TEG/lb H2O,所述另外的功率约是1.7MW。然而,该功耗对加热率没有显著影响。
[0113] 为评估与具体露点关联的不同成本,以2gal TEG/lb H2O的TEG速率为图7A和图8的配置评估30°F和40°F的露点裕度。当露点裕度降低时,较少的水必须从循环TEG去除,减小了再沸器负荷与塔顶流。引起的真空再生塔的再沸器负荷减小13%(38MMBtu/hr),并且所需要的外部加热温度降低19°F。塔顶冷却负荷减小19.8%(39MMBtu/hr),并且稀TEG冷却负荷减小10.8%(26MMBtu/hr)。还具有喷射器蒸汽负载的少量(3.3%)减小。
另外,由于较少的水在吸收器中去除,因此在吸收器中的气体温度上升也较低。由于在吸收器塔顶中的较低的气体温度,因此较少的TEG被蒸发并运送到DCC上。因此,TEG损耗减小
31%。
[0114] 较高的TEG速率(gpm/lb H2O)降低了源自脱水吸收器的塔顶温度,并且减小了源自吸收器塔顶的TEG的不可回收损耗,但增加了外部废热和冷却需求。当更多水被去除时,较高的TEG速率还提高了喷射器蒸汽负荷与废水净化速率。另外,在没有单独的再生塔的情况下,TEG在DCC集成再生区段中蒸发。因此,最小化TEG速率可以是优选的。
[0115] 当采用TEG脱水时,可行的是,TEG可以在再循环气体中发现的未反应的氧存在的情况下被降解,导致有机酸形成,该有机酸降低了TEG的pH值。结果,具有因该pH值降低导致的碳部件加速腐蚀的潜在可能。例如,源自DCC塔顶的夹带的TEG可以被引入到主压缩机。在没有氧降解的情况下,TEG液滴通常具有约6.1的pH值。如果TEG的氧降解发生,则液滴的pH值将降低。因此,在本发明的一个或更多实施例中,抑制的或缓冲的TEG(例如可从The Dow Chemical公司商业获得的Norkool Desitherm)可以使用,以便减小或消除由于该机制引起的腐蚀的潜在性。
[0116] 尽管本公开可能易受各种修改和可替换形式的影响,但在上面讨论的示例性实施例仅通过示例的方式示出。在此描述的任何实施例的任何特征或配置可以与任何其他实施例或与多个其他实施例组合(就可行性来说),并且全部这样的组合意图在本发明的保护范围内。此外,应理解本公开不意图限于在此公开的特定实施例。当然,本公开包括落入所附权利要求的真实精神和保护范围内的全部替换、修改和等价物。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈