首页 / 专利库 / 泵和压缩机 / / 微泵 / 微电化泵

微电化

阅读:151发布:2020-05-11

专利汇可以提供微电化专利检索,专利查询,专利分析的服务。并且本 说明书 公开的是一种按预定时间周期连续地或间歇地以微小速率抽吸液体的便携型微电化 泵 。该电化泵是由:用陶瓷或有机材料制成、馈给控制 电压 就会 变形 的压电元件;以及将所述压电元件粘着于其上、并可随所述压电元件的变形而一致地进行变形的振动膜片构成。随着振动膜片伸缩,使微电化泵变形或从吸入口吸入液体,或将从吸入口吸入的液体放射到其放射口外面。,下面是微电化专利的具体信息内容。

1、一种微电化,它包括:
若馈给一控制电压即可变形的一个压电元件,
有所述压电元件粘附于其上、因而可根据所述压电元件的变形而变形的振动膜片,
根据所述振动膜片按预定方向的变形而释放吸入口的关闭、从吸入口吸入液体的一个进液逆止,以及
根据所述振动膜片按上述相反方向的变形而释放放射孔的关闭、使从吸入口吸入的液体通过所述放射孔从放射口放射的一个排液逆止阀
2、按照权利要求1的微电化泵,其特征在于另外还包括:
装有所述进液逆止阀并与所述吸入口相通的第一阀腔,
装有所述排液逆止阀并与所述放射口相通的第二阀腔,以及
由所述振动膜片确定并经由所述进液孔和所述放射孔分别与所述第一阀腔和所述第二阀腔相通的加压腔。
3、按照权利要求2的微电化泵,其特征在于另外还包括:
粘在所述压电元件与所述振动膜片之间的一片电极金属板,
附在所述压电元件上的第一电极,以及
附在所述电极金属板上的第二电极。
4、按照权利要求2的微电化泵,其特征在于:
使所述进液逆止阀和构成所述第一阀腔的部件结合在第一阀构件内,以及
使所述排液逆止阀和构成所述第二阀腔的部件结合在第二阀构件内。
5、按照权利要求4的微电化泵,其特征在于所述第一阀构件和第二阀构件是用不同的阀结构构成的。
6、按照权利要求1的微电化泵,其特征在于所述逆止阀是通过蚀刻陶瓷材料制备的。
7、按照权利要求1的微电化泵,其特征在于,将两片或更多片压电元件相互迭加并与所述振动膜片粘在一起。
8、按照权利要求1的微电化泵,另外还包括:
装有所述进液逆止阀并与所述吸入口和吸入孔相通的第一阀腔,以及
装有所述排液逆止阀并与所述放射口和所述放射孔相通的第二阀腔,
其特征在于所述振动膜片仅在其周边处加以固定以关闭所述吸入孔和所述放射孔。
9、按照权利要求2的微电化泵,其特征在于它另外还包括:
装配在所述吸入口中的第一密封橡皮顶盖,以及
装配在所述放射口中的第二密封橡皮顶盖。
10、按照权利要求2的微电化泵,其特征在于另外还包括:
直接或通过一管与所述吸入口相连的容器,
装配在所述容器开口中的第一密封橡皮顶盖,以及
装配在所述放射口中的第二密封橡皮顶盖。
11、按照权利要求2的微电化泵,其特征在于所述振动膜片包括:
在其厚度方向至少有一个锥形孔的电极金属板,以及通过填满所述锥形孔而固定在所述电极金属板上的塑料平板。
12、按照权利要求11的微电化泵,其特征在于所述塑料平板加工有一环形突出部分用以对所述压电元件定位
13、按照权利要求11的微电化泵,其特征在于所述电极金属板在其部分加工有一焊接突出件,该突出件不与所述塑料平板平面重叠。
14、按照权利要求11的微电化泵,其特征在于所述振动膜片在所述塑料平板与所述电极金属板接触的另一面的塑料表面周边加工有一声波溶剂焊接突出件。
15、按照权利要求1的微电化泵,其特征在于另外还包括:
包含用以关闭所述吸入口的第一弹性挡板和用以有弹性地推进所述第一弹性挡板的第一弹簧构件的一个进液逆止阀,以及
包含用以关闭所述放射孔的第二弹性挡板和用以有弹性地推进所述第二弹性挡板的第二弹簧构件的一个进液逆止阀。
16、按照权利要求1的微电化泵,其特征在于:
所述进液逆止阀包含:有用以关闭所述吸入口的弧形部分的第一构件和用以有弹性地推进所述第一构件的第一弹簧构件,以及所述排液逆止阀包含:有用以关闭所述放射孔的弧形部分的第二构件和用以有弹性地推进所述第二构件的第二弹簧构件。
17、按照权利要求1的微电化泵,其特征在于另外还包括:
用以将控制电压加给所述压电元件的集成电路,以及
用以使所述集成电路运行的电源。
18、一种微量放射装置,它包括:
根据随压电元件变形而变形的振动膜片的位移、以微小速率放射液体的一个泵组件,
用以操作和控制所述泵组件的一个控制电路单元,以及
用以供电功率给所述泵组件和所述控制电路单元的一个电源装置,
其特征在于,所述泵组件、所述控制电路单元和所述电源装置都装在一外壳里。
19、按照权利要求18的微量放射装置,其特征在于另外还包括:
设置在所述微量放射装置外壳外面的一个显示器。
20、按照权利要求18的微量放射装置,其特征在于另外还包括:
设置在所述微量放射装置的外壳中用以供应液体给所述泵组件的容器。
21、按照权利要求18的微量放射装置,其特征在于另外还包括:
设置在所述微量放射装置外壳的外面、与所述泵组件的放射口相连的一个注射器针。
22、按照权利要求18的微量放射装置,其特征在于所述电源装置包括一个电池

说明书全文

发明涉及按预定时间周期连续地或间歇地以微小速率放射液体的便携型微量放射装置。

先有技术中,例如,在日本公开特许公报第54(1979)-12191号和日本特许公报第61(1986)-22599号中已公开过这种微量放射装置。在所公开的微量放射装置中,将一种电磁致动器用作原动机,并耦合到具有可变尺寸齿轮组合的传动机构上,从而使一注射器可用一臂直接推动。

然而,由于该装置使用电磁致动器,所以抗电磁噪声能弱且消耗电流大。况且,因为用齿轮传动机构,由于齿隙游移,使该装置放射量差量增大且结构复杂。另外,为要推动注射器还增大了总体尺寸,从而限制了可携带性。

本发明的一个目的是提供一种微电化,即,一种抗电磁噪声能力强、具有如此小的电流损耗以使用小电池便于携带,且具有良好放射精度的小型便携式微量放射装置。

本发明的另一目的是提供一种在抑制由于泄漏而形成的故障和产品成本增大的同时,易于组装且具有通用性的小型微电化泵。

根据本发明的一个方面,提供一种具有泵组件的微电化泵,该泵组件包含:由陶瓷或有机材料制成、且一加上控制电压就会变形的压电元件;有所述压电元件粘着于其上、并可随所述压电元件的变形而一致地变形的振动膜片;根据所述振动膜片按预定方向的变形而使其吸入口释放其关闭状态、从吸入口吸入液体的进液管逆止;以及根据所述振动膜片按上述相反方向的变形而使其放射孔释放其关闭状态、将从吸入口吸入的液体通过所述放射孔从放射口放射的排液逆止阀

若将控制电压加到压电元件上,压电元件就沿径向方向伸缩。随着这些伸缩动作使粘在压电元件上的振动膜片上下振动,从而把容器中液体吸入泵组件并从放射口将其排出。

由于将采用压电元件的泵用作微电化泵,所以与采用电磁致动器的放射装置相比可用较少数量的部件构成,从而可使之小型化且降低产品成本。此外,由于容器的形状可不受限制,使放射装置的形状可有更多的自由度,而且,既然压电元件是一种电压驱动的致动器,它消耗的电流小到仅为μA的数量级。因此,即使用锂电池也可得到有长使用寿命的电池的便携型微电化泵。

另一方面,采用电磁致动器的微电化泵不可能逐调节流量。但是,在本发明中,使用压电元件因而可根据电压来控制位移,即,放射量。结果,可根据频率控制放射量,而根据各级电压控制流速,这样,就能够微调放射量。况且,可控制压电元件小于1μm的位移,而没有象用电磁致动器的放射装置那样由齿轮传动机构引起可能的齿隙游移。例如,倘若所用加压腔直径为10mm,则所述排量控制可精确到非常微小的量0.02微公升。而且,由于压电元件不受磁场影响,所以,即使处于磁场环境下,也不会象电磁型致动器那样引起误动作,因而,可得到很好的安全性。

此外,根据本发明的另一方面,微电化泵的泵组件具有整体(阀)构件,其中,该整体构件组合了至少一个逆止阀和构成有通道部分的构件。由于采用这样的阀构件,有可能解决现有的问题,即,在声波溶焊时由超声波能量引起泄漏的问题。在先有技术中,即使只有一个阀出故障,也会使两个阀和阀的各附件发生故障。然而,根据本发明的该方面,在组装之前就可以对阀构件本身诸如泄漏的可靠性方面进行测试。结果,若存在有缺陷构件的话可予排除,而只将好构件可靠地装进泵内。这降低了不合格率。此外,将以前难于组装的阀分成 阀构件,使得一个构件的缺陷不会波及整体。这样,尽管增加了一步工序,但使阀变成易于组装。从整体来看,大幅度提高了可靠性和安全性,并可显著降低产品成本。因而,本发明可提供显著的实用效果。

另一方面,假如准备将各阀构件装进吸入侧和排出侧时,可将它们任意置放而不用考虑将它们设定在哪一侧。

此外,由于在吸入侧和排出侧可采用不同的阀构件,所以它们可根据相应的进行互换。对于一种细流量控制来说,可采用由微切削加工的陶瓷阀构成的阀构件。假如允许小的逆流或如果希望低的产品成本时,阀构件可以由塑料阀构成。这样,就有可能考虑到使用目的而提供最佳的阀构件。这排除了过质量或欠质量。此外,除阀构件以外的部件通常可用于提供成本优值。

在先有技术的设计中,根据其种类来设计整个泵。但是,本发明中,由于阀构件是合成一体的,所以仅设计阀构件而不是整体就已足够。因此,简化了设计工作从而显著降低成本。

另一方面,假如要对现正使用的阀加以改进,因为所述阀构件所以可连续使用该阀构件直到得到改进。在改进结束时通过更换该阀构件通常可使用其它部件。这种顺当更换现有装置的优点,不仅在加工方面明显节省了成本,而且在用户方面可无干扰地更换现有阀。进而,该优点以显著的优越性提高了对制作者的信赖。

根据本发明的再一个方面,微电化泵是用多片陶瓷或有机材料的压电元件粘在振动膜片上而构成的。

这样,有可能提供一种在一级具有高流量而几乎不会受反压影响的泵组件。另一方面,现有的双压电晶片振动膜片在其两面都有压电元件,因为它有一面压电元件浸渍在液体中会使其短路或使其接触面受腐蚀,所以不能用在腐蚀或导电的环境中。但是,由于本发明的压电元件是粘着于振动膜片的一个面上,它不靠近与加压腔中液体的接 触。因此,即使加压腔处于腐蚀或导电的环境中,仍可将泵组件构造成不会被短路或发生接触腐蚀现象,从而提高了泵组件的可靠性并延长其使用寿命。

根据本发明再一个方面,微电化泵的泵组件中,由与居中板构件保持平面接触的振动膜片来关闭吸入阀腔和排出阀腔。结果,虽然或多或少有泄漏但可排除逆流。而且,借助于用板构件限制振动膜片的位移,可构成对反压有较低相关性的微电化泵。另一方面,在准备从泵组件中消除泡沫的场合,假如在真空或加压情况下执行,对于较高的流速来说可有助于消除泡沫。通过建立由振动膜片变形形成的特定大小的空间以加速流速,可容易地消除泡沫。

根据本发明的再一个方面,加之,可将液体从外面注射进已形成真空和密封的泵和容器中。在用于医疗目的将药液直接注射进人体的场合,可完全防止气体潜入药液以保证显著的高度安全性。

此外,假如要用药液或酒精作为放射液,所用泵组件必须用象聚丙烯那样的高度耐化学性材料制成。在这种情况下,不能用胶粘剂粘着电极金属板和聚丙烯平板。因此在本发明中,有锥形孔的电极金属板是嵌入式成型的,以便使它们与振动膜片合成一体。这样,就可得到不会发生剥离的、可重复使用的有良好耐久性、作为一个整体可提供高度可靠性的泵组件。而且,假如与溶剂焊接突出部分构成振动膜片,可将它容易地焊接到主体上,而不用任何衬垫即可确保与主体间的防性。于是,在低成本条件下就能制备良好安装的泵组件。

根据本发明的再一个方面,用单独的压紧弹簧推进用以关闭吸入口的第一阀构件和用以关闭放射孔的第二阀构件,可自由设定各弹簧的弹力。这使得有可能自由地设定阀开口压力。因此,假如在有许多外部振动的场合下使用该泵,可设定压紧弹簧具有克服所述振动的弹力,以便使泵能获得较安全的阀结构。而且,如果使用本发明的阀结 构,由于良好的接触和密封特性可显著提高抗逆流的能级,而不增加逆流流量,因而可使可靠性提高到一个较高的水平。

本发明的上述和其他目的以及优点特征,通过下面介绍连同参考附图将会变得更加明确。

图1和2是分别表示按照本发明一实施例的微电化泵的剖视和顶视平面图,

图3是表示图1的泵组件结构一实例的剖视图,

图4是表示按照本发明一实施例的微电化泵的电路框图

图5是表示升压电路一实施例电路图,

图6是表示电平移位器一实施的电路图,

图7是表示驱动器一实例的电路图,

图8(a)和8(b)是说明图3的泵组件操作的剖视图,

图9是显示泵组件各驱动信号的时间图,

图10和11分别是表示阀构件一实施例的剖视和顶视平面图,

图12是表示用图10的阀构件构成的微电化泵的剖视图,

图13(a)和13(b)是说明图12的微电化泵操作的剖视图,

图14和15分别是表示阀构件另一实施例的剖视和顶视平面图,

图16是表示用图14的阀构件构成的微电化泵的剖视图,

图17和18分别是表示阀构件另一实施例的剖视和顶视平面图,

图19是表示用图17的阀构件构成的微电化泵的剖视图,

图20是表示泵组件结构另一实施例的剖视图,

图21是说明在使用双压电晶片压电元件和单压电晶片压电元件情况下,反压与流量之间关系的特性曲线图,

图22是表示泵组件结构的另一实施例的剖视图,

图23(a)和23(b)是说明图22的泵组件动作的剖视图,

图24是说明图22泵组件结构的流量与反压之间关系的特性曲线图,

图25是表示泵组件结构另一实施例的剖视图,

图26和27分别是表示密封顶盖的顶视平面图和剖视图,

图28是表示在有容器连接到泵组件状态下的剖视图,

图29(a)和29(b)是说明图25的泵组件动作的剖视图,

图30是表示泵组件结构另一实施例的剖视图,

图31和32分别是表示图30的振动膜片的顶视平面图和剖视图,

图33(a)和33(b)是说明图30的泵组件动作的剖视图,

图34是表示泵组件结构另一实施例的剖视图,

图35(a)和35(b)是说明图34的泵组件动作的剖视图,

图36是表示泵组件结构另一实施例的剖视图,

图37(a)和37(b)分别是说明吸入侧阀和排出侧阀的动作的剖视图,

图38(a)和38(b)分别是说明阀结构另一实施例的结构和动作的剖视图,

图39(a)和39(b)分别是说明阀结构另一实施例的结构和动作的剖视图,

图40是表示一实施例其中固定板与逆止阀舌结合在一起的侧面立视图,

图41是表示泵组件结构另一实施例的剖视图,

图42(a)和42(b)分别是说明吸入侧阀和排出侧阀的动作的剖视图,

图43(a)和43(b)分别是说明阀结构另一实施侧的结构和动作的剖视图,

图44是表示泵组件结构另一实施例的剖视图,

图45(a)和45(b)分别是说明吸入侧阀和排出侧阀的动作的剖视图,

图46(a)和46(b)分别是说明阀结构另一实施例的结构和动作的剖视图,

图47(a)和47(b)分别是说明阀结构另一实施例的结构和动作的剖视图,

图48(a)和48(b)分别是说明阀结构另一实施例的结构和动作的剖视图。

图1和2分别是表示按照本发明一实施例微电化泵的剖视图和顶视平面图。

该实施例的微电化泵包含:由压电元件构成的一个泵组件101,一振动膜片,一逆止阀和具有吸入端口、排出端口和一通道的主体;用以操作泵组件101的集成电路102;由诸如所述集成电路102、升压线圈或电容器等电气元件和衬底组成的电路103;起电源作用的电池104;外部控制开关105;容器106;罩107;以及显示器108。

图3是泵组件101的细节的剖视图。该泵组件101包含:压电元件201,电极金属板202,振动膜片203,进液管逆止阀204,排液逆止阀205,A主体210和B主体214。该A主体210有吸入端口206,排出端口207,吸入阀腔208和排出阀腔209加以构成。该B主体形成同振动膜片203一起的加压腔211和用以在所述加压腔211与阀腔208和209之间提供联络的吸入端口212和排出端口213。用超声波溶剂焊接组装B主体,或将其粘着到A主体210上,该A主体有在其间成套的逆止阀204和205,而振动膜203有粘着于其上的压电元件201和电极金属板202。

图4示出图1的电路块103的一个实施例。该电路块包含:诸如锂电池那样的电源301,升压电路302,CPU303,用以将低电压信号变换为高电压信号的电平移位器304,用以驱动压电元件306的驱动器305,用以显示泵8充量或诸如此类的显示器307,以及用以选择流量或诸如此类的开关308。当通过开关308选择流量时,从CPU303输出 泵驱动信号。一般地说,CPU303的信号在电压为3至5V条件下操作,而压电元件306在例如50V高压条件下操作。于是,借助升压电路302将3V电压,例如,升压到50V,并通过电平移位器304将来自CPU303的信号变换成50V的信号。

图5是表示是以示范图4中升压电路302的斩波式升压电路一实例的电路图。标号401和402表示一对输入接线端,标号403和404表示一对输出接线端。输入接线端401和输出接线端403提供一公共电极Vdd。输入接线端402馈入例如-3V的低电压Vss1,而输出接线端405输出例如-50V的高电压Vssh。标号405表示一升压线圈,标号406表示第一开关元件,以及标号407表示用以接通或断开第一开关元件406的控制电路。标号408表示由电阻409和410组成的反馈电路。标号411表示使输出平滑的平滑电容器,标号415表示逆流断路二极管;标号412表示直流输入;标号413表示直流输出;而标号414表示用以控制开关元件406的控制信号

如果由控制信号414接通了开关元件406,从直流输入412馈给的电流就开始流过升压线圈405和开关元件406并随着时间而增大,使得在升压线圈405中贮存了与流过电流的平方成正比的能量。

接着,如果断开该开关元件406,贮存在升压线圈405中的能量通过逆流断路二极管415贮存在平滑电容器411中。这里,该逆流断路二极管415在开关元件406接通时防止贮存于平滑电容器411中的电荷释放流过开关元件406。

直流输入413的电压由电阻409和410组成的反馈电路408进行分压,使其值与控制电路407中的基准电压进行比较。基于该比较结果,控制电路转换控制信号414以接通或断开所述开关元件406,因此可使流流输出413恒定。

图6是表示图3中电平移位器304一实例的电路图。图中标号421表 示馈入电平为Vdd和Vssl的信号的输入信号Vin,422表示用以输出电平为Vdd和Vssh的信号的输出信号。标号423表示一逆变器,标号424表示电平Vdd,标号425表示电平Vssh,标号426和427表示P沟道场效应晶体管,以及标号428和429表示N沟道场效应晶体管。

假如输入信号Vin  421以电平Vdd输入,使所述晶体管427和428导通,而晶体管426和429断开。结果,输出信号Vo  422变换成电平Vdd的信号。另一方面,假如将电平为Vssl的信号输入作为输入信号Vin421,使晶体管426和429导通,而晶体管427和428断开。结果,输出信号Vo  422变换成电平为Vssh的信号。

图7是表示图3中驱动器电路305一实例的电路图。标号440表示输入信号Vin,标号441表示一变换器,标号442和443表示电平移位器,标号444和446表示P沟道晶体管,标号445和447表示N沟道晶体管,以及标号450和451表示压电元件201的电极。当电平为Vdd的信号输入作为输入信号Vin  440时,晶体管444和447断开,而使晶体管445和446导通。结果,电平为Vssh的电压馈给电极450,电平为Vdd的电压馈给电极451。相反,当电平为Vssl的信号输入作为输入信号Vin  440时,同样,电平为Vdd的电压馈给电极450,而电平为Vssh的电压馈给电极451从而驱动压电元件201。

图8(a)和8(b)是说明图3中泵组件101动作的剖视图。假定加压腔211和阀腔208及209装有液体。还假定如果压电元件201上面电极450馈入电压Vdd并如果其下面电极451馈入电压Vssh,则压电元件201径向收缩。

图9显示泵组件101的驱动波形。图9(a)显示从图4的CPU  303输出的驱动波形,而图9(b)和9(c)分别显示加到图8中电极450和451上的驱动电压波形。对图9的时间周期90来说,电极450馈有电压Vdd,而电极451馈有电压Vssh,因此压电元件201进行径向收缩。由 于这种径向收缩的结果,振动膜片202向下凸出,如图8(a)所示。于是,加压腔211中的液体被加压将排液逆止阀205压下,因而迫使液体流向排出端口207。这时,借助于进液逆止阀204的作用制止液体从加压腔211流回吸入端口206。

接着,对于图9的时间周期902来说,电极450馈有电压Vssh,而电极451馈有电压Vdd,使得压电元件201径向伸展。由于这种伸展的结果,使振动膜片202向上凸出,如图8(b)所示。于是,将加压腔211中的液体抽成真空将进液逆止阀推上,因而迫使液体从吸入口206流向加压腔211。这时,借助于排液逆止阀205的作用制止液体从加压腔211通向排出端口207。

因此,通过重复参照图8(a)和8(b)至此所描述的动作,可将液体从吸入端口206抽吸到排出端口207。

图10是表示本发明阀构件一实施例的剖视图,而图11是其顶视平面图。该阀构件总的以标号220表示,它由逆止阀221,有一通道开口222和一逆止阀导223的D主体,以及用以固定逆止阀(也起到通道开口225作用)的E-主体226构成。如此构成的阀构件220通过如下方法进行组装。首先,将逆止阀221设置在D主体的导榫223上。于是,逆止阀221盖住通道开口222。其后,将E主体226超声波溶焊到D主体224上以组装该阀构件220。

将止回阀221加工成顶盖形状,而逆止阀导榫223和逆回阀221的相应开口追踪加工成在溶焊操作时可使逆止阀221不转动的形状。

图12是表示在吸入和排出端口侧使用图10和11的阀构件220而构成的微电化泵的剖视图。

在该微电化泵中,A主体250加工有吸入端口206、排出端口207,吸入侧阀构件容座220a和排出侧阀构件容座220b。将阀构件220置于其吸入侧容座220a内(在那上面使如图10中所示的阀构件的D主体的 通道开口222a和A主体吸入端口206对齐),并将阀构件220置于与吸入侧相反地排出侧容座220b内(在这上面阀构件的E主体的通道开口225b和A主体的排出端口207对齐)。其后,逐一将那些构件熔焊到A主体250上。然后,将有压电元件201粘着于其上的电极金属板202同样粘在有机材料的振动膜片203上,并同样熔焊到A主体上,就这样组装该微电化泵。这时,与A主体同样组装的阀构件和振动膜片203其间形成加压控211。这里,在图12中,在吸入侧阀构件220的各个部分后缀字母a,而在排出侧阀构件220的各个部分后缀字母b。

图13(a)和13(b)是说明图12的微电化泵的动作的剖视图。

如果将电压加到压电元件201上,如图13(a)所示,使有压电元件201粘于其上的金属振动膜片202和有机材料振动膜片203按箭头方向变形。结果,使加压腔211中的液体加压从而压下吸入侧阀构件220的逆止阀221a,使得通道开口222a关闭从而阻塞液体流向吸入侧。排出侧阀构件220的逆止阀221b也受压而打开液体开口222b,使得液体通过排液阀腔209、通道开口222b和通道开口225b被抽吸到排出端口207。

接着,如果将反向电压加到压电元件201,如图13(b)所示,使电极金属板202和有机材料振动膜片203按箭头方向变形,即,按图13(a)所示情况的相反方向进行变形。结果,将加压腔211抽成真空,使得排液阀构件220的逆止阀221b吸上从而关闭了通道开口222b。而且,吸上吸入侧阀构件220的逆止阀221a从而打开通道开口222a,使得液体通过吸入端口206,通道开口222a、进液腔208和通道开口225a流进加压腔211。

因此,通过重复参照图13(a)和13(b)至此所描述的动作,可将液体连续地从吸入端口206抽吸到排出端口207。

图14是阀构件220结构的另一实施例的剖视图,而图15是其顶视 平面图。将该阀构件220构成通过阀231关闭的两个通道开口234和235。由图16的微电化泵示范了在图12的排液侧使用这种阀构件的微电化泵结构。用这种方法,通过更换阀构件可制造另一种类型的微电化泵。

采用一种借助现有微切削加工技术,通过使用并蚀刻陶瓷制造的阀可设想出另一种结构。图17和18中示出这种结构,图中,标号241表示由微切削加工成形的一种陶瓷阀。此外,该阀构件通过把有一通道242的底座装到陶瓷阀241上而构成。象上述阀构件一样,借助垂直移动部分241a以打开或关闭通道242来实现该阀的移动。

图19是表示用图17和18的阀构件构成的微电化泵的剖视图。

该实施例装备有一底座244,该底座用于把排液侧阀的底面243保持在A主体250中。该底座244加工有一与通道242相对应的通道245。而且,在该实施例中,进液阀腔208兼起到加压腔的作用。

该微切削加工的阀可以是超小型化的,以实现亚微公升数量级的微量流量控制。而且,通过采用微切削加工技术,可蚀刻衬底以使阀、振动膜和主体整体化。通过部分地将它们塑料模制,可设想出其他各种不同的阀和阀构件。

图20是表示泵组件101另一实施例的剖视图。该实施例与图3的泵组件的不同之点在于,它除了第一压电元件201之外,还装备有第二压电元件215。粘附这两片压电元件具有不同的极化方向。此外,第二压电元件叠加一电极452,设定该电极为公共电位,而加驱动功率给电极450和451(其中,例如将电极452设置为0V,而加50V给电极450和451)。

图20的泵组件的动作基本上与图8(a)和8(b)的动作类似,因而省略了对它们的说明。

图21是显示图20的泵组件的流量与反压之间关系的特性曲线图。图21中画出流量对反压的曲线。曲线801表示出只用一片压电元件单 压电晶片压电元件情况下(按照图3的实施例)泵组件的特性曲线,而特性曲线802表示出图20的泵组件的特性曲线。

一般来说,因为在较高反压情况下振动膜片的位移变得较小,所以流量较小。通过采用两片压电元件的双压电晶片压电元件,因为双压电晶片每片压电元件的厚度如为单压电晶片压电晶片厚度的一半、则位移加倍。加之,由于两片双压电晶片压电元件是并列排列的,位移是单压电晶片压电元件是并列排列的,位移是单压电晶片的四倍大。结果,流量变得高于单压电晶片场合。假如增大双压电晶片的厚度,所述振动装置因其刚度增强而使所受反压的影响较小。

图22是表示泵组件101结构另一实施例的剖视图。该泵组件没有相当于图3的加压腔211的部件,而且B主体214a与振动膜片203仅在它们的周边加以固定。

图23(a)和23(b)是说明泵组件动作的剖视图。例如,假如给电级450馈送电压Vssh,而给电极451馈送电压Vdd,压电元件201就径向伸展使得它向上凸出,如图23(b)所示。于是,振动膜片203与B主体214a之间的间隙被抽成真空使得它们相互分开形成一空间211a。结果,进液腔208中的液体被抽空从而吸上进液逆止阀204。因而液体从吸入端口206抽吸到前述空间211a。接着,假如给电极450馈送电压Vdd,而给电极451馈送电压Vssh,压电元件201就径向收缩,使得振动膜片203将会相反地向下凸出,但其位移受B主体214a限制,如图23(a)所示,从而消除了空间211a。于是,空间211a中的液体受压而压下排液逆止阀205,促使液体流向排液端口207。因此,通过重复参照图23(a)和23(b)至此所描述的动作,可将液体从吸入端口206抽吸到排液端口207。此外,在排液期间进液逆止阀204的动作和进液期间排液逆止阀205的动作类似于图8(a)和8(b)所示的动作。

图24是显示图22的泵组件的流量与反压之间关系的特性曲线图。 图24中画出流量对反压的曲线。曲线803表示出(在图3的实施例中)B主体214与振动膜片203之间构成加压腔情况下的特性曲线,而曲线804表示出图22泵组件的特性曲线。一般地说,因为在较高反压情况下振动膜片的位移变得较小,所以流量较小。但是,由于B主体214a起了挡板的作用,所以直到一定的反压有可能得到能排放恒定流量的泵组件。

图25是表示泵组件101结构另一实施例的剖视图。该实施例装备有用以分别密封吸入端口206和排液端口207的橡皮顶盖255和256。顶盖255和256配备有贯穿该顶盖延伸的弹簧257和258。

图26和27分别是表示密封顶盖255或256的顶视平面图和剖视图。标号259表示由例如硅树脂那样的橡皮模制的顶盖。有一孔261的顶盖260是由金属或塑料制成的,在准备通过它从外面注射进液体时可用来导引注射器。

图28示出另一实施例,在该实施例中,泵组件的吸入端口206通过一管262与一容器263相连,而且在容器263部分配备有橡皮顶盖255。顺便说明,标号264表示用以把橡皮顶盖255保持在容器263中的一个塑料环。

假如为治疗目的要用该微电化泵将药液直接注射进人体,例如,换泵和容器进行净化是必需的。因此,泵组件和容器的里面预先要予以抽空并用密封橡皮顶盖加以密封好。然后,通过将注射器257从所述侧插入泵组件或容器橡皮顶盖可注射液体,从而仅仅以液体填满泵或容器的内部。可借助注射器258将液体放射到外面。

图29(a)和29(b)是说明图25的泵组件动作的剖视图。如果以电压Vdd馈给电极450而以电压Vssh馈给电极451,压电元件201进行径向收缩,使振动膜片203向下凸出,如图29(a)所示。于是,加压腔211中的液体受压而压下排液逆止阀205,因而迫使液体流向排出端口 207。接着,如果以电压Vssh馈给电极450,而以电压Vdd馈给电极451,使压电元件201径向伸展,因此振动膜片203向下凸出,如图29(b)所示。于是,将加压腔211中的液体抽成真空以推动进液逆止阀204向上,因而迫使液体从吸入端口206流向加压腔211。这样,通过重复参照图29(a)和29(b)至此所描述的动作,可将液体从吸入端口206抽吸到排出端口207。

图30是表示泵组件101结构的另一实施例的剖视图。在该实施例中,振动膜片203是由一片塑料扁平膜片274制成的。

图31和32分别是表示振动膜片203的顶视平面图和剖视图。由于电极金属板202加工有锥形孔270,所以通过用塑料填满前述各孔,可把塑料扁平膜片274牢固地固定在电极金属盘202上。标号271表示在准备粘贴压电元件时要使用的一个定位塑料环。标号272表示用以焊接电极的一个端接头。标号273表示固定而液体不能流过供B主体214的超声波溶焊用的凸出件。

图33(a)和33(b)是说明图30的泵组件动作的剖视图。

如果以电压Vdd馈给电极450,而以电压Vssh馈给电极451,则使压电元件201径向收缩,因而,振动膜片203向下凸出,如图33(a)所示。于是,加压腔211中的液体受压而压下排液逆止阀205,因而迫使液体流向排出端口207。接着,如果以电压Vssh馈给电极450,而以电压Vdd馈给电极451,则压电元件201径向伸展,使得振动膜片203向上凸出,如图33(b)所示。于是,将加压腔211中的液体抽成真空以推动进液逆止阀204向上,因而,迫使液体从吸入端口206流向加压腔211。这样,通过重复参照图33(a)和33(b)至此所描述的动作,可将液体从吸入端口206抽吸到排出端口207。

图34是表示泵组件101结构的另一实施例的剖视图。该泵组件是由压电元件201、电极金属板202、振动膜片203和B主体214构成的。F 主体290和G主体291装到B主体的下侧。所述F主体加工有进液侧阀腔208,在该阀腔中装有进液逆止阀的弹性挡板284、进液侧逆止阀压簧285和为使压簧285夹持弹性挡板284平直而安装的压板286。另一方面,所述G主体291加工有排液侧阀腔209,在该阀腔中装有排液侧逆止阀的弹性挡板287、排液测逆止阀压簧288和为使压簧288夹持弹性挡板287平直而安装的压板289。加工有吸入端口206和排出端口207的H主体292装到F主体290和G主体291的下侧。

接着,在下面将描述组装的方法。首先,将弹性挡板284和压板286置于H主体292的吸入端口206内,将F主体290和G主体291超声波溶焊到H主体292上。其后,将压簧285放入进液侧阀腔208内,并将压簧288放入排液侧阀腔209内。其后,将压板289和弹性挡板287放进排液侧阀腔209。于是,用超声波将B主体214向下熔焊到F主体290和G主体291。其后,具有压电元件201和电极金属板202的振动膜片203同样超声波熔焊到B主体,用这样方式来组装该泵组件。

在该实施例中,弹性挡板284和287是普通圆盘形的。压板286和289也是普通圆盘形的。压簧285和288进一步加工成通常圆筒形线圈状。此处弹性挡板284和287是由硅树脂橡胶或聚氯丁橡胶制成,但也可用另一种弹性材料制成。压板286和289由象塑料那样的有机材料或不锈之类的金属材料制成。压簧285和288的材料不应局限于金属,也可以是有机材料。

另一方面,在该实施例中,压簧285和288通过压板286和289起夹持弹性挡板284和287的作用,使弹性挡板284和287关闭进液侧吸入端口212或(排液侧)排出端口213,由此制止逆流而起阀的作用。此处,在与吸入端口212(或排出端口213)的弹性挡板284(或287)接触面处,假若能够以在吸入端口212(排出端口213)的圆周上均匀加力的样式夹持弹性挡板284(287),则很自然可不通过压板286(或289), 而直接由压簧285(或288)夹持弹性挡板284(或287)。

图35(a)和35(b)是说明图34的泵组件动作的剖视图。

如果以电压Vdd馈给电极450而以电压Vssh馈给电极451,压电元件201进行径向收缩,使得振动膜片203向下凸出,如图35(a)所示。于是,加压腔211中的液体就受压,从而超过由压簧288设定的力。然后,该压力压下排液侧逆止阀的弹性挡板287,压板289和压簧288,因而迫使液体从排液孔213通过阀腔209流向排出端口207。相反,在进液侧,推动进液侧逆止阀的弹性挡板284借助压簧285的作用通过压板286压紧吸入端口206,使无液体逆流从加压腔211流向吸入端口206。

接着,如果以电压Vssh馈给电极450而以电压Vdd馈给电压451,压电元件201进行径向伸展使振动膜片203向上凸出,如图35(b)所示。于是,加压腔211中的液体被抽成真空,超过由压簧285设定的力。然后,液体向上推动进液侧逆止阀的弹性挡板284、压板286和压簧285,因而,迫使液体通过吸入端口206流到阀腔208并经由进液孔H2流向加压腔211。与此相反,在排液侧,推动排液侧逆止阀的弹性挡板287,通过压板289借助压簧288的作用压紧排液孔213,使得既无液体从加压腔211流向排出端口207,也无液流从排出端口207流向加压腔211。

因此,通过重复参照图35(a)和35(b)至此所描述的动作,可迫使液体从吸入端口206流向排出端口207。

图36是说明泵组件101结构的另一实施例的剖视图。在该实施例中,将有一孔294的一片弹性构件293夹在进液侧逆止阀的弹性挡板284与吸水端口206之间。此外,弹性构件293是由硅树脂橡胶制成的阶梯形圆盘构成的,并且固定地夹在有阀腔208的F主体290与有吸入端口206的H主体292之间。

在图34的实施例中,有吸入端口206的H主体是由塑料制成,并通过与进液侧逆止阀的弹性挡板284面对面接触而加以构造以堵塞逆流。另一方面,在图36的实施例中,该接触面是橡皮制成。结果,可增强接触以便更可靠地堵塞逆流。在排液侧采用了类似的结构。

图37(a)是表示泵进液侧阀的作用的剖视图。如图中所示,迫使液体从吸入端口206通过阀腔208流向进液孔212。借助压电元件201的作用在相互保持紧密接触进液逆止阀的弹性挡板284与弹性构件293之间建立一个间隙以使液体通过其间。图37(b)是表示象进液侧阀同样的排液侧阀的动作的剖视图。

图38(a)是表示阀结构的另一实施例的剖视图。在该实施例的阀结构中,在进液侧逆止阀的挡板284与吸入端口206的接触部分形成从吸入端口206周围突起的一个脊状部分295。与进液侧逆止阀的挡板284的接触从面变为线,因而,即使较次的面接触精度也能够堵塞逆流。

图38(b)是表示该阀动作的剖视图。为使液体通过其间,在脊状部分295与进液侧逆止阀的挡板284之间形成一个间隔。上述进液侧阀结构同样用于排液侧。

图39是阀结构的另一实施例的剖视图。图39(a)示出环绕着进液侧逆止阀挡板284吸入端口206突出的脊状部分296的结构。图39(b)示出这样构成的阀的动作。如果在脊状部分296与吸入端口206之间形成有间隙就允许液体流过。

在前述实施例中,压板286(或289)和逆止阀挡板284(或287)是这样的盘形,即它们可以一个迭加在另一个上面。然而,如图40所示,如果把压板297和逆止阀挡板298构成相互咬住的话,可实现稳定的逆止阀挡板。

图41是表示泵组件结构101的另一实施例的剖视图。该实施例在 结构上除用一圆球501(和502)压紧吸入端口206和排液孔213以取代图34中逆止阀挡板284(或287)之外,基本上与已参照图34加以描述的结构类似。准备用在这里的圆球是用诸如钢、陶瓷或玻璃等无机材料,或诸如塑料或橡胶之类有机材料制成。要按如下方式插入压板286(或289),即可用一均匀力推动吸入端口206(或排液孔213),并且,如果离开吸入端口206(或排液孔213),时仍可使球501(或502)返回到固有位置(以关闭吸入端口206或排液孔213)。为此,所用压板286(或289)是用对球有小的摩擦系数的板制成的。

图42(a)示出图41的泵组件的进液侧阀的动作。液体经由吸入端口206与球501间形成的间隙流过。图42(b)示出图41的泵组件的排液侧阀的动作。液体流过排液孔213与球502之间的间隙。在任何情况下,泵的整个动作与参照图35(a)和35(b)所描述的那些相类似。

图43(a)是表示阀结构的另一实施例的剖视图。吸入端口206部分成圆锥表凹进去地跟球501接触,如在503处所表明的。由于借助这种结构来稳定球的位置(即,只要球滚动就会被导引到吸入端口),因此可获得更加可靠的阀结构。

图43(b)示出阀结构的流动动作。如果在球501与圆锥形部分503之间形成间隙,液体也经由该间隙通过。图43中实施例的结构,同样可应用于排液侧阀。

图44是表示泵组件101结构的另一实施例的剖视图。该实施例基本上与图36的结构相类似,只是用球501(或502)代替逆止阀挡板284(或287)。按照这种结构,借助于阶梯式盘形弹性构件293的作用可获得高度可靠的阀。因为由于该弹性构件的弹性,即使球501(或502)有不良的圆度或高硬度且粗糙表面,该弹性构件也能使球与之紧密接触。

图45(a)和45(b)示出球501和502在进液和排液侧的动作,所 示动作是与图37(a)和37(b)或图42(a)和42(b)相类似。

图46(a)是表示阀结构的另一实施例的剖视图。该结构制成使进液孔206和球501接触部分环绕其边缘加工有一圆形槽508,在该槽中固定一O型环509。该O型环509用诸如硅或聚氯丁橡胶之类的弹性材料制成。因此,可借助于球501与O型环509之间的紧密接触提供用以堵塞逆流的一种结构。

图46(b)是说明球阀501动作的剖视图。只要在O型环509与球501之间存在任何间隙,液体将流过所述间隙。图46的阀结构同样可应用于排液侧阀结构。

图47(a)是表示阀结构的另一实施例的剖视图。在该实施例中,球不是一个完整的圆球,而是与压板286接触表面是扁平的、与进液孔206接触表面为半球形的构件510。另一种方法是,可将压板286和半球形构件510相互粘着,使得可作为一个整体单元加以应用。图47(b)是说明半球形构件510动作的剖视图。只要在进液孔206与半球形构件510之间存在任何间隙,液体就将从所述间隙流过。图47的这种阀结构同样可应用于排液侧阀结构。

图48(a)是表示阀结构的另一实施例的剖视图。该实施例构造成用一圆锥形构件511来压紧进液孔206。也可将这种圆锥形构件511和压板286相互粘着,使得可作为一个整体单元加以应用。图48(b)是说明圆锥形构件511的动作的剖视图。只要在进液孔206与圆锥形构件511之间存在任何间隙,液体也将从所述间隙流过。图48的阀结构同样可应用于排液侧阀结构。

相关专利内容
标题 发布/更新时间 阅读量
微型气泵 2020-05-11 606
微型气泵 2020-05-11 331
微型气泵 2020-05-12 780
微量计量泵泵轴 2020-05-13 224
微量泵 2020-05-11 489
微型泵 2020-05-12 926
微量泵 2020-05-12 149
微量泵 2020-05-13 419
微泵系统 2020-05-11 940
微型泵 2020-05-11 167
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈