首页 / 专利库 / 电气元件和设备 / 电介质 / 触控显示面板

触控显示面板

阅读:690发布:2023-03-01

专利汇可以提供触控显示面板专利检索,专利查询,专利分析的服务。并且一种触控 显示面板 ,包括层叠设置的显示模组和感测模组,所述感测模组用于感测触控 位置 和触控压 力 大小,所述感测模组包括第一 电极 层、第二电极层以及设置在该第一电极层和该第二电极层之间的 电介质 层,所述第二电极层形成为自容式 单层 触控感测电极用于确定触控位置,所述第一电极层、电介质层与第二电极层相配合构成互容式压力感测电容用于感测触控压力大小。,下面是触控显示面板专利的具体信息内容。

1.一种触控显示面板,包括层叠设置的显示模组和感测模组,所述感测模组用于感测触控位置和触控压大小,其特征在于:所述感测模组包括第一电极层、第二电极层以及设置在该第一电极层和该第二电极层之间的电介质层,所述第二电极层形成为自容式单层触控感测电极用于确定触控位置,所述第一电极层、电介质层与第二电极层相配合构成互容式压力感测电容用于感测触控压力大小。
2.如权利要求1所述的触控显示面板,其特征在于:该第一电极层靠近该显示模组。
3.如权利要求1所述的触控显示面板,其特征在于:所述第二电极层包含相互间隔设置的多个状电极,所述多个块状电极呈矩阵排列。
4.如权利要求3所述的触控显示面板,其特征在于:所述多个呈矩阵排列的块状电极沿X方向排布成多行,所述多个块状电极Y方向排布成多列,每一行的多个块状电极设置成大小形状相同,每一列的多个块状电极设置成沿Y方向尺寸逐渐减小,每一个块状电极均连接有一引线,每一列的多个块状电极的引线位于该列块状电极的同一侧且相互平行。
5.如权利要求3所述的触控显示面板,其特征在于:所述多个呈矩阵排列的块状电极沿X方向排布成多行,所述多个块状电极Y方向排布成多列,每一行的多个块状电极设置成大小形状相同,每一列的多个块状电极设置成沿Y方向尺寸逐渐减小,每一个块状电极均连接有一引线,每一列中相邻的块状电极上的引线交错分布于该列的两侧且相互平行。
6.如权利要求1所述的触控显示面板,其特征在于:该第一电极层包含多个沿同一方向延伸的条状电极。
7.如权利要求1所述的触控显示面板,其特征在于:该第一电极层为网状。
8.如权利要求1所述的触控显示面板,其特征在于:所述电介质层的材料为透明可形变材料。
9.如权利要求1所述的触控显示面板,其特征在于:所述显示模组包括依次堆叠设置的彩色滤光基板液晶层、薄膜晶体管阵列基板,所述感测模组设置于所述彩色滤光基板远离所述薄膜晶体管阵列基板的一侧表面。
10.如权利要求9所述的触控显示面板,其特征在于:该触控显示面板的每周期内显示和感测同时进行,在感测的每个帧周期内包括触控感测时段和压力感测时段。
11.如权利要求10所述的触控显示面板,其特征在于:每个触控感测时段及压力感测时段被分割为多个子触控感测时段与多个子压力感测时段,每一子触控感测时段和每一子压力感测时段在一帧的周期内交替分布,交替进行触控操作和对施力大小的检测。
12.如权利要求10所述的触控显示面板,其特征在于:触控感测时段及压力感测时段在一帧的周期内交替分布,交替进行触控操作和对施力大小的检测。

说明书全文

触控显示面板

技术领域

[0001] 本发明涉及一种触控显示面板,尤其涉及一种电容式触控显示面板。

背景技术

[0002] 随着显示技术的快速发展,触控屏已经普及到人们的日常生活中。其中,内嵌式触控屏将触控屏的触控电极内嵌在液晶显示屏内部,可以减薄模组整体的厚度、降低制作成本,受到消费者和面板厂商的青睐。内嵌式自容触控屏,将人体电容作用于全部自电容电极,人体触摸屏幕所引起的触控电容变化量会大于利用互电容原理制作出的触控屏,因此自容触控屏能有效提高触控的信噪比,从而提高触控感应的准确性。该技术只能判断外部物体对显示面板的触碰位置,但是无法判断外部物体对显示面板的施大小。
[0003] 压力感应技术是指外部物体对显示面板的施力大小进行探测的技术,目前,在显示领域尤其是手机或平板领域实现压力感应的方式是在液晶显示面板的背光部或者手机的中框部分增加额外的机构来实现,这种设计需要对液晶显示面板或者手机的结构设计做出改动,而且由于装配公差较大,故,探测准确性也受到限制。
[0004] 因此,如何在显示面板硬件改动较小的情况下实现探测精度较高的压力感应,是本领域技术人员亟需解决的问题。

发明内容

[0005] 针对现有技术中的显示面板存在的上述缺陷,本发明提供一种触控显示面板及应用该触控显示面板的电子装置,可以在显示面板硬件改动较小的情况下实现探测精度较高的压力感应。
[0006] 本发明提供一种触控显示面板,包括层叠设置的显示模组和感测模组,所述感测模组用于感测触控位置和触控压力大小,所述感测模组包括第一电极层、第二电极层以及设置在该第一电极层和该第二电极层之间的电介质层,所述第二电极层形成为自容式单层触控感测电极用于确定触控位置,所述第一电极层、电介质层与第二电极层相配合构成互容式压力感测电容用于感测触控压力大小。
[0007] 第二电极层为自容式单层触控感测电极。自容式感测电极的工作原理:当手指触摸到触控显示面板时,手指的电容将会叠加到第二电极层的自电容上,使第二电极层的电容量增加,第二电极层被触摸区域的电容量会明显区别于未被触摸区域的电容量,基于此,可判定触控位置。
[0008] 第一电极层与第二电极层相互配合构成互容式压力感测电容。互容式压力感测电容的工作原理:当手指触摸到触控显示面板时,影响了触摸点处第一电极层与第二电极层之间的耦合,从而改变了第一电极层与第二电极层之间的电容量。
[0009] 电介质层为透明的弹性可形变材料。
[0010] 感测模组的工作过程可以分为两个阶段。第一阶段为自容式触控感测阶段,当手指触碰到触控显示面板时,第二电极层图案化的电极依据手指按压点在第二电极层上的相对位置来判断手指的位置。第二阶段为互容式触控感测阶段,通过外部驱动电路给第二电极层加上一固定电压,给第一电极层加上另一固定电压或接地,且两个固定电压在数值上不相等。此时,第一电极层与第二电极层之间形成一个间距为D的电容C,手指触碰上偏光板时,电介质层受压发生形变,由此导致间距D发生变化,进而引起电容C的变化,通过侦测电容C的变化量来判定垂直面板方向(Z方向)施加力的大小。根据电容公式C=εS/4πkd(ε、S、π、k均不变,d即为本发明中的间距D)可知:压力越大,间距D越小,电容C越大;压力越小,间距D越大,电容C越小;总的来说,压力越大,电容变化值越大。通过对电容变化值的判定实现显示触控面板对压力的感应。附图说明
[0011] 图1为本发明的一种触控显示面板的立体示意图。
[0012] 图2为沿图1剖面线II-II的剖面示意图。
[0013] 图3为本发明的触控显示面板的第一实施例的第一电极层的平面示意图。
[0014] 图4为本发明的触控显示面板的第二实施例的第一电极层的平面示意图。
[0015] 图5为本发明的触控显示面板的第三实施例的第一电极层的平面示意图。
[0016] 图6为本发明的触控显示面板的第一实施例的第二电极层的平面示意图。
[0017] 图7为本发明的触控显示面板的第二实施例的第二电极层的平面示意图。
[0018] 图8为本发明的触控显示面板的第二实施例的驱动时段分布示意图。
[0019] 图9为本发明的触控显示面板的第三实施例的驱动时段分布示意图。
[0020] 主要元件符号说明
[0021]
[0022]
[0023] 如下具体实施方式将结合上述附图进一步说明本发明。

具体实施方式

[0024] 为了使本申请所揭示的技术内容更加详尽与完备,可以参照附图以及本发明的下述各种具体实施例,附图中相同的标记代表相同或者相似的组件。然而,本领域的普通技术人员应当理解,下文中所提供的实施例并非用来限制本发明所覆盖的范围。此外,附图仅仅用于示意性地加以说明,并未依照其原尺寸进行绘制。
[0025] 本发明的触控显示面板包括感测模组,所述感测模组用于感测触控位置和触控压力大小,所述感测模组包括第一电极层、第二电极层以及设置在该第一电极层和该第二电极层之间的电介质层,所述第二电极层为自容式单层触控感测电极,其用于确定触控位置,所述第一电极层、电介质层与第二电极层相配合构成互容式感测,其用于感测触控压力大小。
[0026] 下面参照附图,对本发明的具体实施方式作进一步的详细描述。
[0027] 如图1所示,本发明第一实施例的触控显示面板100;如图2,是图1所示的触控显示面板100的剖视示意图。所述触控显示面板100其包括一显示模组110、一感测模组130,该显示模组110与该感测模组130层叠设置。
[0028] 如图2所示,所述触控显示面板100还包括一上偏光板151和一下偏光板152,其中该上偏光板151位于该感测模组130远离该显示模组110的一侧,该下偏光板152位于该显示模组110远离该感测模组130的一侧。
[0029] 所述显示模组110为液晶显示模组,其包括一薄膜晶体管阵列基板111、一液晶层113、和与该薄膜晶体管阵列基板111相对设置的一彩色滤光基板115,所述液晶层113形成于所述薄膜晶体管阵列基板111与所述彩色滤光基板115之间。所述薄膜晶体管阵列基板
111包括用于支撑的基板以及形成于基板表面的薄膜晶体管阵列。虽然图未示出,但是可以理解的,所述彩色滤光基板115可包括用于支撑的基板以及形成于基板表面的彩色滤光单元以及黑矩阵单元。
[0030] 所述感测模组130包括一第一电极层131、与该第一电极层131相对设置的一第二电极层132以及一电介质层135,该电介质层135设置于该第一电极层131与该第二电极层132之间,其中该第一电极层131相对靠近彩色滤光基板115设置,该第二电极层132相对远离彩色滤光基板115。该电介质层135为透明的弹性可形变材料,具体可以为聚甲基丙烯酸甲酯(Polymethylmethacrylate,PMMA)。
[0031] 如图3所示,本实施例中,第一电极层131为金属线形成的网格状(metal mesh)。该网状的第一电极层131与位于电介质层135另一侧的第二电极层132之间构成电容,该感测模组130为互容式触控感测模组用以感测触控应力。在其他实施例中,第一电极层131还可以为条状,此时由透明导电材料形成,具体可以为化铟(Indium tin oxide,ITO);例如,如图4所示,第一电极层131包括多条第一条状电极1311,每条第一条状电极1311沿坐标系中X方向延伸,且所述多条第一条状电极1311沿坐标系中Y方向排布成一列,Y方向与X方向垂直;再例如,如图5所示,第一电极层131包括多条第二条状电极1313,每条第二条状电极1313沿坐标系中Y方向延伸,且所述多条第二条状电极1313沿坐标系中X方向排布成一行。更或者,第一电极层131还可以为一个完整连续的片状电极。
[0032] 所述第二电极层132由透明导电材料构成,具体可以为氧化铟锡(Indium tin oxide,ITO)等。
[0033] 如图6所示,本实施例中,该第二电极层132包含相互间隔设置的多个状电极1321。所述多个块状电极1321还可复用为自容式单层触控感测电极用于感测触控位置。多个块状电极1321设置成矩阵排列,其沿X方向排布成多行,沿Y方向排布成多列。每一个块状电极1321连接有一引线1323,以使所述块状电极1321电连接一驱动电路(图未示)。每一引线1323连接至其对应块状电极1321的一。每一行的多个块状电极1321设置成大小形状相同。每一列的多个块状电极1321设置成沿Y方向尺寸逐渐减小,如此为引线1323预留足够的布线空间,使每一列的多个块状电极1321的引线1323位于该列块状电极1321的同一侧且相互平行。
[0034] 如图7所示,另一实施例中,该第二电极层132包含相互间隔设置的多个块状电极1321。所述多个块状电极1321还可复用为自容式单层触控感测电极用于感测触控位置。多个块状电极1321设置成矩阵排列,其沿X方向排布成多行,沿Y方向排布成多列。每一个块状电极1321连接有一引线1323,以使所述块状电极1321电连接一驱动电路(图未示)。每一引线1323连接至其对应块状电极1321的一角。每一行的多个块状电极1321设置成大小形状相同。每一列的多个块状电极1321设置成沿Y方向尺寸逐渐减小,如此为引线1323预留足够的布线空间。每一列中相邻的块状电极1321上的引线1323交错分布于该列的两侧且相互平行。
[0035] 当手指触摸到触控显示面板100时,手指的电容将会叠加到第二电极层132的自电容上,使第二电极层132的电容量增加。在触摸检测时,依次分别检测第二电极层132中各块状电极1321的电容量,被触摸区域的块状电极1321的电容量会明显区别于未被触摸区域的块状电极1321的电容量,基于此,可判定触控位置。
[0036] 第一电极层131与第二电极层132以及位于二者之间的电介质层135相互配合构成互容式压力感测电容。通过外部驱动电路给第二电极层132施加一电压,第一电极层131接地,第一电极层131与第二电极层132之间形成多个的电容C,手指触碰该触控显示面板100时,电介质层135受压发生形变,由此导致第一电极层131和第二电极层132之间间距D发生变化,进而引起电容C的变化,通过侦测电容C的变化量来判定垂直面板方向(Z方向)施加力的大小。根据电容公式C=εS/4πkd(ε、S、π、k均不变,d即为本发明中的间距D)可知:压力越大,间距D越小,电容C越大;压力越小,间距D越大,电容C越小;总的来说,压力越大,电容变化越大。通过对电容变化的判定实现显示触控面板对压力的感应。
[0037] 本实施例中,第二电极层132为自容式单层触控感测电极,其根据自身电容量的变化可直接判定触控位置;第一电极层131与第二电极层132相互配合构成的互容式压力感测电容,根据二者之间电容值的变化可以判定手指施加在触控显示面板100上的压力的大小。
[0038] 实施例二
[0039] 本发明还提供一种所述触控显示面板100的驱动方法,即第一时序驱动法。
[0040] 由于所述显示和感测未相互共用电极,因此,第一时序驱动法,该触控显示面板100的每周期(1frame)内显示和感测同时进行。该感测的一帧周期内包括一触控感测时段(T)和一压力感测时段(t)。
[0041] 在触控感测时段,第一电极层131浮置;每个块状电极1321施加电压。
[0042] 在压力感测时段,第一电极层131施加接地又或者使用稳定电压;每个块状电极1321施加信号脉冲。
[0043] 如图8,对于第一时序驱动法,每个帧周期内包括触控感测时段(T)和压力感测时段(t),且,触控感测时段及压力感测时段交替分布,交替进行触控操作和对施力大小的检测。
[0044] 实施例三
[0045] 本发明还提供另一种所述触控显示面板100的驱动方法,即第二时序驱动法。
[0046] 由于所述显示和感测未相互共用电极,因此,第二时序驱动法,触控显示面板100的每个帧周期(1frame)内显示和感测同时进行。每个帧周期内包括一触控感测时段(T)和一压力感测时段(t)。
[0047] 在触控感测时段,第一电极层131浮置;每个块状电极1321施加电压。
[0048] 在压力感测时段,第一电极层131施加接地又或者使用稳定电压;每个块状电极1321施加信号脉冲。
[0049] 如图9,对于第二时序驱动法,每帧周期(1frame)内包括触控感测时段(T)和压力感测时段(t)。进一步,每个触控感测时段(T)及压力感测时段(t)被分割为多个子触控感测时段(T1,T2,T3,......,Tn)与多个子压力感测时段(t1,t2,t3,......,tn),且,每一子触控感测时段和每一子压力感测时段在一帧的周期内交替分布,交替进行触控操作和对施力大小的检测。
[0050] 上文中,参照附图描述了本发明的具体实施方式。但是,本领域中的普通技术人员能够理解,在不偏离本发明的精神和范围的情况下,还可以对本发明的具体实施方式作各种变更和替换。这些变更和替换都落在本发明权利要求书所限定的范围内。
相关专利内容
标题 发布/更新时间 阅读量
电介质波导电缆 2020-05-12 957
电介质天线 2020-05-11 58
强电介质存储器 2020-05-12 768
电介质陶瓷 2020-05-11 695
强电介质器件 2020-05-12 663
电介质装置 2020-05-11 1034
电介质双工器 2020-05-12 587
电介质陶瓷材料 2020-05-13 545
电介质薄板 2020-05-11 926
电介质陶瓷 2020-05-12 710
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈