首页 / 专利库 / 单位和数量 / 比吸收率 / 带太阳能电池的平流层飞艇平飞过程分布温度计算方法

太阳能电池平流层飞艇平飞过程分布温度计算方法

阅读:1009发布:2021-10-16

专利汇可以提供太阳能电池平流层飞艇平飞过程分布温度计算方法专利检索,专利查询,专利分析的服务。并且本 发明 提供了一种带 太阳能 电池 的 平流层 飞艇 平飞过程分布 温度 计算方法,首先计算大气环境参数及飞艇 辐射 热环境参数,并基于飞艇几何特征及 传热 模式,建立飞艇分布 温度计 算域,然后利用结构化网格离散计算域,建立各微元的 质量 、动量和 能量 微分方程,最后根据飞艇艇体材料和 太阳能电池 特性参数,联立求解计算域内所有微元的方程组,计算飞艇平飞过程分布温度。本发明在带太阳能电池的平流层飞艇设计、材料选择、飞行试验规划、规避潜在危险等方面具有指导意义,可以提高带太阳能电池的平流层飞艇设计一次成功率,缩短带太阳能电池的平流层飞艇设计周期,降低带太阳能电池的平流层飞艇设计成本。,下面是太阳能电池平流层飞艇平飞过程分布温度计算方法专利的具体信息内容。

1.一种带太阳能电池平流层飞艇平飞过程分布温度计算方法,其特征在于,包括:
S1,根据飞艇飞行任务需求,计算飞艇飞行参数及飞艇设计参数;
S2,测量艇体材料特性参数、太阳能电池特性参数及电池隔热材料特性参数;
S3,计算飞艇大气环境参数及飞艇辐射热环境参数;
S4,基于飞艇几何特征及传热模式,建立飞艇分布温度计算域,利用结构化网格离散计算域,建立各微元的质量、动量和能量微分方程;
S5,根据飞艇艇体材料和太阳能电池特性参数,联立求解计算域内所有微元的方程组,计算飞艇平飞过程分布温度。
2.根据权利要求1所述的温度计算方法,其特征在于,所述飞艇飞行参数包括飞艇飞行时间、飞艇飞行地点经度Lon、飞艇飞行地点纬度Lat、飞艇飞行海拔高度h和飞艇飞行空速v;
所述飞艇设计参数包括飞艇体积V、飞艇长度L、飞艇最大直径D、飞艇表面积A和太阳能电池面积AS。
3.根据权利要求2所述的温度计算方法,其特征在于,所述艇体材料特性参数包括艇体材料表面吸收率α、艇体材料表面发射率ε、艇体材料面密度ρ和艇体材料比热容c;
所述太阳能电池特性参数包括太阳能电池效率η、太阳能电池表面吸收率αS、太阳能电池表面发射率εS、太阳能电池面密度ρS和太阳能电池比热容cS;
所述电池隔热材料特性参数隔热材料特性参数包括隔热材料厚度δS_I和隔热材料导热系数λS_I。
4.根据权利要求3所述的温度计算方法,其特征在于,所述飞艇大气环境参数包括飞艇飞行海拔高度h处的大气温度TAtm、大气压PAtm和大气密度ρAtm,
其中,大气温度TAtm的数学表达式为:
大气压力PAtm的数学表达式为:
大气密度ρAtm的数学表达式为:
所述飞艇辐射热环境参数包括太阳直接辐射热流qD_S、大气散射太阳辐射热流qA_S、地面反射太阳辐射热流qG_S、大气长波辐射热流qA_IR和地面长波辐射热流qG_IR,
所述太阳直接辐射热流qD_S的数学表达式为:
qD_S=I0·τAtm,
其中,I0为大气层上界太阳辐射强度,τAtm为太阳直接辐射衰减系数;
所述大气散射太阳辐射热流qA_S的数学表达式为:
qA_S=k·qD_S,
其中,k为大气散射系数;
所述地面反射太阳辐射热流qG_S的数学表达式为:
qG_S=IGround·rGround·τIR_G,
其中,IGround为抵达地球表面太阳直接辐射强度,rGround为地球表面反射系数,τIR_G为地球表面辐射衰减系数;
所述大气长波辐射热流qA_IR的数学表达式为:
其中,σ为辐射常数,TAtm为大气温度;
所述地面长波辐射热流qG_IR的数学表达式为:
其中,TGround为地面温度,εGround为地面发射率。
5.根据权利要求4所述的温度计算方法,其特征在于,所述步骤S4 包括:
建立飞艇及其外流场区域,利用结构化网格将计算域划分为多个微元,分析飞艇艇体、太阳能电池、太阳能电池隔热材料、内部氦气微元传热过程,建立所有微元的质量、动量和能量微分方程;
其中,计算域内质量、动量和能量微分方程为:
质量微分方程:
动量微分方程:
能量微分方程:
其中,T是温度,ρ是密度,cp是定压比热容,t代表时间,u代表流体速度矢量,k是导热系数,Su代表动量广义源项,ST代表能量广义源项,μ是流体的粘度系数,P是流体压力,X指代坐标向量;
其中,太阳能电池微元i的能量广义源项表达式:
ST_S,i=QS,i_D+QS,i_Atm+QS,i_IR_Atm+QS,i_IR+QS,i_Cond,
QS,i_D是吸收太阳直接辐射热量,QS,i_Atm是吸收大气散射辐射热量,QS,i_IR_Atm是吸收大气长波辐射热量,QS,i_IR是对外界环境长波辐射热量,QS,i_Cond是通过隔热层与艇体的传导换热热量。
太阳能电池微元i的能量广义源项表达式中各项热量计算式列述如下:
吸收太阳直接辐射热量QS,i_D:
QS,i_D=αS·qD_S·AS,i·FS-S,
其中,FS-S是太阳能电池微元i外表面与太阳直接辐射的辐射系数,AS,i是太阳能电池微元i外表面面积。
吸收大气散射辐射热量QS,i_Atm:
QS,i_Atm=αS·qIR_Atm·AS,i,
吸收大气长波辐射热量QS,i_IR_Atm:
QS,i_IR_Atm=εS·qIR_Atm·AS,i,
对外界环境长波辐射热量QS,i_IR:
其中,TS,i是太阳能电池微元i的温度。
通过隔热层与艇体的传导换热热量QS,i_Cond:
其中,TEnup_S,j是艇体微元j的温度,艇体微元j被太阳能电池微元i遮盖;
其中,艇体上半部分被太阳能电池遮盖部分微元j的能量广义源项表达式:
ST_Enup_S,j=QEnup_S,j_IR+QEnup_S,j_Cond,
其中,QEnup_S,j_IR是吸收艇体内部辐射换热热量,QEnup_S,j_Cond是通过隔热层与太阳能电池的传导换热热量。
艇体上半部分被太阳能电池遮盖部分微元j的能量广义源项表达式中各项热量计算式列述如下:
吸收艇体内部辐射换热热量QEnup_S,j_IR:
QEnup_S,j_IR=AEnup_S,j·(GEnup_S,j-JEnup_S,j),
其中,GEnup_S,j是投射到艇体上半部分被太阳能电池遮盖部分微元j的辐射热流,JEnup_S,j是离开微元j的辐射热流。
其中,JEnup_S,j可以表达为微元辐射热流和反射热流之和,其表达式:
其中,Xk,j是艇体内表面微元k到艇体上半部分被太阳能电池遮盖部分微元j的辐射角系数。
通过隔热层与太阳能电池的传导换热热量QEnup_S,j_Cond:
其中,TEnup_S,j是艇体上半部分被太阳能电池遮盖部分微元j的温度,AEnup_S,j是艇体上半部分被太阳能电池遮盖部分微元j的面积。
艇体上半部分未被太阳能电池遮盖部分微元l的能量广义源项表达式:
ST_Enup_R,l=QEnup_R,l_D+QEnup_R,l_Atm+QEnup_R,l_IR_Atm+QEnup_R,l_IR_E+QEnup_R,l_IR_I,其中,QEnup_R,l_D是吸收太阳直接辐射热量,QEnup_R,l_Atm是吸收大气散射辐射热量,QEnup_R,l_IR_Atm是吸收大气长波辐射热量,QEnup_R,l_IR_E是对外界环境长波辐射热量,QEnup_R,l_IR_I是与艇体内部长波辐射换热热量。
艇体上半部分未被太阳能电池遮盖部分微元l的能量广义源项表达式中各项热量计算式列述如下:
吸收太阳直接辐射热量QEnup_R,l_D:
QEnup_R,l_D=α·qD_S·AEnup_R,l·FEnup_R,l-S,
其中,AEnup_R,l是微元l的面积,FEnup_R,l-S是微元l与太阳直接辐射的辐射角系数。
QEnup_R,l_IR_I是与艇体下半部分长波辐射换热热量。
吸收大气散射辐射热量QEnup_R,l_Atm:
QEnup_R,l_Atm=α·qA_S·AEnup_R,l,
吸收大气长波辐射热量QEnup_R,l_IR_Atm:
QEnup_R,l_IR_Atm=ε·qA_IR·AEnup_R,l,
其中,ε是艇体材料发射率;
对外界环境长波辐射热量QEnup_R,l_IR_E:
与艇体内部长波辐射换热热量QEnup_R,l_IR_I:
QEnup_R,l_IR_I=AEnup_R,l·(GEnup_R,l-JEnup_R,l),
其中,GEnup_R,l是投射到微元l的辐射热流,JEnup_R,l是离开微元l的辐射热流;
其中,艇体下半部分微元m的能量广义源项表达式:
ST_End,m=QEnd,m_D+QEnd,m_Atm+QEnd,m_G+QEnd,m_IR_Atm+QEnd,m_IR_G+QEnd,m_IR_E+QEnd,m_IR_I,其中,QEnd,m_D是吸收太阳直接辐射热量,QEnd,m_Atm是吸收大气散射辐射 热量,QEnd,m_G是吸收地面反射辐射热量,QEnd,m_IR_Atm是吸收大气长波辐射热量,QEnd,m_IR_G是吸收地面长波辐射热量,QEnd,m_IR_E是对外界环境长波辐射热量,QEnd,m_IR_I是与艇体内部长波辐射换热热量。
艇体下半部分微元m的能量广义源项表达式中各项热量计算式列述如下:
吸收太阳直接辐射热量QEnd,m_Atm:
QEnd,m_Atm=α·qD_S·AEnd,m·FEnd,m-S,
其中,AEnd,m是微元m的面积,FEnd,m-S是微元m与太阳直接辐射的辐射角系数;
吸收大气散射辐射热量QEnd,m_Atm:
QEnd,m_Atm=α·qA_S·AEnd,m,
吸收地面反射辐射热量QEnd,m_G:
QEnd,m_G=α·qG_S·AEnd,m,
吸收大气长波辐射热量QEnd,m_IR_Atm:
QEnd,m_IR_Atm=ε·qA_IR·AEnd,m,
吸收地面长波辐射热量QEnd,m_IR_G:
QEnd,m_IR_G=ε·qG_IR·AEnd,m,
对外界环境长波辐射热量QEnd,m_IR_E:
与艇体内部长波辐射换热热量
QEnd,m_IR_I=AEnd,m·(GEnd,m-JEnd,m),
其中,GEnd,m是投射到微元m的辐射热流,JEnd,m是离开微元m的辐射热流。
6.根据权利要求5所述的温度计算方法,其特征在于,所述步骤S5包括,加载微元的热边界条件,通过微元之间能量数据传递,联立求解微元能量方程组,计算飞艇平飞过程分布温度分布数据。

说明书全文

太阳能电池平流层飞艇平飞过程分布温度计算方法

技术领域

[0001] 本发明属于飞艇热控制技术领域,尤其涉及一种带太阳能电池的平流层飞艇平飞过程分布温度计算方法。

背景技术

[0002] 平流层飞艇具有可定点飞行、滞空时间长和分辨率高等优点,在空中预警、监视监测、民用通信等领域具有广泛应用前景,受到世界各主要强国的高度重视。
[0003] 平流层飞艇在平飞过程中,环境温度密度、压速、太阳辐射、大气辐射和地面辐射等因素会对飞艇温度特性产生影响。温度过高将提高飞艇内部氦气压力,对飞艇产生重要影响:1、温度过高将改变飞艇艇体材料承力特性、增大飞艇艇体热应力、增大飞艇艇体张力,对飞艇艇体的安全构成严重威胁;2、改变飞艇受力状况,导致飞艇飞行高度波动,干扰飞艇执行任务。因此,准确获知飞艇平飞过程中的温度特性,对飞艇结构设计、材料选
择、飞行试验规划、规避潜在危险等方面具有重要意义,而目前还没有一个系统性地计算带
太阳能电池的平流层飞艇平飞过程分布温度的计算方法。

发明内容

[0004] (一)要解决的技术问题
[0005] 本发明的目的在于,提供一种带太阳能电池的平流层飞艇平飞过程分布温度计算方法,可快速而准确地获得带太阳能电池的平流层飞艇平飞过程分布温度数据。
[0006] (二)技术方案
[0007] 本发明提供一种带太阳能电池的平流层飞艇平飞过程分布温度计算方法,包括:
[0008] S1,根据飞艇飞行任务需求,计算飞艇飞行参数及飞艇设计参数;
[0009] S2,测量艇体材料特性参数、太阳能电池特性参数及电池隔热材料特性参数;
[0010] S3,计算飞艇大气环境参数及飞艇辐射热环境参数;
[0011] S4,基于飞艇几何特征及传热模式,建立飞艇分布温度计算域,利用结构化网格离散计算域,建立各微元的质量、动量和能量微分方程;
[0012] S5,根据飞艇艇体材料和太阳能电池特性参数,联立求解计算域内所有微元的方程组,计算飞艇平飞过程分布温度。
[0013] (三)有益效果
[0014] 本发明可以快速和准确地获知带太阳能电池的平流层飞艇平飞过程中的分布温度特性,在带太阳能电池的平流层飞艇设计、材料选择、飞行试验规划、规避潜在危险等方
面具有指导意义,可以提高带太阳能电池的平流层飞艇设计一次成功率,缩短带太阳能电
池的平流层飞艇设计周期,降低带太阳能电池的平流层飞艇设计成本。
附图说明
[0015] 图1是本发明实施例提供的带太阳能电池的平流层飞艇结构示意图。
[0016] 图2是本发明实施例提供的带太阳能电池的平流层飞艇平飞过程分布温度计算方法流程图

具体实施方式

[0017] 本发明提供一种带太阳能电池的平流层飞艇平飞过程分布温度计算方法,其根据飞艇飞行参数、飞艇设计参数、艇体材料特性参数、太阳能电池特性参数及电池隔热材料特
性参数,计算大气环境参数及飞艇辐射热环境参数,并基于飞艇几何特征及传热模式,建立
飞艇分布温度计算域,利用结构化网格离散计算域,建立各微元的质量、动量和能量微分方
程,根据飞艇艇体材料和太阳能电池特性参数,联立求解计算域内所有微元的方程组,计算
飞艇平飞过程分布温度。
[0018] 根据本发明的一种实施方式,温度计算方法包括:
[0019] S1,根据飞艇飞行任务需求,计算飞艇飞行参数及飞艇设计参数;
[0020] S2,测量艇体材料特性参数、太阳能电池特性参数及电池隔热材料特性参数;
[0021] S3,计算飞艇大气环境参数及飞艇辐射热环境参数;
[0022] S4,基于飞艇几何特征及传热模式,建立飞艇分布温度计算域,利用结构化网格离散计算域,建立各微元的质量、动量和能量微分方程;
[0023] S5,根据飞艇艇体材料和太阳能电池特性参数,联立求解计算域内所有微元的方程组,计算飞艇平飞过程分布温度。
[0024] 根据本发明的一种实施方式,飞艇飞行参数包括飞艇飞行时间、飞艇飞行地点经度Lon、飞艇飞行地点纬度Lat、飞艇飞行海拔高度h和飞艇飞行空速v;
[0025] 飞艇设计参数包括飞艇体积V、飞艇长度L、飞艇最大直径D、飞艇表面积A和太阳能电池面积AS。
[0026] 根据本发明的一种实施方式,艇体材料特性参数包括艇体材料表面吸收率α、艇体材料表面发射率ε、艇体材料面密度ρ和艇体材料比热容c;
[0027] 太阳能电池特性参数包括太阳能电池效率η、太阳能电池表面吸收率αS、太阳能电池表面发射率εS、太阳能电池面密度ρS和太阳能电池比热容cS;
[0028] 电池隔热材料特性参数隔热材料特性参数包括隔热材料厚度δS_I和隔热材料导热系数λS_I。
[0029] 根据本发明的一种实施方式,飞艇大气环境参数包括飞艇飞行海拔高度h处的大气温度TAtm、大气压力PAtm和大气密度ρAtm,
[0030] 其中,大气温度TAtm的数学表达式为:
[0031]
[0032] 大气压力PAtm的数学表达式为:
[0033]
[0034] 大气密度ρAtm的数学表达式为:
[0035]
[0036] 飞艇热环境参数包括飞艇辐射热环境参数和对流换热环境参数,所述飞艇辐射热环境参数包括太阳直接辐射热流qD_S、大气散射太阳辐射热流qA_S、地面反射太阳辐射热流
qG_S、大气长波辐射热流qA_IR和地面长波辐射热流qG_IR,
[0037] 太阳直接辐射热流qD_S的数学表达式为:
[0038] qD_S=I0·τAtm,
[0039] 其中,I0为大气层上界太阳辐射强度,τAtm为太阳直接辐射衰减系数;
[0040] 所述大气散射太阳辐射热流qA_S的数学表达式为:
[0041] qA_S=k·qD_S,
[0042] 其中,k为大气散射系数;
[0043] 地面反射太阳辐射热流qG_S的数学表达式为:
[0044] qG_S=IGround·rGround·τIR_G,
[0045] 其中,IGround为抵达地球表面太阳直接辐射强度,rGround为地球表面反射系数,τIR_G为地球表面辐射衰减系数;
[0046] 所述大气长波辐射热流qA_IR的数学表达式为:
[0047]
[0048] 其中,σ为辐射常数,TAtm为大气温度;
[0049] 地面长波辐射热流qG_IR的数学表达式为:
[0050]
[0051] 其中,TGround为地面温度,εGround为地面发射率;
[0052] 根据本发明的一种实施方式,步骤S4包括:
[0053] 建立飞艇及其外流场区域,利用结构化网格将计算域划分为多个微元,分析飞艇艇体、太阳能电池、太阳能电池隔热材料、内部氦气微元传热过程,建立所有微元的质量、动量和能量微分方程;
[0054] 其中,计算域内质量、动量和能量微分方程为:
[0055] 质量微分方程:
[0056]
[0057] 动量微分方程:
[0058]
[0059] 能量微分方程:
[0060]
[0061] 其中,T是温度,ρ是密度,cp是定压比热容,t代表时间,u代表流体速度矢量,k是导热系数,Su代表动量广义源项,ST代表能量广义源项,μ是流体的粘度系数,P是流体
压力,X指代坐标向量;
[0062] 其中,太阳能电池微元i的能量广义源项表达式:
[0063] ST_S,i=QS,i_D+QS,i_Atm+QS,i_IR_Atm+QS,i_IR+QS,i_Cond,
[0064] QS,i_D是吸收太阳直接辐射热量,QS,i_Atm是吸收大气散射辐射热量,QS,i_IR_Atm是吸收大气长波辐射热量,QS,i_IR是对外界环境长波辐射热量,QS,i_Cond是通过隔热层与艇体的传导换热热量。
[0065] 太阳能电池微元i的能量广义源项表达式中各项热量计算式列述如下:
[0066] 吸收太阳直接辐射热量QS,i_D:
[0067] QS,i_D=αS·qD_S·AS,i·FS-S,
[0068] 其中,FS-S是太阳能电池微元i外表面与太阳直接辐射的辐射系数,AS,i是太阳能电池微元i外表面面积。
[0069] 吸收大气散射辐射热量QS,i_Atm:
[0070] QS,i_Atm=αS·qIR_Atm·AS,i,
[0071] 吸收大气长波辐射热量QS,i_IR_Atm:
[0072] QS,i_IR_Atm=εS·qIR_Atm·AS,i,
[0073] 对外界环境长波辐射热量QS,i_IR:
[0074]
[0075] 其中,TS,i是太阳能电池微元i的温度。
[0076] 通过隔热层与艇体的传导换热热量QS,i_Cond:
[0077]
[0078] 其中,TEnup_S,j是艇体微元j的温度,艇体微元j被太阳能电池微元i遮盖;
[0079] 其中,艇体上半部分被太阳能电池遮盖部分微元j的能量广义源项表达式:
[0080] ST_Enup_S,j=QEnup_S,j_IR+QEnup_S,j_Cond,
[0081] 其中,QEnup_S,j_IR是吸收艇体内部辐射换热热量,QEnup_S,j_Cond是通过隔热层与太阳能电池的传导换热热量。
[0082] 艇体上半部分被太阳能电池遮盖部分微元j的能量广义源项表达式中各项热量计算式列述如下:
[0083] 吸收艇体内部辐射换热热量QEnup_S,j_IR:
[0084] QEnup_S,j_IR=AEnup_S,j·(GEnup_S,j-JEnup_S,j),
[0085] 其中,GEnup_S,j是投射到艇体上半部分被太阳能电池遮盖部分微元j的辐射热流,JEnup_S,j是离开微元j的辐射热流。
[0086] 其中,JEnup_S,j可以表达为微元辐射热流和反射热流之和,其表达式:
[0087]
[0088]
[0089] 其中,Xk,j是艇体内表面微元k到艇体上半部分被太阳能电池遮盖部分微元j的辐射角系数。
[0090] 通过隔热层与太阳能电池的传导换热热量QEnup_S,j_Cond:
[0091]
[0092] 其中,TEnup_S,j是艇体上半部分被太阳能电池遮盖部分微元j的温度,AEnup_S,j是艇体上半部分被太阳能电池遮盖部分微元j的面积。
[0093] 艇体上半部分未被太阳能电池遮盖部分微元l的能量广义源项表达式:
[0094] ST_Enup_R,l=QEnup_R,l_D+QEnup_R,l_Atm+QEnup_R,l_IR_Atm+QEnup_R,l_IR_E+QEnup_R,l_IR_I,[0095] 其中,QEnup_R,l_D是吸收太阳直接辐射热量,QEnup_R,l_Atm是吸收大气散射辐射热量,QEnup_R,l_IR_Atm是吸收大气长波辐射热量,QEnup_R,l_IR_E是对外界环境长波辐射热量,QEnup_R,l_IR_I是与艇体内部长波辐射换热热量。
[0096] 艇体上半部分未被太阳能电池遮盖部分微元l的能量广义源项表达式中各项热量计算式列述如下:
[0097] 吸收太阳直接辐射热量QEnup_R,l_D:
[0098] QEnup_R,l_D=α·qD_S·AEnup_R,l·FEnup_R,l-S,
[0099] 其中,AEnup_R,l是微元l的面积,FEnup_R,l-S是微元l与太阳直接辐射的辐射角系数。
[0100] QEnup_R,l_IR_I是与艇体下半部分长波辐射换热热量。
[0101] 吸收大气散射辐射热量QEnup_R,l_Atm:
[0102] QEnup_R,l_Atm=α·qA_S·AEnup_R,l,
[0103] 吸收大气长波辐射热量QEnup_R,l_IR_Atm:
[0104] QEnup_R,l_IR_Atm=ε·qA_IR·AEnup_R,l,
[0105] 其中,ε是艇体材料发射率;
[0106] 对外界环境长波辐射热量QEnup_R,l_IR_E:
[0107]
[0108] 与艇体内部长波辐射换热热量QEnup_R,l_IR_I:
[0109] QEnup_R,l_IR_I=AEnup_R,l·(GEnup_R,l-JEnup_R,l),
[0110] 其中,GEnup_R,l是投射到微元l的辐射热流,JEnup_R,l是离开微元l的辐射热流;
[0111] 其中,艇体下半部分微元m的能量广义源项表达式:
[0112] ST_End,m=QEnd,m_D+QEnd,m_Atm+QEnd,m_G+QEnd,m_IR_Atm+QEnd,m_IR_G+QEnd,m_IR_E+QEnd,m_IR_I,[0113] 其中,QEnd,m_D是吸收太阳直接辐射热量,QEnd,m_Atm是吸收大气散射辐射热量,QEnd,m_G是吸收地面反射辐射热量,QEnd,m_IR_Atm是吸收大气长波辐射热量,QEnd,m_IR_G是吸收地面长波辐射热量,QEnd,m_IR_E是对外界环境长波辐射热量,QEnd,m_IR_I是与艇体内部长波辐射换热热量。
[0114] 艇体下半部分微元m的能量广义源项表达式中各项热量计算式列述如下:
[0115] 吸收太阳直接辐射热量QEnd,m_Atm:
[0116] QEnd,m_Atm=α·qD_S·AEnd,m·FEnd,m-S,
[0117] 其中,AEnd,m是微元m的面积,FEnd,m-S是微元m与太阳直接辐射的辐射角系数;
[0118] 吸收大气散射辐射热量QEnd,m_Atm:
[0119] QEnd,m_Atm=α·qA_S·AEnd,m,
[0120] 吸收地面反射辐射热量QEnd,m_G:
[0121] QEnd,m_G=α·qG_S·AEnd,m,
[0122] 吸收大气长波辐射热量QEnd,m_IR_Atm:
[0123] QEnd,m_IR_Atm=ε·qA_IR·AEnd,m,
[0124] 吸收地面长波辐射热量QEnd,m_IR_G:
[0125] QEnd,m_IR_G=ε·qG_IR·AEnd,m,
[0126] 对外界环境长波辐射热量QEnd,m_IR_E:
[0127]
[0128] 与艇体内部长波辐射换热热量
[0129] QEnd,m_IR_I=AEnd,m·(GEnd,m-JEnd,m),
[0130] 其中,GEnd,m是投射到微元m的辐射热流,JEnd,m是离开微元m的辐射热流。
[0131] 根据本发明的一种实施方式,步骤S5包括,加载微元的热边界条件,通过微元之间能量数据传递,联立求解微元能量方程组,计算飞艇平飞过程分布温度分布数据。
[0132] 综上所述,本发明可以快速和准确地获知带太阳能电池的平流层飞艇平飞过程中的分布温度特性,在带太阳能电池的平流层飞艇设计、材料选择、飞行试验规划、规避潜在
危险等方面具有指导意义,可以提高带太阳能电池的平流层飞艇设计一次成功率,缩短带
太阳能电池的平流层飞艇设计周期,降低带太阳能电池的平流层飞艇设计成本。
[0133] 为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
[0134] 如图1所示,本发明实施例提供的带太阳能电池的平流层飞艇包括飞艇由艇体上半部分1、艇体下半部分2、太阳能电池3、太阳能电池隔热层4、尾翼5和推进装置6构成。
[0135] 其中,飞艇主体由艇体上半部分1和艇体下半部分2构成,艇体上半部分顶部铺设有太阳能电池3,太阳能电池与艇体上半部分之间安装有隔热层4,尾翼5呈倒Y型安装于
飞艇尾部,推进装置6左右对称安装于飞艇两侧。
[0136] 如图2所示,带太阳能电池的平流层飞艇平飞过程分布温度计算方法,包括:
[0137] 根据飞艇飞行任务需求,计算出本实施例中的飞艇主要飞行参数如表1所示,主要设计参数如表2所示。
[0138]
[0139] 表1飞艇主要飞行参数
[0140]
[0141] 表2飞艇主要设计参数
[0142] 测量拟采用的飞艇艇体材料特性参数如表3所示;测量太阳能电池特性与太阳能电池隔热材料特性参数如表4所示。
[0143]
[0144]
[0145] 表3艇体材料特性参数
[0146]
[0147] 表4太阳能电池与太阳能电池隔热材料特性参数
[0148] 计算飞艇热环境:大气压力、温度、密度。其中,飞艇在海拔高度h处的大气温度3
TAtm(K)、大气压力PAtm(Pa)、大气密度ρAtm(kg/m)可由公式计算:
[0149] 大气温度随海拔高度h变化的数学表达式为:
[0150]
[0151] 大气压力随海拔高度h变化的数学表达式为:
[0152]
[0153] 大气密度随海拔高度h变化的数学表达式为:
[0154]
[0155] 计算太阳直接辐射热流qD_S,大气散射太阳辐射热流qA_S,地面反射太阳辐射热流qG_S,大气长波辐射热流qA_IR,地面长波辐射热流qG_IR;对流换热环境参数包括飞艇与外部环境的对流换热系数hEx,飞艇与内部氦气的对流换热系数hIn。
[0156] 太阳直接辐射热流qD_S是大气层上界太阳辐射强度I0与太阳直接辐射衰减系数τAtm的乘积,计算式如下:
[0157] qD_S=I0·τAtm (4)
[0158] 大气散射太阳辐射热流qA_S是太阳直接辐射热流qD_S与大气散射系数k的乘积,计算式如下:
[0159] qA_S=k·qD_S (5)
[0160] 地面反射太阳辐射热流qG_S是抵达地球表面太阳直接辐射强度IGround、地球表面反射系数rGround与地球表面辐射衰减系数τIR_G的乘积,计算式如下:
[0161] qG_S=IGround·rGround·τIR_G (6)
[0162] 大气长波辐射热流qA_IR计算式如下:
[0163]
[0164] 其中,σ是辐射常数,TAtm是大气温度。
[0165] 地面长波辐射热流qG_IR计算式如下:
[0166]
[0167] 其中,TGround是地面温度,εGround为地面发射率;。
[0168] 计算域内质量、动量和能量微分方程为:
[0169] 质量微分方程:
[0170]
[0171] 动量微分方程:
[0172]
[0173] 能量微分方程:
[0174]
[0175] 其中,T是温度;ρ是密度;cp是定压比热容;t代表时间;u代表流体速度矢量;k是导热系数;Su代表动量广义源项;ST代表能量广义源项;μ是流体的粘度系数;P是流体
压力;X指代坐标向量。
[0176] 建立各微元质量、动量和能量微分方程。其中,针对质量和动量微分方程,固体微元域内无流动,质量和动量微分方程退化;流体微元质量和动量微分通过联立能量微分方
程一起求解。针对能量微分方程,固体微元的辐射热量、导热热量、内热源是其广义能量源
项,添加广义能量源项作为边界条件即可建立完整的能量微分方程;流体微元与固体微元
边界的对流换热通过质量微分方程、动量微分方程和能量微分方程联立求解。
[0177] 太阳能电池微元i的能量广义源项表达式:
[0178] ST_S,i=QS,i_D+QS,i_Atm+QS,i_IR_Atm+QS,i_IR+QS,i_Cond (12)
[0179] QS,i_D是吸收太阳直接辐射热量,QS,i_Atm是吸收大气散射辐射热量,QS,i_IR_Atm是吸收大气长波辐射热量,QS,i_IR是对外界环境长波辐射热量,QS,i_Cond是通过隔热层与艇体的传导换热热量。
[0180] 太阳能电池微元i的能量广义源项表达式中各项热量计算式列述如下:
[0181] 吸收太阳直接辐射热量QS,i_D:
[0182] QS,i_D=αS·qD_S·AS,i·FS-S (13)
[0183] 其中,FS-S是太阳能电池微元i外表面与太阳直接辐射的辐射角系数,AS,i是太阳能电池微元i外表面面积。
[0184] 吸收大气散射辐射热量QS,i_Atm:
[0185] QS,i_Atm=αS·qIR_Atm·AS,i (14)
[0186] 吸收大气长波辐射热量QS,i_IR_Atm:
[0187] QS,i_IR_Atm=εS·qIR_Atm·AS,i (15)
[0188] 对外界环境长波辐射热量QS,i_IR:
[0189]
[0190] 其中,TS,i是太阳能电池微元i的温度。
[0191] 通过隔热层与艇体的传导换热热量QS,i_Cond:
[0192]
[0193] 其中,TEnup_S,j是艇体微元j的温度,艇体微元j被太阳能电池微元i遮盖。
[0194] 艇体上半部分被太阳能电池遮盖部分微元j的能量广义源项表达式:
[0195] ST_Enup_S,j=QEnup_S,j_IR+QEnup_S,j_Cond (18)
[0196] 其中,QEnup_S,j_IR是吸收艇体内部辐射换热热量,QEnup_S,j_Cond是通过隔热层与太阳能电池的传导换热热量。
[0197] 艇体上半部分被太阳能电池遮盖部分微元j的能量广义源项表达式中各项热量计算式列述如下:
[0198] 吸收艇体内部辐射换热热量QEnup_S,j_IR:
[0199] QEnup_S,j_IR=AEnup_S,j·(GEnup_S,j-JEnup_S,j) (19)
[0200] 其中,GEnup_S,j是投射到艇体上半部分被太阳能电池遮盖部分微元j的辐射热流,JEnup_S,j是离开微元j的辐射热流。
[0201] 其中,JEnup_S,j可以表达为微元辐射热流和反射热流之和,其表达式:
[0202]
[0203]
[0204] 其中,Xk,j是艇体内表面微元k到艇体上半部分被太阳能电池遮盖部分微元j的辐射角系数。
[0205] 通过隔热层与太阳能电池的传导换热热量QEnup_S,j_Cond:
[0206]
[0207] 其中,TEnup_S,j是艇体上半部分被太阳能电池遮盖部分微元j的温度,AEnup_S,j是艇体上半部分被太阳能电池遮盖部分微元j的面积。
[0208] 艇体上半部分未被太阳能电池遮盖部分微元l的能量广义源项表达式:
[0209] ST_Enup_R,l=QEnup_R,l_D+QEnup_R,l_Atm+QEnup_R,l_IR_Atm+QEnup_R,l_IR_E+QEnup_R,l_IR_I (23)[0210] 其中,QEnup_R,l_D是吸收太阳直接辐射热量,QEnup_R,l_Atm是吸收大气散射辐射热量,QEnup_R,l_IR_Atm是吸收大气长波辐射热量,QEnup_R,l_IR_E是对外界环境长波辐射热量,QEnup_R,l_IR_I是与艇体内部长波辐射换热热量。
[0211] 艇体上半部分未被太阳能电池遮盖部分微元l的能量广义源项表达式中各项热量计算式列述如下:
[0212] 吸收太阳直接辐射热量QEnup_R,l_D:
[0213] QEnup_R,l_D=α·qD_S·AEnup_R,l·FEnup_R,l-S (24)
[0214] 其中,AEnup_R,l是微元l的面积,FEnup_R,l-S是微元l与太阳直接辐射的辐射角系数。
[0215] QEnup_R,l_IR_I是与艇体下半部分长波辐射换热热量。
[0216] 吸收大气散射辐射热量QEnup_R,l_Atm:
[0217] QEnup_R,l_Atm=α·qA_S·AEnup_R,l (25)
[0218] 吸收大气长波辐射热量QEnup_R,l_IR_Atm:
[0219] QEnup_R,l_IR_Atm=ε·qA_IR·AEnup_R,l (26)
[0220] 其中,ε是艇体材料发射率。
[0221] 对外界环境长波辐射热量QEnup_R,l_IR_E:
[0222]
[0223] 与艇体内部长波辐射换热热量QEnup_R,l_IR_I:
[0224] QEnup_R,l_IR_I=AEnup_R,l·(GEnup_R,l-JEnup_R,l) (28)
[0225] 其中,GEnup_R,l是投射到微元l的辐射热流,JEnup_R,l是离开微元l的辐射热流。
[0226] 艇体下半部分微元m的能量广义源项表达式:
[0227] ST_End,m=QEnd,m_D+QEnd,m_Atm+QEnd,m_G+QEnd,m_IR_Atm+QEnd,m_IR_G+QEnd,m_IR_E+QEnd,m_IR_I (29)[0228] 其中,QEnd,m_D是吸收太阳直接辐射热量,QEnd,m_Atm是吸收大气散射辐射热量,QEnd,m_G是吸收地面反射辐射热量,QEnd,m_IR_Atm是吸收大气长波辐射热量,QEnd,m_IR_G是吸收地面长波辐射热量,QEnd,m_IR_E是对外界环境长波辐射热量,QEnd,m_IR_I是与艇体内部长波辐射换热热量。
[0229] 艇体下半部分微元m的能量广义源项表达式中各项热量计算式列述如下:
[0230] 吸收太阳直接辐射热量QEnd,m_Atm:
[0231] QEnd,m_Atm=α·qD_S·AEnd,m·FEnd,m-S (30)
[0232] 其中,AEnd,m是微元m的面积,FEnd,m-S是微元m与太阳直接辐射的辐射角系数。
[0233] 吸收大气散射辐射热量QEnd,m_Atm:
[0234] QEnd,m_Atm=α·qA_S·AEnd,m (31)
[0235] 吸收地面反射辐射热量QEnd,m_G:
[0236] QEnd,m_G=α·qG_S·AEnd,m (32)
[0237] 吸收大气长波辐射热量QEnd,m_IR_Atm:
[0238] QEnd,m_IR_Atm=ε·qA_IR·AEnd,m (33)
[0239] 吸收地面长波辐射热量QEnd,m_IR_G:
[0240] QEnd,m_IR_G=ε·qG_IR·AEnd,m (34)
[0241] 对外界环境长波辐射热量QEnd,m_IR_E:
[0242]
[0243] 与艇体内部长波辐射换热热量
[0244] QEnd,m_IR_I=AEnd,m·(GEnd,m-JEnd,m) (36)
[0245] 其中,GEnd,m是投射到微元m的辐射热流,JEnd,m是离开微元m的辐射热流。
[0246] 氦气压力控制范围为:
[0247] 0≤ΔPHe=PHe-PAtm≤300Pa (37)
[0248] 其中,ΔPHe是氦气超压量,PHe是氦气绝对压力,PAtm是大气环境压力。
[0249] 氦气质量控制:当飞艇内部氦气超压超过300Pa时候,氦气打开,排出部分氦气,至超压量等于300Pa时阀门关闭。
[0250] 氦气质量流量计算式为:
[0251]
[0252] 其中,ρHe是氦气密度,Av_He是氦气阀门面积,kv_He是氦气阀门流量系数。
[0253] 内部氦气温度和速度通过求解艇体内部流体微元内质量、动量以及能量微分方程获得。
[0254] 输入飞艇设计参数、飞行任务参数,加载微元的热边界条件,通过微元之间能量数据传递,联立求解微元能量方程组,计算飞艇平飞过程分布温度分布数据。
[0255] 以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡
在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保
护范围之内。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈