首页 / 专利库 / 表面处理和涂层 / 真空镀膜 / 物理气相沉积 / 溅射法 / 一种通过蓝宝石衬底制备多晶SiC薄膜的方法

一种通过蓝宝石衬底制备多晶SiC薄膜的方法

阅读:1007发布:2021-03-08

专利汇可以提供一种通过蓝宝石衬底制备多晶SiC薄膜的方法专利检索,专利查询,专利分析的服务。并且本 发明 实施例 公开了一种通过蓝 宝石 衬底制备多晶SiC 薄膜 的方法,涉及 半导体 薄膜材料技术领域,本发明包括:将清洗好的蓝宝石衬底(1)与SiC靶材置于 真空 反应腔体中,并将所述真空反应腔体抽至高真空状态,并对蓝宝石衬底(1)进行升温;往所述真空反应腔体中通入氩气和 氧 气,并维持气压;执行 磁控溅射 过程,得到过渡层(2)和过渡层(3),其中,所述溅射过程包括先预溅射和正式溅射;关闭氧通道,只通入氩气并维持气压,再次执行磁控溅射过程得到SiC薄膜(4),待所述真空反应腔体腔体冷却至室温后取出样品;将所取出的样品置于快速 退火 炉中进行热退火。本发明适用于在蓝宝石衬底上制备多晶SiC薄膜。,下面是一种通过蓝宝石衬底制备多晶SiC薄膜的方法专利的具体信息内容。

1.一种通过蓝宝石衬底(1)制备多晶SiC薄膜的方法,其特征在于,包括:
将清洗好的蓝宝石衬底(1)与SiC靶材置于真空反应腔体中,并将所述真空反应腔体抽至高真空状态,并对蓝宝石衬底(1)进行升温;
往所述真空反应腔体中通入氩气和气,并维持气压;
执行磁控溅射过程,得到过渡层(2)和过渡层(3),其中,所述溅射过程包括先预溅射和正式溅射;
关闭氧通道,只通入氩气并维持气压,再次执行磁控溅射过程得到SiC薄膜(4),待所述真空反应腔体冷却至室温后取出样品;
将所取出的样品置于快速退火炉中进行热退火;
将所述真空反应腔体中通入氩气和氧气,并维持气压,包括:打开与所述真空反应腔体连接的氧气和氩气的,并通入这两种气体,其中,所通入的氩/氧比例为20/5,并调整分子的连接阀,控制所述真空反应腔体内气压为大于等于0.5且小于等于10Pa;
所述执行磁控溅射过程,包括:
在预溅射过程后执行正式溅射过程:
调整蓝宝石衬底(1)位置与所述SiC靶材对准,保持氩/氧气体的比例为20/5,在蓝宝石衬底(1)上进行持续时长大于等于30且小于等于60min的正式溅射,获得100至300nm厚的Si-O-C过渡层(2);
保持溅射功率和蓝宝石衬底(1)位置不变,调整氩/氧气体的比例为20/1,调整分子泵的连接阀,使所述真空反应腔体内的气压继续稳定在大于等于0.5且小于等于10Pa;
在蓝宝石衬底(1)上进行大于等于30且小于等于60min的正式溅射,获得100至300nm厚的Si-O-C*过渡层(3)。
2.根据权利要求1所述的方法,其特征在于,蓝宝石衬底(1)采用单晶蓝宝石衬底(1)的抛光C面,取向为<0001>。
3.根据权利要求1所述的方法,其特征在于,所述SiC靶材的纯度为99.0%~99.9%。
4.根据权利要求1所述的方法,其特征在于,将所述真空反应腔体抽至高真空状态,并对蓝宝石衬底(1)进行升温,包括:
打开与所述真空反应腔体连接的机械泵,将所述真空反应腔体抽真空至小于等于8Pa;
继而打开与所述真空反应腔体连接的分子泵,将所述真空反应腔体抽真空至真空度小于等于2×10-4Pa;
将蓝宝石衬底(1)加热至500~800℃并保温10min。
5.根据权利要求1所述的方法,其特征在于,所述执行磁控溅射过程,包括:
执行预溅射过程:
打开射频电源,并调节功率为大于等于50且小于等于300W,进行持续时长大于等于5且小于等于20min的预溅射,以去除靶材表面附着的杂质。
6.根据权利要求1所述的方法,其特征在于,再次执行磁控溅射过程得到SiC薄膜(4),包括:
保持溅射功率和蓝宝石衬底(1)位置不变,关闭所述氧气的阀门,只往所述真空反应腔体内通入氩气;
并调整分子泵的连接阀,使所述真空反应腔体内的气压继续稳定在大于等于0.5且小于等于10Pa;
在蓝宝石衬底(1)上再次执行持续时间为大于等于2且小于等于6h的正式溅射,获得大于等于1且小于等于5μm厚的SiC薄膜(4)。
7.根据权利要求1所述的方法,其特征在于,将所取出的样品置于快速退火炉中进行热退火,包括:
待蓝宝石衬底(1)及薄膜冷却至室温后,往所述真空反应腔体中通入氮气;
直至所述真空反应腔体内外气压一致,打开腔体并取出样品;
所述样品放置于快速退火炉中,通入氩气作为保护气,以大于等于80且小于等于200℃/s的速率从室温升至大于等于800且小于等于1000℃,并进行热退火10min,再以大于等于10且小于等于20℃/s的速率降温至室温。
8.根据权利要求1所述的方法,其特征在于,还包括:
在磁控溅射制备过渡层(2)、(3)与SiC薄膜(4)之前清洗蓝宝石衬底(1):
将蓝宝石衬底(1)放入丙中超声清洗10min,以去除衬底表面的油脂;
然后将蓝宝石衬底(1)放入酒精中超声清洗10min洗去丙酮有机溶剂,再放入去离子中超声清洗10min;
再将蓝宝石衬底(1)放入为10%的氢氟酸中,浸泡15s以去除表面附着的氧化物杂质;
最后将蓝宝石衬底(1)放入去离子水中超声清洗10min,之后取出用氮气枪吹干并封存

说明书全文

一种通过蓝宝石衬底制备多晶SiC薄膜的方法

技术领域

[0001] 本发明涉及半导体薄膜材料技术领域,尤其涉及一种通过蓝宝石衬底制备多晶SiC薄膜的方法。

背景技术

[0002] Si是第一代窄禁带半导体材料的代表,在所有半导体材料中其使用量占据绝对优势,几乎所有的功率及电电子器件都使用Si材料来制造,但Si材料并不是完全理想的。例如:Si材料所制成的温度传感器,其有效测温区间仅为0~150℃,无法适应部分高温环境下的测量。因此,近年来也逐步开始研究第三代宽禁带半导体材料,即SiC材料。SiC材料具有优越的电学性能,特别适合制成高压、高温、耐辐照、高功率型半导体器件。
[0003] 蓝宝石(Sapphire)是在刚玉宝石中,对除了红宝石(Ruby)以外颜色的其他刚玉宝石的通称,是一种非常优良的绝缘材料,具有硬度大,熔点很高,致密性非常好,抗辐射性非常好,并且化学稳定性很高等诸多特点。在人工制造的蓝宝石上制作一系列半导体器件,产生的寄生电极和漏电容都会非常小,而且蓝宝石衬底(1)是绝缘的,还不需要进一步额外的隔离工艺,从而实现了半导体器件的高度集成。
[0004] 但是从基本参数上来看,蓝宝石衬底(1)和SiC薄膜的晶格失配很大,高达9%-15%,并且SiC在蓝宝石衬底(1)上的附着性很差,难以成核生长。因此,如何在蓝宝石衬底(1)上稳定地生长出具有一定取向的晶态SiC薄膜,是目前业内主要的研究方向。

发明内容

[0005] 本发明的实施例提供一种通过蓝宝石衬底制备多晶SiC薄膜的方法,能够实现在蓝宝石衬底上制备多晶SiC薄膜。
[0006] 将清洗好的蓝宝石衬底(1)与SiC靶材置于真空反应腔体中,并将所述真空反应腔体抽至高真空状态,并对蓝宝石衬底(1)进行升温;
[0007] 往所述真空反应腔体中通入氩气和气,并维持气压;
[0008] 执行磁控溅射过程,得到过渡层(2)和过渡层(3),其中,所述溅射过程包括先预溅射和正式溅射;
[0009] 关闭氧通道,只通入氩气并维持气压,再次执行磁控溅射过程得到SiC薄膜(4),待所述真空反应腔体腔体冷却至室温后取出样品;
[0010] 将所取出的样品置于快速退火炉中进行热退火。
[0011] 本发明实施例提供的通过蓝宝石衬底制备多晶SiC薄膜的方法,通过加入Si-O-C中间过渡层后,薄膜材料形成初期成核更加容易,SiC薄膜沉积速率会有所提高,经快速热退火后,薄膜与衬底的晶格畸变程度有所减缓,且加入Si-O-C中间过渡层后,薄膜与蓝宝石衬底的结合力变强。同时并未影响薄膜的电阻随温度变化的稳定性,具有工作温度高,热稳定性好,工作可靠性高,所制备出的材料的应用范围广泛。附图说明
[0012] 为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
[0013] 图1为本发明实施例提供的在蓝宝石衬底上制备多晶SiC薄膜的结构示意图;
[0014] 图2为本发明实施例提供的在蓝宝石衬底上制备多晶SiC薄膜的方法流程图
[0015] 图3为本发明实施例提供的在蓝宝石衬底上制备多晶SiC薄膜的SEM断面图;
[0016] 图4为本发明实施例提供的在蓝宝石衬底上制备多晶SiC薄膜有无过渡层的XRD对比图;
[0017] 图5为本发明实施例提供的在蓝宝石衬底上制备多晶SiC薄膜有无过渡层的膜基结合力对比图;
[0018] 图6为本发明实施例提供的真空反应釜与SiC靶材的具体位置、加热台的空间位置关系的示意图。

具体实施方式

[0019] 为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明作进一步详细描述。下文中将详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本发明的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的任一单元和全部组合。本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语)具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样定义,不会用理想化或过于正式的含义来解释。
[0020] 本发明实施例提供一种通过蓝宝石衬底制备如图1所示的多晶SiC薄膜的方法,该方法流程如图2所示的,包括:
[0021] 将清洗好的蓝宝石衬底(1)与SiC靶材置于真空反应腔体中,并将所述真空反应腔体抽至高真空状态,并对蓝宝石衬底(1)进行升温;其中,本实施例中所述的真空反应腔体,可以采用目前业内标准型号的真空反应釜,具体采用何种型号的真空反应釜,在本实施例中并不限定,只要能够满足本实施例中“将腔体抽至高真空状态,以及后续能够进行气压调整和通入气体”的功能即可,真空反应釜与SiC靶材的具体位置、加热台的空间位置关系如图6所示。
[0022] 往所述真空反应腔体中通入氩气和氧气,并维持气压;
[0023] 执行磁控溅射过程,得到过渡层(2)和过渡层(3),其中,所述溅射过程包括先预溅射和正式溅射;
[0024] 关闭氧通道,只通入氩气并维持气压,再次执行磁控溅射过程得到SiC薄膜(4),待所述真空反应腔体腔体冷却至室温后取出样品;
[0025] 将所取出的样品置于快速退火炉中进行热退火。
[0026] 具体的,所述将所述真空反应腔体抽至高真空状态,并对蓝宝石衬底(1)进行升温,包括:
[0027] 打开与所述真空反应腔体连接的机械,将所述真空反应腔体抽真空至小于等于8Pa;
[0028] 继而打开与所述真空反应腔体连接的分子泵,将所述真空反应腔体抽真空至真空-4度小于等于2×10 Pa;
[0029] 将蓝宝石衬底(1)加热至500~800℃并保温10min。
[0030] 具体的,所述往所述真空反应腔体中通入氩气和氧气,并维持气压,包括:
[0031] 打开与所述真空反应腔体连接的氧气和氩气的,并通入这两种气体,其中,所通入的氩/氧比例为20/5,并调整所述分子泵的连接阀,控制所述真空反应腔体内气压为大于等于0.5且小于等于10Pa。
[0032] 具体的,所述执行磁控溅射过程,包括:
[0033] 执行预溅射过程:
[0034] 打开射频溅射口的电源,并调节功率为大于等于50且小于等于300W,进行持续时长大于等于5且小于等于20min的预溅射,以去除靶材表面附着的杂质;
[0035] 并在预溅射过程后执行正式溅射过程:
[0036] 调整蓝宝石衬底(1)位置与所述SiC靶材对准,保持氩/氧气体的比例为20/5,在蓝宝石衬底(1)上进行持续时长大于等于30且小于等于60min的正式溅射,获得100至300nm厚的Si-O-C过渡层(2)。
[0037] 保持溅射功率和蓝宝石衬底(1)位置不变,调整氩/氧气体的比例为20/1,调整所述分子泵的连接阀,使所述真空反应腔体内的气压继续稳定在大于等于0.5且小于等于10Pa;
[0038] 在蓝宝石衬底(1)上进行大于等于30且小于等于60min的正式溅射,获得100至300nm厚的Si-O-C*过渡层(3)。
[0039] 需要说明的是,过渡层(3)表示的Si-O-C*层是在真空反应腔体中,Ar:O2=20:5中制得;而过渡层(2)表示的Si-O-C层是在真空反应腔体中,Ar:O2=20:1中制得,两种过渡层的化学结构都是Si-O-C,为了便于区分,采用“*”符号来区分这两种过渡层,即:Si-O-C*过渡层(3)和Si-O-C过渡层(2)。
[0040] 关于预溅射与正式溅射:“预溅射”是磁控溅射制备薄膜前的一个基本操作,目的只是为了去除SiC靶材表面附着的杂质。过渡层(2)与(3)、SiC薄膜(4)都属于正式溅射制得,而预溅射的目的是在这之前用于去除靶材表面杂质。因此,Si-O-C过渡层(2)的制备步骤应归入正式溅射。
[0041] 具体的,再次执行磁控溅射过程得到SiC薄膜(4),包括:
[0042] 保持溅射功率和蓝宝石衬底(1)位置不变,关闭所述氧气的阀门,只往所述真空反应腔体内通入氩气;
[0043] 并调整所述分子泵的连接阀,使所述真空反应腔体内的气压继续稳定在大于等于0.5且小于等于10Pa;
[0044] 在蓝宝石衬底(1)上再次执行持续时间为大于等于2且小于等于6h的正式溅射,获得大于等于1且小于等于5μm厚的SiC薄膜(4)。
[0045] 具体的,所述将所取出的样品置于快速退火炉中进行热退火,包括:
[0046] 待蓝宝石衬底(1)及薄膜冷却至室温后,往所述真空反应腔体中通入氮气;
[0047] 直至所述真空反应腔体内外气压一致,打开腔体并取出样品;
[0048] 所述样品放置于快速退火炉中,通入氩气作为保护气,以大于等于80且小于等于200℃/s的速率从室温升至大于等于800且小于等于1000℃,并进行热退火10min,再以大于等于10且小于等于20℃/s的速率降温至室温。
[0049] 进一步的,还包括:在磁控溅射制备过渡层(2)、(3)与SiC薄膜(4)之前清洗蓝宝石衬底(1):
[0050] 将蓝宝石衬底(1)放入丙中超声清洗10min,以去除衬底表面的油脂;
[0051] 然后将蓝宝石衬底(1)放入酒精中超声清洗10min洗去丙酮等有机溶剂,再放入去离子中超声清洗10min;
[0052] 再将蓝宝石衬底(1)放入约为10%的氢氟酸中,浸泡15s以去除表面附着的氧化物杂质;
[0053] 最后将蓝宝石衬底(1)放入去离子水中超声清洗10min,之后取出用氮气枪吹干并封存
[0054] 本发明实施例提供的通过蓝宝石衬底制备多晶SiC薄膜的方法,通过加入Si-O-C中间过渡层后,薄膜材料形成初期成核更加容易,SiC薄膜沉积速率会有所提高,经快速热退火后,薄膜与衬底的晶格畸变程度有所减缓,且加入Si-O-C中间过渡层后,薄膜与蓝宝石衬底的结合力变强。同时并未影响薄膜的电阻随温度变化的稳定性,具有测试温度高,热稳定性号,工作可靠性高,所制备出的材料的应用范围广泛。
[0055] 具体举例来说:
[0056] 如图1结构所示,将清洗好的蓝宝石衬底(1)与SiC靶材置于真空反应腔体中,将腔体抽至高真空状态,再对衬底进行升温,然后往真空腔体通入氩气和氧气,维持一定气压,采用磁控溅射先预溅射,再正式溅射得到过渡层(2)(3),然后关闭氧通道,只通入氩气,维持一定气压,采用磁控溅射得到SiC薄膜(4),腔体冷却至室温,取出样品置于快速退火炉中热退火。
[0057] 其中,如图1中所示,所述的蓝宝石衬底(1)采用的是现如今工业化最成熟的C面,取向为<0001>,其成本越来越低,易于获得。衬底基片大小为使用金刚石刀手工切成的10×10mm,厚度为购买时的初始厚度0.5mm。所述第一层Si-O-C过渡层(2)厚度约为100~300nm,所述第二层Si-O-C*过渡层(3)厚度约为100~300nm,所述第三层SiC薄膜(4)厚度约为1~5μm。
[0058] 结合图2,本发明在蓝宝石衬底上制备多晶SiC薄膜的方法包括以下步骤:
[0059] 步骤一、SiC薄膜制备前清洗准备工作
[0060] a、将蓝宝石衬底放入丙酮中超声清洗10min,以去除衬底表面的油脂;
[0061] b、然后放入酒精中超声清洗10min洗去丙酮等有机溶剂,再放入去离子水中超声清洗10min。
[0062] c、再把蓝宝石衬底放入约为10%的氢氟酸中,浸泡15s以去除表面附着的氧化物杂质,最后放入去离子水中超声清洗10min,取出用氮气枪吹干并封存。
[0063] 步骤二、SiC薄膜的制备及设备调整工作
[0064] a、将清洗好的蓝宝石衬底放入磁控溅射腔体的加热台上,调整好蓝宝石衬底位置,使蓝宝石衬底与SiC靶材错开,这是为了在后续预溅射时不让靶材的杂质沉积在蓝宝石衬底上;
[0065] b、打开连接腔体的机械泵与相关的阀门,把腔体抽真空至8Pa以下,关闭机械泵相关的阀门,打开分子泵以及其与腔体连接的闸板,把腔体抽真空至真空度小于2×10-4Pa,打开衬底加热电源,把衬底加热至500~800℃并保温10min。在该温度区间能获得最适合使用磁控溅射技术在蓝宝石衬底上制备高质量SiC薄膜的温度,温度低于500℃时,获得的SiC薄膜电阻会太高,结晶度不理想,温度高于800℃时,获得的SiC薄膜在沉积过程中能量过大,无法稳定结晶,薄膜颗粒粗大;
[0066] c、打开腔体与氩,腔体与氧连接的阀门,通入两种气体,观察气体流量控制器,调整氩/氧流量比例约为20/5,调整腔体与分子泵的连接阀,控制腔体内气压为0.5~10Pa,打开射频溅射电源,调节功率为50~300W,进行预溅射5~20min以去除靶材表面附着的杂质,随后调整衬底位置与靶材对准,在蓝宝石衬底上进行30~60min的正式溅射,获得100~300nm厚的Si-O-C过渡层(2);
[0067] d、保持溅射功率与蓝宝石衬底位置不变,调整氩/氧比例为20/1,调整腔体与分子泵的连接阀,使腔体内气压继续稳定在0.5~10Pa,在蓝宝石衬底上进行30~60min的正式溅射,获得100~300nm厚的Si-O-C*过渡层(3);
[0068] e、保持溅射功率与蓝宝石衬底位置不变,关闭腔体与氧的连接阀,只往腔体内通入纯氩,调整腔体与分子泵的连接阀,使腔体内气压继续稳定在
[0069] 0.5~10Pa,在蓝宝石衬底上进行2~6h的正式溅射,获得1~5μm厚的SiC薄膜(4);步骤二完成时,该蓝宝石衬底的结构示意图如图1所示;
[0070] 步骤三、SiC薄膜的制备及后处理工作
[0071] a、按照磁控溅射使用说明书相继关闭仪器,待蓝宝石衬底及薄膜冷却至室温,往真空腔体中通入99.999%的高纯N2直至腔体内外气压一致,打开腔体,取出样品;
[0072] b、将沉积好的SiC薄膜样品放置于快速退火炉中,通入纯氩作为保护气,以80~200℃/s的速率从室温升至800~1000℃,并进行热退火10min,再以10~20℃/s的速率降温至室温,获得最终需要的蓝宝石衬底上的SiC薄膜;完成步骤三后的在蓝宝石衬底上的SiC薄膜的断面SEM如图3所示。
[0073] 通过以上步骤在蓝宝石衬底上获得的SiC薄膜第一层Si-O-C过渡层(2)厚度约为100~300nm,第二层Si-O-C*过渡层(3)厚度约为100~300nm,第三层SiC薄膜(4)厚度约为1~5μm,其SEM如图3所示,XRD如图4所示。XRD图4中下方为含有Si-O-C过渡层(2)与Si-O-C*过渡层(3)层的曲线,上方为不含过渡层,为在蓝宝石衬底上纯氩气氛中生长的SiC薄膜XRD曲线。含有过渡层的XRD衍射峰比不含过渡层的峰位偏右0.2~0.4°,表明该过渡层的加入使SiC薄膜晶格常数变大,膜内残余应力减弱,晶格畸变程度减缓,薄膜更稳定的生长与结晶。
[0074] 通过以上步骤在蓝宝石衬底上获得的有无过渡层的SiC薄膜在划痕测试后,膜基结合力如图5a、b所示,图5b中在含有Si-O-C过渡层(2)与Si-O-C*过渡层(3)的基础上,多层膜破裂分三段(6)、(7)、(8)显示,其中薄膜破裂点的横坐标位置(8)与(5)相比较,法向载荷从3.2N增至了4.2N,膜基结合力显著增大。
[0075] 本发明在蓝宝石衬底上制备多晶SiC薄膜的方法采用了易于工业化大规模生产的磁控溅射技术,其成本低廉,加工方便,制备薄膜致密性好,制得薄膜硬度大,生长薄膜温度低,溅射气源只有氩和氧,对环境无污染。
[0076] 由于在蓝宝石衬底上制备多晶SiC薄膜的方法选用了氧作为原有纯氩气氛溅射过程中的补充气氛,操作方便,可在溅射过程中直接调节阀门及流量仪通入腔体中,无需更换靶材及其他需要单独通入的气氛。
[0077] 在蓝宝石衬底上制备多晶SiC薄膜的方法,通过加入Si-O-C中间过渡层后,薄膜材料形成初期成核更加容易,SiC薄膜沉积速率会有所提高,经快速热退火后,薄膜与衬底的晶格畸变程度有所减缓,且加入Si-O-C中间过渡层后,薄膜与蓝宝石衬底的结合力变强。同时并未影响薄膜的电阻随温度变化的稳定性,具有测试温度高,热稳定性号,工作可靠性高,可广泛用于航天航空、核电以及大功率高频器件环境中。
[0078] 本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于设备实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。
相关专利内容
标题 发布/更新时间 阅读量
溅射方法 2020-05-11 56
磁控溅射方法 2020-05-13 839
溅射方法 2020-05-11 923
溅射装置和溅射方法 2020-05-12 729
溅射方法及装置 2020-05-13 322
溅射装置以及溅射方法 2020-05-12 240
溅射用靶、溅射装置及溅射方法 2020-05-13 387
溅射方法和溅射设备 2020-05-12 502
溅射方法 2020-05-11 970
溅射装置、溅射方法 2020-05-11 638
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈