技术领域
[0001] 本
发明涉及共
挤出模具,且更具体地涉及包含微层组件以及一个或多个分配板的共挤出模具,以制造具有微层和更厚的常规膜层的共挤出膜。
背景技术
[0002] 共挤出是通过将两种或多种熔融
聚合物一起放置到模具中来制造多层塑料(聚合物)膜的技术,其中聚合物成形为大致管状或平面形状(以成层形式并置)、并被推出模具中的环形或槽形开口。一旦在模具之外,仍熔融的多层膜暴露于具有一定
温度的环境中,所述温度保持低于膜的组成聚合物层的熔点,从而导致层在冷却并
固化时熔融结合到一起。
[0003] 多层膜的厚度在从模具露出时通常在50-200密
耳的范围内,但是膜在最终固化之前通常被拉伸以便膨胀其表面面积并且将其最终厚度减少至在从大约0.5至大约50密耳的范围内。常规多层膜通常具有3-10个层;在拉伸和变薄之前,即当仍处于模具中时,每个这种层的厚度通常在大约20-100密耳的范围内。
[0004] 微层挤出是通过减少膜的组成层的厚度来增加针对给定膜厚度的多层膜中层的总数量的技术。因此,虽然常规膜层通常在模具内范围为20-100密耳(即,在拉伸和变薄之前),但是微层通常具有在大约1-20密耳范围内的“模内”厚度。由此,微层膜可具有远大于10个层,例如20、30、40、50、或更多的层。相比于具有更少数量的更厚层构成的常规膜而言,已经发现这种微层膜提供一些有益属性,例如,改进的机械性质,例如良好弯曲的抗裂和抗穿孔性能。
[0005] 对于许多应用,期望的是将更厚的常规层与微层组合。对于诸如热密封和防滥用的功能而言,这种较厚的层通常比微层更优越。
[0006] 不幸的是,已经证实难以将薄层(例如微层)与相对厚的层的流组合以使得保持薄层的物理整体性和独立性质。这主要是因为界面流不稳定造成的,当微层在模具中与更厚层合并时面临这种界面流不稳定。这种界面流不稳定是由在微层上流动的更厚层的更强大侧转
力导致的,该侧转力源自更厚层相对于微层的更高
质量流率。作为微层的整体和独立特征的结果的损失消除或甚至根除其有益性质。
[0007] 因此,本领域需要一种改进的模具,其允许微层组合常规更厚层,使得保持微层的整体性和独立性质。
发明内容
[0008] 该需求被本发明满足,本发明在一方面提供一种用于共挤出多个流体层的模具,其包括:
[0009] a. 主成型杆;
[0010] b. 一个或多个分配板,所述板中的每个具有流体入口和流体出口,每个所述板的流体出口与所述主成型杆流体连通并且构造成将流体层沉积到所述主成型杆上面;和[0011] c. 微层组件,其包括:
[0012] (1)微层成型杆;和
[0013] (2)多个微层分配板,所述微层板中的每个具有流体入口和流体出口,每个所述微层板的流体出口与所述微层成型杆流体连通并且构造成将流体微层沉积到所述微层成型杆上面,所述微层板布置成提供预定顺序,微层以所述预定顺序沉积到所述微层成型杆上面以在所述微层成型杆上形成基本上统一的微
层流体
块体(mass),
[0014] 其中,所述微层成型杆与所述主成型杆流体连通,使得所述微层流体块体从所述微层成型杆流动并且到达所述主成型杆上面。
[0015] 本发明的另一方面涉及一种用于共挤出多个流体层的系统,其包括:如上所述的模具;以及一个或多个
挤出机,其与所述模具流体连通以向所述模具供应一种或多种流体。
[0016] 本发明的其它方面涉及一种共挤出多个流体层的方法,包括:
[0017] a. 将流体引导通过分配板并且到达主成型杆上面,所述分配板具有流体入口和流体出口,所述板的流体出口与所述主成型杆流体连通并且构造成使得所述流体沉积到所述主成型杆上面成为层;
[0018] b. 通过将至少一种附加流体引导通过微层组件而在微层成型杆上形成基本上统一的微层流体块体,所述微层组件包括多个微层分配板,每个所述微层板具有流体入口和流体出口,每个所述微层板的流体出口与所述微层成型杆流体连通并且构造成将流体微层沉积到所述微层成型杆上面,所述微层板布置成提供预定顺序,微层以所述预定顺序沉积到所述微层成型杆上面;以及
[0019] c. 将微层流体块体从所述微层成型杆引导并且到达所述主成型杆上面,以将所述微层流体块体与来自于所述分配板的所述流体层合并。
[0020] 本发明的这些以及其它方面和特征通过参考下述描述和
附图将被更好地理解。
附图说明
[0021] 图1是根据本发明的用于共挤出多个流体层的系统10的示意图,包括模具12;
[0022] 图2是图1所示的模具12的截面图;
[0023] 图3是模具12中的一个微层板48的平面图;
[0024] 图4是如图3所示的微层板48的截面图;以及
[0025] 图5是模具12的放大截面图,示出了来自于微层板48和分配板32的组合流。
具体实施方式
[0026] 图1示意性地示出了用于共挤出多个流体层的根据本发明的系统10。系统10通常包括模具12以及与模具12流体连通的一个或多个挤出机14a和14b,用于向模具供应一种或多种流体。
[0027] 在典型应用中,模具12共挤出的流体层可包括一种或多种熔融热塑性聚合物。这种聚合物的示例包括聚烯
烃、聚酯(例如,PET)、聚苯乙烯、聚酰胺同聚物和共聚物(例如,PA6、PA12、PA6/12等)、聚
碳酸酯等等。在聚烯烃族中,可使用各种聚乙烯同聚物和共聚物,以及聚丙烯同聚物和共聚物(例如,丙烯/乙烯共聚物)。聚乙烯共聚物可包括低
密度聚乙烯(LDPE)和高密度聚乙烯(HDPE)。合适的聚乙烯共聚物可包括各种范围的聚合物,例如,离聚物、乙烯/
醋酸乙烯酯(EVA)、乙烯/乙烯醇(EVOH)以及乙烯/α烯烃,包括异质(Zeigler-Natta催化)和均质(金属茂络合、单引用催化)乙烯/α烯烃共聚物。乙烯/α烯烃共聚物是乙烯与选自C3至C20α烯烃(例如,1-丁烯、1-戊烯、1-己烯、1-辛烯、甲基戊烯等等)的一种或多种共聚用
单体的共聚物,包括线性低密度聚乙烯(LLDPE)、线性中密度聚乙烯(LMDPE)、极低密度聚乙烯(VLDPE)和超低密度聚乙烯(ULDPE)。
[0028] 如常规的,聚合材料可以固态(例如,具有小球和薄片形式)经由相应料斗16a、b被供应到挤出机14a、b。挤出机14a、b保持在足以将固态聚合物转化为熔融态的温度,且挤出机内的内部螺钉(未示出)将熔融聚合物经由相应管道18a、b移动到模具12中并通过该模具12。如将在下文更详细说明的,在模具12内,熔融聚合物被转化为
薄膜层,且每层被
叠加、组合到一起并且在排出端20从模具驱出,即“共挤出”,以形成管状多层膜22。管状多层膜22在排出端20从模具12露出之后就暴露于环境空气或类似环境中,该环境的温度足够低以导致熔融聚合物从液态过渡为固态,所述膜从所述熔融聚合物形成。通过提供液体淬火浴(未示出)并接着将膜导向通过这种浴,可实现膜的附加冷却/淬火。
[0029] 于是,固化管状膜22被会聚装置24(例如,如图所示的V形导向机构)折叠(collapse),所述会聚装置包含辊阵列以利于膜22从其穿过。如图所示,可采用一对反向旋转的驱动辊25a、b,以将膜22拉动通过会聚装置24。于是,得到的折叠管状膜22可通过膜卷绕装置28被卷绕成辊26,如图所示。辊26上的膜22随后可被解绕以便使用(例如,用于
包装)或者用于进一步加工,例如,拉伸定向、辐照或其它常规膜加工技术,所述加工技术用于赋予膜的旨在终端应用所需的期望属性。
[0030] 现参照图2,进一步详细地描述了模具12。如上所述,模具12适于共挤出多个流体层,并且通常包括主成型杆30、一个或多个分配板32以及微层组件34。在当前示意的模具中,包括五个分配板32,分别以附图标记32a-e示出。需要时可包括更多或更少数量的分配板32。模具12中分配板的数量可根据需要范围可为例如从1至20、或甚至大于20。
[0031] 每个分配板32具有流体入口36和流体出口38(在板32b中未示出流体入口)。每个分配板32的流体出口38与主成型杆30流体连通,并且还构造成将流体层沉积在主成型杆上。分配板32可如美国
专利No. 5,076,776那样地构造成,所述专利以引用的方式全文结合到本文。如在No. 5,076,776中描述的,分配板32可具有一个或多个螺旋状流体流通道40,以将流体从流体入口36引导并且经由流体出口38到达主成型杆30上面。当流体沿着通道40前进时,通道逐渐变浅,使得流体被强制采用逐渐变薄的型面。流体出口38通常提供相对窄的流体流通路,使得流出板的流体具有对应于流体出口38的厚度的最终期望厚度。还可采用其它通道构造,例如超环面形状通道;如美国专利No. 4,832,589中公开的非对称超环面;心形通道;例如在美国专利No. 6,409,953中公开的圆锥形板上的螺旋形通道等等。通道可具有所示的半圆形或半椭圆形截面,或者可具有更完整的形状,例如椭圆或圆形的截面形状。
[0032] 在一些
实施例中,分配板32可具有大致环形的形状,使得流体出口38形成大致环状结构,其强制流经板的流体采用环状的形式。这种流体出口38的环状结构结合其靠近主成型杆30导致流经板32的流体在流体沉积到杆30上时采用圆柱形状。因此,每个分配板32的每个流体流在主成型杆30上形成不同的圆柱层。
[0033] 分配板32的流体出口38与主成型杆30间隔开,以形成环形通路42。这种间距的程度足以容纳沿着成型杆30流动的同心流体层的体积。
[0034] 分配板32布置在模具12中的顺序确定流体层沉积到主成型杆30上的顺序。例如,如果所有五个分配板32a-e都供应有流体,那么来自板32a的流体将首先沉积到主成型杆30上面,使得这种流体将直接
接触杆30。要沉积到成型杆上面的下一层将来自分配板32b。该层将沉积到来自于板32a的流体层上面。接下来,来自于板32c的流体将沉积到来自于板32b的流体的上面。如果在模具中不存在微层组件34,那么要沉积的下一层将来自于分配板32d,其会成层到来自于板32c的流体层的上面。最后,因此要沉积的最后且最外的层将来自于板32e。在该示例中(再次,省略微层组件34),从模具露出的得到管状膜22将具有五个不同层,其可布置成结合到一起的五个同心圆柱。
[0035] 因此,可理解的是,来自于分配板32的流体层直接(例如,来自于分配板32a的要沉积第一层)或间接(例如,来自于分配板32b-e的第二以及后续层)沉积到主成型杆30上面。
[0036] 如上所述,管状多层膜22在排出端20从模具12露出。因此,排出端20可包括环形排出开口44,以允许管状膜22穿出模具。这种环形排出开口通常称为“模具唇缘”。如所示意的,环形排出开口44的直径可大于环形通路42的直径,例如以将管状膜22的直径增加至期望程度。这具有如下效果,即相对于这种层在环形通路42中其驻留时间期间的厚度而言,减少构成管状膜22的每个同心层的厚度。替代性地,环形排出开口44的直径可小于环形通路42的直径。
[0037] 微层组件34通常包括微层成型杆46和多个微层分配板48。在当前所述的实施例中,示出了十五个微层分配板48a-o。需要时可包括更多或更少数量的微层分配板48。微层组件34中微层分配板48的数量可根据需要在例如从1至50、或甚至大于50的范围内。在本发明的许多实施例中,微层组件34中微层分配板48的数量将是至少大约5,例如10、15、20、25、30、35、40、45、50等等,或者在前述数值之间的任何数量的板。
[0038] 每个微层板48具有流体入口50和流体出口52。每个微层板48的流体出口52与微层成型杆46流体连通,并且构造成将流体微层沉积到微层成型杆上面。类似于分配板32,微层板48还可如上述结合的美国专利No. 5,076,776中所述那样地构造。
[0039] 例如,如图3所示,微层板48可具有螺旋状流体流通道54,其经由流体入口50供应有流体。替代性地,在板48中可采用另外两个流体流通道,其可从分离的流体入口或单一流体入口供给。还可采用其它通道构造,例如超环面形状通道;如美国专利No. 4,832,589中公开的非对称超环面;心形通道;例如在美国专利No. 6,409,953中公开的圆锥形板上的螺旋形通道等等。通道可具有所示的半圆形或半椭圆形截面,或者可具有更完整的形状,例如椭圆或圆形的截面形状。
[0040] 与流动通道54所选择的具体构造或样式无关,其功能是将流体入口50与流体出口52连接,使得通过微层组件34的流体的流动从大致流状轴向流动转化为朝向微层成型杆46的大致膜状的会聚径向流动。如图3所示的微层板48可通过两种方式完成该功能。首先,通道54朝向板的中心螺旋向内,且因此将流体从位于板周边附近的流体入口50朝向位于板中心附近的流体出口52引导。其次,通道54可制成在通道接近流体出口52时具有逐渐变浅的深度。这具有这样的效果,导致流经通道54的一些流体溢出该通道并且以相对平坦的膜状流形式朝向流体出口52径向向内前进。可在溢出区域53中出现这种径向向内流,该溢出区域可位于通道54的间隔螺旋区段之间。如图4所示,溢出区域53可形成为板48中的下陷区段,即相对于在板的周边的较厚非下陷区域55下陷。如图3所示,溢流区域53在台阶状沉口(step-down)57开始并且例如朝向流体出口52在通道54的螺旋线之间螺旋向内。非下陷周边区域55抵接板或者板上面的其它结构,例如如图2和图5所示,并且因此防止流体流动到板的周边之外。由此,非下陷周边区域55强制进入板的流体朝向流体出口52径向向内流动。
因此,台阶状沉口57表示在“无流动”周边区域55与“流动”区域53和54之间的分界线或分界区域。保持在通道54中并且到达通道端部56的流体直接流动到流体出口52中。
[0041] 流体出口52大致提供相对窄的流体流通路且通常确定流出微层板48的微层的厚度。流体出口52的厚度且因此从其流动穿过的微层的厚度可例如通过在出口52处的板表面与板或在出口52处正好在板表面上方的其它结构(例如,岐管76或78)的底部之间的间距来确定。
[0042] 继续参照图2-3,每个微层分配板48可具有延伸通过该板的孔58。孔58可基本上
定位在每个微层板48的中心,其中每个板的流体出口52定位成相邻于这种孔58。由此,微层成型杆46可延伸通过每个微层分配板48的孔58。采用这种构造,微层分配板48可具有大致环形的形状,使得流体出口52形成大致环形结构,其强制流经板的流体以径向会聚的环状流样式离开板。流体出口52的这种环状结构结合其靠近微层成型杆46导致离开微层板48的流体在流体沉积到微层杆46上面时采用圆柱形状。因此,来自于每个微层分配板48的每个流体流在微层成型杆46上沉积不同的圆柱微层。
[0043] 微层板48可布置成提供预定顺序,微层按照该顺序沉积到微层成型杆46上面。例如,如果所有十五个微层分配板48a-o都供应有流体,那么来自于板48a的微层将首先沉积到微层成型杆46上面,使得这种微层将直接接触杆46。要沉积到成型杆上面的下一微层将来自于微层板48b。该微层将沉积到来自于板48a的微层上面。接下来,来自于微层板48c的流体将沉积到来自于板48b的微层的上面,等等。因此,要沉积的最后且最外的微层来自于板48o。由此,微层以基本上统一、微层流体块体60(见图5)的形式沉积到微层成型杆46上面。在本示例中,这种微层流体块体60会包括高达十五个不同微层(在杆46的下游端),其布置成以预定顺序(基于微层板48a-o的顺序)在微层成型杆46上结合并流动到一起的十五个同心圆柱微层。
[0044] 因此,可理解的是,来自于微层分配板48的流体层直接(例如,来自于微层板48a的要沉积的第一层)或者间接(例如,来自于微层板48b-o的第二以及后续层)沉积到微层成型杆46上面。在每个微层板48中的孔58优选地直径足够大,以将微层板48的流体出口52与微层成型杆46足够间隔开以形成用于微层的环形通路62(图2)。这种间距的程度优选地足以容纳沿着微层杆46流动的同心微层的体积。
[0045] 根据本发明,微层成型杆46与主成型杆30流体连通,使得微层流体块体60从微层成型杆46流动并且到达主成型杆30上面。这可在图5中看出,其中来自于微层组件34的微层流体块体60示出从微层成型杆46流动并且到达主成型杆30上面。微层杆46与主杆30之间的流体连通可通过在模具12中包括环形传送间隙64来实现,该间隙位于用于微层杆46的环形通路62与用于主杆30的环形通路42之间(也可见图2)。这种传送间隙64允许微层流体块体60流出环形通路62并且进入到用于主成型杆30的环形通路42中。由此,来自于微层板48的微层作为统一块体被引入到来自于分配板32的更厚流体层的通常更大按体积计的流中。
[0046]
发明人发现,照这样将微层流与较厚流体层结合最小化界面流不稳定的有害影响,其通常使得难以将薄层与相对厚的层的流组合,使得保持物理整体性和薄层的独立性质。微层成型杆46允许来自于微层板48的微层以相对平稳的方式组装成微层流体块体60,即不经受从分配板32流动的较厚层的更强大侧转力。当微层组装成在杆46上的统一流体块体60,则最小化了将每层合并到流体块体60上所产生的界面流不
稳定性,因为所有微层具有类似的厚度,即,相对于来自于分配板32的流体层的较大厚度。当完全组装时,微层流体块体60进入在主杆30上的来自于分配板32的较厚层的流,其中质量流率更紧密地接近这种更厚层的质量流率,藉此增加流体块体60中的微层的能力,以保持其物理整体性和独立物理性质。
[0047] 如图2所示,主成型杆30和微层成型杆46可在模具12中彼此基本上同轴对齐,例如,微层成型杆46在主成型杆30之外。该构造提供用于模具12的相对紧凑构造,其在严格空间限制方面是十分有利的,该严格空间限制存在于许多商业共挤出系统的操作环境中。
[0048] 例如,主成型杆30与微层成型杆46的同轴对齐允许分配板32和微层组件34沿着主成型杆轴向定位,如图2所示。这减少了模具12的宽度并且还允许来自于分配板32和微层组件34两者的流体在轴向(例如,在沿着主成型杆30和微层成型杆46的平行路径中)流动,接着一起沿着传送间隙64下游的主杆30流动,在此处微层流体块体60从微层杆46流动并且到达主杆30以与来自于分配板32的流体层会合。
[0049] 这种构造还允许模具12以各种不同构造来设定,以产生具有厚层和微层的期望组合的共挤出膜。例如,一个或多个分配板32可位于微层组件34的上游。在该实施例中,在微层流体块体60沉积到主杆30上面之前,来自于该上游分配板的流体层沉积到主成型杆30上面。参照图2,可以看出,分配板32a-c位于在模具12中的微层组件34的上游。因此,来自于这种上游分配板32a-c的流体层65被插在微层流体块体60与主成型杆30之间(见图5)。
[0050] 替代性地,微层组件34可位于分配板32的上游,即,在替代性实施例中分配板可位于微层组件34的下游。因此,来自于微层组件34的微层(即,微层流体块体60)将在来自于下游分配板32的流体层沉积到其上之前沉积到主成型杆30上面。参照图2,可以看出,微层组件34位于模具12中分配板32d-e的上游。还如图5所示,微层流体块体60因而被插在来自于这种分配板32d-e的流体层70与主成型杆30之间。
[0051] 如图2所示,微层组件34还可定位在一个或多个上游分配板(例如,板32a-c)与一个或多个下游分配板(例如,板32d-e)之间。在该实施例中,来自于上游板32a-c的流体首先沉积到主杆30上面,之后沉积来自于微层组件34的微层流体块体60、接着进一步沉积来自于下游板32d-e的流体。在得到的多层膜中,来自于微层组件34的微层被夹在来自于上游板32a-c和下游板32d-e的较厚层之间。
[0052] 作为进一步变型,模具12可包括一个或多个附加微层组件,其可与微层组件34相同或者可具有不同构造,例如不同数量的微层板。在该实施例中,任何这种附加微层组件可与主成型杆30同轴对齐,并且可定位在微层组件34的上游和/或下游,如图2所示。这种附加微层组件可用于代替分配板32或在分配板32之外被使用。因此,附加微层组件可相邻于微层组件34定位,或者可通过一个或多个分配板32从这种组件34间隔开。如果在模具12中包括两个或多个微层组件,这种组件也可能被夹在上游和下游分配板之间,例如在上游板32a-c和下游板32d-e之间,如图2所示。
[0053] 在本发明的许多实施例中,微层板48中的大多数或全部的厚度小于分配板32的厚度。因此,例如分配板32可具有在从大约0.5至大约2英寸范围内的厚度T(1 见图5),例如大于0.5英寸、例如0.501或更大、0.502或更大、0.503或更大等等,或者小于2,例如1.999或更小、1.998或更小等等,例如在从大约0.501至1.999英寸、从0.502至1.998英寸等等。微层分配板48的厚度T2可在从大约0.1至大约0.5英寸的范围内,例如大于0.1、例如0.101或更大、0.102或更大等等,或者小于0.5,例如0.499或更小、0.498或更小等等,例如在从大约0.101至0.499英寸、从0.102至0.498英寸等等。这种厚度范围决不旨在以任何方式限制,而仅是示意典型示例。并非所有分配板32必须具有相同的厚度,并非所有微层板48必须具有相同的厚度。例如,在组件34的微层板的最下游的微层板48o可比其它微层板更厚,以容纳倾斜的接触表面66,所述倾斜接触表面可用于利于将微层流体块体60传送通过环形间隙64并且到达主成型杆30上面。
[0054] 同样如图5所示,流出板48的每个微层的厚度“M”对应于每个微层从其露出的流体出口52的厚度。从微层板48流动的微层用虚线箭头68在图5中示意性地示出。
[0055] 类似地,流出板32的每个相对厚流体层的厚度“D”对应于每个这种层从其露出的流体出口38的厚度(见图5)。从分配板32流动的相对厚流体层用虚线箭头70在图5中示意性地示出。
[0056] 通常,微层的厚度M将小于来自于分配板32的流体层的厚度D。这种微层相对于来自于分配板32的流体层越薄,对于给定总膜厚度而言就有越多的这种微层可被包括在多层膜中。来自于每个微层板48的微层厚度M将通常在大约1-20密耳(1密耳=0.001英寸)的范围内,例如大于1密耳、大于2密耳、大于3密耳等等,小于20密耳、小于19密耳、小于18密耳等等,例如在从2至19密耳之间、3至18密耳之间、4至17密耳之间等等。来自于每个分配板32的厚度D将通常在大约20-100密耳的范围内,例如大于20密耳、大于21密耳、大于22密耳等等,小于100密耳、小于90密耳、小于80密耳、小于70密耳、小于60密耳等等,例如在20至50密耳之间、21至49密耳之间、22至48密耳之间、23至47密耳之间等等。前述厚度决不旨在以任何方式限制本发明的范围,并且被提供成仅用于描述目的。
[0057] M:D的比可在从大约1:1至大约1:8变化,例如大于1:1、大于1:1.1、大于1:1.2、大于1:2、大于1:3等等,小于1:8、小于1:7.9、小于1:7.8、小于1:7、小于1:6等等,例如在1:1.1 - 1:7.9之间、1:1.2 - 1:7.8之间、1:2 - 1:7之间、1:3 - 1:6之间、1:4 - 1:5之间等等。
[0058] 厚度M在从微层板48流动的微层68之中可相同或不同,以实现在得到膜的微层区段中的期望层厚度分配。类似地,厚度D在从分配板32流动的更厚层70之中可相同或不同,以实现在得到膜的“厚层区段”中的期望层厚度分配。在流体向下游流动通过模具时(例如,如图2所示在
熔化管件在环形排出开口44膨胀时)和/或在管状膜的进一步下游加工(例如,拉伸、定向或以其它方式膨胀管件)以实现最终期望膜厚度和/或在膜中赋予期望性质时,层厚度M和D通常将变化。这种下游加工技术是本领域已知的。通过板的流体流率还将对于对应膜层的最终下游厚度具有影响。
[0059] 往回参照图1-2,可理解的是,根据本发明的共挤出多个流体层的方法包括步骤:
[0060] a. 将一种或多种流体引导通过一个或多个分配板32并且到达模具12中的主成型杆30上面;
[0061] b. 通过将至少一种附加流体引导通过微层组件34而在微层成型杆46上形成基本上统一的微层流体块体60;以及
[0062] c. 将微层流体块体60从微层成型杆46引导并到达主成型杆30上面,以将微层流体块体60与来自于分配板32的流体层合并。
[0063] 如上所述,分配板32和微层板48优选地具有环形构造,使得主成型杆30和微层杆46穿过板的中心以接收被引导到板中的流体。流体可从挤出机(例如,挤出机14a、b)供应。
流体可经由竖直供应通路72被引导到模具12中,所述竖直供应通路72接收来自于供给管道
18的流体并且将这种流体引导到模具板32和48中。为此目的,板可具有例如如图3所示靠近板的周边的一个或多个通孔74,其可对齐以提供竖直通路72,流体可通过该竖直通路被引导到一个或多个下游板。
[0064] 虽然在图3中示出了三个通孔74,但是在需要时可采用更多或更少的数量,例如取决于所采用的挤出机的数量。一般而言,一个供应通路72可用于每个挤出机14,所述挤出机将流体供应到模具12。挤出机14可围绕模具的周边排列,例如类似于轮子供给到
轮毂中的
轮辐,其中模具位于轮毂
位置。
[0065] 参照图1,模具12可包括主岐管76,以经由供给管道18从挤出机14接收流体流;并接着将这种流体引导到
指定竖直供应通路72中,以便将所述流体输送到预期分配板32和/或微层板48。微层组件34能可选地包括微层岐管78,以经由供给管道82(图1中以虚线示出)接收从一个或多个附加挤出机80引导的流体。
[0066] 在图1-2示意的示例中,挤出机14b将流体(例如,第一熔融聚合物)经由管道18b和主岐管76直接输送到分配板32a的流体入口36中。在当前描述的实施例中,分配板32a接收来自于挤出机14b的所有输出,即,使得模具12中的剩余板和微层板(如果有的话)从其它挤出机供应。替代性地,分配板32a的流体入口36可构造成包含出口端口,以允许供应流体的一部分传送通过以到达定位在分配板32a下游的一个或多个附加板(例如,分配板32和/或微层板48)。
[0067] 例如,相对于所述微层板48如图3-4所示,出口端口84可形成在板的流体入口50的基部。这种出口端口84允许输送到板48的流体的流动分流:一些流体流入到通道54中,而其余部分传送通过板用于输送到一个或多个附加下游板48和/或32。在分配板32的流体入口36的基部中可包括类似出口端口。经由相邻板中的通孔74(见图5)、或经由其它装置(例如,侧向流供应板),可实现将流体输送通过出口端口84(或通过分配板32中的类似的出口端口),以在需要时将流体以轴向、径向和/或切向方向引导通过模具12,以到达其预期目的地。
[0068] 经由挤出机和供应管道和/或在图2中未示出的通孔,分配板32b-c被供应有流体。在图5中示出了来自于分配板32a-c的沿着主成型杆30的流体流,如附图标记65所示。
[0069] 如图1-2所示,通过挤出机14a和80,微层组件34被供应有流体。具体地说,经由供应管道18a和竖直管道和/或通路72,微层板48a、c、e、g、i、k、m和o由挤出机14a供应。经由供给管道82和竖直供应通路86,微层板48b、d、f、h、j、i和n由挤出机80供应有流体。在所述实施例中,竖直通路86起始于微层岐管78并且将流体仅在微层组件34中输送。相比之下,竖直通路72起始于岐管76,延伸通过分配板32a-c(经由在这种板中对齐的通孔74),并在最后达到微层板48a之前经由岐管通路79进一步延伸通过岐管78。
[0070] 来自于挤出机14a和竖直通路72的流体在流体入口50处进入微层板48a。一些流体从入口50传送并进入到通道54中(用于在第一微层要沉积到杆46上时最终沉积到微层杆46上),而流体的剩余部分可经由出口端口84传送通过板48a。微层板48b可定向(即,旋转),使得通孔74定位在微层板48a的出口端口84下面,使得流出出口端口84的流体流动通过微层板48b并且不进入到其通道54中。微层板48c可定位成使得其流体入口50处于与微层板48a相同的位置,使得流出微层板48b的通孔74的流体流动到板48c的入口50中。该流体中的一些流入到板48c的通道54中,而流体中的一些经由出口端口84传送通过板、传送通过下一板48d的通孔74并且由下一微层板48e的流体入口50接收,其中一些流体流入到通道54中且一些流体经由出口端口84传送出板。来自于挤出机14a的流体继续按照这种方式分配到剩余板48g、i、k和m,出了微层板48o外,其不具有出口端口84使得流体不传送通过板48o,除了经由通道54和流体出口52以外。
[0071] 以类似的方式,来自于挤出机80和竖直通路86的流体经由通孔74传送通过微层板48a,并在其流体入口50进入微层板48b。该流体中的一些流动通过通道54并且在出口52离开板,以变成要沉积到微层杆46上面(在来自于板48a的微层的上面)的第二微层,而流体的剩余部分经由出口端口84传送通过板。这种流体可经由通孔74传送通过微层板48c,并且经由其入口50与板48c的通孔74合适对齐而输送到板48d,来自于挤出机80的流体传送通过该通孔74。该流体分配过程可针对板48f、h、j和i继续,直到流体到达板48n为止,所述板48n不具有出口端口84使得流体除了经由其流体出口52以外不传送通过该板。
[0072] 由此,包括来自于挤出机14a和80的交替流体的一系列微层可形成在微层杆46上。例如,如果挤出机14a供应EVOH且挤出机80供应PA6,那么得到的微层流体块体60可具有结构:
[0073] EVOH/PA6/EVOH/PA6/EVOH/PA6/EVOH/PA6/EVOH/PA6/EVOH/PA6/EVOH/PA6/EVOH[0074] 来自于挤出机14a和80的流体可相同或不同,使得在微层流体块体60中的得到微层可具有相同或不同成分。可仅采用一个挤出机,以向整个微层组件34供应流体,在该情形中,所有得到微层将具有相同的成分。替代性地,可使用三个或更多挤出机以向微层组件34供应流体,例如每个挤出机供应不同的流体,使得三个不同微层成分形成在微层流体块体60中,采用任何期望顺序,例如abcabc、abbcabbc、abacabac等等。
[0075] 类似地,引导通过分配板32的流体可与导向通过微层组件34的流体基本上相同。替代性地,引导通过分配板32的流体可不同于引导通过微层组件的流体。得到的管状膜可具有厚层和微层,其具有基本上相同的成分。替代性地,来自于分配板32的厚层中的一些可与来自于微层板48的微层中的一些或全部相同,而其余厚层可与微层中的一些或全部不同。
[0076] 在所示的示例中,未示出用于分配板32d-e的挤出机和供应通路。通过上游分配板32和/或微层板48的竖直供应通路72、86、通孔74和/或出口端口84的合适布置,这种板中的一个或两者可由挤出机14a、14b和/或80供应。替代性地,分配板32d-e中的一个或两者可根本不由挤出机供应,或者可由分离挤出机供应,例如经由板32a-c和微层组件34合适对齐的通孔74与主岐管76和延伸通过分配板32a-c和微层组件34的竖直供应通路72流体连通的挤出机,以产生通过模具12的流体传输通路,从而导向到分配板32d和/或32e的流体入口50。
[0077] 期望时,分配板32和/或微层板48中的一个或多个可从一个或多个挤出机直接供应流体,即,通过将流体例如从板的侧面直接引导到板的流体入口中,而不会将流体首先规划通过岐管76或78中的一个和/或不需要使用竖直供应通路72、86。一个或多个板32和/或48的这种引导供给可用作岐管和竖直供应通路的替代或者除了使用岐管和竖直供应通路以外被使用,如图2所示。
[0078] 为了描述和描述目的,已经示出了本发明的优选实施例的前述描述。这不旨在是详尽的或者将本发明限制在所公开的精确形式,并且根据前述教导可能作出
修改和变型或者可从本发明的实践中得到修改和变型。