首页 / 专利库 / 饮料和饮料加工 / 酒精饮料 / 苯并环戊酮衍生物及其制备方法与应用

苯并环戊生物及其制备方法与应用

阅读:636发布:2020-05-12

专利汇可以提供苯并环戊生物及其制备方法与应用专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种苯并环戊 酮 衍 生物 及其制备方法与在抑制黄曲霉毒素中的应用,采用本发明所述制备方法,利用邻苯二乙酸经酯化、缩合、亲核取代、催化脱羧、迈克尔加成、高温脱羧等一系列反应,最终制得的苯并环戊酮衍生物能够抑制黄曲霉毒素,并抑制谷物,食品和饮料中黄曲霉的生长,且抑制黄曲霉生长和产毒的效果好,安全无毒 副作用 ,使用方便,易于工业化生产,因此具有极其广泛的应用前景。,下面是苯并环戊生物及其制备方法与应用专利的具体信息内容。

1.苯并环戊生物,其特征在于,所述苯并环戊酮衍生物的结构式为:
2.如权利要求1所述的苯并环戊酮衍生物的制备方法,其特征在于,主要包括以下步骤:
步骤一、酯化:将邻苯二乙酸溶于甲苯中,加入丙烯醇,所述邻苯二乙酸与丙烯醇的摩尔比为1:2.5,在酸性条件下加热至120~130℃,反应2~4h,经洗涤干燥,减圧蒸留,得邻苯二乙酸二丙烯酯;
步骤二、缩合:氮气保护下,向无甲苯中加入氢化钠,再滴加所述邻苯二乙酸二丙烯酯,所述氢化钠与邻苯二乙酸二丙烯酯的摩尔比为1.5:1,加热升温至90℃,反应3~4h,减圧蒸留,制得缩合反应中间体;
步骤三、亲核取代:取无水,无水丙酮混合,搅拌的同时依次加入所述缩合反应中间体,3-溴-1-丙烯,所述缩合反应中间体与3-溴-1-丙烯的摩尔比为1:1~1.01,加热回流7~8h,减圧蒸留,制得亲核取代中间体;
步骤四、催化脱羧:将无水乙腈加热回流30min,降温至25℃,加入PPh3,完全溶解后加入Pd(OAc)2,滴加所述亲核取代中间体,加热至80℃,反应30min,减圧蒸留,制得脱羧中间体,所述PPh3,Pd(OAc)2,亲核取代中间体的摩尔比为1:1:50;
步骤五、迈克尔加成:氮气保护下,向无水甲醇中加入钠,降温至0℃,依次加入摩尔比为1:1.4~1.5的脱羧中间体和丙二酸二甲酯,反应8~10h,减圧蒸留,制得加成反应中间体;
步骤六、高温脱羧:氮气保护下,将加成反应中间体加热至180~190℃,反应6~8h,冷却至25℃,经洗涤干燥,减圧蒸留,制得所述苯并环戊酮衍生物。
3.如权利要求2所述的制备方法,其特征在于,所述步骤一中,反应温度为120℃,反应时间为3h。
4.如权利要求2所述的制备方法,其特征在于,所述步骤三中,缩合反应中间体与3-溴-
1-丙烯的摩尔比为1:1.01。
5.如权利要求2所述的制备方法,其特征在于,所述步骤五中,脱羧中间体和丙二酸二甲酯的摩尔比为1:1.5。
6.如权利要求2所述的制备方法,其特征在于,所述步骤六中,反应温度为180℃,反应时间为8h。
7.如权利要求1所述的苯并环戊酮衍生物在抑制黄曲霉毒素中的应用。
8.如权利要求1所述的苯并环戊酮衍生物在抑制谷物,食品和饮料中黄曲霉生长中的应用。
9.如权利要求8所述的苯并环戊酮衍生物的应用,其特征在于,所述谷物为小麦、大麦、大米、玉米、黑麦和燕麦中的至少一种;
所述食品为咖啡豆、花生、核桃、开心果、榛子、腰果、杏仁、葵花籽、鲜葡萄和葡萄干中的至少一种;
所述饮料为葡萄汁、葡萄酒、咖啡饮品、麦芽饮料、酒精饮料、燕麦饮料和大米饮料中的至少一种。

说明书全文

苯并环戊生物及其制备方法与应用

技术领域

[0001] 本发明涉及化学合成技术领域。更具体地说,本发明涉及一种苯并环戊酮衍生物及其制备方法与应用。

背景技术

[0002] 黄曲霉毒素主要由黄曲霉和寄生曲霉产生,这两种菌是广泛分布于自然界的腐生真菌,可以寄生于粮食、食品及饲料中进行生长繁殖,并导致上述食品及饲料霉变变质,营养品质和加工品质大幅度下降,造成巨大的经济损失;更为严重的是这两种菌在生长过程中产生具有强毒性和强致癌性的一类结构类似的化合物黄曲霉毒素(AFT),对人及动物肝脏组织有破坏作用,严重时可导致肝癌甚至死亡,据流行病学调查发现世界范围内28%的原发性肝细胞癌是由黄曲霉毒素引起的。
[0003] 熏蒸剂熏蒸储粮可以在不移动粮食的情况下,达到消除及控制霉菌生长的目的,其经济性、可操作性等都是其它措施无法比拟的。我国在1987年《粮油储藏技术规范》(试行)中规定的熏蒸剂包括:磷化氢(其发生物为磷化片剂、丸剂、粉剂和磷化锌)、氯化苦、溴甲烷、敌敌畏等。其中大部分熏蒸剂被各样的缘由淘汰,仅剩磷化氢和溴甲烷,但后者也被联合国环境规划署列为破坏大气臭层物质的受控名单,目前仅剩的只有磷化氢。研究发现磷化氢对霉菌具有一定的触杀(或失活)、抑制和刺激(或促进)作用,对霉菌细胞呼吸强度有较显著地抑制作用。但是磷化氢只能在曲霉全株菌体时抑制率最好,菌丝体期抑制作用不明显,无法达到防控的作用,并且磷化氢属于剧毒、易燃之物,在储粮熏蒸时若操作不当容易引起泄露,危害操作人员的安全,并且会对所熏蒸的粮食造成毒性残留。
[0004] 因此,筛选和开发能够高效抑制黄曲霉或寄生曲霉生长、安全无毒的物质,用于防控食品受到黄曲霉毒素的污染,提升食品安全平,具有十分重要的经济价值和社会意义。

发明内容

[0005] 本发明的一个目的是解决至少上述问题,并提供至少后面将说明的优点。
[0006] 本发明还有一个目的是提供一种苯并环戊酮衍生物,且其对黄曲霉或寄生曲霉产毒和生长的抑制效果显著。
[0007] 为了实现根据本发明的这些目的和其它优点,提供了一种苯并环戊酮衍生物,所述苯并环戊酮衍生物的结构式为:
[0008]
[0009] 所述的苯并环戊酮衍生物的制备方法,其主要包括以下步骤:
[0010] 步骤一、酯化:将邻苯二乙酸溶于甲苯中,加入丙烯醇,所述邻苯二乙酸与丙烯醇的摩尔比为1:2.5,在酸性条件下加热至120~130℃,反应2~4h,经洗涤干燥,减圧蒸留,得邻苯二乙酸二丙烯酯;
[0011] 步骤二、缩合:氮气保护下,向无水甲苯中加入氢化钠,再滴加所述邻苯二乙酸二丙烯酯,所述氢化钠与邻苯二乙酸二丙烯酯的摩尔比为1.5:1,加热升温至90℃,反应3~4h,减圧蒸留,制得缩合反应中间体;
[0012] 步骤三、亲核取代:取无水,无水丙酮混合,搅拌的同时依次加入所述缩合反应中间体,3-溴-1-丙烯,所述缩合反应中间体与3-溴-1-丙烯的摩尔比为1:1~1.01,加热回流7~8h,减圧蒸留,制得亲核取代中间体;
[0013] 步骤四、催化脱羧:将无水乙腈加热回流30min,降温至25℃,加入PPh3,完全溶解后加入Pd(OAc)2,滴加所述亲核取代中间体,加热至80℃,反应30min,减圧蒸留,制得脱羧中间体,所述PPh3,Pd(OAc)2,亲核取代中间体的摩尔比为1:1:50;
[0014] 步骤五、迈克尔加成:氮气保护下,向无水甲醇中加入钠,降温至0℃,依次加入摩尔比为1:1.4~1.5的脱羧中间体和丙二酸二甲酯,反应8~10h,减圧蒸留,制得加成反应中间体;
[0015] 步骤六、高温脱羧:氮气保护下,将加成反应中间体加热至180~190℃,反应6~8h,冷却至25℃,经洗涤干燥,减圧蒸留,制得所述苯并环戊酮衍生物。
[0016] 对应的反应方程式为:
[0017]
[0018] 优选的是,所述步骤一中,反应温度为120℃,反应时间为3h。
[0019] 优选的是,所述步骤三中,缩合反应中间体与3-溴-1-丙烯的摩尔比为1:1.01。
[0020] 优选的是,所述步骤五中,脱羧中间体和丙二酸二甲酯的摩尔比为1:1.5。
[0021] 优选的是,所述步骤六中,反应温度为180℃,反应时间为8h。
[0022] 本发明所述的苯并环戊酮衍生物对黄曲霉毒素的抑制效果显著。
[0023] 本发明所述的苯并环戊酮衍生物对谷物,食品和饮料中黄曲霉生长的抑制效果显著。
[0024] 优选的是,所述谷物为小麦、大麦、大米、玉米、黑麦和燕麦中的至少一种;
[0025] 所述食品为咖啡豆、花生、核桃、开心果、榛子、腰果、杏仁、葵花籽、鲜葡萄和葡萄干中的至少一种;
[0026] 所述饮料为葡萄汁、葡萄酒、咖啡饮品、麦芽饮料、酒精饮料、燕麦饮料和大米饮料中的至少一种。
[0027] 本发明至少包括以下有益效果:
[0028] 本发明所述苯并环戊酮衍生物,化学性质稳定,在空气中不易被氧化和还原,产率高,能够有效抑制黄曲霉毒素,并对谷物,食品和饮料中黄曲霉生长的抑制效果显著,具有使用方便、安全性高的优点,符合保障食品安全的方向,具有良好的开发应用潜
[0029] 本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本发明的研究和实践而为本领域的技术人员所理解。

具体实施方式

[0030] 下面结合实例对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
[0031] 应当理解,本文所使用的诸如“具有”、“包含”以及“包括”术语并不配出一个或多个其它元件或其组合的存在或添加。
[0032] 需要说明的是,下述实施方案中所述实验方法,如无特殊说明,均为常规方法,所述试剂和材料,如无特殊说明,均可从商业途径获得。
[0033] <实例1>
[0034] 步骤一、酯化:将邻苯二乙酸溶于甲苯中,加入丙烯醇,所述邻苯二乙酸与丙烯醇的摩尔比为1:2.5,在酸性条件下加热至120℃,反应3h,经洗涤干燥,减圧蒸留,得邻苯二乙酸二丙烯酯;
[0035] 步骤二、缩合:氮气保护下,向无水甲苯中加入氢化钠,再滴加所述邻苯二乙酸二丙烯酯,所述氢化钠与邻苯二乙酸二丙烯酯的摩尔比为1.5:1,加热升温至90℃,反应3h,减圧蒸留,制得缩合反应中间体;
[0036] 步骤三、亲核取代:取无水碳酸钾,无水丙酮混合,搅拌的同时依次加入所述缩合反应中间体,3-溴-1-丙烯,所述缩合反应中间体与3-溴-1-丙烯的摩尔比为1:1.01,加热回流8h,减圧蒸留,制得亲核取代中间体;
[0037] 步骤四、催化脱羧:将无水乙腈加热回流30min,降温至25℃,加入PPh3,完全溶解后加入Pd(OAc)2,滴加所述亲核取代中间体,加热至80℃,反应30min,减圧蒸留,制得脱羧中间体,所述PPh3,Pd(OAc)2,亲核取代中间体的摩尔比为1:1:50;
[0038] 步骤五、迈克尔加成:氮气保护下,向无水甲醇中加入钠,降温至0℃,依次加入摩尔比为1:1.5的脱羧中间体和丙二酸二甲酯,反应8h,减圧蒸留,制得加成反应中间体;
[0039] 步骤六、高温脱羧:氮气保护下,将加成反应中间体加热至180℃,反应8h,冷却至25℃,经洗涤干燥,减圧蒸留,制得所述苯并环戊酮衍生物。
[0040] <实例2>
[0041] 步骤一、酯化:将邻苯二乙酸溶于甲苯中,加入丙烯醇,所述邻苯二乙酸与丙烯醇的摩尔比为1:2.5,在酸性条件下加热至130℃,反应2h,经洗涤干燥,减圧蒸留,得邻苯二乙酸二丙烯酯;
[0042] 步骤二、缩合:氮气保护下,向无水甲苯中加入氢化钠,再滴加所述邻苯二乙酸二丙烯酯,所述氢化钠与邻苯二乙酸二丙烯酯的摩尔比为1.5:1,加热升温至90℃,反应4h,减圧蒸留,制得缩合反应中间体;
[0043] 步骤三、亲核取代:取无水碳酸钾,无水丙酮混合,搅拌的同时依次加入所述缩合反应中间体,3-溴-1-丙烯,所述缩合反应中间体与3-溴-1-丙烯的摩尔比为1:1,加热回流8h,减圧蒸留,制得亲核取代中间体;
[0044] 步骤四、催化脱羧:将无水乙腈加热回流30min,降温至25℃,加入PPh3,完全溶解后加入Pd(OAc)2,滴加所述亲核取代中间体,加热至80℃,反应30min,减圧蒸留,制得脱羧中间体,所述PPh3,Pd(OAc)2,亲核取代中间体的摩尔比为1:1:50;
[0045] 步骤五、迈克尔加成:氮气保护下,向无水甲醇中加入钠,降温至0℃,依次加入摩尔比为1:1.4的脱羧中间体和丙二酸二甲酯,反应10h,减圧蒸留,制得加成反应中间体;
[0046] 步骤六、高温脱羧:氮气保护下,将加成反应中间体加热至190℃,反应6h,冷却至25℃,经洗涤干燥,减圧蒸留,制得所述苯并环戊酮衍生物。
[0047] <实例3>
[0048] 步骤一、酯化:将邻苯二乙酸溶于甲苯中,加入丙烯醇,所述邻苯二乙酸与丙烯醇的摩尔比为1:2.5,在酸性条件下加热至120℃,反应4h,经洗涤干燥,减圧蒸留,得邻苯二乙酸二丙烯酯;
[0049] 步骤二、缩合:氮气保护下,向无水甲苯中加入氢化钠,再滴加所述邻苯二乙酸二丙烯酯,所述氢化钠与邻苯二乙酸二丙烯酯的摩尔比为1.5:1,加热升温至90℃,反应3.5h,减圧蒸留,制得缩合反应中间体;
[0050] 步骤三、亲核取代:取无水碳酸钾,无水丙酮混合,搅拌的同时依次加入所述缩合反应中间体,3-溴-1-丙烯,所述缩合反应中间体与3-溴-1-丙烯的摩尔比为1:1.01,加热回流7h,减圧蒸留,制得亲核取代中间体;
[0051] 步骤四、催化脱羧:将无水乙腈加热回流30min,降温至25℃,加入PPh3,完全溶解后加入Pd(OAc)2,滴加所述亲核取代中间体,加热至80℃,反应30min,减圧蒸留,制得脱羧中间体,所述PPh3,Pd(OAc)2,亲核取代中间体的摩尔比为1:1:50;
[0052] 步骤五、迈克尔加成:氮气保护下,向无水甲醇中加入钠,降温至0℃,依次加入摩尔比为1:1.5的脱羧中间体和丙二酸二甲酯,反应9h,减圧蒸留,制得加成反应中间体;
[0053] 步骤六、高温脱羧:氮气保护下,将加成反应中间体加热至180℃,反应7h,冷却至25℃,经洗涤干燥,减圧蒸留,制得所述苯并环戊酮衍生物。
[0054] <对比例1>
[0055] 步骤一、酯化:将邻苯二乙酸溶于甲苯中,加入丙烯醇,所述邻苯二乙酸与丙烯醇的摩尔比为1:2.5,在酸性条件下加热至100℃,反应5h,经洗涤干燥,减圧蒸留,得邻苯二乙酸二丙烯酯;
[0056] 步骤二、缩合:氮气保护下,向无水甲苯中加入氢化钠,再滴加所述邻苯二乙酸二丙烯酯,所述氢化钠与邻苯二乙酸二丙烯酯的摩尔比为1.5:1,加热升温至90℃,反应3.5h,减圧蒸留,制得缩合反应中间体;
[0057] 步骤三、亲核取代:取无水碳酸钾,无水丙酮混合,搅拌的同时依次加入所述缩合反应中间体,3-溴-1-丙烯,所述缩合反应中间体与3-溴-1-丙烯的摩尔比为1:1.1,加热回流7h,减圧蒸留,制得亲核取代中间体;
[0058] 步骤四、催化脱羧:将无水乙腈加热回流30min,降温至25℃,加入PPh3,完全溶解后加入Pd(OAc)2,滴加所述亲核取代中间体,加热至80℃,反应30min,减圧蒸留,制得脱羧中间体,所述PPh3,Pd(OAc)2,亲核取代中间体的摩尔比为1:1:50;
[0059] 步骤五、迈克尔加成:氮气保护下,向无水甲醇中加入钠,降温至0℃,依次加入摩尔比为1:2的脱羧中间体和丙二酸二甲酯,反应9h,减圧蒸留,制得加成反应中间体;
[0060] 步骤六、高温脱羧:氮气保护下,将加成反应中间体加热至200℃,反应3h,冷却至25℃,经洗涤干燥,减圧蒸留,制得所述苯并环戊酮衍生物。
[0061] <对比例2>
[0062] 利用传统方法制备磷化氢熏蒸剂。
[0063] <对比例3>
[0064] 步骤一、酯化:将己二酸溶于甲苯中,加入丙烯醇,所述己二酸与丙烯醇的摩尔比为1:2.5,在酸性条件下加热至120℃,反应3h,经洗涤干燥,减圧蒸留,得己二酸二丙烯酯;
[0065] 步骤二、缩合:氮气保护下,向无水甲苯中加入氢化钠,再滴加所述己二酸二丙烯酯,所述氢化钠与己二酸二丙烯酯的摩尔比为1.3:1,加热升温至90℃,反应3h,减圧蒸留,制得缩合反应中间体;
[0066] 步骤三、亲核取代:取无水碳酸钾,无水丙酮混合,搅拌的同时依次加入所述缩合反应中间体,3-溴-1-丙烯,所述缩合反应中间体与3-溴-1-丙烯的摩尔比为1:1.2,加热回流7h,减圧蒸留,制得亲核取代中间体;
[0067] 步骤四、催化脱羧:将无水乙腈加热回流30min,降温至25℃,加入PPh3,完全溶解后加入Pd(OAc)2,滴加所述亲核取代中间体,加热至80℃,反应30min,减圧蒸留,制得脱羧中间体,所述PPh3,Pd(OAc)2,亲核取代中间体的摩尔比为1:1:45;
[0068] 步骤五、迈克尔加成:氮气保护下,向无水甲醇中加入钠,降温至0℃,依次加入摩尔比为1:1.5的脱羧中间体和丙二酸二甲酯,反应10h,减圧蒸留,制得加成反应中间体;
[0069] 步骤六、高温脱羧:氮气保护下,将加成反应中间体加热至190℃,反应6h,冷却至25℃,经洗涤干燥,减圧蒸留,制得茉莉酸甲酯衍生物。
[0070] 所述茉莉酸甲酯衍生物的结构式为:
[0071]
[0072] <得率测定>
[0073] 实例1、实例2、实例3和对比例1制得的苯并环戊酮衍生物的最终得率进行计算并比较,结果如表1所示:
[0074] 表1
[0075]  实例1 实例2 实例3 对比例1
得率(%) 66.1 60.8 63.3 38.9
[0076] 结果表明不同的实验条件下,最终制得产物的产率不同,利用本发明所述制备方法制备的苯并环戊酮衍生物的产率高,具有工业化应用前景。
[0077] <液体培养抑菌效果测定试验>
[0078] PDA培养基制备:取去皮铃薯200g煮沸30min后收集滤液,加入葡萄糖20g、琼脂16g,用蒸馏水定容至1000mL,加蒸馏水补足至1L,115℃下高压灭菌30min,降温至55℃倒平板,每平板20mL。
[0079] YES培养基制备:2%酵母提取物、15%蔗糖、0.5%MgSO4·7H2O,加去离子水补足至1L,分装到250mL三瓶中,每瓶100mL,121℃高压灭菌20min。
[0080] 菌种活化:把黄曲霉接种于PDA培养基上,28℃下生长7天,4℃储藏。
[0081] 黄曲霉孢子悬液制备:用无菌签挑取平板培养基上的黄曲霉孢子溶于0.1%的吐温80中,用无菌水稀释初始孢子液至浓度为1×107cfu/mL。
[0082] 在YES中分别滴加不同浓度的实例1制备的苯并环戊酮衍生物和对比例3制备的茉莉酸甲酯衍生物,混匀,再每瓶滴加黄曲霉菌悬液100μL(1×107cfu/mL),摇匀,用封口膜密封后放入摇床中黑暗培养7d,设置温度28℃,转速180rpm。7天后,从摇床中取出培养的黄曲霉三角瓶,在通橱中过滤菌丝,并把菌丝放于60℃烘箱中烘干至恒重,称取菌丝干重(g)。取培养液提取黄曲霉毒素,用HPLC测量黄曲霉毒素含量,最终对黄曲霉毒素产生的抑制率结果如表2所示:
[0083] 表2
[0084]
[0085] 结果表明,本发明制备的苯并环戊酮衍生物的不同浓度均能对黄曲霉的生长和产毒产生抑制作用,抑制效果随着苯并环戊酮衍生物浓度的升高而增强。对比例3制备的茉莉酸甲酯衍生物,对黄曲霉毒素有一定的抑制作用,但与实例1相比,效果较差,这主要是由于苯并环戊酮衍生物中苯环结构的共轭作用,使其性质稳定,能够抑制黄曲霉中蛋白酶的合成,从而对黄曲霉的生长和产毒产生抑制作用。
[0086] <熏蒸抑制黄曲霉在花生(水活度aw 0.92)上的生长和产毒>
[0087] 花生样品经1%次氯酸钠溶液清洗消毒,无菌水冲洗,无菌滤纸吸干表面水分。根据与预调目标水活度差值加入定量无菌水,放于4℃条件下静置24h使水分含量平衡,获得实验所需水活度(aw 0.92)的花生。将花生以200g为单位分装到1L锥形瓶中,加入1mL孢子7
悬液(浓度1×10个/mL),轻轻摇动瓶子使孢子均匀覆盖到花生上。
[0088] 分别使用实例1制备的苯并环戊酮衍生物、对比例2制备的磷化氢熏蒸剂和对比例3制备的茉莉酸甲酯衍生物对样品进行熏蒸试验,7天后随花生上黄曲霉污染率和黄曲霉毒素含量进行测定,实验结果如表3所示:
[0089] 表3
[0090]
[0091] 结果表明,本发明所述苯并环戊酮衍生物的所有实验浓度对花生中黄曲霉污染率均有显著的降低效果,并且随着浓度的升高而增强。对比例2中由于磷化氢熏蒸剂为气体,在熏蒸过程中浓度会逐渐降低,因此与实例1相比,所有实验浓度对花生中黄曲霉污染率的降低效果较差,黄曲霉毒素抑制率低,且容易泄露,危害操纵人员的安全;对比例3制备的茉莉酸甲酯衍生物,对花生中黄曲霉污染率,与实例1相比效果较差。
[0092] 这里说明的设备数量和处理规模是用来简化本发明的说明的。对本发明的应用、修改和变化对本领域的技术人员来说是显而易见的。
[0093] 尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的实例。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈