首页 / 专利库 / 泵和压缩机 / 压缩机 / 永磁式旋转电机以及使用该永磁式旋转电机的压缩机

永磁式旋转电机以及使用该永磁式旋转电机的压缩机

阅读:509发布:2021-06-09

专利汇可以提供永磁式旋转电机以及使用该永磁式旋转电机的压缩机专利检索,专利查询,专利分析的服务。并且本 发明 的目的在于提供一种永磁式旋转 电机 ,即使在高速区域中也能高效地控制。因此,在本发明中具备以下结构。在配置于 定子 的外周侧的 转子 (3)上具备在转子(3)的圆周方向上延伸且在轴向上贯通地形成的多个永久磁 铁 插入部(13)和插入永久 磁铁 插入部(13)的板状的多个永久磁铁(14)。另外,在转子(3)上,在沿圆周方向相邻的永久磁铁插入部(13)之间形成从转子(3)的内周面向径向外侧凹陷的凹部(11)。在将连结转子(3)的旋转中心与永久磁铁(14)的圆周方向中央部的线作为d轴、将在电 角 度中与d轴 正交 的轴作为q轴时,使凹部(11)位于q轴上。而且,在沿圆周方向相邻的永久磁铁插入部(13)之间设置与永久磁铁插入部(13)离开地形成的切口部(17),使切口部(17)位于q轴上。,下面是永磁式旋转电机以及使用该永磁式旋转电机的压缩机专利的具体信息内容。

1.一种永磁式旋转电机,其具有定子和以能够旋转的方式配置于该定子的外周侧的转子
上述定子具有从中心向径向外侧放射状地设置的多个齿和卷绕在该多个齿上的电枢线圈,
在上述转子上具有在该转子的圆周方向上延伸且在轴向上贯通地形成的多个永久磁插入部和插入该永久磁铁插入部的板状的多个永久磁铁,
该永磁式旋转电机的特征在于,
在上述转子上,在沿该转子的圆周方向相邻的上述永久磁铁插入部彼此之间形成从上述转子的内周面向径向外侧凹陷的凹部,
在将连结上述转子的旋转中心与上述永久磁铁的圆周方向中央部的线作为d轴、将在电度中与该d轴正交的轴作为q轴时,使上述凹部位于上述q轴上。
2.根据权利要求1所述的永磁式旋转电机,其特征在于,
在上述转子上,在沿该转子的圆周方向相邻的上述永久磁铁插入部彼此之间具备与该永久磁铁插入部离开地形成的切口部,使该切口部位于上述q轴上。
3.根据权利要求1或2所述的永磁式旋转电机,其特征在于,
上述凹部由分别形成于在上述转子的圆周方向上相邻的上述永久磁铁插入部的圆周方向上的两个直线部和形成于该两个直线部之间的曲线部构成。
4.根据权利要求3所述的永磁式旋转电机,其特征在于,
在将上述永久磁铁的内周侧的磁极面的端部间的角度设为θp1、将上述两个直线部的转子内周侧的端部间的角度设为θp2时,具有θp2/θp1≦0.5的关系。
5.根据权利要求3或4所述的永磁式旋转电机,其特征在于,
上述凹部的上述两个直线部的间隔从上述转子的外周侧向上述转子的内周侧扩大。
6.一种永磁式旋转电机,其具有定子和以能够旋转的方式配置于该定子的外周侧的转子,
上述定子具有从中心向径向外侧放射状地设置的多个齿和卷绕在该多个齿上的电枢线圈,
在上述转子上具有在该转子的圆周方向上延伸且在轴向上贯通地形成的多个永久磁铁插入部和插入该永久磁铁插入部的板状的多个永久磁铁,
该永磁式旋转电机的特征在于,
在上述转子上,在沿该转子的圆周方向相邻的上述永久磁铁插入部彼此之间具备与该永久磁铁插入部离开地形成的切口部,
在将连结上述转子的旋转中心与上述永久磁铁的圆周方向中央部的线作为d轴、将在电角度中与该d轴正交的轴作为q轴时,使上述切口部位于上述q轴上。
7.根据权利要求1~6任一项所述的永磁式旋转电机,其特征在于,插入上述永久磁铁插入部的上述永久磁铁被分割地埋设。
8.一种压缩机,其具备缩小作为动作流体的气体的容积的压缩机构和驱动该压缩机构的永磁式旋转电机,该压缩机的特征在于,
上述永磁式旋转电机具有定子和以能够旋转的方式配置于该定子的外周侧的转子,上述定子具有从中心向径向外侧放射状地设置的多个齿和卷绕在该多个齿上的电枢线圈,
在上述转子上具有在该转子的圆周方向上延伸且在轴向上贯通地形成的多个永久磁铁插入部和插入该永久磁铁插入部的板状的多个永久磁铁,
在上述转子上,在沿该转子的圆周方向相邻的上述永久磁铁插入部彼此之间形成从上述转子的内周面向径向外侧凹陷的凹部,
在将连结上述转子的旋转中心与上述永久磁铁的圆周方向中央部的线作为d轴、将在电角度中与该d轴正交的轴作为q轴时,使上述凹部位于上述q轴上。
9.根据权利要求8所述的压缩机,其特征在于,
在上述转子上,在沿该转子的圆周方向相邻的上述永久磁铁插入部彼此之间具备与该永久磁铁插入部离开地形成的切口部,使该切口部位于上述q轴上。
10.一种压缩机,其具备缩小作为动作流体的气体的容积的压缩机构和驱动该压缩机构的永磁式旋转电机,该压缩机的特征在于,
上述永磁式旋转电机具有定子和以能够旋转的方式配置于该定子的外周侧的转子,上述定子具有从中心向径向外侧放射状地设置的多个齿和卷绕在该多个齿上的电枢线圈,
在上述转子上具有在该转子的圆周方向上延伸且在轴向上贯通地形成的多个永久磁铁插入部和插入该永久磁铁插入部的板状的多个永久磁铁,
在上述转子上,在沿该转子的圆周方向相邻的上述永久磁铁插入部彼此之间具备与该永久磁铁插入部离开地形成的切口部,
在将连结上述转子的旋转中心与上述永久磁铁的圆周方向中央部的线作为d轴、将在电角度中与该d轴正交的轴作为q轴时,使上述切口位于上述q轴上。

说明书全文

永磁式旋转电机以及使用该永磁式旋转电机的压缩机

技术领域

[0001] 本发明涉及在转子中具备永久磁的永磁式旋转电机以及使用该永磁式旋转电机的压缩机。

背景技术

[0002] 永磁式旋转电机适用于空调箱、冷库或食品展示柜等中的压缩机等的多种技术领域。一直以来,在永磁式旋转电机中,在为电枢线圈的定子线圈中采用集中卷的同时,在磁场中采用铷磁铁等的高磁通密度的永久磁铁,实现小型化·高效化。可是,伴随由小型化·高效化而产生的输出密度的增加,铁芯的非线性磁特性(滞后作用)的影响变得显著,与集中卷的采用相结合,增大伴随磁阻转矩的减少、空间高次谐波磁通成分的增加的铁损。
[0003] 为了解决该课题,例如专利文献1中所记载,提出了具备外转型的转子的永磁式旋转电机。在专利文献1中公开了在埋设于转子中的永久磁铁的两侧面设置在轴向上贯通转子的贯通孔的技术。在专利文献1中,在贯通孔中形成磁阻高的空气层,通过磁通环绕贯通孔而延长磁路而提高磁阻转矩。
[0004] 现有技术文献
[0005] 专利文献
[0006] 专利文献1:日本特开2009-136075号公报

发明内容

[0007] 发明所要解决的课题
[0008] 在专利文献1中记载的技术中,在形成于永久磁铁的两侧的贯通孔中形成磁阻高的空气层而实现磁通泄漏的降低。在专利文献1中,永磁式旋转电机在1000-3000min-1的中·低速区域中能够得到高效率,但在7000-8000min-1的高速区域中,在负载转矩大的情况下、或增加电机的电枢线圈而成为高电感值的情况下,由于因转矩电流而导致的磁通(q轴磁通)的影响变大,因此电压·电流相位上升而功率因数降低。尤其在专利文献1中,在贯通孔彼此之间通过与永久磁铁的磁通轴d轴电力化地正交的q轴,由于转子铁芯位于这里,因此从贯通孔彼此之间的磁通泄漏变得显著,永磁式旋转电机因逆变器等的驱动装置会产生不能高转矩·高效率地控制的问题。
[0009] 另外,在将永久磁铁埋设于转子时,在转子上形成插入永久磁铁的永久磁铁插入部。该永久磁铁插入部由于插入永久磁铁,因此会形成比被插入的永久磁铁稍大的开口。从永久磁铁插入部插入并埋设于转子的永久磁铁通过伴随转子的旋转的加速·减速而承受圆周方向的力,在被埋设的空间内进行移动。如上述专利文献1中记载,在永久磁铁的两侧形成贯通孔的技术中,为了阻止永久磁铁的圆周方向的移动而需要在埋设永久磁铁的空间内设置突起等。可是,在专利文献1记载的技术中,由于永久磁铁的负载需要由突起等承受,因此由于突起与永久磁铁的反复碰撞,可能会损坏突起或磁铁。
[0010] 因此,本发明的目的在于提供一种即使在高速区域中也能够高效地控制的永磁式旋转电机以及使用该永磁式旋转电机的压缩机。
[0011] 另外,除上述以外,本发明的目的还在于提供一种能够防止因伴随转子的旋转的加速·减速而导致磁铁破损的永磁式旋转电机以及使用该永磁式旋转电机的压缩机。
[0012] 用于解决课题的方案
[0013] 为了实现上述目的,本发明是一种永磁式旋转电机,特征在于,具有定子、以能够旋转的方式配置于该定子外周侧的转子,上述定子具有从中心向径向外侧放射状地设置的多个齿和卷绕在该多个齿上的电枢线圈,在上述转子上具有沿该转子的圆周方向延伸且在轴向上贯通地形成的多个永久磁铁插入部和被插入该永久磁铁插入部的板状的多个永久磁铁,在上述转子上,在沿该转子的圆周方向相邻的上述永久磁铁插入部彼此之间形成从上述转子的内周面向径向外侧凹陷的凹部,在将连结上述转子的旋转中心与上述永久磁铁的圆周方向中央部的线作为d轴、将在电度中与该d轴正交的轴作为q轴时,使上述凹部位于上述q轴上。
[0014] 另外,本发明是一种永磁式旋转电机,特征在于,具有定子、以能够旋转的方式配置于该定子的外周侧的转子,上述定子具有从中心向径向外侧放射状地设置的多个齿和卷绕在该多个齿上的电枢线圈,在上述转子上具有在该转子的圆周方向上延伸且在轴向上贯通地形成的多个永久磁铁插入部和被插入该永久磁铁插入部的板状的多个永久磁铁,在上述转子上,在沿该转子的圆周方向相邻的上述永久磁铁插入部彼此之间具备与该永久磁铁插入部离开地形成的切口部,在将连结上述转子的旋转中心与上述永久磁铁的圆周方向中央部的线作为d轴、将在电角度中与该d轴正交的轴作为q轴时,使上述切口部位于上述q轴上。
[0015] 另外,本发明是一种压缩机,具备缩小作为动作流体的气体的容积的压缩机构和驱动该压缩机构的永磁式旋转电机,特征在于,永磁式旋转电机具有定子、以能够旋转的方式配置于该定子的外周侧的转子,上述定子具有从中心向径向外侧放射状地设置的多个齿和卷绕在该多个齿上的电枢线圈,在上述转子上具有在该转子的圆周方向上延伸且在轴向上贯通地形成的多个永久磁铁插入部和被插入该永久磁铁插入部的板状的多个永久磁铁,在上述转子上,在沿该转子的圆周方向相邻的上述永久磁铁插入部彼此之间形成从上述转子的内周面向径向外侧凹陷的凹部,在将连结上述转子的旋转中心与上述永久磁铁的圆周方向中央部的线作为d轴、将在电角度中与该d轴正交的轴作为q轴时,使上述凹部位于上述q轴上。
[0016] 而且,本发明是一种压缩机,具备缩小作为动作流体的气体的容积的压缩机构和驱动该压缩机构的永磁式旋转电机,特征在于,永磁式旋转电机具有定子、以能够旋转的方式配置于该定子的外周侧的转子,上述定子具有从中心向径向外侧放射状地设置的多个齿和卷绕在该多个齿上的电枢线圈,在上述转子上具有在该转子的圆周方向上延伸且在轴向上贯通地形成的多个永久磁铁插入部和被插入该永久磁铁插入部的板状的多个永久磁铁,在上述转子上,在沿该转子的圆周方向相邻的上述永久磁铁插入部彼此之间具备与该永久磁铁插入部离开地形成的切口部,在将连结上述转子的旋转中心与上述永久磁铁的圆周方向中央部的线作为d轴、将在电角度中与该d轴正交的轴作为q轴时,使上述切口部位于上述q轴上。
[0017] 发明效果
[0018] 根据本发明,能够提供一种即使在高速区域中也能够高效地控制的永磁式旋转电机以及使用该永磁式旋转电机的压缩机。
[0019] 另外,除上述以外,根据本发明,能够提供一种能够防止因伴随转子的旋转的加速·减速而导致磁铁破损的永磁式旋转电机以及使用该永磁式旋转电机的压缩机。
[0020] 上述以外的课题、结构以及效果通过以下的实施方式的说明而变得明确。附图说明
[0021] 图1是本发明的实施例1的永磁式旋转电机的剖视图。
[0022] 图2是表示本发明的实施例1的永磁式旋转电机的转子铁芯形状的剖视图。
[0023] 图3a是比较例的永磁式旋转电机的低速·低负载转矩时的向量图。
[0024] 图3b是比较例的永磁式旋转电机的高速·高负载转矩时的向量图。
[0025] 图4是本发明的实施例1的永磁式旋转电机的高速·高负载转矩时的向量图。
[0026] 图5表示本发明的实施例1的永磁式旋转电机的转矩特性(实线)。
[0027] 图6是表示本发明的实施例2的永磁式旋转电机的转子铁芯形状的剖视图。
[0028] 图7是本发明的实施例3的压缩机的剖视图。

具体实施方式

[0029] 以下,使用图1~图7说明本发明的实施例。在各图中,参照符号相同的符号表示相同的构成要件或具备类似功能的构成要件。另外,各实施例的永磁式旋转电机由6极转子、9插槽定子构成。即,转子的极数与定子的插槽数的比为2:3。转子的极数、定子的插槽数以及这些的比并未限于各实施例中的值,即使其他值也能得到与各实施例相同的效果。例如,转子的极数可以为4极或8极、10极等。并且,各实施例中的永磁式旋转电机是永久磁铁埋设于转子铁芯的所谓的埋入磁铁型旋转电机。
[0030] 在以下的说明中,“轴向”表示转子的旋转轴方向,“径向”表示转子的径向,“圆周方向”表示转子的圆周方向。
[0031] 实施例1
[0032] 图1是本发明的实施例1的永磁式旋转电机的剖视图。本剖视图表示垂直于旋转轴方向的剖面(后述的图2、6也相同)。并且,实施例1作为永磁式同步电机进行动作。
[0033] 如图1所示,永磁式旋转电机1由定子2、隔着预定的间隙(空隙)能够旋转地配置于定子2的外周侧的转子3构成。在该转子3上设置有具备轴的固定部的转子支撑部件(未图示)。定子2在轴向上层叠定子铁芯6,具备圆环状的芯支撑件5、从芯支撑件5向径向外侧突出的多个齿4。多个齿4沿圆周方向大致等间隔地排列。在圆周方向上相邻的齿4间形成插槽7,以包围齿4的方式缠绕安装集中卷的电枢线圈8。即,电枢线圈8绕从定子2的中心向径向外侧放射状地配置的多个齿4的轴心卷绕安装,三相线圈的U相线圈8a、V相线圈8b、W向线圈
8c相互隔着空隙而配置在圆周方向上。
[0034] 在此,本实施例1的永磁式旋转电机1由于转子3的极数为6极、定子2的插槽数为9插槽,因此插槽间距在电角度中为120度。另外,在定子2的中心部形成有供圆柱状的轴(未图示)贯通的轴孔15。
[0035] 在本实施例1的永磁式旋转电机1中,若在由三相线圈8a~8c构成的电枢线圈8中流经三相交流电流,则产生旋转磁场。通过由该旋转磁场而作用于永久磁铁14以及转子铁芯12的电磁力,转子旋转3。
[0036] 并且,为了在永磁式旋转电机1工作时降低在定子铁芯6以及转子铁芯12上产生的涡电流损失等的损失,定子铁芯6以及转子铁芯12优选由将由板等的磁性钢板形成的薄板层叠的层叠体构成。
[0037] 图2是表示本实施例1中的永磁式旋转电机1的转子铁芯形状的剖视图。在图2中,转子3层叠转子铁芯12而构成。在转子铁芯12内的内轴侧表面的附近形成有多个(本实施例1中为极数量的6个)在转子3的圆周方向上延伸、且在轴向贯通而形成(剖面为细长的长方体形状)的永久磁铁插入部13。
[0038] 在多个永久磁铁插入部13中分别插入由磁铁材料如稀土类的铷形成的平板状的永久磁铁14。永久磁铁插入部13比永久磁铁14稍大地形成,永久磁铁14的外周由转子铁芯12覆盖。永久磁铁14通过伴随转子3的旋转的加速·减速而在永久磁铁插入部13的间隙中移动,但由于用转子铁芯12覆盖周围,因此作用于永久磁铁14的负载由永久磁铁插入部13内的转子铁芯12的面承受。因此,没有在转子铁芯12自身上产生龟裂的可能性。另外,由于永久磁铁14也与永久磁铁插入部13内的转子铁芯12的面抵接,因此也没有永久磁铁14破损的可能性。
[0039] 在此,在图2的转子3的剖面中,将永久磁铁14的磁极连接的磁通的方向、即永久磁铁14的长度方向中心(剖面中央)与旋转中心O连结的假想轴定义为d轴(磁通轴),将与d轴电力化地、即以电角度正交的轴(永久磁铁之间的轴)定义为q轴。
[0040] 在图2中,在转子铁芯12上在每一个磁极设置一个永久磁铁14。永久磁铁14的剖面形状与永久磁铁插入部13相同为细长的长方形状,其长度方向相对于d轴几何性地向直角方向延伸。
[0041] 在转子3的转子铁芯12上,在相邻的永久磁铁插入部13彼此之间(永久磁铁14的极间)的q轴上设置从转子的内周面向径向外侧凹陷的凹部11。该凹部11位于q轴上,如后述抑制q轴磁通。另外,转子3、即转子铁芯12具备位于比凹部11靠内周侧且与定子2的齿4的间距长(间隙)为最短的g1的内周部、为间距长比g1长的g2的内周部。
[0042] 其次,关于凹部11的结构进行说明。凹部11具有沿着与永久磁铁14的圆周方向长度方向平行的两个直线部11b、11c、连结两个直线部11b、11c的转子内周侧端部的曲线部11a。如此,通过在凹部11上设置曲线部11a,在高速区域能够缓和伴随转子离心力应力的影响。在本实施例的凹部11中,曲线部11a与两个直线部11b、11c平滑地连接。由此,由于能缓和凹部11内的伴随转子离心力的应力的集中,因此提高相对于离心力的转子的强度。
[0043] 在转子3的旋转中心O的周围,在将构成转子3的一个磁极的永久磁铁14的内周侧磁极面的端部间的角度设为θp1、将凹部11的两个直线部11b、11c的转子外周侧各端部件(曲线部11a)的角度设为θp2的情况下,θp1以及θp2以满足θp2/θp1≦0.5的关系的方式设定。
[0044] 在此,在本实施例中,如上述,具有集中卷的线圈的定子中的插槽间距在电角度中为120°。另外,由于每一磁极为1.5插槽(=9插槽/6极),因此q轴间的角度在电角度中为180°。因此,在电角度中为120°≦θp1<180°、0°<θp2≦60°。因此,0<θp2/θp1≦0.5(=
60°/120°)。在本实施例中,以将下限值设为0.18、满足0.18≦θp2/θp1≦0.5的关系的方式设定。
[0045] 而且,根据本发明的研究,如本实施例在设置有具备曲线部的凹部11的转子的情况中,如后述的图5所示,通过为0.18≦θp2/θp1能得到因q轴磁通的抑制而产生的高速区域中的实质性的转矩提升效果。
[0046] 在本实施例1的转子3的转子铁芯12中,在相邻的永久磁铁插入部13彼此之间(永久磁铁14的极间)设置有从转子的内周面向径向外侧凹陷的凹部11。并且,使凹部11位于q轴上。通过该凹部11形成空气层,由于因该空气层而磁阻变高,因此磁通难以通过在圆周方向上相邻的永久磁铁插入部13彼此(永久磁铁14)之间。因此,在降低来自永久磁铁14彼此之间的泄漏磁通的同时,能够抑制q轴磁通的影响,能够降低由感应电动势与电枢电流的相互作用而产生的高次谐波磁通。即,通过凹部11能抑制电枢反作用,能降低机内磁通的高次谐波磁通。
[0047] 其次,关于进一步提高本实施例1的效果的结构进行说明。转子3在沿圆周方向相邻的永久磁铁插入部13(永久磁铁14)彼此之间具备与永久磁铁插入部13分离地形成的切口部17。该切口部17在轴向上贯通转子。
[0048] 通过该切口部17形成空气层,由于因该空气层而磁阻变高,因此磁通难以通过在圆周方向上相邻的永久磁铁插入部13(永久磁铁14)彼此之间。并且,使切口部17位于q轴上。因此,在降低来自永久磁铁14彼此之间的泄漏磁通的同时能够抑制q轴磁通的影响,能够降低由感应电动势与电枢电流的相互作用而产生的高次谐波磁通。即,通过切口部17抑制电枢反作用,能降低机内磁通的高次谐波成分。另外,由于埋设于永久磁铁插入部13中的永久磁铁14的外周被转子铁芯12覆盖,因此即使由于伴随转子3的旋转的加速·减速,永久磁铁14在永久磁铁插入部13的间隙中移动,也没有在转子铁芯12自身上产生龟裂等的可能性,另外,永久磁铁14也没有永久磁铁14破损的可能性。
[0049] 图3a以及图3b是作为由现有发明而得到的比较例的永磁式旋转电机的向量图。并且,图3是低速·低负载转矩时,图3b是高速·高负载转矩时。图3a、图3b的向量图使用用于控制永磁式旋转电机的d-q轴坐标系,本坐标系的d轴方向为转子的d轴方向(参照图2)。
[0050] 在图3a、图3b中,φm表示由永久磁铁14产生的转子的d轴方向的磁通。φd以及φq在本坐标系中分别表示由流经定子线圈中的电枢电流I1的d轴成分以及q轴成分产生的磁通、即d轴磁通以及q轴磁通。φ1表示由永久磁铁产生的磁通φm与电枢电流I1产生的磁通(φd、φq)形成的永磁式旋转电机整体的磁通、即主磁通。另外,Em表示无负载时的感应电压。V1表示定子线圈的端子电压,相对于主磁通φ1,相位差为90°。另外,V1通过感应电压Em、电枢电流I1的d轴成分以及q轴成分产生的电压降(ωφd、ωφq:ω是逆变器的输出角频率)的合成向量表示。
[0051] 如图3a所示,在低速·低负载转矩时,由于因电枢电流I1以及其q轴成分小而q轴磁通小,主磁通φ1与永久磁铁的磁通φm的相位差小。因此,即使专利文献1的方式中功率因数也比较高,以高效率得到所期望的转矩。
[0052] 可是,如图3b所示,在高速·高负载转矩时,由于电枢电流I1以及其q轴磁通变大,因此主磁通φ1与φm的相位差变大。因此,功率因数降低,在增加电枢电流I1的比例中,转矩不会变大,效率降低。
[0053] 图4是本实施例1的永磁式旋转电机的向量图。图4是高速·高负载转矩时,用虚线表示的向量(φ1’、I1’、V1’)是实施例1的永磁式旋转电机的向量。为了容易理解本实施例1的效果,同时记载图3b所示的比较例的向量图。
[0054] 如图4所示,在本实施例中,通过在转子3上设置凹部11以及切口部17,转子的q轴方向中的磁阻增大,因此能够抑制增大了电枢电流I1的情况下的q轴磁通φq的影响。因此,即使高速·高负载转矩时也能抑制功率因数的下降,在维持比较高的效率的同时得到所期望的转矩。
[0055] 在此,关于增加本实施例1中的q轴方向的磁阻的方案、即作为降低q轴磁通的方案的凹部11的结构、切口部17更具体地说明。
[0056] 如图2所示,转子3形成于q轴上的凹部11的径向的内周侧端部与定子2的齿4的间隙长g2以比d轴侧的间隙长g1大的方式设定。即,在转子3的内周,凹部11具有与定子2的齿4的间隙长为最短的g1的部位、为比g1长的间隙长的g2的部位。另外,如图2所示,凹部11具有与永久磁铁14的圆周方向上的长度方向平行的两个直线部11b、11c、连结这些直线部的转子内周侧的各端部连结的曲线部11a。如此,构成转子3的内周部。
[0057] 而且,在凹部11中,以沿旋转方向的方式位于相邻的永久磁铁14之间的内周侧的曲线部11a、以从其内周侧的曲线部11a的旋转方向的侧端部向旋转方向侧扩大的方式定位的大致直线状的旋转方向侧的直线部11b、以从内周侧的曲线部11a的反转方向侧的端部向反转方向侧扩大的方式定位的大致直线状的反转方向侧的直线部11c连接。即,凹部11的曲线部11a的中央部与旋转中心O的距离比永久磁铁14与旋转中心O的距离长。由此,能降低q轴磁通。并且,在这里将顺时针方向作为旋转方向进行说明,也可以是向逆时针方向旋转的转子3。通过这样的凹部11与上述切口部17能够将永久磁铁14的磁通聚集于d轴附近。
[0058] 并且,在本实施例中,由与永久磁铁14的圆周方向的长度方向平行的两个直线部11b、11c、连结各直线部的转子内周侧端部的曲线部构成凹部11,但并不限于此,只要是随着从凹部11的内轴侧向外周侧而向左右扩大的形状即可。
[0059] 如上述,以0.18≦θp2/θp1≦0.5的方式设定构成转子3的一个磁极的永久磁铁14的内周侧磁极面端部间的角度θp1、凹部11的两个直线部11b、11c的转子内周侧的各端部间的角度θp2,在永久磁铁插入部13(永久磁铁14)的侧面上,通过形成在轴向上贯通转子3的切口部17而可增加q轴的磁阻。因此,如图4所示,能降低电压(V1’)与电流(I1’)的相位差、及主磁通φ1与永久磁铁的磁通φm的相位差。由此,在高速区域中能得到高转矩。另外,在永磁式旋转电机的电感大的情况下,能够抑制因电枢反作用的影响而导致的功率因数降低。其结果,抑制转矩的降低、且可实现永磁式旋转电机的小型化·高效率化。
[0060] 图5表示本实施例1的永磁式旋转电机的转矩特性(实线)。纵轴以及横轴分别是转矩以及电枢电流。但是,将额定电流设为1P.U.,另外,将流经额定电流时的本实施例1的转矩(高速区域的转矩)设为1P.U.。并且,作为比较例用虚线表示现有发明中的永磁式旋转电机的转矩特性。如图5所示,本实施例1的永磁式旋转电机的转矩相比于现有发明中的比较例大,尤其在高速区域会变大。
[0061] 根据本实施例1,在相邻的永久磁铁插入部13彼此之间(永久磁铁14的极间),由于设置从转子3的内周面向径向外侧凹陷的凹部11,且使该凹部11位于q轴上,因此能够抑制电枢反作用的影响而导致的功率因数降低,能够抑制高速区域中的转矩降低。因此,能实现永磁式旋转电机的高效率化、小型化。
[0062] 另外,根据本实施例1,在相邻的永久磁铁插入部13彼此之间(永久磁铁14的极间),由于设置与永久磁铁插入部13分离地形成的切口部17,且使该切口部17位于q轴上,因此能抑制因电枢反作用的影响而导致的功率因数降低,能够抑制高速区域中的转矩降低。因此,能实现永磁式旋转电机的高效率化、小型化。
[0063] 在以上说明的本实施例1中,在转子3上设置凹部11以及切口部17双方,但也可以设置凹部11或切口部17的任一个。
[0064] 实施例2
[0065] 图6是本发明的实施例2的永磁式旋转电机的转子铁芯形状的剖视图。
[0066] 在图6中,与图2参照符号相同的符号表示相同的构成要件或具备类似功能的构成要件。以下,主要关于与实施例1不同的方面进行说明。
[0067] 本实施例2与实施例1(图2)不同,在转子3的磁极每一极具备2个永久磁铁。如实施例1使用永久磁铁的情况下,因涡电流而产生的热损失成为问题。而且,在进行高速旋转的情况下,施加于磁铁上的变动磁场的频率、变动幅度也会增加,随此热损失也会增加。为了降低因该涡电流而导致的发热损失,在本实施例中将埋设于永久磁铁插入部13中的永久磁铁14分割地配置。被分割的永久磁铁14a、14b的交于各个磁铁的磁通减少。因此,被分割的各个永久磁铁14a、14b的涡电流密度减少,作为总量的涡电流损失减少。
[0068] 根据本实施例2,由于将埋设于永久磁铁插入部13中的永久磁铁14分割而配置,因此能够降低因涡电流而导致的损失。
[0069] 另外,根据本实施例2,在相邻的永久磁铁插入部13彼此之间(永久磁铁14的极间)上,设置从转子3的内周面向径向外侧凹陷的凹部11,由于使该凹部11位于q轴上,因此能抑制因电枢反作用的影响而导致的功率因数降低,能够抑制高速区域中的转矩降低。
[0070] 还根据本实施例2,在相邻的永久磁铁插入部13彼此之间(永久磁铁14的极间)设置与永久磁铁插入部13分离地形成的切口部17,由于使该切口部17位于q轴上,因此能抑制电枢反作用的影响而导致的功率因数降低,能够抑制高速区域中的转矩降低。因此,能实现永磁式旋转电机的高效率化、小型化。
[0071] 如此,即使在将永久磁铁14分割而配置的转子结构中也能够改善因电枢反作用的影响而导致的功率因数降低,抑制转矩的降低,可实现小型化·高效率。
[0072] 在以上说明的本实施例2中,在转子3中设置凹部11以及切口部17双方,但也可以设置凹部11或切口部17的任一个。
[0073] 实施例3
[0074] 其次,关于将实施例1以及2的永磁式旋转电机适用于涡旋压缩机的示例,使用图7进行说明。图7是本发明的实施例3的压缩机的剖视图。
[0075] 在图7中,在圆筒状的压缩容器69内具备垂直于固定涡旋部件60的端板61的涡旋状盖板62、垂直于旋转涡旋部件63的端板64的涡旋状盖板65相互啮合的压缩机构,通过永磁式旋转电机,旋转涡旋部件63通过曲轴72进行旋转运动而进行压缩动作。作为该永磁式旋转电机,适用本发明的实施例1或实施例2。
[0076] 另外,在由固定涡旋部件60以及旋转涡旋部件63形成的压缩室66a~66b中的位于最外径侧的压缩室伴随旋转运动而向固定涡旋部件60、旋转涡旋部件63的中心移动,容积逐渐缩小。若压缩室66a、66b到达固定涡旋部件60、旋转涡旋部件63的中心附近,则作为两压缩室内的动作流体的压缩空气从与压缩室66连通的排出口67排出。被排出的压缩气体通过设置于固定涡旋部件60以及框架68上的气体通路(未图示)而到达框架68下部的压缩容器69内,设置于压缩容器69的侧壁,从排出管70向压缩机外排出。
[0077] 另外,驱动压缩机的永磁式旋转电机通过格外设置的逆变器(未图示)进行控制,以适于压缩动作的旋转速度进行旋转。在此,永磁式旋转电机由定子2与转子3构成,曲轴72安装于实施例1、2中的轴孔15。若通过永磁式旋转电机而曲轴72旋转,则旋转涡旋部件63不自转地进行将曲轴72上部中的预定定偏心量作为半径的旋转公转运动。在曲轴72的内部设置油孔74,伴随曲轴72的旋转,位于压缩容器69的下部的贮油部73的润滑油通过油孔74向滑动轴承75供给。在这样的压缩机中通过适用上述实施例1、2中的任一个永磁式旋转电机,能实现压缩机效率的提高,可实现节能化。
[0078] 可是,在现有的家庭用以及业务用的空调中,普遍在压缩容器69内封入R410A制冷剂,永磁式旋转电机的周围温度普遍为80℃以上。今后,若地球变暖系数更小的R32制冷剂的采用被推进,则永磁式旋转电机的周围温度会进一步上升。永久磁铁14、尤其铷磁铁若为高温则剩余磁通密度会降低,由于为了确保相同输出而增加电枢电流,通过适用上述实施例1或实施例2的永磁式旋转电机而能够抑制效率降低。在本实施例3中,说明在涡旋压缩机中使用上述实施例1或实施例2的永磁式旋转电机的示例,但在提供本实施例3时,并不限制制冷剂的种类。另外,作为压缩机的种类,在本实施例3中用涡旋压缩机的示例进行说明,但也可适用于旋转式压缩机、往复式压缩机等具备其他压缩机构的压缩机。
[0079] 根据本实施例3,通过适用小型·高效率的永磁式旋转电机,能够实现可节能化的压缩机。另外,通过适用实施例1、2的永磁式旋转电机,能够扩大压缩机可高速运转等的运转范围。
[0080] 而且,在He与R32等的制冷剂中,与R22、R407C、R410A等的制冷剂比较,从压缩机中的间隙泄漏量大,尤其在低速运转时由于相对于循环量的泄漏比率变大而效率降低。为了在低循环量(低速运转)时的效率提升,使压缩机构部小型化,通过为了得到相同的循环量而提高转数,对降低泄漏损失是有效的。而且,优选为了确保最大循环量而最大转数也提高。相对于此,通过将上述实施例1以及2的永磁式旋转电机1适用于压缩机,能使最大转矩以及最大转数增大、且能实现高速区域中的损失减少,因此在使用He、R32等的制冷剂时能够提高效率。
[0081] 如上述,通过将实施例1或实施例2的永磁式旋转电机适用于压缩机,能够提高压缩机的效率。
[0082] 并且,本发明并未限于上述实施例1~3中的内容,包括多种变形例。上述实施例1~3是为了容易理解地说明本发明而详细地说明的内容,在实现本发明时,未必具备说明的全部结构。另外,关于实施例1~3的结构的一部分可进行其他结构的追加·删除·置换。
[0083] 符号说明
[0084] 1—永磁式旋转电机,2—定子,3—转子,4—齿,5—芯支撑件,6—定子铁芯,7—插槽,8a,8b,8c—三相线圈,11—凹部,12—转子铁芯,13—永久磁铁插入部,14—永久磁铁,15—轴孔,17—切口部,60—固定涡旋部件,61、64—端板,62、65—涡旋状盖板,63—旋转涡旋部件,66a、66b—压缩室,67—排出口,68—框架,69—压缩容器,70—排出管,72—曲轴,
73—贮油部,74—油孔,75—滑动轴承
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈