首页 / 专利库 / 制冷技术 / 经济器回路 / 液化贫气去重质烃系统

液化贫气去重质系统

阅读:193发布:2020-05-13

专利汇可以提供液化贫气去重质系统专利检索,专利查询,专利分析的服务。并且在贫气源的 液化 系统中集成去重质 烃 的系统和方法。在主低温换热器和回流筒之间设置经济器以提供相对于部分冷凝流的塔顶 蒸汽 流的冷却。另外, 天然气 原料流的压 力 在洗涤塔中被保持。通过位于经济器和回流筒的 阀 门 对从主低温换热器热段冷端回收部分冷凝流提供的压力降。,下面是液化贫气去重质系统专利的具体信息内容。

1.一种使天然气原料流液化的方法,所述方法包括:
(a)对从主换热器的热侧回收的热第一制冷流进行闭环压缩序列,所述压缩序列包括压缩和冷却所述热第一制冷流的以产生至少一个冷却压缩第一制冷流;
(b)在源压下,从天然气原料源中回收天然气原料流;
(c)在洗涤塔压力下,将所述天然气原料流导入洗涤塔,所述洗涤塔具有塔顶和塔底;
(d)在所述洗涤塔中将所述天然气原料流分离成富甲烷蒸汽馏分,在所述洗涤塔的顶端作为第一塔顶蒸汽流收集,和富含重质馏分,在所述洗涤塔的底端作为第一塔底液体流收集;
(e)从所述洗涤塔回收所述第一塔底液体流,所述第一塔底液体流是富含重质烃的天然气流;
(f)从所述洗涤塔回收所述第一塔顶蒸汽流,所述第一塔顶蒸汽流是富甲烷天然气流;
(g)在主热转换器热段的热端,将所述第一塔顶蒸汽流导入天然气回路,并且将至少一个所述冷却压缩第一制冷流的每一个导入制冷回路
(h)在至少一个所述制冷回路中,将塔顶制冷流回收并减压以产生减压塔顶制冷流并将所述减压塔顶制冷流导入所述主热转换器的冷侧;
(i)在所述主换热器的所述热侧和所述冷侧之间提供间接换热;
(j)在所述主换热器的冷端,从所述天然气回路中产生成品流,并且所述成品流至少部分液化;
(k)在所述主换热器热段冷端,从所述天然气回路中回收部分冷凝天然气流;
(l)降低所述部分冷凝天然气流的压力以形成减压的部分冷凝天然气流;
(m)在天然气中温下,将所述减压部分冷凝天然气流导入回流筒;
(n)将所述减压部分冷凝天然气流分离成,回流筒液体流和回流筒蒸汽流;
(o)在所述主换热器中比热段的冷端更靠近所述主换热器的冷端处,将所述回流筒蒸汽流导入到所述天然气回路中;
(p)增加所述回流筒液体流的压力,并将所述回流筒液体流导入所述洗涤塔的上段;并且
(q)在所述回流筒蒸汽流与所述部分冷凝天然气流之间提供间接换热,由此所述部分冷凝天然气相对于回流筒蒸汽流冷却。
2.如权利要求1所述的方法,还包括:
(r)在所述天然气原料源和所述洗涤塔之间,在运行上设置任何,并流体连接以提供不会超过一bar的总压力降。
3.如权利要求1所述的方法,还包括:
(s)在中温制冷下,从所述主换热器热段冷端的至少一个所述制冷回路中回收部分冷凝制冷流;
(t)在分相器中,将所述部分冷凝制冷流分离成中间液体制冷流和中间蒸汽制冷流;
(u)导入每一个所述中间液体制冷流和所述中间蒸汽制冷流到所述主换热器中,比所述热段的所述冷端更靠近所述主换热器的所述冷端的制冷回路中。
4.如权利要求1所述的方法,其中,所述主换热器的所述热侧包含至少一个绕管束,并且所述主换热器的所述冷侧包含壳侧、每一个制冷回路和所述天然气回路,所述天然气回路包含至少一个绕管束的一部分。
5.如权利要求4所述的方法,其中步骤(c)还包括:
(c)将所述天然气原料流分离成第一部分和第二部分,导入所述天然气原料流的所述第一部分到所述洗涤塔的中间位置,并且导入所述天然气原料流的所述第二部分到所述洗涤塔的所述底端。
6.如权利要求5所述的方法,还包括:
(v)在所述第一塔顶蒸汽流和所述第一部分天然气原料流之间提供间接换热。
7.如权利要求1所述的方法,还包括:
(w)执行步骤(c)之前,通过间接换热,预冷与第二制冷相对的所述天然气原料流。
8.如权利要求1所述的方法,还包括:
(x)在所述主换热器中段的冷端的所述天然气回路中回收冷凝天然气流,增加所述冷凝天然气流的所述压力以形成增压天然气流,并将所述增压天然气流导入所述回流筒。
9.如权利要求1所述的方法,其中步骤(p)包括:
(p)增加所述回流筒液体流的压力,将回流筒液体流分裂成第一部分和第二部分,将所述回流筒液体流的所述第一部分导入所述洗涤塔的所述上段,并且在执行步骤(o)之前,将所述回流筒液体流的所述第二部分与所述回流筒蒸汽流相混合。
10.如权利要求9所述的方法,还包括:
(y)执行步骤(l)之前,在所述部分冷凝天然气流和第三制冷之间,执行间接换热。
11.如权利要求1所述的方法,其中步骤(h)还包括,将至少一个所述减压塔顶制冷流分裂成第一部分和第二部分,将所述第一部分导入所述主换热器的所述冷侧,在所述第二部分、所述回流筒蒸汽流和所述部分冷凝天然气流之间执行间接换热。
12.如权利要求1所述的方法,还包括:
(z)执行步骤(c)之前,使用压缩机,增加所述天然气原料流压力。
13.一种使天然气原料流液化的系统,所述系统包括:
与天然气源相连接的天然气原料;
冷压缩系统在运行上配置以压缩和冷却热第一制冷液体流来产生高压蒸汽第一制冷流和高压第一制冷液体流,所述制冷压缩系统包含至少一个压缩机、至少一个后冷却器和至少一个分相器;
主换热器包括热端、冷端、热段、冷段、热侧、冷侧、所述热侧位置的第一制冷回路、所述热侧位置的第二制冷回路、所述热侧位置的天然气回路,并且在所述天然气回路热端处有中间出口,其中,所述第一制冷回路与所述高压蒸汽第一制冷流在所述主换热器的所述热端流体连接,而所述第二制冷回路与所述高压第一制冷液体流在所述主换热器热端流体连接,所述主换热器在运行上配置以在所述主换热器所述热侧和所述冷侧之间提供间接换热;
洗涤塔包括与所述天然气原料流流体连接的原料流进口和界定内部容积的外壳,内部容积包括原料流进口上方的上段和原料流进口下方的下段,所述洗涤塔具有位于洗涤塔的所述上段的蒸汽出口、位于洗涤塔的所述下段的液体出口、位于洗涤塔的所述上段的液体进口以及与所述主换热器所述热端的所述天然气回路流体连接的所述洗涤塔的蒸汽出口;
回流筒具有与所述主换热器的所述中间出口流体连接的进口,与所述主换热器的中间进口流体连接的蒸汽出口以及与所述洗涤塔的所述液体进口流体连接的液体出口;
位于所述回流筒的所述液体出口和所述洗涤塔的所述液体进口之间,并有流体连接;并且
第一经济器有热管和冷管,在运行上配置以在所述热管和所述冷管之间提供间接换热,所述热管位于所述主换热器所述中间出口和所述回流筒所述进口之间,并流体连接,所述冷管位于所述回流筒蒸汽的所述出口和所述主换热器的所述中间进口之间,并流体连接。
14.如权利要求13所述系统,其中所述主换热器包括具有热束和冷束的绕管式换热器,其中所述天然气回路的所述中间出口位于所述热束的冷端。
15.如权利要求13所述系统,其中所述制冷压缩系统的至少一个分相器包括,具有分相器进口的冷制冷分相器,并与所述第一制冷回路的冷端流体连接,从所述冷制冷分相器底端回收的塔底液体制冷流和从所述冷制冷分相器顶端回收的塔顶蒸汽制冷流,所述塔顶蒸汽制冷流和所述塔底液体制冷流都与比所述第一制冷回路的所述冷端更靠近于所述主换热器的所述冷端的所述主换热器热侧流体连接。
16.如权利要求13所述系统,其中所述第一制冷包括混合制冷。
17.如权利要求13所述系统,其中所述洗涤塔还包括蒸汽进口。
18.如权利要求13所述系统,还包括被安置且在运行上配置以制冷来自所述原料流进口的所述天然气原料流上流到0摄氏度以下的温度的预冷器。
19.如权利要求13所述系统,还包括,位于所述第一经济器的所述热管和所述回流筒所述进口之间的第一减压阀,并有流体连接。
20.如权利要求13所述系统,还包括位于所述第一经济器和所述回流筒之间的换热器,并与所述第一经济器的所述热管有流体连接。

说明书全文

液化贫气去重质系统

技术领域

[0001] 本发明涉及从天然气原料流中分离重质烃以及液化天然气原料流的方法和系统。

背景技术

[0002] 在天然气液化之前,去除重质烃(也称作“HHCs”),例如C6+烃(含6个或更多原子的烃)以及芳香烃(例如苯、甲苯、乙苯和二甲苯类),往往是避免这些成分在主低温换热器(也称作“MCHE”)中冻结的理想办法。而C2-C5+烃(含2至5或更多的碳原子的烃),在本领域中也称作天然气凝液(或“NGLs”),因为具有相对较高的市场价值,通常也会从天然气中分离出来。
[0003] 天然气原料通常取自常规的天然气藏,以及例如页岩气、致密气和层气之类的非常规的天然气藏。“富”天然气原料流是指具有相对高浓度的NGL成分的流体(例如>3mol%)。传统意义上,从富气原料中去除HHCs,要么包含独立的前端NGL萃取,要么包含集成液化流程的洗涤塔系统。由于前端NGL萃取是相对复杂的流程包含很多设备,所以,通常会独立于液化流程实施。
[0004] 图1示意性的描述了,集成对天然气原料流102的液化流程,使用洗涤塔136去除重质烃系统130的常规现有工艺配置。原料流102取自于通常周围温度在0-40摄氏度区间的天然气源101。原料流102在经济器132中预冷至合适的温度(通常为摄氏度以下),然后,通过J-T134将压减至低于原料流102中的天然气的临界压力。原料流的临界压力根据其成分不同有所不同。比如,甲烷的临界压力是46.4bara,而包含了少量的C2-C5成分(例如小于1mol%)的贫气原料流的临界压力是50bara。C2-C5的含量越高,临界压力值越高。
[0005] 预冷且减压后的天然气,通过位于洗涤塔136中间位置的进口135导入到洗涤塔136中。洗涤塔136将天然气原料分离成,富甲烷塔顶蒸汽流139和富含重于甲烷的重质烃的塔底液体流140。塔顶蒸汽流139从洗涤塔136的上段137(在进口135上方)被回收,塔底液体流140从洗涤塔136的下段138(在进口135下方)被回收。在本领域中,上段137也称作蒸馏塔的精馏段,下段138也称作蒸馏塔的提馏段。上段137与下段138之间的边界取决于进口135的位置。上段137和下段138都可以填充规整填料或者使用塔盘来对洗涤塔136内的液体流和蒸汽流逆流接触。洗涤塔136通常会伴有用来加热来自塔底的液体流141的专用重沸器
142,以提供提馏气流143到洗涤塔136下段138。
[0006] 然后,塔顶蒸汽流139在经济器132中相对于原料流102的冷侧被加热。热塔顶蒸汽流144流进绕管式主低温换热器(MCHE)110的热段(热束)114的热端部分冷凝。然后将部分冷凝后的流体145从热段114回收,并在回流筒150中分离成液相和气相从而制成液体流154和蒸汽流151。用液体155将液体流154回收,并且作为回流156返回至洗涤塔136的上段137,为洗涤塔136的有效运行以及为从气体原料中洗去重质烃提供必要的回流。蒸汽流151流入MCHE110的中段115后被进一步的冷却和液化。然后,蒸汽流在MCHE110的冷端115过冷处理,制成成品流103。成品流103快速通过减压阀105制成减压成品流106后储存起来。例如图1所示,存储处就是LNG储罐104。
[0007] 来自洗涤塔136的塔底液体流140含有丰富的NGLs和HHCs,可以用作燃料来使用,或使之膨胀为部分气化流体送入可以将单一NGL成分分离出来的分馏流程(未示出)。
[0008] 本实施例中,通过闭环的单极混合制冷剂(SMR)流程160,提供制冷将气体原料102转化为液化成品流103。术语混合制冷剂也被称为“MR”。例如图1所示,热MR流161从MCHE110的热端111中被回收,并收集在抽吸罐162中。热MR流163从抽吸罐162流向低压级MR压缩机164并被压缩成中压MR流165。然后,中压MR流165在后冷却器166中冷却,形成冷却中压MR流
167,并在低压MR分相器168中相分离。低压MR分相器168出来的蒸汽流170通过高压级MR压缩机171进一步压缩,排放流172在后冷却器173中冷却。冷却MR流174部分冷凝,并在高压MR分相器175中相分离。
[0009] 从分相器168出来的低压混合制冷液体(或“LPMRL”)流169通过MCHE110的热段114在制冷回路120a中进一步冷却,作为流体121b从热段114冷端移出,然后,通过JT阀122b瞬间变为低压以提供MCHE110的热段114所需要的部分制冷。
[0010] 从热高压MR分离器175出来的高压混合制冷蒸汽(或“HPMRV”)流177和高压混合制冷液体(或“HPMRL”)流176也分别通过MCHE110的热段114的制冷回路118a、119a进一步制冷。HPMRL流176作为流体121a离开热束114的冷端,并且穿过JT阀122a膨胀以提供MCHE110的热段114所需要的部分制冷。
[0011] HPMRV流177在MCHE的热段被部分冷凝形成流体178,并且在冷MR分离器179中相分离。从冷MR分离器179出来的冷混合制冷液体(或“CMRL”)流181通过MCHE110的中段115在制冷回路119b中过冷。过冷CMRL流作为流体124离开中段115,并通过JT阀125减压。产生的低压MR流126进入MCHE110中段115的壳侧以提供MCHE110中段115所需的部分制冷。从冷MR分离器179出来的冷混合制冷蒸汽(或“CMRV”)流180则在MCHE110的中段115中液化,并通过制冷回路118b、118c在冷段116中过冷。过冷MR流127离开冷段116并通过JT阀128减压。由此产生的低压MR流129在冷段116冷端进入MCHE110的壳侧,并在冷段116上分布以提供MCHE110的冷段116的制冷。在本实施例中,低压MR流123、126和129共同提供了MCHE110的全部制冷。低压MR流161离开MCHE110的底部,作为过热蒸汽被收集在储罐162中,至此闭回路循环完成。
[0012] 从天然气流中去除HHCs的情况下,洗涤塔可以有效地从流体中去除所有重质烃。就如上述所说以及如图1所示,现有工艺去除重质烃系统130的一个缺点:是为了实现气液相分离,系统必须在低于天然气原料临界压力的压力下运行。对于拥有例如包含多余
4mol%C2-C5成分的富气原料的系统来说这并不是一个问题,因为,原料天然气的临界压力可能要高于所提供的原料天然气。因此,在将原料天然气导入洗涤塔之前,不必降低其压力。
[0013] 然而,对于例如包含2-4mol%的C2-C5成分的相对贫气原料来说,利用常规的洗涤塔方案去除重质烃就会变得具有挑战性,而且,为了使蒸馏塔低于气体原料的临界压力往往需要大幅降低气体原料的压力。按照惯例,像这样的对气体原料的减压,一般在洗涤塔的进口处(例如图1的134阀)进行。这种减压往往导致洗涤塔的控压操作,从而减低天然气液化流程的效率。
[0014] 此外,洗涤塔的稳定操作需要充足的液体(即回流)以保持塔内所需的蒸汽比,从而避免塔内“干涸”并确保适当的分相效率。对于例如包含少于2mol%C2-C5成分的极度贫气原料,生成的回流量将急剧减少,并且,塔的设计和操作也会变的非常困难和低效。
[0015] 如图1所示,在SMR流程的情况下,也需注意的是,冷MR分离器179和回流筒150都是从MCHE110热段114的冷端获取流体。因此,两者会在非常相似的温度(例如均低于5摄氏度)下运行。冷MR分离器179的温度也影响着CMRV流180和CMRL流181的构成比例,同时运行的分相器150的温度影响着回流156的回流液量,并因此影响着洗涤塔136中去除HHCs的效率。在常规的洗涤塔系统中,冷MR分离器179和回流筒150的运行温度的耦合,导致在去除HHC效率和混合制冷圈效能中要做出重大的妥协。对于贫气原料,为了提供足够的回流以有效地去除洗涤塔136的HHCs,MCHE110的热段114需要将气体原料(回路117a)制冷到相当于零下70摄氏度。如果使用常规的洗涤塔配置和SMR液化流程,冷MR分离器179必须在相似的温度下进行,这样也会大幅度降低液化效能。另一种液化流程,例如双混合制冷(DMR)流程和氮膨胀流程,可能会共享在SMR一样的“耦合”约束,即,热段出口温度既影响去除HHC效率叉影响制冷圈效能。
[0016] 最后,当在洗涤塔136中的提供提馏段,使用专用重沸器142加热其底部液体,并提供提馏气体和负荷至洗涤塔136的下段138。专用重沸器142需要从像燃料油或者蒸汽之类的外部热源获取热量来运行。而系统需要补偿热负荷,来提供额外的制冷,而这可能导致较低的液化效能。
[0017] 基于以上所述,天然气的液化系统需要集成去除重质烃系统。这样既可以处理贫气原料流也不会出现在当前现有工艺下液化效能上的显著降低。

发明内容

[0018] 本说明将简单介绍选择理念,并在下面的详细说明中对其进行进一步说明。本说明既不意图确认专利主题的关键特征或者本质特征,也不意图限制专利主题的范围。
[0019] 对如下文描述以及随后权利要求的所定义的实施例描述,实施例包括用贫气液化流程的一部分去除HHC的方法和系统的改进。在本领域中,公开的实施例通过使气体原料保持较高压力(并且由此具有较好的液化效能)同时能够保持提供足够的回流到洗涤塔并且有效的去除HHCs来满足需求。
[0020] 下面概述了本发明的系统和方法的一些具体方面。
[0021] 方面1:方法包括:
[0022] (a)对从主换热器的热侧回收的热第一制冷流进行闭环压缩序列,压缩序列包括压缩和冷却热第一制冷流的来产生至少一个冷却压缩第一制冷流;
[0023] (b)在源压力下,从天然气原料源中回收天然气原料流;
[0024] (c)在洗涤塔压力下,将天然气原料流导入洗涤塔,洗涤塔具有塔顶和塔底;
[0025] (d)在洗涤塔中将天然气原料流分离成:富甲烷蒸汽馏分,在洗涤塔顶端作为第一塔顶蒸汽流收集,和富含重质烃馏分,在洗涤塔底端作为第一塔底液体流收集;
[0026] (e)从洗涤塔中回收第一塔底液体流,第一塔底液体流是富含重质烃的天然气流;
[0027] (f)从洗涤塔中回收第一塔顶蒸汽流,第一塔顶蒸汽流是富甲烷天然气流;
[0028] (g)在主热转换器热段的热端,第一塔顶蒸汽流导入天然气回路,并且至少一个冷却压缩第一制冷流的全部流体均导入制冷回路;
[0029] (h)在至少一个制冷回路中,将塔顶制冷流回收并减压来产生减压塔顶制冷流并把减压塔顶制冷流导入主热转换器的冷侧;
[0030] (i)在主换热器的热侧和冷侧之间提供间接换热;
[0031] (j)在主换热器的冷端,从天然气回路中产生成品流,并且成品流至少部分液化;
[0032] (k)在主换热器热段冷端,从天然气回路中回收部分冷凝天然气流;
[0033] (I)降低部分冷凝天然气流的压力以形成减压的部分冷凝天然气流;
[0034] (m)在天然气中温下,将减压部分冷凝天然气流导入回流筒;
[0035] (n)将减压部分冷凝天然气流分离成,回流筒液体流和回流筒蒸汽流;
[0036] (o)在主换热器比热段冷端更靠近于主换热器冷端处,将回流筒蒸汽流导入到天然气回路中;
[0037] (p)增加回流筒液体流的压力,并将回流筒液体流导入洗涤塔的上段;并且[0038] (q)在回流筒蒸汽流与部分冷凝天然气流之间提供间接换热,由此部分冷凝天然气相对于回流筒蒸汽流冷却。
[0039] 方面2:方面1方法,还包括:
[0040] (r)在天然气原料源和洗涤塔之间,在运行上设置任何阀,并流体连接以提供不会超过一bar的总压力降。
[0041] 方面3:方面1-2任一方法,还包括:
[0042] (s)在中温制冷下,从主换热器热段冷端的至少一个制冷回路中,回收部分冷凝制冷流;
[0043] (t)在分相器中,将部分冷凝制冷流分离成中间液体制冷流和中间蒸汽制冷流;
[0044] (u)导入每一个中间液体制冷流和中间蒸汽制冷流,到主换热器比热段冷端更靠近于主换热器冷端的制冷回路中。
[0045] 方面4:方面1-3任一方法,其中步骤(c)还包括:
[0046] (i)在主换热器的热侧和冷侧之间提供间接换热,主换热器的热侧包含至少一个绕管束,并且主换热器的冷侧包含壳侧、每一个制冷回路和天然气回路,天然气回路包含至少一个绕管束的一部分。
[0047] 方面5:方面4方法,其中步骤(c)还包括:
[0048] (c)将天然气原料流分离成第一部分和第二部分,导入天然气原料流的第一部分到洗涤塔中间位置,并且导入天然气原料流的第二部分到洗涤塔底端。
[0049] 方面6:方面4-5任一方法,还包括:
[0050] (v)在第一塔顶蒸汽流和第一部分天然气原料流之间提供间接换热。
[0051] 方面7:方面1-6任一方法,还包括:
[0052] (w)执行步骤(c)之前,通过间接换热,预冷与第二制冷相对的天然气原料流。
[0053] 方面8:方面1-7任一方法,还包括:
[0054] (x)在主换热器中段冷端的天然气回路中回收冷凝天然气流,增加冷凝天然气流的压力以形成增压天然气流,并将增压天然气流导入回流筒。
[0055] 方面9:方面1-8任一方法,其中步骤(p)包括:
[0056] (p)增加回流筒液体流的压力,将回流筒液体流分裂成第一部分和第二部分,将回流筒液体流的第一部分导入洗涤塔的上段,并且在执行步骤(o)之前,将回流筒液体流的第二部分与回流筒蒸汽流相混合。
[0057] 方面10:方面1-9任一方法,还包括:
[0058] (y)执行步骤(I)之前,在部分冷凝天然气流和第三制冷之间,执行间接换热。
[0059] 方面11:方面1-10任一方法,其中步骤(h)还包括,将至少一个减压塔顶制冷流分裂成第一部分和第二部分,将第一部分导入主换热器的冷侧,在第二部分、回流筒蒸汽流和部分冷凝天然气流之间执行间接换热。
[0060] 方面12:方面1-11任一方法,还包括:
[0061] (z)执行步骤(c)之前,使用压缩机,增加天然气原料流压力。
[0062] 方面13:天然气原料流液化系统,系统包括:
[0063] 与天然气源相连接的天然气原料;
[0064] 制冷压缩系统在运行上配置以压缩和冷却热第一制冷液体流以产生高压蒸汽第一制冷流和高压第一制冷液体流,制冷压缩系统包含至少一个压缩机、至少一个后冷却器和至少一个分相器;
[0065] 主换热器包括热端、冷端、热段、冷段、热侧、冷侧、热侧位置的第一制冷回路、热侧位置的第二制冷回路、热侧位置的天然气回路,并且在天然气回路热端处有中间出口,其中,第一制冷回路与高压蒸汽第一制冷流在主换热器热端流体连接,而第二制冷回路与高压第一制冷液体流在主换热器热端流体连接,主换热器在运行上配置以在主换热器热侧和冷侧之间提供间接换热;
[0066] 洗涤塔包括与天然气原料流流体连接的原料流进口和界定内部容积的外壳,内部容积包括原料流进口上方的上段和原料流进口下方的下段,洗涤塔具有位于洗涤塔的上段的蒸汽出口、位于洗涤塔的下段的液体出口、位于洗涤塔的上段液体进口以及与主换热器热端的天然气回路流体连接的洗涤塔的蒸汽出口;
[0067] 回流筒具有与主换热器的中间出口流体连接的进口,与主换热器的中间进口流体连接的蒸汽出口以及与洗涤塔的液体进口流体连接的液体出口:
[0068] 泵位于回流筒的液体出口和洗涤塔的液体进口之间,并与两者有流体连接;并且[0069] 第一经济器有热管和冷管在运行上配置以用于在热管和冷管之间提供间接换热,热管位于主换热器中间出口和回流筒进口之间,并与两者有流体连接,冷管位于回流筒蒸汽出口和主换热器中间进口之间,并与两者有流体连接。
[0070] 方面14:方面13系统,其中主换热器包括具有热束和冷束的绕管式换热器,绕管式换热器中天然气回路的中间出口位于热束的冷端。
[0071] 方面15:方面13-14任一系统,其中至少一个分相器的制冷压缩系统包括,有分相器进口的冷制冷分相器,并与第一制冷回路的冷端有流体连接,从冷制冷分相器底端回收的塔底液体制冷流和从冷制冷分相器顶端回收的塔顶蒸汽制冷流,塔顶蒸汽制冷流和塔底液体制冷流都与比第一制冷回路的冷端更靠近于主换热器冷端的主换热器热侧流体连接。
[0072] 方面16:方面13-15任一系统,其中第一制冷包括混合制冷。
[0073] 方面17:方面13-15任一系统,其中洗涤塔还包括蒸汽进口。
[0074] 方面18:方面13-17任一系统,还包括被安置且在运行上配置以制冷来自原料流进口的天热气原料流上流到0摄氏度以下的温度的预冷器。
[0075] 方面19:方面13-18任一系统,还包括,位于第一经济器的热管和回流筒进口之间的第一减压阀,并有流体连接。
[0076] 方面20:方面13-19任一系统,还包括位于第一经济器和回流筒之间的换热器,并与第一经济器的热管有流体连接。附图说明
[0077] 图1是描述了按照现有技术,去除HHC和天然气液化SMR的系统和方法的示意流程图
[0078] 图2是描述了按照本发明第一典型的实施例,去除HHC和天然气液化SMR的系统和方法的示意流程图。
[0079] 图3是描述了按照本发明第二典型的实施例,去除HHC和丙烷制冷(或“C3MR”)天然气液化的系统和方法的示意流程图。
[0080] 图4是描述了按照本发明第三典型的实施例,去除HHC和天然气液化SMR的系统和方法的示意流程图。
[0081] 图5是描述了按照本发明第四典型的实施例,去除HHC和天然气液化的系统和方法的示意流程图。
[0082] 图6是描述了按照本发明第五典型的实施例,去除HHC和天然气液化的系统和方法的示意流程图。

具体实施方式

[0083] 本发明提供了与天然气液化流程相集成的新方法。这个方法,在洗涤塔、回流筒达到天然气原料流的温度和压力以提供有效的回流和冷凝负荷給洗涤塔。
[0084] 如上所述,当天然气原料流含有低含量(“贫”)的C2-C5成分,并包含大量的重质烃时,常规的洗涤塔配置是低效率的或者说是高耗能的。发明人发现去除HHC的效率以及液化效能可以通过在MCHE和回流筒之间引入经济器换热器,以及改变去除重质烃流程上处理原料气体压力的方式予以改进。
[0085] 更具体的说,整个流程的分离效果和能源效率通过使回流筒运行在与MCHE的热段排出的原料天然气显著不同的温度来得到改善。这种从其他制冷循环中进行回流温度的解耦,提供了额外的自由度,也使整个流程更好的优化。通过用经济器加热来自回流筒的塔顶蒸汽,使其温度比MCHE热段出口温度低几度,就可以帮助减少MCHE中段热端的温度差并改善流程的热能效率。温度差取决于设计经济器的接触温度,但通常小于5摄氏度,且往往小于2或者3摄氏度。
[0086] 此外,将减压阀放置在MCHE和回流筒之间。与常规设置洗涤塔相比,这有两个优势。第一、在减压阀处带走大量的压力降,需要提供近乎很小(或没有)的压力降在洗涤塔自身的入口处,因此,能够在MCHE热段处保持更高原料天然气浓度并更低的原料体积流量。这样,既缩减了所需MCHE的规模,也缩减了相关建设费用。第二、在这个位置去除压力降,实现冷却原料天然气本身,卸载部分MCHE热段所需的冷凝负荷,并有利于去除HHC的效果和整体液化的效能。在这个位置提供减压阀,也有助于保持经济器内MCHE和回流筒之间的正确接触温度。
[0087] 而且,使用取自系统的任何地方的全冷凝LNG流体可以提供额外的回流,包括但不限于中段出口的LNG流体、冷段出口的过冷LNG流体和来自于LNG储罐泵出的LNG成品。
[0088] 可选的,利用额外的冷却器或者在经济器中追加额外的制冷回路可以提供追加制冷和冷凝负荷。冷媒可以取自低于MCHE热段出口的原料天然气的温度的任何流体。
[0089] 最后,如上所注,一部分原料天然气流直接用作提馏气到洗涤塔。这避免了使用额外的热源以及更重要地有助于保持塔内适当的液气比。这有助于实现更好的整体液化效能并且保持塔内可操作性以及改进去除HHC的效率。
[0090] 此处所使用的不定冠词“a”和“an”,除非另有说明,当应用于在说明书和权利要求中所描述的本发明的实施例的任何特征时,都意味着一个或者多个。“a”和“an”的使用除非特别说明的限制,则不限于意指单一特征。定冠词“the”放在单数或复数名词或者名词短语前面,表示特指一个特征或者特指多个特征,并根据其使用的上下文可能具有单数或者复数含义。
[0091] 说明书和权利要求中所使用的术语“流体连接”和“流体流动连接”都是指两个或者多个部件之间的自然连接,通过直接或间接的控制方式(即无渗漏),使部件之间的液体、蒸汽、和/或两相混合物能够传输。在已知的工艺中,耦合两个或者多个部件,使得它们彼此流体流动连接可以包括任何可行的方法,例如,通过使用焊接法兰管路、垫片螺栓。用于分离的系统其他部件的两个或者多个部件也可以将其连接在一起。例如,阀门、闸门或者其他可以选择性限制或管理流体流动的设备。
[0092] 说明书和权利要求中所使用的术语“管路”,是指一个或者多个的结构体,流体可以在系统的两个或者多个部件之间传输。例如,管路可以包括管道、通道、通道和根据运输液体、蒸汽、和/或气体的各种组合。
[0093] 说明书和权利要求中所使用的术语“天然气”,是指以甲烷为主的烃类气体混合物。
[0094] 说明书和权利要求中所使用的术语“混合制冷”(也简称“MR”),是指流体至少由两种烃构成,并且烃的构成量占整体制冷构成至少80%。
[0095] 说明书和权利要求中所使用的术语“重质组分”或者“重质烃”,是指在标准压力下沸点高于甲烷的烃类。
[0096] 在此处使用的术语“间接换热”,是指两个流体之间的热交换。这两个流体被某些形式的物理屏障始终分离。
[0097] 在此处使用的术语“热流”,是意指在系统正常运行环境下,通过间接换热冷却的流体。同样的,术语“冷流”则意指在系统正常运行环境下,通过间接换热加热的流体。
[0098] 在此处使用的术语“热侧”,是意指通过一个或者多个热流体的换热器的一部分。同样的,术语“冷侧”则意指通过一个或者多个冷流体的换热器的一部分。
[0099] 术语“洗涤塔”是指蒸馏塔的一种,塔内包括一个或者多个分离级,包括由填料或者塔盘组成的设备。这些设备使得接触面增加从而塔内上升蒸汽和下降液体之间的传质得到加强。像这样,轻(例如高挥发低沸点)组分在上升蒸汽中增加并在塔顶集中作为塔顶蒸汽,同时重(例如低挥发高沸点)组分在下沉液体中增加并在塔底集中作为塔底液体。蒸馏塔“顶”指的是塔顶分离台的最顶端部分或以上。蒸馏塔“底”指的是塔底分离台的最底端部分或以下。塔的“中间位置”指的是塔顶和塔底之间的位置,两个分离台之间的位置。
[0100] 洗涤塔的情况下,天然气原料流导入(作为气态流或者部分冷凝的两相流)至洗涤塔中间位置,或者往往至洗涤塔底部。来自原料流的上部蒸汽上升,经由洗涤塔的一个或者多个分离台与下沉流动液体回流接触。因此,从上述蒸汽(即去除至少某些蒸汽中不易挥发成分)中“洗涤”重于甲烷的成分。这导致,如上所述,天然气原料流被分离成在洗涤塔塔顶的富甲烷蒸汽馏分作为塔顶蒸汽(此处指“第一塔顶蒸汽”),同时,在洗涤塔塔底的富含比甲烷重的重质烃馏分,作为塔底液体(此处指“第一塔底液体”)。
[0101] 在此处使用的术语“分离器”或者“分相器”,是指一个设备,好像筒或者其它形式的容器,可以导入两个相的流体,并将流体分离为其构成的蒸汽相和液体相。回流筒是分相器的一种类型,在操作上配置为蒸馏塔提供液体回流。
[0102] 仅以例子,本发明特定典型的实施例将参考图2-6来进行描述。与先前实施例相类似的元件使用按100的倍数增加的引用数字予以表示。例如,图1的主低温换热器110和图2的主低温换热器210有相同的构造以及功能。这类元件除非另有说明或者描述,都应看作拥有相同的功能和构造。并且,关于这些元件的讨论在多个实施例中将不做重复。
[0103] 在描述图2-6的实施例中,用于液化天然气的主低温换热器被示为绕管式换热器。尽管绕管式换热器是目前首选的技术,在现有工艺或者未来开发中,主换热器也可以是板翅式换热器,或者其它类型的换热器。同样的,尽管在实施例中所描述的主换热器的绕管放置在单独壳体内,从而形成单独单元,但主换热器也可以由一系列的两个或多个的单元组成。这些单元可以拥有自身的套/壳,或者一个或者多个的束放置在一个套/壳中并且和其他一个或者多个束放置在一个或者多个不同的套/壳中。主换热器的冷却制冷由制冷循环提供,也可以同样的利用任何适合的方式进行天然气的液化。已知的并应用于本领域中的典型循环也可以在本发明中使用,包括单极混合制冷循环(SMR)、丙烷预冷混合制冷循环(C3MR)、氮气膨胀循环、甲烷膨胀循环、双极混合制冷循环(DMR)以及复叠式循环。
[0104] 如图2所示,在实施例中,天然气原料流202在导入洗涤塔236之前,被分离成第一部分202a和第二部分202b。第一部分202a在经济器232的适当温度下预冷,优选0摄氏度以下,更优选零下10摄氏度到零下40摄氏度之间。冷却后的第一部分随后通过原料流进口235导入洗涤塔236,被分离成富甲烷塔顶蒸汽流239和富含重于甲烷的重质烃的塔底液体流240。优选进口阀234中0或者是非常低的压力降(例如少于1bar)下,通过洗涤塔236进口235进入的原料天然气便略低于原料气体流202的原始压力。例如,如果原料气体流202在
65bara进入进口阀234,进口阀234的出口压力即64bara(不包含任何因连接管道和经济器
232过道形成的压力降)。第二部分202b用于作为提馏气应用于洗涤塔236下段238。第二部分202b的流量由进口阀207调节,以及优选配置并操作以提供少于1bar的压力降。
[0105] 塔顶蒸汽流239被洗涤塔236上段237回收,并且塔底液体流240被洗涤塔236下段238回收。在本领域中,上段237也被称为蒸馏塔的精馏段,下段238也被称为蒸馏塔的提馏段。两段的分界位于原料流进口235。两段都可以填充规整填料或者使用塔盘来对洗涤塔
236内的液体流和蒸汽流逆流接触。
[0106] 在经济器232中加热相对于原料天然气流202的塔顶蒸汽流239,并提供间接热交换。热塔顶蒸汽流244随后流入MCHE210热段(热束),并通常在零下40摄氏度和零下60摄氏度之间的温度下冷却,也往往被部分冷凝。部分冷凝天然气流245随后从MCHE210热段214回收,并在经济器252中相对于来自回流筒250的塔顶蒸汽流251,并且进一步被冷却。冷原料天然气流246离开经济器252,通过减压JT阀253膨胀,在回流筒中,在较低压力下以便形成足够的液体。依据原料天然气的构成,回流筒往往低于原料回路压力2-10bar。次临界压原料流在之后通过进口247导入回流筒250,并通过相分离,形成塔底液体流254和塔顶蒸汽流251。
[0107] 回流筒250的运行压力和温度(同样是JT阀253出口的压力和温度)使得筒中液相和蒸汽相的密度比高于1,并且优选高于4。回流筒250中,液相的表面张力,即优选2dyne/cm,足够高到具有清晰的相边界。来自回流筒250的底部液体流254通过液体泵255泵出,并返回洗涤塔236的顶端,作为回流256为洗涤塔运转和原料天然气去除重质烃的清洗提供必要的回流。如上所述,塔顶蒸汽流251在送入MCHE210中段215之前,在经济器252相对于离开MCHE210热段214的部分冷凝天然气流245,并且被加热。
[0108] 制冷压缩系统260的构成和操作本质上跟图1所描述的制冷压缩系统160一样。因此,没有提供图2的制冷压缩系统260的引用数字。
[0109] 与图1所示的常规配置相比,图2所描述本发明的实施例的方法和系统在方式上的不同之处在于,大量的原料的压力在回流筒250的进口247被降低,并且回流筒250的运行温度明显低于(例如低5-30摄氏度)离开MCHE210热段214热端的流体245、278、221a、221b的温度。因此,通过MCHE210热段214的在天然气回路217a中,原料天然气流的压力比在图1的天然气回路117a中的压力要高。此外,在图2的实施例中,冷MR分离器279的运行温度(5-30摄氏度,优选至少要5摄氏度并且更优选至少10摄氏度)要比回流筒250的温度高得多。通过解耦冷MR分离器279和回流筒250的运行温度,为独立的优化制冷循环和去除重质烃系统230提供了更多的自由度。加之,经济器252也有助于中段(束)215的热端保持更紧密的温度差别,也就是说,进入中段215热端的流体257、280、和281要比图1的流体157、180和181的温度差更接近。最后,移动或者追加图1所描述的重沸炉142用提馏气(原料天然气流202的第二部分202b)减少或者避免了输入系统的额外热能的需求。如提供的例子所展示的,上述所有使得整体的液化效能得到了大幅的改进。
[0110] 通过其他的制冷循环,可以达到相似的流程操作,比如丙烷预冷混合制冷流程(C3-MR)。参考图3所示,描述了本发明通过丙烷制冷循环和混合制冷循环来提供制冷负荷的另一种示范实例。丙烷制冷循环同时预冷原料天然气和混合制冷剂。
[0111] 在实施例中,在被送入洗涤塔336之前,原料天然气流302在一个或者多个丙烷罐(整体指区382并且也作为预冷器被提及)中制冷,制冷温度优选低于0摄氏度,更加优选的是零下20摄氏度到零下30摄氏度之间。低压丙烷制冷流384、331c、331b、331a(从一系列运行于不同压力和温度的蒸发罐中收集)在丙烷压缩机385被压缩,称为高压输出丙烷流386。高压输出丙烷流386在一个或者多个后制冷器387里制冷并完全冷凝,成为高压液态丙烷制冷流388。高压液态丙烷制冷流388在多重压力下蒸发,为原料天然气流302和高压混合制冷流374提供连续制冷。来自MCHE310的热低压混合制冷361被一系列压缩机364和371压缩,并在一系列后制冷器366和373中冷却,成为高压混合制冷流374。在通过一系列丙烷罐
382被冷却和部分冷凝之后,冷高压混合制冷流383在分相器375中相分离成,混合制冷液体(MRL)流376和混合制冷蒸汽(MRV)流377。MRL流376先在MCHE310热段314和中间段315中进一步过冷,然后再通过JT阀325膨胀,成为低压冷制冷流326。低压冷制冷流326之后送入MCHE310中间段315的壳侧,为系统提供制冷。MRV流377在MCHE310热段、中间段和冷段中相继冷却、冷凝和过冷,然后通过JT阀328膨胀,成为另一个低压冷制冷流329。低压冷制冷流
329之后送入MCHE310冷段316的壳侧,为系统提供制冷。
[0112] 图3所示系统300不同于系统200的地方在于,由于原料天然气流202已经在丙烷罐382中预冷,因此,不需要第一经济器(系统200的经济器232)。同样不同的,系统300中MCHE310中段315和热段314之间是没有冷MR分离器的。尽管如此,像系统200一样,离开MCHE310热段314的原料天然气流345在位于MCHE310和回流筒350之间的经济器352中被进一步制冷。原料天然气流346离开经济器352膨胀,通过减压JT阀353减至低于其回路的压力。然后,在回流筒350中进行相分离,成为液体相和蒸汽相,产生液体流354和塔顶蒸汽流
351。回流筒350的运行压力和温度(同样是JT阀353出口的压力和温度)使得筒中液相和蒸汽相的密度比高于1,并且优选高于4。回流筒250中,液相的表面张力,即优选2dyne/cm,足够高到具有清晰的相边界。
[0113] 从去除重质烃330、130操作的视来将系统300对比现有工艺的系统100,主要区别在于原料天然气的压力降发生在进入回流筒350进口347之前。这使得回流筒350的运行温度比离开了MCHE310热段314的原料天然气流345要冷得多,而且,与系统100(现有工艺)相比在MCHE310热段314和中间段315的原料天然气可以保持在相对高(例如高出图1相同流体1-10bara)的压力上。所有上述都有助于更好的整体液化。
[0114] 这样设置C3-MR流程,随着原料天然气流302的构成改变,使操作更加灵活。例如,随着原料天然气流302变贫,系统300将通过JT阀353中更多的压力降来去除HHC以达到效果,同时保持制冷压缩系统360和洗涤塔336的运行参数的相对稳定。
[0115] 参照图4,在系统400中额外回流489用于将部分全液化LNG流带离位于MCHE410中间段415冷端的回路417b。额外回流489的压力通过泵490增加,并且加压回流491流入冷端回流筒450与来自于MCHE410热段414冷端的塔顶蒸汽流451相混合。额外回流有助于辅助回流和负荷。尤其是,当原料天然气源401通过JT阀453时,减压(例如30-45bara,或者已经低于原料天然气回路的压力)和自冷却远远不足以达到理想温度时,也有助于回流筒保持在比来自于MCHE410热段414冷端的塔顶蒸汽流451冷得多的温度(例如5-30摄氏度)上。
[0116] 需要注意的是,额外的回流可以将全冷凝LNG流带去系统400的任何地方,包括但不限于中段415冷端的LNG流、过冷LNG流403、LNG成品流406,甚至泵入LNG储罐404的最终LNG成品。
[0117] 如图5所示,在另一个实施例中,系统500包含辅助制冷和冷凝负荷,由通过在经济器552和减压阀553之间设置额外的制冷器592来提供。制冷器592的冷媒可以来源于系统500中任何低于部分冷凝液545温度的流体中。例如(未示出),一部分CMRL流524可以膨胀并直接进入制冷器592中帮助部分冷凝流545冷却。失效的CMRL流从制冷器592返回大致位于MCHE510的热段514和中段515中间位置的壳侧。这样的配置,尤其在当原料天然气源501通过JT阀553时,减压和自冷却远远不足以达到理想温度时,有助于使回流筒550保持在比塔顶蒸汽流545冷得多的温度(例如低5-30摄氏度)上。
[0118] 系统500也包含回流推进泵零件。通过这个零件,一部分泵出的回流液体流556被代替送入洗涤塔536的上段537并直接与塔顶蒸汽流551相混合。混合点既可以在流入经济器552之前(表示为流体593a)也可以在流入经济器552之后(表示为流体593b)。此零件提供了额外的操作上的灵活性。例如,随着原料天然气流502变富,回流筒550将会有更多的液体。如果不改变其他操作,推进泵液体量将增加,反之亦然。
[0119] 参照图6,所示的另一种示范实施例被示为系统600。在系统600中,经济器652中追加了一个额外的冷却回路。部分CMRL流624膨胀并直接进入经济器652来帮助塔顶蒸汽流645冷却。失效的CMRL流697从经济器652返回大致位于MCHE610的热段614和中间段615中间位置698的壳侧。与系统500相似,这样的配置也有助于使回流筒650保持在比塔顶蒸汽流
645离开MCHE610的热段614时冷得多的温度上。可选的,可以追加原料增压压缩机694来增加原料天然气流602的压力,可以使其在回流筒650进口647的减压阀653中提高自冷却能力。
[0120] 示例
[0121] 如表1所示,对比系统100(图1)和系统200(图2)在模拟运行环境下的各个流体。表中数据说明使用MCHE210和回流筒250之间的经济器以及导入回流筒250进口247的压力降可以大幅改进整体的液化效能。液化效能通常由比功率来衡量,比功率是总制冷功率除以产量来计算出的比率。然而比功率指的是较高的液化效能。原料压力在MCHE的热段和中段中要保持高于现有工艺下的压力。具体来说,从表中可以看出,原料天然气经过系统200的热段高出系统100大约10bara;而原料天然气经过系统200的中段高出系统100大约3bara。保持较高的原料天然气压力有助于达到较高的液化效能。
[0122] 表1
[0123]
[0124]
[0125] P:绝对压力
[0126] T:摄氏温度
[0127] 值得鼓励的是,本发明不限制参考上述细节描述进行优选实施例,而大量的修改以及变量可以在所附权利要求明确下,不背离本发明的精神和范畴。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈