首页 / 专利库 / 核能 / 核反应堆 / 用于反应堆物理计算程序适用性验证的方法

用于反应堆物理计算程序适用性验证的方法

阅读:1020发布:2020-05-12

专利汇可以提供用于反应堆物理计算程序适用性验证的方法专利检索,专利查询,专利分析的服务。并且本 发明 公开了用于反应堆物理计算程序适用性验证的方法,1、对现有的临界实验系统和新型 核反应堆 系统进行敏感性分析,获得有效增殖系数关于多群截面的相对灵敏度系数向量;2、计算各个临界实验系统和新型核反应堆系统之间的相关性系数,并挑选出满足相似性限值的临界实验系统;3、计算多群截面的相对调整量,使得Monte‑Carlo程序对挑选出来的临界实验系统有效增殖系数的计算结果与实测结果之间的偏差整体达到最小;4、调整Monto‑Carlo程序对新型核反应堆系统有效增殖系数的计算结果,并将其作为“实测结果”的最优估计值,用于验证待验证核反应堆物理计算程序对新型核反应堆系统设计分析的适用性。,下面是用于反应堆物理计算程序适用性验证的方法专利的具体信息内容。

1.一种用于反应堆物理计算程序适用性验证的方法,其特征在于:包括如下步骤:
步骤1:对现有的临界实验系统和核反应堆系统进行敏感性分析,获得临界实验系统和核反应堆系统的有效增殖系数keff关于多群截面的相对灵敏度系数向量;将有效增殖系数keff关于多群截面的相对灵敏度系数写成向量的形式,表示为
式中:
σ——所有核素、所有类型反应道和所有能群的多群截面组成的向量;
σi——所有核素、所有类型反应道和所有能群的多群截面向量σ中第i个截面;
——keff关于多群截面σi的相对灵敏度系数;
M——所有核素、所有类型反应道和所有能群数目的加和值,表示为:
式中:
Ng——多群截面的能群数目;
Niso——不同核素的数目;
——核素i所有反应道类型数目;
用 和 分别表示临界实验系统和核反应堆系统的有效增殖系数keff的相对灵敏度系数向量;
步骤2:基于步骤1中的相对灵敏度系数向量 和 进行不确定性分析计算,获得核反应堆系统和各个临界实验系统之间的相关性系数;所述的不确定性分析旨在计算核反应堆系统和各个临界实验系统的有效增殖系数keff之间的相对协方差矩阵,由公式(4)计算:
式中:
Cσσ——所有核素、所有类型反应道和所有能群的多群截面相对协方差矩阵;
Ca,e——临界实验系统和核反应堆系统的有效增殖系数keff之间的相对协方差矩阵;
var(a,a)——核反应堆系统的有效增殖系数keff的相对方差;
var(e,e)——临界实验系统的有效增殖系数keff的相对方差;
cov(a,e)——临界实验系统和核反应堆系统的有效增殖系数keff的相对协方差,数值上与cov(e,a)相同;
根据相对协方差矩阵Ca,e,核反应堆系统和临界实验系统的相关性系数ca,e按照公式(5)计算得到:
相关性系数ca,e表示了临界实验系统和核反应堆系统在中子学层面上的相似程度,该值越接近1.0表示系统之间的相似程度越高,该值等于1.0表示两个系统完全相同;根据相似性挑选限值ξρ,挑选出满足条件ca,e≥ξρ的临界实验系统作为反应堆物理计算程序适用性验证的基础
步骤3:采用Monte-Carlo程序对步骤2中挑选出来的临界实验系统进行精确建模,获得临界实验系统的有效增殖系数keff的计算结果k=[k1,k2,…,kI],其中I表示挑选后的临界实验系统的数目;对应的临界实验系统的有效增殖系数keff的实测结果表示为m=[m1,m2,…,mI];采用广义线性最小二乘方法,对多群截面进行调整,使得Monte-Carlo程序对临界实验系统的有效增殖系数keff的计算结果k’与实测结果m之间的整体偏差达到最小;由此计算得到多群截面的相对调整量,表示为:
式中:
δσ——多群截面的相对调整量;
Cσσ——所有核素、所有类型反应道和所有能群的多群截面相对协方差矩阵;
Sk,σ——所有临界实验系统的有效增殖系数keff关于多群截面的相对灵敏度系数向量组成的矩阵:
d——所有临界实验系统的有效增殖系数keff计算结果和实测结果之间的相对偏差,表示为:
Cdd——所有临界实验系统的有效增殖系数keff偏差的相对协方差矩阵;
——所有临界实验系统的有效增殖系数keff关于多群截面的相对灵敏度系数向量组成的矩阵Sk,σ的转置矩阵;
步骤4:使用步骤3中得到的多群截面的相对调整量δσ,对Monte-Carlo程序计算的核反应堆系统的计算结果keff,a进行调整,作为核反应堆系统的有效增殖系数keff实测结果的最优估计值ma;所述的核反应堆系统的有效增殖系数keff实测结果的最优估计值表示为:
式中:
ma——核反应堆系统的有效增殖系数keff的实测结果的最优估计值;
keff,a——核反应堆系统的有效增殖系数keff的计算结果;
δσi——多群截面σi的相对调整量,向量δσ中第i个值;
使用待验证的核反应堆物理计算程序对核反应堆系统进行精确建模和模拟,计算结果表示为ka;采用核反应堆系统的有效增殖系数keff实测结果的最优估计值ma对ka进行验证,定义计算偏差为|ka-ma|,检验计算偏差是否在计算接受误差范围即检验偏差限值ε之内:若|ka-ma|>ε,则待验证的反应堆物理计算程序不适应于核反应堆的设计分析;若|ka-ma|≤ε,则待验证的反应堆物理计算程序适用于核反应堆系统的设计分析。
2.根据权利要求1所述的一种用于反应堆物理计算程序适用性验证的方法,其特征在于:步骤2所述相似性挑选限值ξρ取值为ξρ=0.9。
3.根据权利要求1所述的一种用于反应堆物理计算程序适用性验证的方法,其特征在于:步骤4所述检验偏差限值ε取值为0.5%。

说明书全文

用于反应堆物理计算程序适用性验证的方法

技术领域

[0001] 本发明涉及核反应堆安全技术领域,是一种用于核反应堆物理计算程序适用性验证的方法。

背景技术

[0002] 核反应堆是一个多尺度、多物理耦合的复杂系统,计算程序广泛地应用于核反应堆的设计分析和研究工作。其中,反应堆物理计算是核反应堆系统设计、安全分析和性能评估的基础,其计算结果将直接影响核反应堆的安全性和经济性。因此,反应堆物理计算程序有着严格的验证和确认方法:首先通过与解析结果对比的方法检验程序中计算模型的求解精度;然后通过与大量临界实验系统实测结果对比的方法检验程序模拟结果的正确性和真实性。
[0003] 随着核能的不断发展和应用需求的不断扩大,新型核反应堆设计方案被不断地提出,设计方案的可行性和安全性需要利用成熟的反应堆物理计算程序对其进行研究和分析。但是,现有的成熟的反应堆物理计算程序的验证和确认工作是基于传统的核反应堆的临界实验系统建立的,是否适用于新型核反应堆系统的设计分析需要增加对程序的验证和确认工作。因此,将成熟的反应堆物理计算程序用于新型核反应堆系统的设计分析,需要进一步对其进行程序的适用性验证。
[0004] 根据传统的反应堆物理计算程序的验证和确认方法,需要建造新型核反应堆对应的临界实验系统,并测量得到这些临界实验系统的实测结果用于程序的验证和确认工作。新型核反应堆临界实验系统的建造不仅工程代价高、建设周期长,而且存在一定的险性,远无法满足核能的快速、安全的发展需求。因此,亟需研究一种反应堆物理计算程序适用性验证的方法,科学快速地评估成熟的核反应堆物理计算程序对新型核反应堆系统设计分析的适用性。

发明内容

[0005] 为了在不建造新型核反应堆临界实验系统的前提下实现对成熟的反应堆物理计算程序适用性的验证研究,本发明的目的在于提供一种用于核反应堆物理计算程序适用性验证的方法,基于敏感性和不确定性分析技术和已有的核反应堆系统临界实验的实测结果,能够科学快速地验证反应堆物理计算程序对新型核反应堆系统的适用性。
[0006] 为了实现对反应堆物理计算程序的适用性验证,本发明的技术方案概括如下:
[0007] 一种用于反应堆物理计算程序适用性验证的方法,包括如下步骤:
[0008] 步骤1:对现有的临界实验系统和新型核反应堆系统进行敏感性分析,获得临界实验系统和新型核反应堆系统的有效增殖系数keff关于多群截面的相对灵敏度系数向量;将有效增殖系数keff关于多群截面的相对灵敏度系数写成向量的形式,表示为
[0009]
[0010] 式中:
[0011] σ——所有核素、所有类型反应道和所有能群的多群截面组成的向量;
[0012] σi——所有核素、所有类型反应道和所有能群的多群截面向量σ中第i个截面;
[0013] ——keff关于多群截面σi的相对灵敏度系数;
[0014] M——所有核素、所有类型反应道和所有能群数目的加和值,表示为:
[0015]
[0016] 式中:
[0017] Ng——多群截面的能群数目;
[0018] Niso——不同核素的数目;
[0019] ——核素i所有反应道类型数目;
[0020] 用 和 分别表示临界实验系统和新型核反应堆系统的有效增殖系数keff的相对灵敏度系数向量;
[0021] 步骤2:基于步骤1中的相对灵敏度系数向量 和 进行不确定性分析计算,获得新型核反应堆系统和各个临界实验系统之间的相关性系数;所述的不确定性分析旨在计算新型核反应堆系统和各个临界实验系统的有效增殖系数keff之间的相对协方差矩阵,由公式(4)计算:
[0022]
[0023] 式中:
[0024] Cσσ——所有核素、所有类型反应道和所有能群的多群截面相对协方差矩阵;
[0025] Ca,e——临界实验系统和新型核反应堆系统的有效增殖系数keff之间的相对协方差矩阵;
[0026] var(a,a)——新型核反应堆系统的有效增殖系数keff的相对方差;
[0027] var(e,e)——临界实验系统的有效增殖系数keff的相对方差;
[0028] cov(a,e)——临界实验系统和新型核反应堆系统的有效增殖系数keff的相对协方差,数值上与cov(e,a)相同;
[0029] 根据相对协方差矩阵Ca,e,新型核反应堆系统和临界实验系统的相关性系数ca,e按照公式(5)计算得到:
[0030]
[0031] 相关性系数ca,e表示了临界实验系统和新型核反应堆系统在中子学层面上的相似程度,该值越接近1.0表示系统之间的相似程度越高,该值等于1.0表示两个系统完全相同;根据相似性挑选限值ξρ,挑选出满足条件ca,e≥ξρ的临界实验作为反应堆物理计算程序适用性验证的实验基础;
[0032] 步骤3:采用Monte‐Carlo程序对步骤2中挑选出来的临界实验系统进行精确建模,获得临界实验系统的有效增殖系数keff的计算结果k=[k1,k2,…,kI],其中I表示挑选后的临界实验系统的数目;对应的临界实验系统的有效增殖系数keff的实测结果表示为m=[m1,m2,…,mI];采用广义线性最小二乘方法,对多群截面进行调整,使得Monte‐Carlo程序对临界实验系统的有效增殖系数keff的计算结果k’与实测结果m之间的整体偏差达到最小;由此计算得到多群截面的相对调整量,表示为:
[0033]
[0034] 式中:
[0035] δσ——多群截面的相对调整量;
[0036] Cσσ——所有核素、所有类型反应道和所有能群的多群截面相对协方差矩阵;
[0037] Sk,σ——所有临界实验系统的有效增殖系数keff关于多群截面的相对灵敏度系数向量组成的矩阵:
[0038]
[0039] d——所有临界实验系统的有效增殖系数keff计算结果和实测结果之间的相对偏差,表示为:
[0040]
[0041] Cdd——所有临界实验系统的有效增殖系数keff偏差的相对协方差矩阵;
[0042] ——所有临界实验系统的有效增殖系数keff关于多群截面的相对灵敏度系数向量组成的矩阵Sk,σ的转置矩阵;
[0043] 步骤4:使用步骤3中得到的多群截面的相对调整量δσ,对Monte‐Carlo程序计算的新型核反应堆系统的计算结果keff,a进行调整,作为新型核反应堆系统的有效增殖系数keff“实测结果”的最优估计值ma;所述的新型核反应堆系统的有效增殖系数kef“f 实测结果”的最优估计值表示为:
[0044]
[0045] 式中:
[0046] ma——新型核反应堆系统的有效增殖系数keff的“实测结果”的最优估计值;
[0047] keff,a——新型核反应堆系统的有效增殖系数keff的计算结果;
[0048] δσi——多群截面σi的相对调整量,向量δσ中第i个值;
[0049] 使用待验证的核反应堆物理计算程序对新型核反应堆系统进行精确建模和模拟,计算结果表示为ka;采用新型核反应堆系统的有效增殖系数kef“f 实测结果”的最优估计值ma对ka进行验证,定义计算偏差为|ka-ma|,检验计算偏差是否在计算接受误差范围,即检验偏差限值ε之内:若|ka-ma|>ε,则待验证的反应堆物理计算程序不适应于新型核反应堆的设计分析;若|ka-ma|≤ε,则待验证的反应堆物理计算程序适用于新型核反应堆系统的设计分析。
[0050] 步骤2所述相似性挑选限值ξρ取值为ξρ=0.9。
[0051] 步骤4所述检验偏差限值ε取值为0.5%。
[0052] 与传统的反应堆物理计算程序验证和确认方法相比,本发明有如下突出优点:
[0053] 1、本发明无需建造新型核反应堆相关的临界实验系统,节约工程建设成本,并大大减少程序适用性验证周期。
[0054] 2、基于敏感性和不确定性分析技术,从中子学度量化临界实验系统和新型核反应堆系统之间的相关性,从而保障用于反应堆物理计算程序适用性验证的临界实验的可靠性。
[0055] 3、采用核数据库调整技术,获得新型核反应堆系统有效增殖系数kef“f 实测结果”的最优估计值,作为反应堆物理计算程序适用性验证的基础。附图说明
[0056] 图1为反应堆物理计算程序适用性验证流程图

具体实施方式

[0057] 本发明基于敏感性和不确定性分析技术,采用广义线性最小二乘方法,在不建造新型核反应堆临界实验系统的前提下,只使用现有的核反应堆临界实验系统的实测结果,实现对核数据库的调整并用于评估新型核反应堆系统kef“f 实测结果”的最优估计值,用于对核反应堆物理计算程序适用性的验证工作,本发明包括以下方面:
[0058] 1)采用敏感性分析技术,计算分析临界实验系统和新型核反应堆系统的有效增殖系数keff关于多群截面的相对灵敏度系数向量;
[0059] 2)基于敏感性和不确定性分析技术,量化临界实验系统和新型核反应堆系统在中子学层面上的相似性,挑选用于程序适用性验证的临界实验系统,相比传统的专家评估的方法更加严谨科学;
[0060] 3)采用广义线性最小二乘方法,对核数据库进行调整,实现Monte‐Carlo程序对所有临界实验系统的有效增殖系数keff的计算结果与实测结果整体偏差达到最小;
[0061] 4)基于调整后的多群截面和新型核反应堆系统的有效增殖系数keff关于多群截面的相对灵敏度系数向量,计算评估新型核反应堆系统的有效增殖系数kef“f 实测结果”的最优估计值,并用于检验待验证的程序对新型核反应堆系统的有效增殖系数keff的计算精度,验证程序对新型核反应堆系统的适用性。
[0062] 如图1所示,本发明用于反应堆物理计算程序适用性验证的方法,包括如下步骤:
[0063] 步骤1:使用核反应堆物理计算敏感性和不确定性分析程序对现有的临界实验系统和新型核反应堆系统进行敏感性分析,计算获得临界实验系统和新型核反应堆系统的有效增殖系数keff关于多群截面的相对灵敏度系数向量;
[0064] 步骤1中keff关于多群截面的相对灵敏度系数如公式(1)所示:
[0065]
[0066] 式中:
[0067] keff——有效增殖系数;
[0068] i——核素标识;
[0069] x——反应道类型;
[0070] g——能群第g群;
[0071] ——核素i的类型为x的反应道第g群的截面大小;
[0072] ——keff关于核素i的类型为x的反应道第g群截面的相对灵敏度系数;
[0073] 将上述有效增殖系数keff关于所有核素、所有反应道类型和所有能群的相对灵敏度系数写成向量的形式可以表示如公式(2)所示:
[0074]
[0075] 式中:
[0076] σ——所有核素、所有类型反应道和所有能群的多群截面组成的向量;
[0077] σi——所有核素、所有类型反应道和所有能群的多群截面向量中第i个截面;
[0078] ——keff关于截面σi的相对灵敏度系数;
[0079] M——所有核素、所有类型反应道和所有能群数目加和值;
[0080] M可表示如公式(3)所示:
[0081]
[0082] 式中:
[0083] Ng——能群数目;
[0084] Niso——核素数目;
[0085] ——核素i的反应道类型数目;
[0086] 分别用 和 表示临界实验系统和新型核反应堆系统的有效增殖系数keff关于多群截面的相对灵敏度系数向量;
[0087] 步骤2:基于步骤1中临界实验系统和新型核反应堆系统的有效增殖系数keff关于多群截面的相对灵敏度系数向量 和 结合多群截面的相对协方差矩阵,对新型核反应堆系统和各个临界实验系统进行不确定性分析,计算得到对应的临界实验和新型核反应堆系统的有效增殖系数keff的相对协方差矩阵;所述的临界实验系统和新型核反应堆系统的有效增殖系数keff的相对协方差矩阵如公式(4)所示:
[0088]
[0089] 式中:
[0090] Cσσ——所有核素、所有类型反应道和所有能群的多群截面相对协方差矩阵;
[0091] Ca,e——临界实验系统和新型核反应堆系统的有效增殖系数keff的相对协方差矩阵;
[0092] var(a,a)——新型核反应堆系统的有效增殖系数keff的相对方差;
[0093] var(e,e)——临界实验系统的有效增殖系数keff的相对方差;
[0094] cov(a,e)——临界实验系统和新型核反应堆系统的有效增殖系数keff的相对协方差,数值上与cov(e,a)相同;
[0095] 根据相对协方差矩阵Ca,e,新型核反应堆系统和临界实验系统的相关性系数ca,e按照公式(5)计算得到:
[0096]
[0097] 相关性系数ca,e表示了临界实验系统和新型核反应堆系统在中子学层面上的相似程度,该值越接近1.0表示系统之间的相似程度越高,该值等于1.0表示两个系统完全相同;根据相似性挑选限值ξρ,挑选出满足条件ca,e≥ξρ的临界实验作为反应堆物理计算程序适用性验证的实验基础;一般取ξρ=0.9作为相似性挑选的限值。
[0098] 步骤3:使用Monte‐Carlo程序对步骤2中经过挑选的临界实验系统进行精确建模,得到临界实验系统的有效增殖系数keff的计算值k=[k1,k2,…,kI],其中I表示挑选后的临界实验系统的数目;对应的临界实验系统的有效增殖系数keff的实测结果表示为m=[m1,m2,…,mI];采用广义线性最小二乘方法对多群截面进行调整,使得采用调整后的临界实验系统的有效增殖系数keff的计算结果k′=[k′1,k′2,...,k′I]与keff的实测结果之间的偏差整体达到最小;
[0099] 步骤3中,Monte‐Carlo程序被视为核反应堆物理计算程序的对标程序,其理论模型和建模过程误差可忽略不计,核数据库的误差是其计算结果误差的主要来源,因此Monte‐Carlo程序计算得到的keff可表示为关于核数据库的函数ki(σ)(i=1,2,…,I);当核数据库σ存在一定的相对调整量δσ,在一阶线性条件下,调整后的临界实验系统计算结果k′如公式(6)所示:
[0100]
[0101] 上式:
[0102] ki——第i个临界实验系统初始keff的计算结果;
[0103] δσm——多群截面σm的相对调整量;
[0104] ——ki关于截面σm的相对灵敏度系数;
[0105] 临界实验系统keff的初始计算结果k与实测结果之间的偏差如公式(7)所示:
[0106]
[0107] 调整后的临界实验系统keff的计算结果k′与实测结果之间的偏差如公式(8)所示:
[0108]
[0109] 按照公式(6)~(8),获得如公式(9)所示的关系成立:
[0110] y=d+Sk,σδσ                                 公式(9)
[0111] 广义线性最小二乘方法用于核数据库调整的目标在于:基于广义线性最小二乘算法,调整核数据库使得公式(9)中y整体达到最小;此时,广义线性最小二乘算法定义二次损失函数如公式(10)所示:
[0112]
[0113] 式中:
[0114] Q(δσ,y)——二次损失函数;
[0115] Cmm——实测结果的相对协方差矩阵;
[0116] 临界实验实测结果的相对协方差矩阵如公式(11)所示:
[0117]
[0118] 式中:
[0119] cov(mi,mj)——临界实验系统实测结果mi和mj之间的协方差;
[0120] 根据广义线性最小二乘算法的核数据库调整目标,可以求解得到核数据库的相对调整量如公式(12)所示:
[0121]
[0122] 式中:
[0123] Cdd——偏差d的相对协方差矩阵;
[0124] 临界实验系统的有效增殖系数keff的初始计算结果k与实测结果之间的偏差的相对协方差矩阵可表示如公式(13)所示:
[0125] Cdd=Cmm+Ckk                              公式(13)
[0126] 式中:
[0127] Ckk——临界实验系统的有效增殖系数keff计算结果相对协方差矩阵,其计算如公式(14)所示:
[0128]
[0129] 式中:
[0130] Sk,σ——所有临界实验系统的有效增殖系数keff相对灵敏度系数向量组成的矩阵:
[0131]
[0132] 根据上述公式计算得到核数据截面的相对调整量如公式(12)所示。
[0133] 步骤4:基于步骤3中得到的多群截面相对调整量δσ,使用新型核反应堆系统的有效增殖系数keff关于多群截面的相对灵敏度系数向量 采用一阶线性关系,可计算得到调整后的新型核反应堆系统的计算结果k′eff,作为新型核反应堆系统的有效增殖系数kef“f 实测结果”的最佳估计值ma;采用新型核反应堆系统的有效增殖系数kef“f 实测结果”的最佳估计值ma对待验证的程序进行验证,检验其对新型核反应堆系统的适用性;
[0134] 步骤4中,新型核反应堆系统的有效增殖系数kef“f 实测结果”的最优估计值如公式(16)所示:
[0135]
[0136] 式中:
[0137] keff,a——Monte‐Carlo程序对新型核反应堆系统初始keff计算结果;
[0138] ma——新型核反应堆系统调整后的keff,可作为实测结果的最佳估计值;
[0139] 使用ma对待验证的程序进行检验,设待验证程序对新型核反应堆系统keff的计算结果表示为ka,检验偏差限值为ε:若|ka-ma|>ε,则待验证的反应堆物理计算程序不适应于新型核反应堆的设计分析;若|ka-ma|≤ε,则待验证的反应堆物理计算程序适用于新型核反应堆系统的设计分析。
[0140] 基于以上的理论模型,本发明采用标准FORTRAN90语言编制了反应堆物理计算程序适用性验证程序,该程序的计算流程如图1所示。
[0141] 在该程序的计算中,敏感性分析用于计算得到初始(未经挑选的)临界实验系统和新型核反应堆系统keff计算结果关于多群截面的相对灵敏度系数向量;基于keff计算结果关于多群截面的相对灵敏度系数向量和多群截面的相对协方差数据,不确定性分析用于计算各个临界实验系统与新型核反应堆系统之间的相关性系数,对临界实验系统进行筛选,挑选出满足条件的临界实验系统;基于挑选出的临界实验系统,核数据库调整采用广义线性最小二乘算法,获得多群截面的相对调整量,实现所有临界实验系统keff计算结果和实测结果之间的偏差整体达到最小;基于新型核反应堆系统keff关于多群截面的相对灵敏度系数向量和多群截面的相对调整量,计算得到新型核反应堆系统kef“f 实测结果”的最优估计值,用于对待验证程序进行验证,最终实现核反应堆物理计算程序适用性验证研究。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈