首页 / 专利库 / 换热器 / 热交换器 / 热泵 / 空气源热泵 / 低压排气风冷的宽环温型CO2空气源热泵系统

低压排气冷的宽环温型CO2空气源系统

阅读:793发布:2020-05-13

专利汇可以提供低压排气冷的宽环温型CO2空气源系统专利检索,专利查询,专利分析的服务。并且本 发明 提供一种宽环温型CO2空气源 热 泵 系统,包括:低压段CO2 压缩机 ,低压段排气 电子 三通 阀 ,高压段CO2压缩机,热回收 板式换热器 ,回热循环板式换热器,高压电子压 力 调节阀, 蒸发 器 以及去 过热 器 ,气液分离器,汽分电子压力调节阀,低压段吸气电子三通阀以及去 过热器 单向阀 ; 蒸发器 以及去过热器一体化设计,给予亚临界压缩机预 散热 和整个系统的蒸发吸收热量,预散热给予蒸发吸热的热量补偿,实现热源的最大 回收利用 。室外 温度 变化过程将通过 控制器 进行 数据采集 ,控制器程序可通过控制电子三通阀实现制热循环的切换,该切换保证在低环温情况下系统实现两级压缩过程,高环温情况下实现一级压缩过程,可保证系统安全可靠运行,同时保证系统运行的高效率。,下面是低压排气冷的宽环温型CO2空气源系统专利的具体信息内容。

1.低压排气冷的宽环温型CO2空气源系统,其特征在于,包括:
低压段CO2压缩机(1),排气单向(2),低压段排气电子三通阀(3),高压段CO2压缩机(4),热回收板式换热器(5),回热循环板式换热器(6),高压电子压调节阀(7),蒸发器以及去过热器(8),气液分离器(9),汽分电子压力调节阀(10),低压段吸气电子三通阀(11),电动球阀(12),去过热器单向阀(13);
所述低压段CO2压缩机(1)一端通过带有排气单向阀(2)的管路与低压段排气电子三通阀(3)的其中一个口连通,另一端通过管路与低压段吸气电子三通阀(11)其中一个口连通;
低压段吸气电子三通阀(11)的另外一路管线与高压段CO2压缩机(4)连通,低压段吸气电子三通阀(11)的最后一路与气液分离器(9)的气路连通,低压段吸气电子三通阀(11)与气液分离器(9)的气路经由回热循环板式换热器(6),且气液分离器(9)与回热循环板式换热器(6)之间管路上设置有电动球阀(12);
低压段排气电子三通阀(3)的另外一路经由蒸发器以及去过热器(8),再经由去过热器单向阀(13)最终汇入到低压段吸气电子三通阀(11)与高压段CO2压缩机(4)连通管路中;
高压段CO2压缩机(4)的输出端管路依次经过热回收板式换热器(5)、回热循环板式换热器(6)和蒸发器以及去过热器(8)最终与气液分离器(9)入口连通,高压段CO2压缩机(4)输出端管位于回热循环板式换热器(6)与蒸发器以及去过热器(8)之间位置设置有高压电子压力调节阀(7);
低压段排气电子三通阀(3)的最后一路汇入到高压段CO2压缩机(4)输出端管的高压电子压力调节阀(7)与蒸发器以及去过热器(8)之间管路中;
气液分离器(9)的另外一个输出管路上设置有汽分电子压力调节阀(10),且最终汇入到气液分离器(9)与回热循环板式换热器(6)的连接管路上。

说明书全文

低压排气冷的宽环温型CO2空气源系统

技术领域

[0001] 本发明涉及热泵系统技术领域,具体而言,尤其涉及一种低压排气风冷的宽环温型CO2空气源热泵系统。

背景技术

[0002] 随着国家对环保要求的提高,冬季取暖设备由传统的燃向使用电的热泵系统转变。而热泵系统中需要使用冷媒工质,自然冷媒CO2由于其自身优良的环保特性(ODP=0,GWP=1),优秀的制热能力,使其在新型热泵系统中备受青睐。我们国家纬度南北跨度很大,北方地区冬季环境温度会低达-40℃,温度跨度很大,普通型热泵系统难以适应北方低环温的使用。

发明内容

[0003] 根据上述提出的技术问题,而提供一种低压排气风冷的宽环温型CO2空气源热泵系统。
[0004] 本发明采用的技术手段如下:
[0005] 低压排气风冷的宽环温型CO2空气源热泵系统,包括:
[0006] 低压段CO2压缩机,排气单向,低压段排气电子三通阀,高压段CO2压缩机,热回收板式换热器,回热循环板式换热器,高压电子压力调节阀,蒸发器以及去过热器,气液分离器,汽分电子压力调节阀,低压段吸气电子三通阀,电动球阀,去过热器单向阀
[0007] 低压段CO2压缩机一端通过带有排气单向阀的管路与低压段排气电子三通阀的其中一个口连通,另一端通过管路与低压段吸气电子三通阀其中一个口连通;
[0008] 低压段吸气电子三通阀的另外一路管线与高压段CO2压缩机连通,低压段吸气电子三通阀的最后一路与气液分离器的气路连通,低压段吸气电子三通阀与气液分离器的气路经由回热循环板式换热器,且气液分离器与回热循环板式换热器之间管路上设置有电动球阀;
[0009] 低压段排气电子三通阀的另外一路经由蒸发器以及去过热器,再经由去过热器单向阀最终汇入到低压段吸气电子三通阀与高压段CO2压缩机连通管路中;
[0010] 高压段CO2压缩机的输出端管路依次经过热回收板式换热器、回热循环板式换热器和蒸发器以及去过热器最终与气液分离器入口连通,高压段CO2压缩机输出端管位于回热循环板式换热器与蒸发器以及去过热器之间位置设置有高压电子压力调节阀;
[0011] 低压段排气电子三通阀的最后一路汇入到高压段CO2压缩机输出端管的高压电子压力调节阀与蒸发器以及去过热器之间管路中;
[0012] 气液分离器的另外一个输出管路上设置有汽分电子压力调节阀,且最终汇入到气液分离器与回热循环板式换热器的连接管路上。
[0013] 高环温制热时,由高压段CO2压缩机将CO2制冷剂进行压缩,压缩成高温高压的制冷剂气体进入热回收板式换热器,在热回收板式换热器中加热同时给CO2制冷剂进行冷却,冷却后形成高压跨临界状态制冷剂,跨临界制冷剂在回热循环板式换热器中进一步冷却,经高压电子压力调节阀节流后进入蒸发器内,低压制冷剂在蒸发器内蒸发吸热,形成低压气体制冷剂后经电动球阀后进入到回热循环板式换热器中,经过该板式换热器后形成过热态的CO2制冷剂,该过热态制冷剂经低压段吸气电子三通阀后回到高压段压缩机,完成制热循环。在压缩机运行过程中,汽分电子压力调节阀开启,保证汽分内的油可以随着制冷剂回到压缩机内。
[0014] 低环温制热时,由低压段CO2压缩机将CO2制冷剂进行压缩,压缩成高温中压的制冷剂气体经低压段排气电子三通阀后进入蒸发器&去过热器,在蒸发器&去过热器中给CO2制冷剂进行冷却,冷却后形成中压制冷剂,中压制冷剂进入到高压段CO2压缩机中继续压缩,压缩成高温高压的制冷剂气体进入热回收板式换热器,在热回收板式换热器中加热水同时给CO2制冷剂进行冷却,冷却后形成高压跨临界状态制冷剂,跨临界制冷剂在回热循环板式换热器中进一步冷却,经高压电子压力调节阀节流后进入蒸发器内,低压制冷剂在蒸发器内蒸发吸热,形成低压气体制冷剂后经电动球阀后进入到回热循环板式换热器中,经过该板式换热器后形成过热态的CO2制冷剂,该过热态制冷剂经低压段吸气电子三通阀后回到低压段压缩机,完成制热循环。在压缩机运行过程中,汽分电子压力调节阀开启,保证汽分内的油可以随着制冷剂回到压缩机内。
[0015] 除霜时,由低压段CO2压缩机将CO2制冷剂进行压缩,压缩成高温中压的制冷剂气体经低压段排气电子三通阀后进入蒸发器中,该高温气体给予蒸发器化霜使用,化霜后的中压制冷剂经汽分电子压力调节阀的节流降压后进入到回热循环板式换热器中,吸收部分热量后经低压段吸气电子三通阀回到低压段压缩机中,完成化霜循环。
[0016] 本发明专利优点:可实现高环温和低环温的制热过程,可以很好的满足我国北方地区的冬季应用。该热泵系统制取的热水,可用于家庭用热水、取暖等多方面。通过控制器来控制电子三通阀,可以实现智能转换,系统运行和环境工况实现良好的匹配性。系统拥有着很强的实用性与通用性,符合于当前节能环保的设计理念,其必将为未来热泵系统的应用提供一个很好的系统设计。附图说明
[0017] 为了更清楚地说明本发明实施例现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做以简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
[0018] 图1——本发明专利的高环温制热循环示意图。
[0019] 图2——本发明专利的低环温制热循环示意图。
[0020] 图3——本发明专利的除霜循环示意图。
[0021] 图中:1-低压段CO2压缩机,2-排气单向阀,3-低压段排气电子三通阀,4-高压段CO2压缩机,5-热回收板式换热器,6-回热循环板式换热器,7-高压电子压力调节阀,8-蒸发器&去过热器,9-气液分离器,10-汽分电子压力调节阀,11-低压段吸气电子三通阀,12-电动球阀,13-去过热器单向阀。

具体实施方式

[0022] 需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
[0023] 为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0024] 需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
[0025] 除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。同时,应当清楚,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员己知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任向具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
[0026] 在本发明的描述中,需要理解的是,方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等所指示的方位或位置关系通常是基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,在未作相反说明的情况下,这些方位词并不指示和暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制:方位词“内、外”是指相对于各部件本身的轮廓的内外。
[0027] 为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其位器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
[0028] 此外,需要说明的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本发明保护范围的限制。
[0029] 如图1所示,本发明提供了一种低压排气风冷的宽环温型CO2空气源热泵系统,包括:
[0030] 低压段CO2压缩机1,排气单向阀2,低压段排气电子三通阀3,高压段CO2压缩机4,热回收板式换热器5,回热循环板式换热器6,高压电子压力调节阀7,蒸发器以及去过热器8,气液分离器9,汽分电子压力调节阀10,低压段吸气电子三通阀11,电动球阀12,去过热器单向阀13;
[0031] 低压段CO2压缩机1一端通过带有排气单向阀2的管路与低压段排气电子三通阀3的其中一个口连通,另一端通过管路与低压段吸气电子三通阀11其中一个口连通;
[0032] 低压段吸气电子三通阀11的另外一路管线与高压段CO2压缩机4连通,低压段吸气电子三通阀11的最后一路与气液分离器9的气路连通,低压段吸气电子三通阀11与气液分离器9的气路经由回热循环板式换热器6,且气液分离器9与回热循环板式换热器6之间管路上设置有电动球阀12;
[0033] 低压段排气电子三通阀3的另外一路经由蒸发器以及去过热器8,再经由去过热器单向阀13最终汇入到低压段吸气电子三通阀11与高压段CO2压缩机4连通管路中;
[0034] 高压段CO2压缩机4的输出端管路依次经过热回收板式换热器5、回热循环板式换热器6和蒸发器以及去过热器8最终与气液分离器9入口连通,高压段CO2压缩机4输出端管位于回热循环板式换热器6与蒸发器以及去过热器8之间位置设置有高压电子压力调节阀7;
[0035] 低压段排气电子三通阀3的最后一路汇入到高压段CO2压缩机4输出端管的高压电子压力调节阀7与蒸发器以及去过热器8之间管路中;
[0036] 气液分离器9的另外一个输出管路上设置有汽分电子压力调节阀10,且最终汇入到气液分离器9与回热循环板式换热器6的连接管路上。
[0037] 实际使用时可将低压段CO2压缩机1,排气单向阀2,低压段排气电子三通阀3,高压段CO2压缩机4,热回收板式换热器5,回热循环板式换热器6,高压电子压力调节阀7,蒸发器以及去过热器8,气液分离器9,汽分电子压力调节阀10,低压段吸气电子三通阀11,电动球阀12,去过热器单向阀13集成为一个整体的室外型热泵机组,将该机组安装于室外,保证冷凝器良好的散热,系统的稳定运行。
[0038] 如图1所示,蒸发器以及去过热器8采用一体化的设计形式,同时给予亚临界压缩机的预散热和整个系统的蒸发吸收热量,预散热可以给予蒸发吸热的热量补偿,实现热源的最大回收利用
[0039] 如图1和2所示,室外温度的变化过程将通过控制器进行数据采集,控制器程序可通过控制电子三通阀(高压段排气电子三通阀3和低压段吸气电子三通阀11)实现制热循环的切换,通过该切换保证在低环温情况下系统实现两级压缩过程,高环温情况下实现一级压缩过程,可保证系统安全可靠运行,同时保证系统运行的高效率。
[0040] 如图1所示,高环温制热时,由高压段CO2压缩机将CO2制冷剂进行压缩,压缩成高温高压的制冷剂气体经高压段排气电子三通阀进入热回收板式换热器,在热回收板式换热器中加热水同时给CO2制冷剂进行冷却,冷却后形成高压跨临界状态制冷剂,跨临界制冷剂在回热循环板式换热器中进一步冷却,经高压电子压力调节阀节流后进入蒸发器内,低压制冷剂在蒸发器内蒸发吸热,形成低压气体制冷剂后经电动球阀后进入到回热循环板式换热器中,经过该板式换热器后形成过热态的CO2制冷剂,该过热态制冷剂经低压段吸气电子三通阀后回到高压段压缩机,完成制热循环。在压缩机运行过程中,汽分电子压力调节阀开启,保证汽分内的油可以随着制冷剂回到压缩机内。
[0041] 如图2所示,低环温制热时,由低压段CO2压缩机将CO2制冷剂进行压缩,压缩成高温中压的制冷剂气体进入蒸发器&去过热器,在蒸发器&去过热器中给CO2制冷剂进行冷却,冷却后形成中压制冷剂,中压制冷剂进入到高压段CO2压缩机中继续压缩,压缩成高温高压的制冷剂气体进入热回收板式换热器,在热回收板式换热器中加热水同时给CO2制冷剂进行冷却,冷却后形成高压跨临界状态制冷剂,跨临界制冷剂在回热循环板式换热器中进一步冷却,经高压电子压力调节阀节流后进入蒸发器内,低压制冷剂在蒸发器内蒸发吸热,形成低压气体制冷剂后经电动球阀后进入到回热循环板式换热器中,经过该板式换热器后形成过热态的CO2制冷剂,该过热态制冷剂经低压段吸气电子三通阀后回到低压段压缩机,完成制热循环。在压缩机运行过程中,汽分电子压力调节阀开启,保证汽分内的油可以随着制冷剂回到压缩机内。
[0042] 如图3所示,除霜时,由高压段CO2压缩机将CO2制冷剂进行压缩,压缩成高温高压的制冷剂气体经高压段排气电子三通阀后进入蒸发器中,该高温气体给予蒸发器化霜使用,化霜后的高压制冷剂经汽分电子压力调节阀的节流降压后进入到回热循环板式换热器中,吸收部分热量后经低压段吸气电子三通阀回到高压段压缩机中,完成化霜循环。
[0043] 最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈