首页 / 专利库 / 换热器 / 热交换器 / 馈线 / Hinged busway

Hinged busway

阅读:149发布:2024-02-11

专利汇可以提供Hinged busway专利检索,专利查询,专利分析的服务。并且A busway section with an electrically conductive housing is described. The busway section includes a lid connected with the housing through a hinging mechanism. Internal slots are also present, along which bus bars can be located. Possible applications of the busway section are feeder sections and plug-in sections.,下面是Hinged busway专利的具体信息内容。

1. A busway section comprisingan electrically conductive housing;at least one lid removably connected with the housing through a hinging mechanism, the hinging mechanism including a lid component and a mating housing component;a plurality of internal slots along which bus bars are adapted to be located during an operating condition of the busway section, the slots being enclosed by the housing; andbus supports located between the internal slots, to support the bus bars during the operating condition of the busway section and provide electrical isolation between the bus bars.2. The busway section of claim 1, further comprisinga connecting element to further connect the housing with the at least one lid.3. The busway section of claim 2, wherein the connecting element is a self tapping screw.4. The busway section of claim 2, wherein the connecting element is located on a same side of the hinging mechanism with respect to the housing.5. The busway section of claim 1, wherein the conductive housing is made of aluminum.6. The busway section of claim 1, wherein the electrically conductive housing acts as a ground path of the busway section.7. The busway section of claim 1, said busway section being a feeder section.8. The busway section of claim 7, further comprising:a feeder support located inside the housing between the lid and the internal slots to hold the bus bars in place during the operating condition of the busway section.9. The busway section of claim 1, said busway section being a plug-in section, further comprisinga plug-in block.10. The busway section of claim 9, wherein the plug-in block comprises lips located on the sides of the plug-in block, the lips adapted to match with a lid of an adjacent busway section.11. The busway section of claim 1, wherein the plurality of slots comprises:one slot for a neutral conductor bus bar; anda plurality of slots for phase conductor bars.12. The busway section of claim 11, further comprisinga slot for a ground conductor bar.13. The busway section of claim 1, wherein the housing comprises external slots.14. The busway section of claim 13, wherein the external slots are located on a top external surface and a bottom external surface of the housing.15. The busway section of claim 13, further comprising connection elements, each connection elements located in an end region of a respective external slot.16. The busway section of claim 15, wherein the connection blocks are T-shaped nuts.17. A busway arrangement comprising a plurality of busway sections according to claim 1.18. The busway arrangement of claim 17, wherein the busway sections are serially arranged.19. The busway arrangement of claim 17, wherein the busway sections comprise a feeder section and a plug-in section with a plug-in block, wherein each of the feeder section and plug-in section comprises:an electrically conductive housing;at least one lid removably connected with the housing through a hinging mechanism, the hinging mechanism including a lid component and a mating housing component;a plurality of internal slots along which bus bars are adapted to be located during an operating condition of the busway section, the slots being enclosed by the housing; andbus supports located between the internal slots, to support the bus bars during the operating condition of the busway section and provide electrical isolation between the bus bars.20. The busway arrangement of claim 19, wherein the plug-in block comprises a lip located on a side of the plug-in block, the lip adapted to match with the lid of the feeder section.21. The busway arrangement of claim 19, further comprising a bridge joint connecting the feeder section with the plug-in section, the bridge joint being located between the feeder section and the plug-in section.22. The busway arrangement of claim 21, wherein the housing of the feeder section and the housing of the plug-in section comprise external slots accommodating connection elements adapted to connect the feeder section and the plug-in section with the bridge joint.
说明书全文

BACKGROUND

1. Field

The present disclosure relates to busways. More in particular, it relates to a hinged busway.

2. Description of Related Art

The Underwriters Laboratories Inc. standard UL 857 for safety busways defines busway as “a grounded metal enclosure containing factory mounted conductors that are usually copper or aluminum bars, rods, or tubes.” The National Electric Code (NFPA 70) defines busway as “a grounded metal enclosure containing factor mounted, bare, or insulated conductors, which are usually copper or aluminum bars, rods, or tubes.”

Busway housings are required by standard to be metallic. The housings contain both the busway conductors, insulation between the conductors, and the bus bar supports. The housings may also act as part or whole of the support for the bus bars. Since the housing provides support for the bus bars, the housing should have sufficient strength to withstand forces incurred when the busway section incurs a fault.

Standard busway housings are made from more than one formed metal sections. The sections are normally secured together with bolts or rivets. The method of securing sections takes time to assemble. Hardware should also be spaced along the busway. Additional hardware would provide more support for the bus bars, but would add additional cost to the busway system.

SUMMARY

According to an aspect of the present disclosure, a busway section is provided, comprising: an electrically conductive housing; at least one lid removably connected with the housing through a hinging mechanism, the hinging mechanism including a lid component and a mating housing component; a plurality of internal slots along which bus bars are adapted to be located during an operating condition of the busway section, the slots being enclosed by the housing; and bus supports located between the internal slots, to support the bus bars during the operating condition of the busway section and provide electrical isolation between the bus bars.

Further aspects of the disclosure are provided in the specification, drawings and claims of the present application.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a cross sectional view of a hinged feeder section of a busway with closed lid.

FIG. 2 shows a cross sectional view of a hinged plug-in section with closed lid.

FIG. 3 shows a cross sectional view of the feeder section of FIG. 1 with the lid in a raised condition.

FIG. 4 shows a partial perspective view of the feeder section of FIG. 1.

FIG. 5 shows a partial perspective view of the plug-in section of FIG. 2.

FIG. 6 shows a partial perspective view of an arrangement comprising a plug-in section and a feeder section joined by a bridge joint.

FIGS. 7 and 8 show a perspective view and a front view of the arrangement of FIG. 6, where the cover of the bridge joint has been removed to show the inside of the bridge joint.

FIG. 9 shows a perspective view of a plug-in brick and lid, already shown in FIG. 5 and FIG. 7, placed side by side.

DETAILED DESCRIPTION

Embodiments of the present disclosure show hinged busway sections adapted to be used in a busway system or arrangement comprised of one or more busway sections.

FIGS. 1 and 2 show a feeder section and a plug-in section, respectively, in accordance with an embodiment of the present disclosure. A feeder section allows power to be fed from one location to another by way of power buses running through the section. A plug-in section has the same function of the feeder section but also allows power to be extracted along the length of the section. Each section comprises a housing (1) and at least one lid (2, 14) connected with the housing (1) through a hinging mechanism (21) and a further connection, such as a self tapping screw (11). Each section also comprises a plurality of paths or slots along which bus bars (3-7) can be located during an operating condition of the section. According to an embodiment of the disclosure, the slots are comprised of a rectangular shaped opening in a molded thermoplastic part. The molded thermoplastic part comprises a plurality of slots which, according to some embodiments, can be placed at distances between 0.5 inches and 1.25 inches depending upon requirements imposed by regulatory standards.

The housing (1) is a protective structure that protects the components or parts of the feeder section or plug-in section. When combined with the lid (2, 14), the housing (1) encloses the bus bars (3-7) inside the section. By way of example, the housing (1) can be an aluminum extrusion. The aluminum is conductive and may act as the ground path.

The lid (2, 14) is a hinged cover that can be removed or raised. In a feeder section only one feeder lid (2) can be provided, as shown in FIG. 4. In a plug-in section, where a plug-in block or brick (13) is included, two plug-in lids (14) on the sides of the plug-in block (13) can be provided, as shown in FIG. 5.

Turning to the description of FIGS. 1 and 2, a plurality of bus bars (3-7) are located inside each section during operation inside respective paths or slots provided for in such sections, as mentioned above. In the embodiment shown in FIGS. 1 and 2, five different bus bars are shown. In particular, one neutral conductor bar (3), a plurality of phase conductor bars (4-6) and one ground conductor bar (7) are shown. A neutral conductor is a circuit conductor that carries current which is connected to ground generally at the service panel with the main disconnecting switch or breaker. A phase conductor method is a method of electric power transmission using wires or bus(es). In accordance with the present disclosure, bus bars are used. A ground conductor is an electrical connection intended to carry current safely away from a circuit in the event of a fault. By way of example, as shown by element (7), such ground conductor can be a bus bar. Alternatively, the housing (1) can act as the ground path. The person skilled in the art will understand that any number of bus bars can be provided, according to the requirements of the particular applications. The bus bars may vary in size depending on the amount of current needed.

According to some embodiments of the disclosure, the housing (1) is provided with slots (8) for placing T-nuts used for mounting, as shown in FIGS. 1 and 2. Mounting can be required in order to hang the busway from the roof of ceiling structures of a building. See also FIGS. 5 and 6, which will be later discussed in detail.

The internal slots adapted to contain the bus bars (3-7) are separated by bus supports (9). The bus supports (9) are molded parts used to support the neutral, phase and ground conductors during operation of the busway sections. The bus supports (9) are spaced along the length of the busway to both separate the bars (3-7) for isolation purposes and hold the bars (3-7) together when a short circuit pushes the bars (3-7) apart. According to an embodiment of the present disclosure, the bus supports (9) are made of a molded thermoplastic material, which may flex under pressure. The bus bars (3-7) are pressed into the slots in the supports. The supports are so tolerance that the bars do not slip from their locations in the slots.

The feeder section of FIG. 1 also comprises a feeder support (10), also shown in FIG. 3. The feeder support (10) is a lid or cover that fits within the lid (2) and goes on the side of the bus supports (9) to help hold the bus bars (3-7) in place. In particular, the feeder support (10) can be a molded thermoplastic part that is shaped to touch each installed bus bar (3-7) and the lid (2). When installed, the feeder support (10) keeps the bus bars (3-7) from slipping out of their slots. On the other hand, in the plug-in section of FIG. 2, the bus bars (3-7) are held in place just by a plug-in brick (13), better shown in FIG. 5. In particular, the plug-in brick (13) is configured so that it also touches the bus bars (3-7) and the short sections of lid (14).

FIGS. 1 and 2 also show screws (11), e.g. hexagonal head self tapping screws (11), which are used to secure the lid (2) to the housing (1) after assembly. The self-tapping screws (11) eliminate the need for nuts and bolts, since the threads of the screws (11) form threads in the lip of the housing (2) and lock the lid (2) to the housing (1). In accordance with several embodiments of the present disclosure, the screws (11) are located only on one side of the housing (1) (the bottom in FIGS. 1, 4 and 5) in view of the presence of hinging mechanism (21), which includes a lid component and a mating housing component.

FIGS. 4-7 show end blocks (12) located at the top and bottom of a feeder section (e.g., FIG. 4) or plug-in section (e.g., FIG. 5) inside respective external slots (8), already discussed above. According to several embodiments of the disclosure, the end blocks (12) are T-shaped nuts that fit into the end of a corresponding T-slot (8) and are used for connecting the feeder section or plug-in section to a bridge joint (17), as shown, for example, in FIG. 6. The end blocks (12) provide a conductive path from the busway housing (1) of a feeder section or plug-in section to covers (15, 16) of the bridge joint (17). According to an embodiment of the disclosure, a threaded hole (120) is provided in the center of each end block (12) to provide a location for hardware (e.g., a threaded screw) to fasten the covers (15, 16) to the end block (12). The T-shape of the end block (12) allows locking the end block (12) into the housing (1) as the hardware holding the cover (15, 16) to the end block (12) is tightened.

As already mentioned above, the plug-in sections of the busway include a plug-in block or brick (13). According to several embodiments of the disclosure, a plug-in block (13), as shown in FIG. 5, is an assembly of insulating molded plastic parts that provide a point for power to be accessed from the busway section. Any space to the side of a plug-in block (13) is covered by plug-in lids (14) as shown, for example, in FIG. 5.

As shown in FIG. 2, the plug-in bricks (13) hinge on one side to the housing (1). As also shown in FIG. 9, a lip (130) is molded into two sides of the plug-in brick and is shaped to fit underneath the plug-in lids (14). Therefore, when the plug-in lids (14) are fixed to the housing (1) the plug-in bricks (13) are also secured to the housing (1).

As already mentioned above, a plug-in section includes plug-in lids (14), as shown in FIG. 5. The plug-in lids (14) are cut to length to fit between the plug-in brick (13). The plug-in lids (14) hinge on one side (the upper in FIG. 5) to the housing (1). The side opposite the hinge can be fastened to the housing (1) with self-tapping screws, as shown, for example, in FIGS. 2 and 5.

FIGS. 6-8 show embodiments of the present disclosure where a bridge joint (17) is present. The bridge (17) allows bridging of two busway sections, e.g. a plug-in section and a feeder section, as shown in such figures. As shown in the cross-sectional view of FIGS. 7 and 8, the bridge joint (17) is made from alternating combinations of insulators and conductors. The bridge joint (17) will not be described in detail in the present application. Reference can be made, for example, to U.S. Pat. No. 5,760,339, incorporated herein by reference in its entirety. In the embodiment of FIGS. 7 and 8, a bolt (30) runs through the center of the bridge joint (17). FIG. 6 shows bridge joint back (15) and front (16) covers to cover the back and the front of the bridge joint, respectively. These covers can be made of aluminum and provide an electrical ground path from one busway housing section to the next.

It is to be understood that the disclosure is not limited to particular methods or systems, which can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting. As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. The term “plurality” includes two or more referents unless the content clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the disclosure pertains.

The examples set forth above are provided to give those of ordinary skill in the art a complete disclosure and description of how to make and use the embodiments of the hinged busway housing of the disclosure, and are not intended to limit the scope of what the inventors regard as their disclosure. Modifications of the above-described modes for carrying out the disclosure may be used by persons of skill in the video art, and are intended to be within the scope of the following claims.

A number of embodiments of the disclosure have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the present disclosure. Accordingly, other embodiments are within the scope of the following claims.

高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈