首页 / 专利库 / 燃气和蒸汽发生器 / 涡轮发电机 / 用于混合动力车辆动力总成的阻尼器配置

用于混合动车辆动力总成的阻尼器配置

阅读:282发布:2020-05-08

专利汇可以提供用于混合动车辆动力总成的阻尼器配置专利检索,专利查询,专利分析的服务。并且本 发明 题为“用于混合动 力 车辆 动力总成 的阻尼器配置”。本发明提供了一种动力总成系统,其包括挠性板、 变速器 输入轴 、 扭矩 联轴器 、单向 离合器 和阻尼器组件。挠性板被配置成连接到 发动机 的 曲轴 。扭矩联轴器将变速器输入轴连接到挠性板同时允许在变速器输入轴与挠性板之间滑动。 单向离合器 被配置成将挠性板联接到扭矩联轴器。阻尼器组件将挠性板联接到单向离合器并且被配置成抑制从挠性板到单向离合器的振动传输。,下面是用于混合动车辆动力总成的阻尼器配置专利的具体信息内容。

1.一种总成系统,包括:
挠性板,所述挠性板被配置成连接到发动机曲轴
变速器输入轴
扭矩联轴器,所述扭矩联轴器将所述变速器输入轴连接到所述挠性板同时允许在所述变速器输入轴与所述挠性板之间滑动;
单向离合器,所述单向离合器被配置成将所述挠性板联接到所述扭矩联轴器;以及第一阻尼器组件,所述第一阻尼器组件将所述挠性板联接到所述单向离合器并且被配置成抑制从所述挠性板到所述单向离合器的振动传输。
2.根据权利要求1所述的动力总成系统,还包括联接到所述扭矩联轴器的输入侧的电动发电机
3.根据权利要求1所述的动力总成系统,其中所述第一阻尼器组件包括:
输入驱动板,所述输入驱动板连接到所述挠性板;
弹簧保持器板,所述弹簧保持器板连接到所述单向离合器;以及
螺旋弹簧,所述螺旋弹簧捕获在所述输入驱动板与所述弹簧保持器板之间并且被配置成将扭矩从所述输入驱动板传递到所述弹簧保持器板。
4.根据权利要求1所述的动力总成系统,其中所述单向离合器是可选择单向离合器。
5.根据权利要求4所述的动力总成系统,其中:
所述可选择单向离合器能够在第一配置与第二配置之间致动;
在所述第一配置中,所述可选择单向离合器沿第一方向将扭矩从所述挠性板传递到所述扭矩联轴器,并且不沿与所述第一方向相反的第二方向将扭矩从所述扭矩联轴器传递到所述挠性板;并且
在所述第二配置中,所述可选择单向离合器沿所述第一方向将扭矩从所述挠性板传递到所述扭矩联轴器,并且沿所述第二方向将扭矩从所述扭矩联轴器传递到所述挠性板。
6.根据权利要求1所述的动力总成系统,其中所述单向离合器:
沿第一方向将扭矩从所述挠性板传递到所述扭矩联轴器;并且
不沿与所述第一方向相反的第二方向将扭矩从所述扭矩联轴器传递到所述挠性板。
7.根据权利要求6所述的动力总成系统,还包括摩擦离合器,所述摩擦离合器与所述单向离合器并联地连接到所述挠性板和所述扭矩联轴器并且被配置成在接合所述摩擦离合器时将所述挠性板联接到所述扭矩联轴器。
8.根据权利要求4或6所述的动力总成系统,还包括第二阻尼器组件,所述第二阻尼器组件将所述扭矩联轴器的输入侧联接到所述变速器输入轴并且被配置成抑制振动从所述发动机到所述变速器输入轴的传输。
9.根据权利要求8所述的动力总成系统,其中:
所述扭矩联轴器是包括以下的扭矩转换器:、液压联接到所述泵的涡轮、以及被配置成将所述扭矩转换器的所述泵机械地联接到所述变速器输入轴的扭矩转换器离合器;并且所述第二阻尼器组件将所述扭矩转换器离合器联接到所述变速器输入轴。
10.根据权利要求1所述的动力总成系统,其中所述单向离合器被配置成当所述发动机的速度大于或等于所述扭矩联轴器的输入侧上的部件的速度时,将所述挠性板联接到所述扭矩联轴器。

说明书全文

用于混合动车辆动力总成的阻尼器配置

技术领域

[0001] 本节中提供的信息是为了大致呈现本公开的背景的目的。当前发明人的工作(以本节中描述的程度)以及在提交时可能不具备现有技术资格的描述的各方面对于本公开而
言既不明示也不暗示地承认为现有技术。
[0002] 本公开涉及用于具有联接在发动机变速器之间的电动机与将发动机联接到变速器的单向离合器的混合动力车辆动力总成的阻尼器配置。
[0003] 并联式混合动力车辆具有内燃机电机(例如,电动发电机),其可以单独地驱动车辆或者彼此联接以共同驱动车辆。并联式混合动力车辆的动力总成配置被分类为P0、P1、P2、P3或P4。在P0配置中,电机通常通过蛇形皮带连接到发动机的前部。如果发动机通过皮带连接,则P0配置有时被称为皮带式交流发电机起动器。在P1配置中,电机在发动机后部和变速器前部直接联接到发动机的曲轴。在P2配置中,电机联接到变速器输入。在P3配置中,电机直接连接到变速器输出。在P4配置中,电机通过齿轮直接连接到车辆的非发动机驱动
轴。
[0004] 在P2、P3或P4配置中,发动机可以与动力总成的其余部分断开以避免摩擦损失。然而,在P3和P4配置中,电机与车辆车轮之间的传动比通常是固定的。相比之下,P2配置不仅提供将发动机与动力总成的其余部分断开的能力,而且还提供改变电机与车辆车轮之间的传动比的能力。
[0005] 在具有P2配置的一些并联式混合动力车中,电机直接连接到扭矩转换器的,并且单向离合器(OWC)或可选择单向离合器(SOWC)用于将发动机联接到扭矩转换器/与扭矩
转换器分离。OWC仅沿一个方向(例如,发动机驱动扭矩方向)传递扭矩。SOWC能够在第一配置与第二配置之间致动。在第一配置中,SOWC仅沿第一方向(例如,发动机驱动扭矩方向)传递扭矩。在第二配置中,SOWC沿第一方向以及与第一方向相反的第二方向传递扭矩,尽管在不同的时间。

发明内容

[0006] 根据本公开的动力总成系统的第一示例包括挠性板、变速器输入轴、扭矩联轴器、单向离合器和阻尼器组件。挠性板被配置成连接到发动机的曲轴。扭矩联轴器将变速器输入轴连接到挠性板同时允许在变速器输入轴与挠性板之间滑动。单向离合器被配置成将挠
性板联接到扭矩联轴器。第一阻尼器组件将挠性板联接到单向离合器并且被配置成抑制从
挠性板到单向离合器的振动传输。
[0007] 在一个示例中,动力总成系统还包括联接到扭矩联轴器的输入侧的电动发电机。
[0008] 在一个示例中,第一阻尼器组件包括:输入驱动板,该输入驱动板连接到挠性板;弹簧保持器板,该弹簧保持器板连接到单向离合器;以及螺旋弹簧,该螺旋弹簧捕获在输入驱动板与弹簧保持器板之间并且被配置成将扭矩从输入驱动板传递到弹簧保持器板。
[0009] 在一个示例中,输入驱动板包括径向延伸臂,并且弹簧保持器板将螺旋弹簧保持在输入驱动板的径向延伸臂之间。
[0010] 在一个示例中,单向离合器是可选择单向离合器。
[0011] 在一个示例中,可选择单向离合器能够在第一配置与第二配置之间致动。在第一配置中,可选择单向离合器沿第一方向将扭矩从挠性板传递到扭矩联轴器,并且不沿与第
一方向相反的第二方向将扭矩从扭矩联轴器传递到挠性板。在第二配置中,可选择单向离
合器沿第一方向将扭矩从挠性板传递到扭矩联轴器,并且沿第二方向将扭矩从扭矩联轴器
传递到挠性板。
[0012] 在一个示例中,扭矩联轴器是扭矩转换器,该扭矩转换器包括彼此液压联接的泵和涡轮,并且动力总成系统还包括第二阻尼器组件,该第二阻尼器组件将扭矩转换器的泵
联接到变速器输入轴并且被配置成抑制从泵到变速器输入轴的振动传输。
[0013] 在一个示例中,扭矩转换器还包括被配置成将扭矩转换器的泵机械地联接到变速器输入轴的扭矩转换器离合器,并且第二阻尼器组件将扭矩转换器离合器联接到变速器输
入轴。
[0014] 在一个示例中,单向离合器被配置成当发动机的速度大于或等于扭矩联轴器的输入侧上的部件的速度时,将挠性板联接到扭矩联轴器。
[0015] 在一个示例中,单向离合器沿第一方向将扭矩从挠性板传递到扭矩联轴器,并且不沿与第一方向相反的第二方向将扭矩从扭矩联轴器传递到挠性板。
[0016] 在一个示例中,动力总成系统还包括摩擦离合器,该摩擦离合器与单向离合器并联地连接到挠性板和扭矩联轴器并且被配置成在接合摩擦离合器时将挠性板联接到扭矩
联轴器。
[0017] 在一个示例中,动力总成系统还包括第二阻尼器组件,该第二阻尼器组件将扭矩联轴器的输入侧联接到变速器输入轴并且被配置成抑制振动从发动机到变速器输入轴的
传输。
[0018] 在一个示例中,扭矩联轴器是包括以下的扭矩转换器:泵、液压联接到泵的涡轮、以及被配置成将扭矩转换器的泵机械地联接到变速器输入轴的扭矩转换器离合器,并且第二阻尼器组件将扭矩转换器离合器联接到变速器输入轴。
[0019] 根据本公开的动力总成系统的第二示例包括:挠性板,该挠性板被配置成连接到发动机的曲轴;变速器输入轴;扭矩转换器,该扭矩转换器将变速器输入轴联接到挠性板并包括泵和液压联接到该泵的涡轮;电动发电机,该电动发电机连接到扭矩转换器的泵;单向离合器,该单向离合器被配置成将挠性板联接到扭矩转换器;以及阻尼器组件,该阻尼器组件将扭矩转换器的泵联接到变速器输入轴并且被配置成抑制从泵到变速器输入轴的振动
传输。
[0020] 在一个示例中,扭矩转换器还包括被配置成将扭矩转换器的泵机械地联接到变速器输入轴的扭矩转换器离合器,并且阻尼器组件将扭矩转换器离合器联接到变速器输入
轴。
[0021] 在一个示例中,单向离合器是可选择单向离合器。
[0022] 在一个示例中,动力总成系统还包括摩擦离合器,该摩擦离合器与单向离合器并联地连接到挠性板和扭矩转换器并且被配置成在接合摩擦离合器时将挠性板联接到扭矩
转换器。
[0023] 根据本公开的动力总成系统的第三示例包括:挠性板,该挠性板被配置成连接到发动机的曲轴;变速器输入轴;扭矩转换器,该扭矩转换器将变速器输入轴联接到挠性板并包括泵和与泵液压联接的涡轮;电动发电机,该电动发电机连接到扭矩转换器的泵;单向离合器,该单向离合器被配置成将挠性板联接到扭矩转换器;以及第一阻尼器组件,该第一阻尼器组件将挠性板联接到单向离合器并且被配置成抑制从挠性板到单向离合器的振动传
输。
[0024] 在一个示例中,扭矩转换器还包括被配置成将扭矩转换器的泵机械地联接到变速器输入轴的扭矩转换器离合器。
[0025] 在一个示例中,动力总成系统还包括第二阻尼器组件,该第二阻尼器组件将扭矩转换器离合器联接到变速器输入轴并且被配置成抑制从扭矩转换器离合器到变速器输入
轴的振动传输。
[0026] 根据具体实施方式、权利要求附图,本公开的其他应用领域将变得显而易见。具体实施方式和具体示例仅用于说明的目的,并且不旨在限制本公开的范围。

附图说明

[0027] 根据具体实施方式和附图将更全面地理解本公开,其中:
[0028] 图1至图6是根据本公开的原理的混合动力总成系统的功能框图
[0029] 图7是根据本公开的原理的阻尼器组件的分解透视图;
[0030] 图8是图7的阻尼器组件的剖视透视图;
[0031] 图9是图7的阻尼器组件的截面图;
[0032] 图10是根据本公开的原理的可选择单向离合器的分解透视图;
[0033] 图11是图10的可选择单向离合器的一部分的放大透视图;
[0034] 图12至图13是图10的可选择单向离合器的截面图;并且
[0035] 图14是与图10的可选择单向离合器类似的可选择单向离合器的截面图。
[0036] 在附图中,可以重复使用参考标号来标识类似和/或相同的元件。

具体实施方式

[0037] 如上所述,具有P2配置的一些并联式混合动力车包括将发动机联接到扭矩转换器/与扭矩转换器分离的OWC或SOWC。OWC或SOWC通常包括固定到扭矩转换器的泵的窝板,固定到发动机的挠性板的凹口板,以及枢转地连接到窝板的与凹口板相对的侧表面的多个支
柱。当发动机的速度大于或等于泵的速度时,支柱枢转进入并接合凹口板中的凹口以将窝
板连接到凹口板。因此,OWC或SOWC将扭矩从发动机传递到扭矩转换器。
[0038] 当OWC或SOWC接合时,由发动机中的点火脉冲或传动系中的振荡引起的振动可能导致OWC或SOWC的损坏。例如,当窝板上的支柱接合凹口板中的凹口时,由于发动机或传动系振动,发动机的速度相对于泵的速度的波动可能损坏支柱。在其他OWC和SOWC中,使用棘爪、辊或爪形离合器部件来代替支柱将窝板连接到凹口板,并且这些其他部件也可能被发
动机振动损坏。此外,传输到传动系的发动机振动可能导致不期望的噪音。
[0039] 为了解决这些问题,根据本公开的混合动力总成系统包括发动机与OWC或SOWC之间的阻尼器组件和/或扭矩转换器的泵与传动系之间的阻尼器组件。阻尼器组件包括一个
或多个阻尼弹簧,其在发动机与OWC或SOWC之间或者在泵与传动系之间传递扭矩,同时允许发动机与OWC或SOWC之间或者泵与传动系之间的某种相对移动。因此,阻尼器组件抑制发动机与OWC或SOWC之间或者泵与传动系之间的振动的传输以保护和隔离OWC或SOWC。
[0040] 现在参考图1,混合动力总成系统10包括发动机12、挠性板14、阻尼器组件16、可选择单向离合器(SOWC)18、扭矩转换器20、电动发电机22和变速器24。发动机12燃烧空气和燃料的混合物以产生驱动扭矩。发动机12包括曲轴26,该曲轴由于发动机12内的空气/燃料混合物的燃烧而旋转。
[0041] 挠性板14使用例固件来刚性地连接到发动机12的曲轴26。因此,挠性板14与曲轴26一起以与曲轴26相同的速度旋转。阻尼器组件16将挠性板14联接到SOWC 18并且抑
制发动机振动从挠性板14到SOWC 18的传输以保护SOWC 18免受由发动机振动引起的损坏。
阻尼器组件16使用例如紧固件来刚性地连接到挠性板14和SOWC 18中的每一者,同时在挠
性板14与SOWC 18之间提供柔性连接(即,在混合动力总成系统10的扭转或旋转方向上是柔
性的连接)。
[0042] SOWC 18能够在第一配置与第二配置之间致动。在第一配置中,SOWC 18沿第一方向将扭矩从挠性板14传递到扭矩转换器20,并且不沿与第一方向相反的第二方向将扭矩从
扭矩转换器20传递到挠性板14。当发动机12的速度大于或等于泵30的速度时,SOWC 18自动将挠性板14联接到扭矩转换器20以沿第一方向传递扭矩。
[0043] 在第二配置中,SOWC 18沿第一方向将扭矩从挠性板14传递到扭矩转换器20,并且沿第二方向将扭矩从扭矩转换器20传递到挠性板14。当泵30的速度大于或等于发动机12的
速度时,SOWC 18自动将挠性板14联接到扭矩转换器20以沿第二方向传递扭矩。沿第一方向从挠性板14到扭矩转换器20的扭矩传递可以致使车辆向前移动。沿第二方向从扭矩转换器
20到挠性板14的扭矩传递可以用于启动发动机12或经由发动机制动降低车辆的速度。
[0044] 以第一配置的SOWC 18的操作可以被称为无模式,因为SOWC 18在第一方向上被锁定以用于扭矩传递,并且在第二方向上自由旋转(即,未被锁定以用于扭矩传递)。以第二配置的SOWC 18的操作可以被称为锁定-锁定模式,因为SOWC 18在第一方向和第二方向上
被锁定以用于扭矩传递。在各种实施方式中,SOWC 18可能以自由-自由模式或自由-锁定模式操作。在自由-自由模式中,SOWC 18在第一方向和第二方向上都是自由旋转的。在自由-锁定模式中,SOWC 18在第一方向上自由旋转并且在第二方向上被锁定以用于扭矩传递。
[0045] 扭矩转换器20通过将变速器输入轴28连接到SOWC 18而将变速器24的输入轴28连接到挠性板14。扭矩转换器20可操作以在某些时间允许变速器输出轴28与挠性板18之间的
一定滑动,诸如在车辆起动期间。在各种实施方式中,扭矩转换器20可以用另一个扭矩联轴器(诸如摩擦离合器)代替,该扭矩联轴器将变速器输入轴28联接到挠性板14,同时允许其
间有一定滑动。扭矩转换器20包括泵30、液压联接到泵30的涡轮32、以及离合器34。泵30使用例如紧固件来刚性地连接到SOWC 18。涡轮32使用例如花键连接和/或紧固件来刚性地连
接到变速器输入轴28。
[0046] 扭矩转换器离合器34与涡轮32并联地连接到泵30和变速器输入轴28。当应用扭矩转换器离合器时,扭矩转换器离合器34将泵30机械地联接到变速器输入轴28。当完全接合
扭矩转换器离合器34时,扭矩转换器离合器34在泵30与变速器输入轴28之间提供刚性连
接,由此绕过泵30与涡轮32之间的流体联接。扭矩转换器离合器34可以是摩擦离合器,其响应于供应到扭矩转换器离合器34的液压流体的压力而接合和脱离。离合器控制可以响应
于由离合器控制模(未示出)输出的离合器控制信号而调节供应到扭矩转换器离合器34
的液压流体的压力。
[0047] 电动发电机22连接在发动机12与变速器24之间。在这方面,混合动力总成系统10可以被称为具有P2混合配置。在图1所示的示例中,电动发电机22直接连接到泵30(即,扭矩转换器20的输入侧)。电动发电机22可以例如使用皮带、皮带轮、链条、齿轮、或上述部件的一种或多种组合以期望传动比连接到泵30。电动发电机22可操作以使用由电池供应的电力
来驱动泵30,或者使用传递到泵30的发动机驱动扭矩来发电并由此对电池充电。
[0048] 变速器24以一个或多个传动比将扭矩从变速器输入轴28传递到变速器输出轴(未示出)。变速器24可以是自动变速器。变速器输出轴可以连接到车辆的传动系(未示出)。传动系可以将扭矩从变速器输出轴传递到车辆的车轮(未示出)以推进车辆。当例如车辆滑行
时,传动系还可以将扭矩从车轮传递到变速器输出轴。
[0049] 现在参考图2,混合动力总成系统40与图1的混合动力总成系统10类似或相同,不同之处在于混合动力总成系统40不包括阻尼器组件16。此外,混合动力总成系统40包括
SOWC 42和扭矩转换器44,分别代替SOWC 18和扭矩转换器20。
[0050] 混合动力总成系统40的SOWC 42与混合动力总成系统10的SOWC 18类似或相同,不同之处在于SOWC 42可能具有比SOWC 18更少的间隙(lash)。例如,SOWC 18可以具有一度的间隙,并且SOWC 42可以具有零度的间隙。因此,SOWC 42可能不会被发动机点火脉冲或泵送脉动所引起的发动机振动损坏,即使混合动力总成系统40不包括阻尼器组件16以保护SOWC 
42免受发动机振动。
[0051] 扭矩转换器44类似于扭矩转换器20,不同之处在于扭矩转换器44包括阻尼器组件46。阻尼器组件46通过将扭矩转换器离合器34联接到变速器输入轴28而将泵30联接到变速
器输入轴28。此外,阻尼器组件46在SOWC 42的传动系侧提供柔性连接以保护SOWC 42免受
发动机振动。就这一点而言,阻尼器组件46吸收发动机振动,否则将被SOWC 42吸收并可能损坏该SOWC。
[0052] 现在参考图3,混合动力总成系统50与图1的混合动力总成系统10类似或相同,不同之处在于混合动力总成系统50包括扭矩转换器44来代替扭矩转换器20。因此,虽然混合
动力总成系统10仅包括单个阻尼器(即,阻尼器组件16),但混合动力总成系统50包括两个
阻尼器(即,阻尼器组件16和46)。因此,混合动力总成系统10可以被称为具有单阻尼器配
置,并且混合动力总成系统50可以被称为具有双阻尼器配置。
[0053] 在图1的单阻尼器配置中,扭矩转换器20的尺寸可以相对于扭矩转换器44的尺寸减小,因为扭矩转换器20不包括阻尼器组件46。然而,阻尼器组件46的阻尼特性(例如,弹簧刚度)可以被设计为保护SOWC 18免受多级或频率范围的发动机振动,并将传动系与发动机
振动隔离。因此,可以在阻尼器组件46的设计中做出妥协。在图3的双阻尼器配置中,阻尼器组件16可以设计为保护SOWC 18免受一级(例如,第一级)或频率范围的发动机振动,并且阻尼器组件46可以设计成将SOWC 18与一个或多个其他级(例如,第二级、第三级)或频率范围的发动机振动隔离,并且将传动系与发动机振动隔离。因此,阻尼器组件16和26可以比单独的阻尼器组件16更有效地保护/隔离SOWC 18和传动系。
[0054] 现在参考图4,混合动力总成系统60与图1的混合动力总成系统10类似或相同,不同之处在于混合动力总成系统60包括单向离合器(OWC)62来代替SOWC 18。此外,混合动力
总成系统60包括与OWC 62并联地连接到阻尼器组件16和扭矩转换器44的摩擦离合器64。
[0055] OWC 62沿第一方向将扭矩从挠性板14传递到扭矩转换器20。当发动机12的速度大于或等于泵30的速度时,OWC 62自动将挠性板14联接到扭矩转换器20以沿第一方向传递扭
矩。OWC 62不沿第二方向将扭矩从扭矩转换器20传递到挠性板14。此外,OWC 62是不可选择的。因此,OWC 62在任何状况下不沿第二方向将扭矩从扭矩转换器20传递到挠性板14。
[0056] 当接合摩擦离合器64时,摩擦离合器64在阻尼器组件16与扭矩转换器44之间提供刚性连接。因此,摩擦离合器64可操作以沿第一方向和第二方向中的任一方向在挠性板14
与扭矩转换器44之间传递扭矩,尽管在不同的时间。摩擦离合器64响应于供应到摩擦离合
器64的液压流体的压力而接合和脱离。离合器控制阀可以响应于由离合器控制模块输出的
离合器控制信号而调节供应到摩擦离合器64的液压流体的压力。
[0057] 与图1的混合动力总成系统10相比,图4的混合动力总成系统60可以能需要液压控制系统来致动摩擦离合器64。此外,在输出信号以接合摩擦离合器的第一时间以及摩擦离
合器64响应于该信号而接合的第二时间之间可能存在延迟时段(例如,一秒)。因此,例如在发动机起动期间,相对于使用SOWC 18来接合发动机12所需的时段,使用摩擦离合器64来接合发动机12可能花费更长的时间。
[0058] 然而,如以上所讨论的,混合动力总成系统60中的摩擦离合器64可操作以沿第一方向和第二方向在挠性板14与扭矩转换器44之间传递扭矩。因此,离合器控制模块可以在
OWC 62正接合或可能接合的时段期间接合摩擦离合器64,以防止由OWC 62中的间隙引起的
OWC 62的损坏。此外,摩擦离合器64不需要设计为承受发动机12的全部扭矩容量,因为当发动机12以全扭矩容量驱动扭矩转换器20时,OWC 62被接合。例如,摩擦离合器64可以设计为仅承受由电动发电机22产生的扭矩、由发动机12内的摩擦产生的扭矩、以及由发动机点火
脉冲产生的扭矩波动。因此,摩擦离合器64可以小于传动系应用中使用的典型摩擦离合器。
[0059] 现在参考图5,混合动力总成系统70与图4的混合动力总成系统60类似或相同,不同之处在于混合动力总成系统70不包括阻尼器组件16。此外,混合动力总成系统70包括扭
矩转换器44来代替扭矩转换器20。因此,图5的混合动力总成系统70类似于图2的混合动力
总成系统40,因为图5的混合动力总成系统70仅包括扭矩转换器44中的阻尼器组件46,而在发动机12与OWC 62之间没有阻尼器组件。然而,图5的OWC 62可以具有比图2的SOWC 42更多的间隙,因为摩擦离合器64可以被接合以保护OWC 62免受由于OWC 62中的间隙而引起的损
坏。此外,摩擦离合器64可以在发动机12的提供驱动扭矩的时段之间接合,因为扭矩传递的方向在那些时段之间改变,并且因此OWC 62可能在那些时段之间接合(并受到损害)。
[0060] 现在参考图6,混合动力总成系统80与图4的混合动力总成系统60类似或相同,不同之处在于混合动力总成系统50包括扭矩转换器44来代替扭矩转换器20。因此,虽然混合
动力总成系统60仅包括单个阻尼器(即,阻尼器组件16),但混合动力总成系统80包括两个
阻尼器(即,阻尼器组件16和46)。因此,混合动力总成系统80具有上面参考图3所讨论的双阻尼器配置的益处。此外,混合动力总成系统80与图3的混合动力总成系统50类似或相同,不同之处在于混合动力总成系统80包括OWC 62和摩擦离合器64来代替SOWC 18。因此,混合动力总成系统80具有包括OWC 62和摩擦离合器64来代替SOWC 18的益处,这些益处将在上
面参考图4进行讨论。
[0061] 现在参考图7至图9,阻尼器组件16和46中的每一个的示例性具体实施包括阻尼器124、阻尼器旁路离合器126、第一弹簧保持器板202、输入毂204、输入驱动板206、第二弹簧保持器板208和输入离合器壳体210。尽管示例性具体实施被示出并描述为包括阻尼器旁路
离合器126,但在各种实施方式中,可以省略阻尼器旁路离合器126。阻尼器组件16的输入驱动板206可以连接到发动机12的挠性板14(图1至图6)。阻尼器组件46的输入驱动板206可以
连接到摩擦离合器64(图2、图3、图5和图6)。输入毂204使用销212来旋转地固定到输入驱动板206,使得输入毂204与输入驱动板206一起旋转。
[0062] 阻尼器124将从输入驱动板206输出的发动机扭矩传递到弹簧保持器板202、208和输入离合器壳体210。阻尼器组件16的输入离合器壳体210可以联接(例如,螺栓连接)到
SOWC 18(图1和图3至图6)或SOWC 42(图2)。阻尼器组件46的输入离合器壳体210可以联接
(例如,螺栓连接)到变速器输入轴28(图1至图6)或固定到变速器输入轴28的另一个部件。
阻尼器124包括第一螺旋弹簧214和第二螺旋弹簧216。在各种实施方式中,除了第一螺旋弹簧214和第二螺旋弹簧和216之外或代替该第一螺旋弹簧和第二螺旋弹簧,阻尼器124还可
以包括钟表弹簧、摆锤和/或聚合物间隔件。第二螺旋弹簧216可以具有与第一螺旋弹簧214不同的刚度和/或不同的长度。弹簧保持器板202、208将螺旋弹簧214、216保持在输入驱动板206上的径向延伸臂218之间。第一弹簧保持器板202和第二弹簧保持器板208彼此铆接
使用铆钉220来铆接到输入离合器壳体120。
[0063] 螺旋弹簧214、216将扭矩从输入驱动板206传递到弹簧保持器板202、208。当螺旋弹簧214、216将扭矩从输入驱动板206传递到弹簧保持器板202、208时,螺旋弹簧214、216压缩和松弛。这允许输入驱动板206与弹簧保持器板202、208之间存在一定相对运动,并由此抑制发动机和/或传动系振动。此外,螺旋弹簧214、216产生最小扭转摩擦或滞后扭矩(例如,小于5Nm)。
[0064] 阻尼旁路离合器126包括第一摩擦板222、第二摩擦板224、第三摩擦板226和反作用板228。摩擦板222、224、226和反作用板228可以统称为摩擦板堆叠。反作用板228经由反作用板228上的内齿230与输入驱动板206花键连接,该内齿接合输入毂204上的外齿232。摩擦板222、224、226经由摩擦板222、224、226上的外齿234与弹簧保持器板202、208和输入离合器壳体210花键连接,该外齿接合第一弹簧保持器板202上的内齿236。
[0065] 为了完全接合阻尼器旁路离合器126,阻尼器活塞(未示出)将第一力施加到第一摩擦板222的主表面242(图3和图4)。继而,阻尼器旁路离合器126中的摩擦板堆叠压缩,使得所有输入扭矩(例如,发动机或传动系扭矩)通过阻尼器旁路离合器126并独立于阻尼器
124传递。当离合器控制阀以第一压力将液压流体供应到阻尼器旁路离合器126时,阻尼器
活塞可以施加第一力。
[0066] 为了部分地接合阻尼器旁路离合器126,阻尼器活塞将第二力施加到第一摩擦板222的主表面242。继而,摩擦板堆叠部分地减压,使得一些(例如,大部分)输入扭矩通过阻尼器124传递。在这种状态下,阻尼器旁路离合器126在第三摩擦板226与输入驱动板206之
间的界面244(图8和图9)处施加摩擦扭矩。该摩擦扭矩提供滞后或库仑阻尼,其进一步减少了通过阻尼器组件16或46传输的振动量。当离合器控制阀以第二压力将液压流体供应到阻
尼器旁路离合器126时,阻尼器活塞施加第二力。第二力小于第一力,并且当阻尼器活塞施加第二力以部分地接合阻尼器旁路离合器126时,第二力大于零。
[0067] 现在参考图10至图13,图1至图3的SOWC 18的示例性具体实施包括凹口板250、窝板252、多个前支柱254、多个后支柱256、选择器板258和选择器板致动器260。凹口板250可以使用例如紧固件来刚性地连接到发动机12的挠性板14。另选地,凹口板250可以与挠性板
14成一体。凹口板250具有内径向表面262、外径向表面264、第一侧表面266、以及与第一侧表面266相对的第二侧表面268。第二侧表面268限定多个凹口270(图12和图13)。
[0068] 窝板252可以使用例如紧固件来刚性地连接到扭矩转换器20或44。另选地,窝板252可以与扭矩转换器20或44的壳体或外壳成一体。窝板252具有内径向表面272、外径向表面274、第一侧表面276、以及与第一侧表面266相对的第二侧表面278。窝板252的第一侧表面276面向凹口板250的第二侧表面268。此外,第一侧表面276限定多个窝280。
[0069] 前支柱254和后支柱256中的每一者设置在窝280之一中并且枢转地连接到窝板252。在所示的示例中,前支柱254和后支柱256中的每一者包括主体282和从主体282突出的一对臂284以形成T形。臂284经由压配合固定在窝280中的对应窝内,该压配合允许主体282围绕臂284的纵向轴线枢转。在其他示例中,前支柱254和后支柱256可以使用紧固件来枢转地连接到窝板252。
[0070] SOWC 18还包括多个螺旋弹簧286。螺旋弹簧286中的每个设置在窝板252的第一侧表面276中的窝280之一中,并且被捕获在前支柱254和后支柱256中的一者与第一侧表面
276之间。螺旋弹簧286中的每个将前支柱254和后支柱256中的一者朝向凹口板250的第二
侧表面268偏置。
[0071] 前支柱254中的每个布置在窝280之一内,使得其主体282从其臂沿第一方向延伸。因此,当前支柱254延伸到凹口板250的第二侧表面268中的凹口270中并接合该凹口270时,前支柱254沿第一(例如,向前)方向将扭矩从凹口板250传递到窝板252。相反,后支柱256中的每个布置在窝280之一内,使得其主体282从其臂沿第二方向延伸。因此,当后支柱256延伸到凹口板250的第二侧表面268中的凹口270中并接合该凹口270时,后支柱256沿第二(例
如,向后)方向将扭矩从凹口板250传递到窝板252。
[0072] 选择器板致动器260在第一位置(图12)与第二位置(图13)之间致动选择器板258。当选择器板258处于第一位置时,选择器板258阻挡窝板252上的后支柱256枢转到凹口板
250中的凹口270中。当选择器板258处于第二位置时,选择器板258允许窝板252上的后支柱
256枢转到凹口板250中的凹口270中。因此,仅当选择器板258处于第二位置时,SOWC 18可操作以沿第二方向(标记为287)传递扭矩。
[0073] 当发动机12的速度大于或等于扭矩转换器20或44的泵30的速度时,前支柱254枢转到凹口板250中的凹口270中。继而,SOWC 18沿第一方向将扭矩从发动机12传递到扭矩转换器20或44。当选择器板258处于第二位置并且泵30的速度大于或等于发动机12的速度时,后支柱256枢转到凹口板250中的凹口270中。继而,SOWC 18沿第二方向将扭矩从扭矩转换
器20或44传递到发动机12。
[0074] 响应于由选择器板控制模块(未示出)输出的选择器板控制信号,选择器板致动器260可以在第一位置与第二位置之间致动选择器板258。在一个示例中,选择器板致动器260包括伺服电动机288和从伺服电动机288径向向内延伸的致动臂290,并且选择器板258限定
接收致动臂290的一部分的狭槽292。伺服电动机288响应于选择器板控制信号而旋转致动
臂290,以使选择器板沿SOWC 18的圆周方向移动,并且因此在第一位置与第二位置之间调
节选择器板258。
[0075] 现在参考图14,示出了SOWC 18的另一个示例具体实施,其与图10至图13的示例性具体实施类似或相同,不同之处在于螺旋弹簧286已经用钟表弹簧294来代替。图14示出了
窝板252上的前支柱254之一与凹口板250中的凹口270之一接合,而选择器板258阻止后支
柱256之一与另一个凹口270接合。在该配置中,SOWC 18沿第一方向将扭矩从发动机12传递到扭矩转换器20或44。
[0076] 图4至图6的OWC 62可以与上面讨论的SOWC 18的示例性具体实施类似或相同,不同之处在于OWC 62不包括后支柱256、选择器板258或选择器板致动器260。因此,OWC 62仅可操作以沿第一方向将扭矩从发动机12传递到扭矩转换器20或44。OWC 62不可操作以沿第
二方向将扭矩从扭矩转换器20或44传递到发动机12。在各种具体实施中,使用棘爪、辊或爪形离合器部件来代替SOWC 18中的前支柱254和后支柱256或代替OWC 62中的前支柱254,以
将窝板252连接到凹口板250。
[0077] 前面的描述本质上仅是说明性的并且决不旨在限制本公开、其应用或用途。本公开的广泛教导可能以各种形式实现。因此,尽管本公开包括特定示例,但本公开的真实范围不应受此限制,因为在研究附图、说明书和所附权利要求时,其他修改将变得显而易见。应当理解,方法内的一个或多个步骤可能以不同的顺序(或同时)执行,而不改变本公开的原
理。此外,尽管上面将每个实施方案描述为具有某些特征,但相对于本公开的任何实施方案描述的那些特征中的任何一个或多个可能以其他实施方案中任何一个的特征来实现和/或
与其组合,即使没有明确描述该组合。换句话讲,所描述的实施方案不是相互排斥的,并且一个或多个实施方案彼此的排列仍在本公开的范围内。
[0078] 使用各种术语描述元件之间的空间和功能关系(例如,模块,电路元件、半导体层等之间),术语包括“连接”、“接合”、“联接”、“邻近”、“旁边”、“在…之上”、“上方”、“下方”和“设置”。除非明确地描述为“直接”,否则当在上面的公开中描述第一元件与第二元件之间的关系时,这种关系可以是其中在第一元件和第二元件之间不存在其他中间元件的直接关
系,但也可以是其中在第一元件与第二元件之间存在(空间或功能上)一个或多个中间元件
的间接关系。如本文所用,短语A、B和C中的至少一个应当被解释为表示使用非排他逻辑OR的逻辑(A OR B OR C),并且不应当被解释为“A中的至少一个、B中的至少一个和C中的至少一个”。
[0079] 在图中,如箭头所指示的,箭头方向通常表示图示中感兴趣的信息流(例如数据或指令)。例如,当元件A和元件B交换各种信息,但从元件A传输到元件B的信息与图示相关时,箭头可以从元件A指向元件B。该单向箭头并不意味着没有其他信息从元件B传输到元件A。
另外,对于从元件A发送到元件B的信息,元件B可以向元件A发送对信息的请求或接收信息
的确认。
[0080] 在本申请中,包括下面的定义,术语“模块”或术语“控制器”可以用术语“电路”代替。术语“模块”可以指代、是或包括:专用集成电路(ASIC);数字、模拟或混合模拟/数字分立电路;数字、模拟或混合模拟/数字集成电路;组合逻辑电路;现场可编程阵列(FPGA);执行代码的处理器电路(共享、专用或组);存储由处理器电路执行的代码的存储器电路(共享、专用或组);提供所述功能的其他合适硬件部件;或者一些或所有的上述组合,诸如在片上系统中。
[0081] 模块可以包括一个或多个接口电路。在一些示例中,接口电路可以包括连接到局域网(LAN)、互联网、广域网(WAN)或它们的组合的有线或无线接口。本公开的任何给定模块的功能可以分布在经由接口电路连接的多个模块之间。例如,多个模块可以允许负载平衡。
在另一示例中,服务器(也称为远程或)模块可代表客户端模块完成某些功能。
[0082] 如上所使用,术语代码可以包括软件、固件和/或微代码,并且可以指代程序、例程、函数、类、数据结构和/或对象。术语共享处理器电路包括执行来自多个模块的一些或所有代码的单个处理器电路。术语组处理器电路包括与附加处理器电路组合来执行来自一个
或多个模块的一些或所有代码的处理器电路。对多个处理器电路的引用包含分立管芯上的
多个处理器电路、单个管芯上的多个处理器电路、单个处理器电路的多个核、单个处理器电路的多个线程、或上述的组合。术语共享存储器电路包含存储来自多个模块的一些或所有
代码的单个存储器电路。术语组存储器电路包含与附加存储器组合来存储来自一个或多个
模块的一些或所有代码的存储器电路。
[0083] 术语存储器电路是术语计算机可读介质的子集。如本文所使用,术语计算机可读介质不包括通过介质(诸如在载波上)传播的瞬时电信号或电磁信号;因此术语计算机可读
介质可以被认为是有形的和非暂时的。非暂态有形计算机可读介质的非限制性示例是非易
失性存储器电路(诸如闪存电路、可擦除可编程只读存储器电路或掩模只读存储器电路)、
易失性存储器电路(诸如静态随机存取存储器电路或动态随机存取存储器电路)、磁存储介
质(诸如模拟或数字磁带或硬盘驱动器),以及光存储介质(诸如CD、DVD或蓝光光盘)。
[0084] 本申请中描述的装置和方法可以由专用计算机部分地或全部实现,通过将通用计算机配置成执行计算机程序中包含的一个或多个特定功能来创建。上述功能块、流程图
件和其他元件用作软件规范,其可以通过熟练技术人员或程序员的例行工作转换成计算机
程序。
[0085] 计算机程序包括存储在至少一个非暂态有形计算机可读介质上的处理器可执行指令。计算机程序还可以包括或依赖于存储的数据。计算机程序可以包括与专用计算机的
硬件交互的基本输入/输出系统(BIOS)、与特殊用途计算机的特定设备交互的设备驱动程
序、一个或多个操作系统、用户应用程序、后台服务、后台应用程序等。
[0086] 计算机程序可以包括:(i)要解析的描述性文本,诸如HTML(超文本标记语言)、XML(可扩展标记语言)或JSON(JavaScript对象表示法),(ii)汇编代码,(iii)编译器根据源代码生成的目标代码,(iv)由解释者执行的源代码,(v)由即时编译器编译和执行的源代码等。仅作为示例,可以使用来自以下语言的语法来编写源代码:包括C、C++、C#、Objective-C、Swift、Haskell、Go、SQL、R、Lisp、 Fortran、Perl、Pascal、Curl、OCaml、
HTML5(超文本标记语言第5版)、Ada、ASP(动态服务器网页)、PHP(PHP:超文本
预处理器)、Scala、Eiffel、Smalltalk、Erlang、Ruby、 Lua、
MATLAB、SIMULINK和
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈