首页 / 专利库 / 燃料种类 / 能源 / 燃料 / 校正装置及び校正方法

校正装置及び校正方法

阅读:633发布:2024-02-26

专利汇可以提供校正装置及び校正方法专利检索,专利查询,专利分析的服务。并且【課題】 水 素等のガスの充填装置の校正装置であって、充填容器やタンクの容積が水素充填前後で変動する場合でも、高圧充填されたガス(水素等)の充填量を正確に測定することが出来る校正装置の提供。 【解決手段】 計測ハウジング(1)内に外部から高圧の 燃料 ガス(例えば水素ガス)が供給される充填容器(2)と、当該充填容器(2)に供給された燃料ガスの重量を測定する秤(3)と、制御装置(CU)を備え、制御装置(CU)は計測ハウジング(1)内の充填容器(2)の容積の変動に基づいて、計測ハウジング(1)内の気体の浮 力 が燃料ガスの充填前後で変動することによる誤差を解消する機能を有している。 【選択図】図1,下面是校正装置及び校正方法专利的具体信息内容。

計測ハウジング内に外部から高圧の燃料ガスが供給される充填容器と、当該充填容器に供給された燃料ガスの重量を測定する秤と、制御装置を備え、 前記制御装置は、計測ハウジング内の充填容器の容積の変動に基づいて、計測ハウジング内の気体の浮が燃料ガスの充填前後で変動することによる誤差を解消する機能を有することを特徴とする校正装置。前記制御装置は、計測ハウジング内の充填容器の容積の変動に基づいて、計測ハウジング内の気体の浮力が燃料ガスの充填前後で変動することによる誤差を解消するに際して、計測ハウジング内に収容されている機器の容積の総和に作用する浮力のみを演算する機能と、計測ハウジング内の充填容器の圧力に基づいて当該充填容器の容積を決定する機能を有している請求項1の校正装置。請求項1の校正装置を用いた燃料ガス充填装置の校正方法において、 燃料ガス充填前後の計測ハウジングの重量を計測する工程と、 燃料ガス充填前後の計測ハウジングの重量差により、計測ハウジング内の充填容器の容積の変動に基づいて、計測ハウジング内の気体の浮力が燃料ガスの充填前後で変動することによる誤差を解消する工程を有することを特徴とする校正方法。燃料ガス充填前後の計測ハウジングの重量差により、計測ハウジング内の充填容器の容積の変動に基づいて、計測ハウジング内の気体の浮力が燃料ガスの充填前後で変動することによる誤差を解消する工程で、計測ハウジング内の気体の浮力の演算は、計測ハウジング内に収容されている機器の容積の総和に作用する浮力のみを対象として行い、計測ハウジング内の充填容器の圧力に基づいて当該充填容器の容積を決定する請求項3の校正方法。

说明书全文

本発明は、例えば素の様なガス充填装置の校正装置に関し、より詳細には、高圧充填された水素等の燃料ガスの充填量を正確に測定することが出来る校正装置に関する。

給油所に設置されているガソリン計量機は、公正な商取引を保つために7年毎の流量検定が義務付けられており、流量計の器差が±0.5%以内であることが要求されている。その様な要求に対して出願人は、流量計の検査機能を有するガソリン計量機を提案している(特許文献1)。 近年では環境問題への対策として、水素を燃料とする燃料電池自動車が開発され、それに伴って水素充填装置及び水素充填装置の校正装置が検討されている。

水素充填装置の校正に際して、校正装置に水素を充填する前後の重量を比較して、その差異から充填された水素充填量(重量)を求め、水素充填装置の流量計による充填量と比較することにより校正を行うタイプのものが存在する。 水素の充填においては、充填時間を短縮するために高圧充填が行われるが、高圧充填に伴い温度が上昇し、燃料電池自動車の燃料タンクが高温となり破損する可能性がある。その様な可能性を排除するため、水素は冷却装置によって−40℃に冷却されて充填されている。 ここで、水素を−40℃に冷却して水素充填装置の校正装置に充填すると、校正装置の温度が低温から高温まで変化し、その結果、周囲の気体による校正装置に対する浮が変動する。係る浮力の変動により、充填された水素の重量を計測するタイプの校正装置では、計測された水素充填量(重量)に誤差が生じてしまうという問題が存在する。

係る問題に対して本出願人は、計測された水素充填量(重量)に対して浮力の変動を補正して、正確な校正を可能にした校正装置及び校正方法を提案している(特許文献2参照)。 この技術(特許文献2)は有効であるが、この技術に係る校正装置に用いられている充填容器(タンク)は、水素充填前後で容積が変動しない材質で製造されていることが前提となっている。しかし近年では、校正装置や車両で用いられる充填容器やタンクは、水素充填圧力により、その容積が変動する様な可撓性に富んだ素材で製造されている。そして充填容器やタンクの容積が水素充填前後で変動すると、上述の校正技術(特許文献2に係る校正装置及び校正方法)では、浮力の変動を正確に把握して高精度の校正を実行することが困難になってしまう、という問題が存在する。

特開平7−33197号公報

特開2017−67472号公報

本発明は上述した従来技術の問題点に鑑みて提案されたものであり、水素等のガスの充填装置の校正装置であって、充填容器やタンクの容積が水素充填前後で変動しても、高圧充填されたガス(水素等)の充填量を正確に測定することが出来る校正装置及び校正方法の提供を目的とする。

本発明の校正装置(100)は、 計測ハウジング(1)内に外部から高圧の燃料ガス(例えば水素ガス)が供給される充填容器(2)と、当該充填容器(2)に供給された燃料ガスの重量を測定する秤(3)と、制御装置(CU)を備え、 前記制御装置(CU)は、計測ハウジング(1)内の充填容器(2)の容積の変動に基づいて、計測ハウジング(1)内の気体(乾燥エア、窒素)の浮力が燃料ガス(例えば水素)の充填前後で変動することによる誤差を解消する機能を有することを特徴としている。 そして係る校正装置(100:請求項1の校正装置)を用いた燃料ガス充填装置(40)の校正方法は、 燃料ガス充填前後の計測ハウジング(1)の重量を計測する工程と、 燃料ガス充填前後の計測ハウジング(1)の重量差により、計測ハウジング(1)内の充填容器(2)の容積の変動に基づいて、計測ハウジング(1)内の気体(乾燥エア、窒素)の浮力が燃料ガス(例えば水素)の充填前後で変動することによる誤差を解消する工程を有することを特徴としている。

本発明において、前記制御装置(CU)は、計測ハウジング(1)内の充填容器(2)の容積の変動に基づいて、計測ハウジング(1)内の気体(乾燥エア、窒素)の浮力が燃料ガス(例えば水素)の充填前後で変動することによる誤差を解消するに際して、 計測ハウジング(1)内に収容されている機器(例えば、充填容器2、秤3、台座8、充填ガス供給管路7)の容積の総和(Q:固体容積)に作用する浮力のみを演算する機能と、 計測ハウジング(1)内の充填容器(2)の圧力(燃料ガス充填装置40の吐出圧力、水素配管42或いは充填ガス供給管路7の圧力等)に基づいて当該充填容器(2)の容積を決定する機能を有しているのが好ましい。

そして本発明の校正方法においても、燃料ガス充填前後の計測ハウジング(1)の重量差により、計測ハウジング(1)内の充填容器(2)の容積の変動に基づいて、計測ハウジング(1)内の気体(乾燥エア、窒素)の浮力が燃料ガス(例えば水素)の充填前後で変動することによる誤差を解消する工程で、計測ハウジング(1)内の気体(乾燥エア、窒素)の浮力の演算は、計測ハウジング(1)内に収容されている機器(例えば、充填容器2、秤3、台座8、充填ガス供給管路7)の容積の総和(Q:固体容積:ハウジング1内の充填容器2、秤3、台座8、充填ガス供給管路7等が占める容積:計測ハウジング1を構成する材料の体積は包含しない)に作用する浮力のみを対象として行い、 計測ハウジング(1)内の充填容器(2)の圧力(燃料ガス充填装置40の吐出圧力、水素配管42或いは充填ガス供給管路7の圧力等)に基づいて当該充填容器(2)の容積を決定するのが好ましい。

本発明の実施に際して、計測ハウジング(1)内の気体(乾燥エア、窒素)の浮力を求める際に、充填容器(2)表面における気体の温度を求め、当該気体の温度から気体の密度(ρ)を決定することが好ましい。 そして、前記計測ハウジング(1)内に乾燥ガスを供給する乾燥ガス管路(4)が(計測ハウジング1に対して)着脱自在に設けられているのが好ましい。 ここで前記秤(3)は、前記充填容器(2)に供給された燃料ガスの重量を計測ハウジング(1)ごと計測するのが好ましい。

本発明において、計測ハウジング(1)は半密閉構造であるのが好ましい。 ここで「半密閉構造」なる文言は、完全に密閉する訳ではないが略々密閉に近い状態にすることが出来る構造を意味している。

また本発明において、計測ハウジング(1)内の露点温度を測定する露点計(5)を設けることが好ましい。 当該露点計(5)は計測ハウジング(1)外側に着脱自在に設けることが出来るが、計測ハウジング(1)内に設けることも可能である。 本発明の実施に際して、前記乾燥ガスは、窒素、乾燥したエアを用いることが出来る。

上述の構成を具備する本発明によれば、充填容器(2)の容積が燃料ガス(例えば水素)の充填前後で変動しても、充填容器(2)の圧力から充填容器(2)の容積を決定して、計測ハウジング(1)内の気体(乾燥エア、窒素)による浮力が、燃料ガスの充填前後で変動することによる誤差を解消する機能を有しており、或いは前記誤差を解消する工程(制御或いは手順)を実行するので、充填容器(2)の容積が燃料ガス充填前後で変動しても、燃料ガス充填量(重量)の計測結果に誤差が生じることを防止することが出来る。 その結果、高い精度で計測することが要求される燃料ガス充填量(重量)の計測において、前記浮力の変動の悪影響を排除することが出来るので、燃料ガス充填量(重量)決定の精度を向上し、以って、水素ガス充填装置(40)の校正の精度を向上することが出来る。

ここで、計測ハウジング(1)内の充填容器(2)の容積と圧力(燃料ガス充填装置40の吐出圧力、水素配管42或いは充填ガス供給管路7の圧力等)との関係は一定であるため(いわゆる「線形」な関係である場合が多い)、充填容器(2)の圧力を求めれば充填容器(2)の容積は正確に決定することが出来る。さらに、計測ハウジング(1)内に収容されている機器(例えば、充填容器2、秤3、台座8、充填ガス供給管路7等)であって、前記浮力の変動に関与する機器の容積の総和(Q、固体容積)を求めることが出来る。 そして、計測ハウジング(1)内の気体による浮力の変動による悪影響を排除するに際して、計測ハウジング(1)内に収容されている機器(例えば、充填容器2、秤3、台座8、充填ガス供給管路7等:その容積が前記浮力の変動に関与する機器)の容積の総和(Q:固体容積)に作用する浮力のみを考慮し、計測ハウジング(1)の容積から固体容積(Q)を除いた容積(AQ:前記浮力の変動に関与しない機器の容積)に作用する気体の浮力は考慮しない様にしている。その様に校正すれば、発明者による研究、実験の結果と良好に適合した。 計測ハウジング(1)の容積から固体容積(Q)を除いた容積(AQ)に作用する気体の浮力は、燃料ガス充填前後の計測ハウジング(1)の重量を計測し、その重量差を求める際に相殺されるため、浮力の変動には関与しないと推測される。換言すれば、前記浮力の変動を考慮する際に、計測ハウジング(1)の容積から固体容積(Q)を除いた容積(AQ)に作用する気体の浮力を包含して処理すると、浮力の変動量が不正確になる。

計測ハウジング(1)内の気体(乾燥エア、窒素)の浮力を求めるに際して、計測ハウジング(1)内の気体の温度は時間及び計測位置により大きく変化する。従って、気体の密度(ρ)及び当該気体による浮力も変化する。 本発明において、計測ハウジング(1)内の気体(乾燥エア、窒素)の浮力を求める際に、充填容器(2)表面における気体の温度を求め、当該気体の温度から気体の密度(ρ)を決定すれば、気体の温度の代表値として充填容器(2)表面における気体の温度を採用し、当該代表値から気体密度(ρ)を決定することが出来る。それにより、時間及び計測位置による気体温度の変化に拘らず、計測ハウジング(1)内の気体による浮力を正確に求め、浮力の変動による誤差を解消することが出来る。 そして発明者の研究、実験によれば、充填容器(2)表面における気体の温度を代表値として気体密度(ρ)を決定した結果と、伝熱、輻射、時間経過を考慮した複雑な演算により求めた気体密度(ρ)とは高精度で一致することが確認された。すなわち、充填容器(2)表面における気体の温度を代表値として気体密度(ρ)を決定すれば、伝熱、輻射、時間経過を考慮した複雑な演算を行わずに、それと同程度の精度で浮力による影響を演算し、校正を行うことが出来る。

本発明の実施形態を示すブロック図である。

実施形態におけるコントロールユニットを示す機能ブロック図である。

実施形態における校正の手順を示すフローチャートである。

実施形態において浮力を考慮して計測された重量を補正する制御を示すフローチャートである。

以下、添付図面を参照して、本発明の実施形態について説明する。 図1において、本発明の実施形態に係る校正装置は、全体を符号100で示されている。校正装置100は、計測ハウジング1、計測ハウジング1内に配置され外部から高圧の燃料ガス(例えば水素ガス)が供給される充填容器2、計測ハウジング1の重量を測定する秤3、計測ハウジング1と秤3を収容する本体ハウジング20を備える。 充填容器2は台座8を介して計測ハウジング1の底面上に載置される。そして充填容器2は、燃料ガスの充填圧力により容積が変動する様な可撓性に富んだ素材で製造され、そのため、燃料ガスの充填前後でその容積が変動する。

充填容器2に供給、充填された水素ガスの重量の測定は、秤3により、燃料ガス(例えば水素ガス)充填前の計測ハウジング1の重量と、燃料ガス充填後の計測ハウジング1の重量を計測し、両者の差異から充填された燃料ガス(例えば水素ガス)の重量を求める。 以下、燃料ガスとして水素ガスを採用する場合について記載する。 計測ハウジング1は充填容器2等を収容しており、計測ハウジング1と秤3を収容する本体ハウジング20は、その下面に移動手段20A(車輪等)を備え、校正に際し校正すべき水素充填装置40の設置個所まで移動することが出来る。

計測ハウジング1の側面にはレセプタクル6(水素受入口)が設けられ、校正すべき水素充填装置40から計測ハウジング1内の充填容器2に水素ガスを供給、充填する際に、レセプタクル6は計測ハウジング1側の水素受入口となる。 換言すれば、水素充填装置40と計測ハウジング1は、充填ノズル41とレセプタクル6の結合により連結され、水素ガスが水素充填装置40から計測ハウジング1内の充填容器2に供給される。なお、符号42は水素配管である。

計測ハウジング1内において、レセプタクル6と充填容器2は充填ガス供給管路7で接続される。レセプタクル6から計測ハウジング1内に供給された水素ガスは、充填ガス供給管路7を介して充填装置2に供給、充填される。 なお、符号2Aは充填装置2における充填ガス取入部を示し、符号9は計測ハウジング1側に供給された水素ガスの逆流を防止する逆止弁である。

計測ハウジング1の側面には、計測ハウジング1内に乾燥ガス(乾燥エア或いは窒素)を供給する乾燥ガス管路4が着脱自在に設けられている。乾燥ガスは、図示しない供給源から乾燥ガス管路4により計測ハウジング1内に供給され、計測ハウジング1内に乾燥ガスを充填することが出来る。 ここで乾燥ガスとしては、窒素や、乾燥エアを用いることが出来る。窒素或いは乾燥エアのみならず、調達コストが安く、計測ハウジング1内への充填や排出を短時間で完了することが出来て、安全性の高く、しかも分子量がエア(空気)や窒素に近い気体であれば使用可能である。ただし、分子量がエア(空気)や窒素と大幅に異なる気体はガス濃度が安定しているか、もしくは、濃度を測定して補正する必要がある。

さらに、計測ハウジング1の外面には、露点計5が着脱自在に設けられ、露点計5の計測結果に基づいて、計測ハウジング1内で適正な湿度管理を行うことが出来る。例えば、露点計5の露点温度が所定温度(例えば−20℃:計測ハウジング1内が十分に乾燥していると判断出来る露点温度)に達した時に、燃料ガス(例えば−40℃に冷却されている水素ガス)を供給すれば、充填容器2、充填ガス供給管路7、レセプタクル6等の機器に発生する結露量が少なくなり、当該結露量が重量測定に及ぼす影響を十分に小さくすることが出来る。 ここで、例えば−40℃以下まで露点を下げれば結露量はゼロになるが、露点−40℃以下の結露量と露点−20℃における結露量の差は小さい。そのため、必要十分乾燥していると判断出来る基準となる露点温度として、−20℃〜−25℃程度を設定することが現実的であり、且つ経済的である。 図示の実施形態では露点計5は計測ハウジング1の外側に設けられているが、露点計5を計測ハウジング1内に設けても良い。

計測ハウジング1の上面には気体排出口13が設けられ、計測ハウジング1内に乾燥ガスを充填したときに、計測ハウジング1内のエア、その他の水分を包含する気体を計測ハウジング1の外部に排出する出口となる。 さらに、計測ハウジング1の上面には充填ガス放出口11が設けられ、充電ガス放出口11は充填ガス放出管路12により充填容器2と接続されている。 充填容器2から水素ガスを放出する場合、充填容器2から放出された水素ガスは充填ガス放出管路12を通過して、充填ガス放出口11から計測ハウジング1の外部に放出される。本体ハウジング20には、図示しない気体放出機構が設けられている。

充填ガス供給管路7は、支持部材14により計測ハウジング1の底面部に固定される。また充填ガス放出管路12は、支持部材15により計測ハウジング1の外壁部に固定される。支持部材14及び支持部材15により充填ガス供給管路7及び充填ガス放出管路12を計測ハウジング1に固定する構造としては、従来公知の構造を用いることが出来る。 支持部材14、支持部材15及び充填容器2を載置する台座8は、熱伝導率の低い断熱材、例えばゴムや樹脂等を使用している。計測ハウジング1内の低温が、支持部材14、支持部材15及び台座8を通して計測ハウジング1の外面に伝導し、大気に接している計測ハウジング1や秤3の外表面に結露が生じることを防止するためである。

ここで、計測ハウジング1内は半密閉構造としている。「半密閉構造」とは、完全に密閉する訳ではないが略々密閉に近い状態にすることが出来る構造を意味している。 計測ハウジング1を半密閉構造にすることにより、計測ハウジング1内に乾燥ガスを供給し、計測ハウジング1内を僅かに加圧された状態に保持すれば、水分を含んだエアが計測ハウジング1内に侵入することを防止出来る。

図1において、符号CUは、計測ハウジング1内の気体(乾燥エア、窒素)の浮力による誤差を解消するための制御を行なうコントロールユニット(制御装置)を示している。 コントロールユニットCUは、入力信号ラインISL1により秤3と接続されており、且つ、入力信号ラインISL2により温度センサTと接続されている。ここで温度センサTは、充填容器2の表面近傍に設置される。 また、コントロールユニットCUは、入力信号ラインISL3により水素充填装置40と接続されており、入力信号ラインISL3を介して水素充填装置40の吐出圧力が入力される。ここで水素ガス充填装置40の吐出圧力は、水素配管42或いは充填ガス供給管路7内の圧力に等しく、充填容器2内の圧力に等しい。

コントロールユニットCUの詳細について、図2の機能ブロック図を参照して説明する。図2において、コントロールユニットCUは、補正前の充填量演算ブロックB1、空気密度決定ブロックB2、固体容積決定ブロックB3、浮力変動量決定ブロックB4、充填量補正値決定ブロックB5、記憶ブロックB6を有している。

補正前の充填量演算ブロックB1は、計測ハウジング1内の気体(乾燥エア、窒素)の浮力による補正を行う前の水素ガスの充填量ΔWを演算する機能を有する。補正前の充填量演算ブロックB1は、第1の入力信号ラインISL1を介して、水素ガス充填前の状態における計測ハウジング1の重量Weのデータ(秤3の測定データ)と、水素ガス充填後の計測ハウジング1の重量Wcのデータ(秤3の測定データ)を取得し、重量Weと重量Wcの差異から、充填容器2に充填された水素ガスの充填量ΔWを演算する。水素ガスの充填量ΔWは、 ΔW=Wc−We なる式で演算される。 さらに、補正前の充填量演算ブロックB1は、水素ガスの充填量ΔWの演算結果を、充填量補正値決定ブロックB5及び記憶ブロックB6に送信する機能を有する。

空気密度決定ブロックB2は、計測ハウジング1内の所定温度における気体の密度ρを決定する機能を有する。空気密度決定ブロックB2は、第2の入力信号ラインISL2により、充填容器2の表面に設置された温度センサTの測定データt1(水素ガス充填前の充填容器2表面温度の測定データ)、t2(水素ガス充填後の充填容器2表面温度の測定データ)を取得し、記憶ブロックB6から取得した空気密度ρと温度tとの関係を示す特性データ(空気密度ρ−温度t特性データ)に基づいて、測定された温度における気体(計測ハウジング1内の気体)の密度を決定する。ここで、気体密度ρと温度tとの関係を示す特性データ(空気密度ρ−温度t特性データ)については、従来公知の特性データを使用することが可能である。

空気密度決定ブロックB2で決定する密度ρについては、図4を参照して後述する。図示の実施形態では、温度t1℃、t2℃における気体の密度は、それぞれ符号ρ(t1)、ρ(t2)で表現される。 空気密度決定ブロックB2で決定した密度ρ(t1)、ρ(t2)は、浮力変動量決定ブロックB4に送信される。また、決定した密度ρ(t1)、ρ(t2)は記憶ブロックB6にも送信される。

固体容積決定ブロックB3は、水素ガス充填前の状態における計測ハウジング1内の固体容積Qe(前記浮力の変動に影響する容積:ハウジング1内の充填容器2、秤3、台座8、充填ガス供給管路7等が占める容積:計測ハウジング1を構成する材料の体積は包含しない)と、水素ガス充填後の状態における固体容積Qcを演算し、決定する機能を有する。 その際、固体容積決定ブロックB3は、第3の入力信号ラインISL3により、水素ガス充填装置40から水素ガス充填前の状態における水素ガス充填装置40の吐出圧力データPeと、水素ガス充填後の状態における水素ガス充填装置40の吐出圧力データPcを取得する。上述した様に、水素ガス充填装置40の吐出圧力は、水素配管42或いは充填ガス供給管路7内の圧力に等しく、充填容器2内の圧力に等しいので、水素ガス充填装置40の吐出圧力データPe、Pcは、水素ガス充填前後における充填容器2内の圧力Pe、Pcと見做すことが出来るからである。

ここで、浮力の変動に影響を与える固体容積Qは、充填容器2内の圧力Pの関数(例えば、線形関数)として求めることが出来る。充填容器2内の圧力Pと固体容積Qとの関係を、校正装置製造時その他において予め決定して、充填容器2内の圧力Pと固体容積Qとの特性(圧力P−固体容積Q特性データ、関係式、図表を含む)を記憶ブロックB6に記憶することが出来る。 固体容積決定ブロックB3は、記憶ブロックB6から充填容器2内の圧力Pと固体容積Qの特性データを取得し、当該特性データに基づき、水素ガス充填前における充填容器2内の圧力Peに対応する固体容積Qeと、水素ガス充填後における充填容器2内の圧力Pcに対応する固体容積Qcを演算し、決定する機能を有している。 換言すれば、水素ガス充填前後における固体容積Qe、Qcは、水素ガス充填前後における充填容器2内の圧力Pe、Pcの関数で表現される。すなわち、 Qe=f(Pe)、 Qc=f(Pc)、 である。

浮力の変動に影響を与える固体容積Qは充填容器2のみの容積ではなく、ハウジング1内の秤3、台座8、充填ガス供給管路7等の容積も含まれる。 ここで、水素ガス充填前後(充填容器2内の圧力Pe、Pc)における固体容積Qの変化量(Qc−Qe)では、充填容器2の容積変化量が大部分を占めている。そして充填容器2の容積Q1が圧力上昇に伴い、例えば線形に増加する(Q1=kP+C1、C1は一定値)のに対し、その他の機器の容積Q2はほぼ一定値を維持する。そのため、固体容積Qは、例えば次式 Q=Q1+Q2 (Qは固体容積、Q1は充填容器2の容積、Q2はその他の機器の容積) で示すことも出来る。 固体容積決定ブロックB3は、決定された固体容積Q(Qe、Qc)を、浮力変動量決定ブロックB4及び記憶ブロックB6に送信する機能を有する。

浮力変動量決定ブロックB4は、水素ガス充填前後における固体容積Qe、Qc及び水素ガス充填前後における計測ハウジング1内の気体の密度ρ(t1)、ρ(t2)に基づき、気体による浮力の水素ガス充填前後における変動量(浮力変動量)ΔFを演算し、決定する機能を有する。 浮力変動量決定ブロックB4は、固体容積決定ブロックB3から水素ガス充填前後における固体容積Qのデータ(Qe、Qc)を取得すると共に、空気密度決定ブロックB2より水素ガス充填前後における温度t1℃、t2℃に対応する密度ρ(t1)、ρ(t2)のデータを取得する。

浮力変動量決定ブロックB4は、水素ガス充填前後(充填容器2内の圧力Pe、Pc)における固体容積Qe、Qc及び水素ガス充填前後(温度t1℃、t2℃)における密度ρ(t1)、ρ(t2)から水素ガス充填前後における浮力変動量ΔFを演算し、決定する。 図4を参照して後述するが、 浮力F=固体容積Q×密度ρ であるので、浮力変動量ΔFは、 ΔF=Qc・ρ(t2)−Qe・ρ(t1) なる式で求められる。 ここで、固体容積Qe、Qcはそれぞれ充填容器2内の圧力Pe、Pcの関数f(Pe)、f(Pc)で表せるので、浮力変動量ΔFは、次式で求めることが出来る。 ΔF=f(Pc)・ρ(t2)−f(Pe)・ρ(t1) 浮力変動量決定ブロックB4は、決定した浮力変動量ΔFを、充填量補正値決定ブロックB5及び記憶ブロックB6に送信する機能を有する。

充填量補正値決定ブロックB5は、水素ガス充填前後における浮力変動量ΔFに基づき水素ガス充填量を補正し、補正後の水素ガス充填量ΔWt(充填量補正値)を演算し、決定する機能を有する。 換言すれば、充填量補正値決定ブロックB5は、補正前の充填量演算ブロックB1から水素ガスの充填量ΔW(=Wc−We)のデータを取得すると共に、浮力変動量決定ブロックB4から水素ガス充填前後における浮力変動量ΔFのデータを取得し、充填量補正値ΔWt(補正後の充填量)を演算し、決定する。 図4を参照して後述するが、充填量補正値ΔWtは、次式で求められる。 ΔWt=Wc−We−ΔF =Wc−We−{Qc・ρ(t2)−Qe・ρ(t1)} =Wc−We−{f(Pc)・ρ(t2)−f(Pe)・ρ(t1)} 充填量補正値決定ブロックB5は、決定した充填量補正値ΔWtを、コントロールユニットCUの外部の表示手段D(ディスプレイ)及び記憶ブロックB6に送信する機能を有する。

充填量補正値ΔWtは、校正結果として表示手段Dに表示されると共に、記憶ブロックB6に記憶される。 記憶ブロックB6には、空気密度ρと温度tとの関係を示す特性データ(空気密度ρ−温度t特性データ)、充填容器2内の圧力Pと固体容積Qとの関係を示す特性データ(圧力P−固体容積Q特性データ)、各機能ブロックB1〜B5の決定結果(ΔW、ρ、Q、ΔF、ΔW)等が保存され、必要に応じて当該機能ブロックB1〜B5により参照される。 充填容器2内の圧力Pと固体容積Qとの関係を示す特性データ(圧力P−固体容積Q特性データ)は、例えば校正装置製造時や、その他の予め充填容器2内の圧力Pと固体容積Qとの関係を計測した際に、記憶ブロックB6に入力或いは記録される。

次に、図1の校正装置100を用いた校正の手順を、図3を参照して説明する。 図3の校正のフローチャートにおいて、ステップS1では、最初に水素ガス充填前の状態における計測ハウジング1の重量を、秤3により、乾燥ガス管路4、充填ノズル41が接続されていない状態で計測する。 そして、計測ハウジング1に乾燥ガス管路4、充填ノズル41を接続し(接続作業)、計測ハウジング1内のエア、その他の水分を包含する気体を排出し(掃気作業)、水素充填装置40(校正対象)から充填容器2への水素ガスを充填し(充填作業)、その後乾燥ガス管路4、充填ノズル41を接続解除する(接続解除作業)。

ステップS1の接続作業では、計測ハウジング1の一側面に乾燥ガス管路4を接続する。そして計測ハウジング1の側面に設けられたレセプタクル6に、水素充填装置40の充填ノズル41を接続する。 掃気作業では、図示しない乾燥ガス供給源から乾燥ガス管路4を介して、計測ハウジング1内に乾燥ガスを供給、充填する。計測ハウジング1内に乾燥ガスが充填されることで、計測ハウジング1内に存在していたエアの様な水分を包含する気体を、気体排出口13から計測ハウジング1の外部に排出する。

前記掃気作業に際しては、随時露点計5の計測値を監視しながら行う。掃気が進行するに連れて露点温度は徐々に低下し、計測ハウジング1内の湿度が低下する。そして露点温度が所定温度(例えば−20℃)に達した時に、計測ハウジング1内が十分に乾燥していると判断する。

ステップS1の掃気作業で上述の様に、露点温度が所定温度に達し、計測ハウジング1内が十分乾燥していると判断出来た時に、ステップS1の充填作業を行なう。 水素ガスの充填は、水素充填装置40の流量計(図示せず)により、所定量の水素ガスが供給されたと判断されるまで行う。 充填作業の終了後、ステップS1の接続解除作業を行なう。接続解除作業では、乾燥ガス管路4、充填ノズル41の接続を解除する。 ステップS1が終了したら、ステップS2に進む。

ステップS2では、水素充填装置40から計測ハウジング1内の充填容器2に水素ガスが充填された場合の重量(水素ガス充填後の計測ハウジング1の重量)を秤3により計測する。 そして水素ガス充填前の計測ハウジング1の重量の計測結果(ステップS1)と水素ガス充填後の計測ハウジング1の重量の計測結果(ステップS2)から、充填容器2に充填された水素ガスの重量を演算し、水素ガスの充填量を演算する。 演算された充填量を、と校正すべき水素充填装置40の流量計に基づいて決定された充填量と比較することにより、水素充填装置40の校正が行われる。ステップS2が終了するとステップS3に進む。

ステップS3において、計測ハウジング1の重量の計測結果に対して、計測ハウジング1内の気体(乾燥エア、窒素)の浮力による誤差を解消する制御(或いは手順)が実行される。当該制御については、図4を参照して後述する。 またステップS3では、水素ガスの重量値や、充填前後の計測ハウジング1の重量から演算した水素ガスの充填量、校正の結果を、図示しない表示装置(ディスプレイ等)に表示する。 さらに、前記計測結果である水素ガスの充填量或いは充填された水素ガスの重量を、校正対象である水素充填装置40の識別番号(例えば製品番号)、校正日時等と共に、情報処理機器(例えば図示しないパソコン等)の記憶装置に保存する。そして校正の手順を終了する。

図3には明示されていないが、校正装置100で引き続いて他の対象装置の校正を行う場合は、ステップS3の後、充填容器2に充填された水素ガスを充填ガス放出管路12、充填ガス放出口11により計測ハウジング1の外部に放出する。 連続して別個の水素充填装置40の校正を行う場合には、図3の「スタート」に戻り、ステップS1〜S3の作業を実行する。 充填容器2に充填された水素ガスの放出は、次の水素充填装置40の校正におけるステップS1の「秤リセット」において行うことも出来る。

図3を参照して上述した通り、図示の実施形態では、計測ハウジング1内の気体(乾燥エア、窒素)の浮力による誤差を解消する制御(或いは手順)を実行している。 計測ハウジング1内の気体の浮力による誤差を解消する制御(或いは手順)について、主として図4を参照して、図1、図2をも参照しつつ、説明する。

発明者の研究、実験によれば、計測ハウジング1内の気体(乾燥エア、窒素)による浮力は、計測ハウジング1の容積全体に作用する気体の浮力とは異なっており、計測ハウジング1内に収容されている機器(充填容器2、秤3、台座8、充填ガス供給管路7等)に作用する気体の浮力であることが判明している。換言すれば、計測ハウジング1内の気体(乾燥エア、窒素)による浮力は、当該気体が計測ハウジング1内に収容されている機器の容積の総和Q(計測ハウジング1以外の固体の容積)に作用している浮力である。

これは、水素ガス充填前後において、計測ハウジング1の容積から固体容積Qを除いた容積AQに作用する気体の浮力は同一であるため、容積AQに作用する気体の浮力が相殺されることが理由であると推測される。 換言すれば、計測ハウジング1の容積から固体容積Qを除いた容積AQに作用する気体の浮力は、水素ガス充填前後の計測ハウジング1の重量を計測して重量差を求める際に相殺されるので、水素ガス充填量の精度には影響しない。

上述した様に、浮力の変動に関与するのは固体容積Q(校正装置100の計測ハウジング1内に収容されている充填容器2、秤3、台座8、充填ガス供給管路7等の機器の容積の総和:計測ハウジング1以外の固体の容積)のみである。そして固体容積Qは、充填容器2内の圧力P(ガス充填装置40の吐出圧、水素配管42或いは充填ガス供給管路7の圧力に等しい)の関数として求まり、充填容器2内の圧力Pと固体容積Qとの関数(圧力P−固体容積Q特性データ、関係式、図表を含む)は、校正前に予め決定されている。なお、校正の際に充填容器2内の圧力Pと固体容積Qとの関数(関係式、図表を含む)を決定することも可能である。

図4のステップS11以降において、計測ハウジング1内の気体(乾燥エア、窒素)の浮力を求める際に、当該気体の温度から、空気密度ρと温度tとの関係を示す特性データ(空気密度ρ−温度t特性データ:公知のデータ)を使用して、密度を決定する。ここで、計測ハウジング1内の気体の温度は時間及び計測位置により大きく変化してしまう。 これに対して、図4のステップS11、S12では、充填容器2の表面に設置された温度センサTで気体の温度を計測し、計測された気体の温度から気体の密度ρを決定している。換言すれば図示の実施形態では、計測ハウジング1内の気体の温度の代表値として、充填容器2表面における気体の温度を採用し、当該代表値から気体密度ρを決定している。

発明者の研究、実験によれば、充填容器2表面における気体の温度を代表値として気体密度ρを決定した結果と、伝熱、輻射、時間経過を考慮した複雑な演算により求めた気体密度ρとは高精度で一致することが確認されている。そのため、充填容器2表面における気体の温度を代表値として気体密度ρを決定すれば、伝熱、輻射、時間経過を考慮した複雑な演算を行わずに、それと同程度の精度で、浮力による影響を演算し、校正を行うことが出来る。 また、気体密度ρと固体容積Qを決定することにより、時間及び計測位置による気体温度の変化、水素ガス充填前後の充填容器2内の圧力の変化に拘らず、計測ハウジング1内の気体による浮力を求め、浮力の変動による誤差を解消することが出来る。

図4のステップS11では、水素ガス充填前の計測ハウジング1の重量We、及び代表温度t1を計測する。代表温度t1は、上述の通り、充填容器2表面における気体の温度である。そして、代表温度t1に対応する気体密度ρ(t1)を、空気密度ρと温度tとの関係を示す特性データ(空気密度ρ−温度t特性データ:公知のデータを使用可能)より求める。 また、ステップ11では、水素ガス充填前の充填容器2内の圧力Peと固体容積Qeを求める。上述した様に充填容器2内の圧力Peは水素ガス充填装置40の吐出圧力に等しいと見做せるので、充填容器2内の圧力Peは、水素ガス充填装置40の吐出圧力を計測することにより求めることが出来る。そして充填容器2内の圧力Peに対応する固体容積Qeは、予め測定或いは決定されている特性データ、すなわち充填容器2内の圧力Pと固体容積Qとの関係を示す特性データ(圧力P−固体容積Q特性データ)より求める。そして水素ガス充填前の固体容積Qeは、 Qe=f(Pe) と表現出来る。 これにより、ステップS11において、充填前の計測ハウジング1の重量We、気体密度ρ(t1)、固体容積Qeを決定する。そしてステップS12に進む。

ステップS12では、水素ガス充填後の計測ハウジング1の重量Wc及び代表温度t2を計測する。そして、空気密度ρと温度tとの関係を示す特性データ(空気密度ρ−温度t特性データ)から、代表温度t2に対応する気体密度ρ(t2)を求める。 また、ステップ12では、水素ガス充填後の充填容器2内の圧力Pcと固体容積Qcを求める。ステップS11で説明したのと同様に、充填容器2内の圧力Pcは、水素ガス充填装置40の吐出圧力を計測することにより求め、充填容器2内の圧力Pと固体容積Qとの関係を示す特性データ(圧力P−固体容積Q特性データ)から、圧力Pcに対応する固体容積Qcを求める。そして水素ガス充填後の固体容積Qcは Qc=f(Pc) と表現出来る。 これにより、ステップS12において、充填後の計測ハウジング1の重量Wc、気体密度ρ(t2)、及び固体容積Qcが決定される。 そしてステップS13に進む。

次のステップS13では、気体の浮力による補正をする前の水素ガスの充填量ΔWを演算する。水素ガス充填量ΔWは、水素ガス充填前後の計測ハウジング1の重量We、Wcにより、 ΔW=Wc−We なる式で求められる。 またステップS13では、水素ガス充填前後における気体の浮力の変動量ΔFを演算する。気体の浮力の変動量ΔFは、ステップS11、S12で決定した水素ガス充填前後の固体容積Qe、Qc、気体密度ρ(t1)、ρ(t2)により、下式で求められる。 ΔF=Qc・ρ(t2)−Qe・ρ(t1) =f(Pc)・ρ(t2)−f(Pe)・ρ(t1) これにより、ステップS13において、補正前の水素ガスの充填量ΔWと、気体の浮力の変動量ΔFが演算される。 そしてステップS14に進む。

ステップS14では、気体の浮力による補正を行った後の水素ガスの充填量ΔWtを演算する。気体の浮力による補正を行った後の水素ガスの充填量ΔWtは、ステップS13の演算結果に基づき、以下の式により求められる。 ΔWt=ΔW−ΔF =Wc−We−{Qc・ρ(t2)−Qe・ρ(t1)} =Wc−We−{f(Pc)・ρ(t2)−f(Pe)・ρ(t1)} そしてステップS15に進む。

ステップS15では、補正後の充填量ΔWtを用いて、図3のステップS2で述べた様に水素充填装置40の校正を行う。 その結果、図示の実施形態では、計測ハウジング1内の気体(乾燥エア、窒素)の浮力による誤差を解消することが出来る。そして制御を終了する。

図示の実施形態によれば、充填容器2の容積が燃料ガス(例えば水素)の充填前後で変動しても、計測ハウジング1内に収容されている機器の固体容積Qを決定して、燃料ガスの充填前後における計測ハウジング1内の気体(乾燥エア、窒素)の浮力の変動を決定して、係る変動を考慮することにより、浮力の変動による校正の誤差を解消している。 そのため、充填された水素ガスの重量を正確に計測し、以って、水素ガス充填装置40の校正精度を向上することが出来る。

ここで、計測ハウジング1内に収容されている充填容器2の圧力と固体容積Qの容積と圧力(燃料ガス充填装置40の吐出圧力に等しい)との関係(線形な関係である場合が多い)を予め求めることにより、充填容器2の圧力を求めれば固体容積Qを求めることが出来る。 そして、図示の実施形態で計測ハウジング1内の気体による浮力の変動を排除するに際して、計測ハウジング1内に収容されている機器(充填容器2、秤3、台座8、充填ガス供給管路7等:計測ハウジング1を構成する材料の体積は包含しない)の容積の総和である固体容積Qに作用する浮力のみを考慮し、計測ハウジング1の容積から固体容積Qを除いた容積AQに作用する気体の浮力は考慮しない。すなわち、浮力による影響の演算は固体容積Qのみを対象として行われる。 この様にして決定された計測ハウジング1内の気体による浮力の変動は、発明者の実験結果と良く適合する。

そして図示の実施形態によれば、計測ハウジング1内の気体(乾燥エア、窒素)の浮力を求める際に、充填容器2表面における気体の温度を求め、当該温度を計測ハウジング1内の気体の温度の代表値として気体密度ρを決定しているので、時間及び計測位置による気体温度の変化に拘らず、計測ハウジング1内の気体による浮力を決定し、浮力の変動による誤差を解消することが出来る。 発明者の研究、実験によれば、充填容器2表面における気体の温度を(代表値として)用いて決定された気体密度ρは、伝熱、輻射、時間経過を考慮した複雑な演算により求めた気体密度ρと高精度で一致することが確認された。すなわち図示の実施形態によれば、伝熱、輻射、時間経過を考慮した複雑な演算を行う必要なく、計測ハウジング1内の気体(乾燥エア、窒素)の浮力を求めることが出来る。

図示の実施形態はあくまでも例示であり、本発明の技術的範囲を限定する趣旨の記述ではないことを付記する。 例えば、図示の実施形態では水素充填装置の校正装置として説明しているが、本発明はCNG充填装置の校正装置についても適用することが可能である。 また、図示の実施形態では充填容器2内の圧力を求めるために、水素ガス充填装置40の吐出圧力を計測したが、充填ガス供給配管7、或いは水素配管42に圧力計を配置し、当該圧力計の計測値を計測することにより充填容器2内の圧力を求めることも可能である。

1・・・計測ハウジング 2・・・充填容器 3・・・秤 4.・・・乾燥ガス管路 5・・・露点計 6・・・レセプタクル(水素受入口) 7・・・充填ガス供給管路 8・・・台座 9・・・逆止弁 11・・・充填ガス放出口 12・・・充填ガス放出管路 13・・・気体排出口 14、15・・・支持部材 20・・・本体ハウジング 20A・・・移動手段(車輪等) 40・・・水素充填装置 41・・・充填ノズル 42・・・水素配管 100・・・校正装置 B1・・・補正前の充填量演算ブロック B2・・・空気密度決定ブロック B3・・・固体容積決定ブロック B4・・・浮力変動量決定ブロック B5・・・充填量補正値決定ブロック B6・・・記憶ブロック CU・・・コントロールユニット(制御装置) D・・・ディスプレイ(表示手段) T・・・温度センサ

高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈