首页 / 专利库 / 燃料种类 / 能源 / 燃料 / 一种燃料电池电堆膜电极串漏检测方法

一种燃料电池电堆膜电极串漏检测方法

阅读:420发布:2020-05-08

专利汇可以提供一种燃料电池电堆膜电极串漏检测方法专利检索,专利查询,专利分析的服务。并且本 发明 涉及一种 燃料 电池 电堆膜 电极 串漏检测方法,包括以下步骤:步骤1:对 燃料电池 进行平衡测试;步骤2:在经过平衡测试的燃料电池的 阳极 和 阴极 分别通入氢气和空气;步骤3:切断阴极空气供给,开始计时,记录t4时刻各单片电堆 电压 Ea1;步骤4:待有单片电压降至0.2V后,切断阳极氢气供给;步骤5:将燃料电池循环至另一寿命阶段,然后重复步骤1~4,获得该燃料电池电堆的单片电压Ex1,x=a,b,...N;步骤6:计算不同电堆寿命循环阶段的电压变化值,判断串漏量的大小。与 现有技术 相比,本发明具有检测结果更具可比性、结论更加准确等优点。,下面是一种燃料电池电堆膜电极串漏检测方法专利的具体信息内容。

1.一种燃料电池电堆膜电极串漏检测方法,其特征在于,所述的检测方法包括以下步骤:
步骤1:对燃料电池进行平衡测试,该测试用于保证电堆内部合状态的一致性;
步骤2:在经过平衡测试的燃料电池的阳极阴极分别通入氢气和空气;
步骤3:切断阴极空气供给,开始计时,记录t4时刻各单片电堆电压Ea1;
步骤4:待有单片电压降至0.2V后,切断阳极氢气供给;
步骤5:将燃料电池循环至另一寿命阶段,然后重复步骤1~4,获得该燃料电池电堆的单片电压Ex1,x=a,b,...N,其中N表示检测的总次数;
步骤6:计算不同电堆寿命循环阶段的电压变化值,判断串漏量的大小,完成对膜电极的串漏检测。
2.根据权利要求1所述的一种燃料电池电堆膜电极串漏检测方法,其特征在于,所述步骤1的具体步骤为:
步骤1-1:将燃料电池电堆置于电流密度I1下运行,给定燃料电池阴阳两极气量、电池电堆温度T1、阴阳两极压Pca1和Pa1以及阴阳两极湿度RHca1和RHa1参数,然后运行t1小时;
步骤1-2:对燃料电池进行降载操作;
步骤1-3:对燃料电池进行吹扫操作。
3.根据权利要求2所述的一种燃料电池电堆膜电极串漏检测方法,其特征在于,所述步骤1-1中阴极气量计量比为1.5~3.0,阳极气量计量比为1.2~2.0;
所述的电流密度I1的取值为800~2000mA/cm2;
所述的电堆温度T1的取值为30~90℃;
所述的阴极压力Pca1的取值为0~150kPa,阳极压力Pa1的取值为0~160kPa;
所述的阴阳两极湿度的RHca1和RHa1的取值均为0~100%;
所述的t1的取值为0~4小时。
4.根据权利要求2所述的一种燃料电池电堆膜电极串漏检测方法,其特征在于,所述步骤1-2具体为:
使用k降载斜率对燃料电池进行降载,将电流密度降至I2,堆温降至T2,阴阳两极压力分别降至Pca2和Pa2,阴阳两极湿度分别降至湿度为RHca2和RHa2,同时降低气量。
5.根据权利要求4所述的一种燃料电池电堆膜电极串漏检测方法,其特征在于,所述的降载斜率k的取值范围为0~100A/s;
所述的电流密度I2的取值范围为50~300mA/cm2;
所述的电堆温度T2的取值要求为:T2<T1;
所述的阴阳两极压力Pca2和Pa2的取值要求为:Pca2<Pca1,Pa2<Pa1;
所述的阴阳两极湿度RHca2和RHa2的取值要求为:RHca2<RHca1,RHa2<RHa1;
所述的阴极气量的取值范围为1~2Nlpm,阳极气量的取值范围为3~6Nlpm。
6.根据权利要求2所述的一种燃料电池电堆膜电极串漏检测方法,其特征在于,所述步骤1-3具体为:
首先吹扫t2小时,然后将电流密度降至0,保持堆温T2不变,继续吹扫t3小时,记录初始单片电压Ea0。
7.根据权利要求6所述的一种燃料电池电堆膜电极串漏检测方法,其特征在于,所述的t2和t3的取值均为0~1小时。
8.根据权利要求1所述的一种燃料电池电堆膜电极串漏检测方法,其特征在于,所述的t4的取值为0~500秒。
9.根据权利要求1所述的一种燃料电池电堆膜电极串漏检测方法,其特征在于,所述的步骤6具体为:
根据公式ΔE=Ex0-Ex1计算燃料电池在不同电堆寿命循环状态下的电压变化值,ΔE越大表明电堆单片的串漏量越大。

说明书全文

一种燃料电池电堆膜电极串漏检测方法

技术领域

[0001] 本发明涉及燃料电池膜电极串漏检测技术领域,尤其是涉及一种燃料电池电堆膜电极串漏检测方法。

背景技术

[0002] 作为电动汽车的动源和固定发电站的热电联供系统,聚合物电解质燃料电池(PEFCs)被人们进行了广泛的研究。基于2015DOE目标,为了达到技术就绪状态,基于燃料电池各组件、电堆和系统级别,汽车燃料电池动力系统需要与当今的内燃机一样耐用和可靠,相当于要求要有5000小时的使用寿命,在各种可变的相对湿度(RH)的车辆操作条件下大约7个月,并且固定式燃料电池还必须满足40000小时以上的工作寿命目标(连续运行约4.5年),才能与现有的分布式发电系统相媲美。
[0003] 多项研究表明,燃料电池核心组件——膜电极组件(MEAs),在长期使用过程中会发生衰退。其中膜的耐久性是影响燃料电池寿命的重要因素。而在膜电极在不同合状态下,同一寿命时间段的漏量完全不同。因此,在进行不同寿命时间段的漏量对比时,需要将电堆处于同一水合状态下,这样测得的膜电极串漏量才具有参考性。

发明内容

[0004] 本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种检测结果更具可比性的燃料电池电堆膜电极串漏检测方法。
[0005] 本发明的目的可以通过以下技术方案来实现:
[0006] 一种燃料电池电堆膜电极串漏检测方法,包括以下步骤:
[0007] 步骤1:对燃料电池进行平衡测试,该测试用于保证电堆内部水合状态的一致性;
[0008] 步骤2:在经过平衡测试的燃料电池的阳极阴极分别通入氢气和空气;
[0009] 步骤3:切断阴极空气供给,开始计时,记录t4时刻各单片电堆电压Ea1;
[0010] 步骤4:待有单片电压降至0.2V后,切断阳极氢气供给;
[0011] 步骤5:将燃料电池循环至另一寿命阶段,然后重复步骤1~4,获得该燃料电池电堆的单片电压Ex1,x=a,b,...N,其中N表示检测的总次数;
[0012] 步骤6:计算不同电堆寿命循环阶段的电压变化值,判断串漏量的大小,完成对膜电极的串漏检测。
[0013] 优选地,所述步骤1的具体步骤为:
[0014] 步骤1-1:将燃料电池电堆置于电流密度I1下运行,给定燃料电池阴阳两极气量、电池电堆温度T1、阴阳两极压力Pca1和Pa1以及阴阳两极湿度RHca1和RHa1参数,然后运行t1小时;
[0015] 步骤1-2:对燃料电池进行降载操作;
[0016] 步骤1-3:对燃料电池进行吹扫操作。
[0017] 更加优选地,所述步骤1-1中阴极气量计量比为1.5~3.0,阳极气量计量比为1.2~2.0;
[0018] 所述的电流密度I1的取值为800~2000mA/cm2;
[0019] 所述的电堆温度T1的取值为30~90℃;
[0020] 所述的阴极压力Pca1的取值为0~150kPa,阳极压力Pa1的取值为0~160kPa;
[0021] 所述的阴阳两极湿度的RHca1和RHa1的取值均为0~100%;
[0022] 所述的t1的取值为0~4小时。
[0023] 更加优选地,所述步骤1-2具体为:
[0024] 使用k降载斜率对燃料电池进行降载,将电流密度降至I2,堆温降至T2,阴阳两极压力分别降至Pca2和Pa2,阴阳两极湿度分别降至湿度为RHca2和RHa2,同时降低气量。
[0025] 更加优选地,所述的降载斜率k的取值范围为0~100;
[0026] 所述的电流密度I2的取值范围为50~300mA/cm2;
[0027] 所述的电堆温度T2的取值要求为:T2<T1;
[0028] 所述的阴阳两极压力Pca2和Pa2的取值要求为:Pca2<Pca1,Pa2<Pa1;
[0029] 所述的阴阳两极湿度RHca2和RHa2的取值要求为:RHca2<RHca1,RHa2<RHa1;
[0030] 所述的阴极气量的取值范围为1~2Nlpm,阳极气量的取值范围为3~6Nlpm。
[0031] 更加优选地,所述步骤1-3具体为:
[0032] 首先吹扫t2小时,然后将电流密度降至0,保持堆温T2不变,继续吹扫t3小时,记录初始单片电压Ea0。
[0033] 更加优选地,所述的t2和t3的取值均为0~1小时。
[0034] 优选地,所述的t4的取值为0~500秒。
[0035] 优选地,所述的步骤6具体为:
[0036] 根据公式ΔE=Ex0-Ex1计算燃料电池在不同电堆寿命循环状态下的电压变化值,ΔE越大表明电堆单片的串漏量越大。
[0037] 与现有技术相比,本发明具有以下优点:
[0038] 不同水合状态下,膜的溶胀率不同,导致膜中孔洞的尺寸发生变化,同一状态下,同一尺寸的膜,在不同水合状态下的串漏不同。本发明通过在对燃料电池进行串漏量检测前对燃料电池进行平衡测试,来保证在不同的寿命阶段,燃料电池的水合状态都是一致的,这样最终获得的检测结果更具有可比性,得出的结论也更加准确。附图说明
[0039] 图1为本发明的流程示意图;
[0040] 图2为本发明实施例中在不同寿命阶段每个电堆单片的串漏量变化趋势图。

具体实施方式

[0041] 下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
[0042] 本发明涉及一种燃料电池电堆膜电极串漏检测方法,流程如图1所示,包括以下步骤:
[0043] 步骤1:对燃料电池进行平衡测试,该测试用于保证电堆内部水合状态的一致性;
[0044] 步骤2:在经过平衡测试的燃料电池的阳极和阴极分别通入氢气和空气;
[0045] 步骤3:切断阴极空气供给,开始计时,记录t4时刻各单片电堆电压Ea1;
[0046] 步骤4:待有单片电压降至0.2V后,切断阳极氢气供给;
[0047] 步骤5:将燃料电池循环至另一寿命阶段,然后重复步骤1~4,获得该燃料电池电堆的单片电压Ex1,x=a,b,...N,其中N表示检测的总次数;
[0048] 步骤6:根据公式ΔE=Ex0-Ex1计算不同电堆寿命循环的电压变化值,判断串漏量的大小,ΔE越大表明电堆单片的串漏量越大,完成对膜电极的串漏检测。
[0049] 步骤1具体为:
[0050] 步骤1-1:将燃料电池电堆置于电流密度I1下运行,给定燃料电池阴阳两极气量、电池电堆温度T1、阴阳两极压力Pca1和Pa1以及阴阳两极湿度RHca1和RHa1参数,然后运行t1小时;
[0051] 步骤1-1中的阴极气量计量比为1.5~3.0,阳极气量计量比为1.2~2.0;电流密度I1的取值为800~2000mA/cm2;电堆温度T1的取值为30~90℃;阴极压力Pca1的取值为0~150kPa,阳极压力Pa1的取值为0~160kPa;阴阳两极湿度的RHca1和RHa1的取值均为0~
100%;t1的取值为0~4小时。
[0052] 步骤1-2:对燃料电池进行降载操作,具体为:
[0053] 使用k降载斜率对燃料电池进行降载,将电流密度降至I2,堆温降至T2,阴阳两极压力分别降至Pca2和Pa2,阴阳两极湿度分别降至湿度为RHca2和RHa2,同时降低气量。
[0054] 降载斜率k的取值范围为0~100;电流密度I2的取值范围为50~300mA/cm2;电堆温度T2的取值要求为:T2<T1;阴阳两极压力Pca2和Pa2的取值要求为:Pca2<Pca1,Pa2<Pa1;阴阳两极湿度RHca2和RHa2的取值要求为:RHca2<RHca1,RHa2<RHa1;阴极气量的取值范围为1~2Nlpm,阳极气量的取值范围为3~6Nlpm。
[0055] 步骤1-3:对燃料电池进行吹扫操作,具体为:
[0056] 首先吹扫t2小时,然后将电流密度降至0,保持堆温T2不变,继续吹扫t3小时,记录初始单片电压Ea0,t2和t3的取值均为0~1小时。
[0057] 步骤3中t4的取值为0~500秒。
[0058] 图2为使用本实施例中的检测方法获得的电堆在不同寿命测试阶段下的串漏量测试数据结果对比图,由图2可以明显地看出电堆在不同寿命测试阶段下每个电堆单片的漏量变化趋势。在电堆寿命初期和电堆寿命中期,电堆的四个单片膜电极的串漏量均不明显,到了电堆寿命结束,第三片膜电极串漏量明显。其串漏电压差值从初始状态的0.006V增加到0.065V。
[0059] 以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈