首页 / 专利库 / 燃气和蒸汽发生器 / 整体煤气化联合循环 / 生产至少一种空气产品的方法、空分设备、产生电能的方法和装置

生产至少一种空气产品的方法、空分设备、产生电能的方法和装置

阅读:695发布:2020-05-13

专利汇可以提供生产至少一种空气产品的方法、空分设备、产生电能的方法和装置专利检索,专利查询,专利分析的服务。并且本 发明 涉及生产至少一种空气产品的方法,其中使用空气分离设备(100),该空气分离设备具有主空气 压缩机 (10)、主 热交换器 (20)和蒸馏塔系统(30),该方法包括第一运行模式和第二运行模式,其中在第一运行模式下,储存至少一种在该蒸馏塔系统(30)中产生的液态空气产品(LIN,LOX),及在第二运行模式下,将至少一种在第一运行模式下储存的液态空气产品(LIN,LOX,LAIR)和/或至少一种其他的液态空气产品送入该蒸馏塔系统(30)中。该方法的特征在于,在第二运行模式下,将至少一股气态加压流(b‑g)在低于该主热交换器(20)的热侧 温度 的温度 水 平送入 冷压 缩机(45),在该冷压缩机(45)中由第一超压压 力 水平压缩至第二超压压力水平,并在该第二超压压力水平送入该蒸馏塔系统(30)的至少一个蒸馏塔(31,32)中。本发明还涉及相应的空气分离设备(100)和产生 电能 的方法和装置。,下面是生产至少一种空气产品的方法、空分设备、产生电能的方法和装置专利的具体信息内容。

1.生产至少一种空气产品的方法,其中使用空气分离设备(100),该空气分离设备具有主空气压缩机(10)、主热交换器(20)和蒸馏塔系统(30),该蒸馏塔系统包括高压塔(31)、中压塔(32)、低压塔(33)、低压塔塔底蒸发器(39)和低压塔中间蒸发器(37),其中该高压塔(31)以高于该低压塔(33)的运行压运行,该中压塔(32)以介于该高压塔(31)和该低压塔(33)的运行压力之间的运行压力运行,并且该低压塔塔底蒸发器(39)和该低压塔中间蒸发器(37)构造成冷凝蒸发器,其特征在于,该方法包括第一运行模式和第二运行模式,其中-在第一运行模式下,储存至少一种在该蒸馏塔系统(30)中产生的液态空气产品(LIN,LOX),及
-在第二运行模式下,
-将至少一种在第一运行模式下储存的液态空气产品和/或至少一种并非在第二运行模式下产生的其他的液态空气产品送入该蒸馏塔系统(30)中,及
-将至少一股气态加压流(b-g)在低于该主热交换器(20)的热侧温度的温度平送入冷压缩机(45),在该冷压缩机(45)中由第一超压压力水平压缩至第二超压压力水平,并在该第二超压压力水平至少部分地送入该蒸馏塔系统(30)的至少一个蒸馏塔中。
2.根据权利要求1的方法,其中在第一运行模式下,至少一股加压流和/或至少一股其他的气态加压流(b-g)在膨胀涡轮机(46)中膨胀制冷。
3.根据权利要求1或2的方法,其中来自该低压塔的塔底的富集流在辅助冷凝器(34)中蒸发以提供气态氧加压产品(GOX),其中该辅助冷凝器(34)构造成冷凝蒸发器。
4.根据权利要求1或2的方法,其中由中压塔(32)的塔顶排出氮富集的气流(r),并且部分地在低压塔中间蒸发器(37)中液化
5.根据权利要求1或2的方法,其中该第一超压压力水平相当于该低压塔(33)的运行压力,和/或该第二超压压力水平相当于该高压塔(31)的运行压力。
6.根据权利要求1或2的方法,其中该第一超压压力水平相当于该低压塔(33)的运行压力并且该第二超压压力水平相当于该中压塔(32)或该高压塔(31)的运行压力,或者该第一超压压力水平相当于该中压塔(32)的运行压力并且该第二超压压力水平相当于该高压塔(31)的运行压力。
7.根据权利要求1或2的方法,其中至少一股气态加压流是由该蒸馏塔系统(30)的以该第一超压压力水平作为运行压力运行的蒸馏塔排出的流的至少一部分形成的。
8.根据权利要求1或2的方法,其中该至少一股气态加压流是由利用该主空气压缩机(10)提供及利用该主热交换器(20)冷却的流的至少一部分形成的。
9.根据权利要求1或2的方法,其中该至少一股气态加压流在被送入该蒸馏塔系统(30)的至少一个蒸馏塔之前在该第二超压压力水平与至少一股其他的流(a)汇合。
10.根据权利要求1或2的方法,其中该至少一股气态加压流在该冷压缩机(45)中压缩之后至少部分地在该主热交换器(20)中冷却。
11.根据权利要求10的方法,其中该至少一股气态加压流在该冷压缩机(45)中压缩之后于热侧或者在其他的低于该主热交换器(20)的热侧温度的温度水平送入该主热交换器(20)以进行冷却。
12.根据权利要求1或2的方法,其中在该冷压缩机(45)中压缩的气态加压流的一部分在该主热交换器(20)中加热和/或至少部分地由该空气分离设备(100)导出。
13.空气分离设备(100),其具有主空气压缩机(10)、主热交换器(20)和蒸馏塔系统(30)并且是为了在第一运行模式和第二运行模式下运行而设立的,其中设置有为了在第一运行模式下储存至少一种在该蒸馏塔系统(30)中产生的液态空气产品(LIN,LOX)以及在第二运行模式下将至少一种在第一运行模式下储存的液态空气产品和/或至少一种并非在第二运行模式下产生的其他的液态空气产品送入该蒸馏塔系统(30)中而设立的装置(61-
63),其特征在于,该空气分离设备(100)包括冷压缩机(45),并且设置有为了在第二运行模式下将至少一股气态加压流(b-g)在低于该主热交换器(20)的热侧温度的温度水平送入该冷压缩机(45)、在该冷压缩机(45)中由第一超压压力水平压缩至第二超压压力水平及随后在该第二超压压力水平至少部分地送入该蒸馏塔系统(30)的至少一个蒸馏塔中而设立的装置。
14.产生电能的方法,其中借助根据权利要求1至12之一的方法至少在第二运行模式期间提供至少一种空气产品,并且将其用于产生和/或转化至少一种燃料
15.为了实施根据权利要求14的方法而设立的设备。
16.根据权利要求15的设备,所述设备用于实施富氧燃烧法和/或整体气化联合循环法。

说明书全文

生产至少一种空气产品的方法、空分设备、产生电能的方法和

装置

技术领域

[0001] 本发明涉及根据独立权利要求的前序部分的生产至少一种空气产品的方法、空气分离设备以及产生电能的方法和装置。

背景技术

[0002] “冷凝蒸发器”是指使第一冷凝流体流与第二蒸发流体流发生间接热交换的热交换器。各种冷凝蒸发器均具有分别由液化通道和蒸发通道组成的液化室和蒸发室。第一流体流在液化室内冷凝(液化),第二流体流在蒸发室内蒸发。蒸发室和液化室由相互之间存在热交换关系的通道组形成。冷凝蒸发器的蒸发室可构造成浴蒸发器(Badverdampfer)、降膜蒸发器或强制流蒸发器。
[0003] 在低压塔塔底蒸发器中,低压塔的塔底液体在蒸发室内至少部分蒸发。在低压塔中间蒸发器中,低压塔的中间液体在蒸发室内至少部分蒸发。
[0005] 前述类型的方法及包含三塔的相应装置是已知的。
[0006] 在已知的产生电能的方法中,例如已知的富燃烧方法及所谓的整体气化联合循环(Integrated Gasification Combined Cycle,IGCC),需要使用氧或氧富集气体混合物,例如用于实现燃烧或部分氧化。可采用例如披露于Hausen/Linde ,Tieftemperaturtechnik,2.Auflage 1985,Kapitel 4(Hausen/Linde,低温技术,1985年第
2版,第4章,第281至337页)的低温空气分离方法及装置来提供氧或相应的氧富集气体混合物。
[0007] 在此类方法和装置(在此简称“空气分离设备”)中使用蒸馏塔系统,其例如可构造成双塔系统,特别是经典Linde双塔系统,但也可构造成三塔或多塔系统。此外可设置用于提取其他空气组分特别是氪、氙和/或氩等稀有气体的装置。
[0008] 产生电能的方法和装置应当针对大的负载范围及快的负载变化设计,从而能够吸收因其他能源供货商可用或不可用而引发的功率波动。为之提供氧和/或相应的气体混合物的空气分离设备还应实现在相应范围内灵活可变的运行模式。
[0009] 传统空气分离设备还受电网利用率及相应地变化程度剧烈的电价影响。
[0010] 在此情况下,可能的灵活度取决于空气分离设备的液化能。可用液化能力越高,则越多低价电可以液态空气产品的形式储存。然而,为产生电能的方法和装置进行供应的空气分离设备仅具有低的液化能力,这是因为其被设计用于大量生产在环境温度下由该空气分离设备提取的气态氧及气态氮产品。相应设备的需冷量 相对较低,因此其也无法为了仅提供较大量的液态空气产品而提供足够的冷量
[0011] 因此,在相应设备中可以安装分离的液化设备(LIN液化器、LOX液化器或LAIR液化器),并在液化阶段接入。通过将方法或设备的制冷能力(及因此相应的液化能力)设计成高于实际所需量的气态氧及气态氮产品,也可以实现一定的灵活性。
[0012] 若将较大量的液态空气产品送入相应的空气分离设备,则可能明显高于所需量的冷量可以进入该空气分离设备。在没有应对措施的情况下,这会导致热交换器内的各温度分布发生偏移,并且一股或多股由热交换器排出的流的温度变得越来越低。自特定的极限值起,便无法再确保空气分离设备的可靠运行。该问题可以通过使用发热装置如空气加热型、蒸汽加热型、气体加热型、电加热型热交换器或以其他方式加热的热交换器而得到解决。但此类解决方案尤其是出于能源方面的原因而被证明是不利的。

发明内容

[0013] 本发明的目的在于提供前述类型的方法及相应的装置,其能耗变化范围大且在所有相应运行模式下能耗较低。
[0014] 该目的是通过具有独立权利要求的特征的生产至少一种空气产品的方法、空气分离设备以及产生电能的方法和装置实现的。优选的实施方案是各从属权利要求及下面描述的主题。
[0015] 在阐述在本发明的范畴内可实现的优点之前,对在本申请中使用的若干术语加以说明。
[0016] “空气分离设备”用任选经干燥和净化的空气为进料,其是借助“主空气压缩机”以至少一股压缩空气流的形式提供的。如前所述,空气分离设备具有用于将空气分离成其物理组分特别是氮和氧的蒸馏塔系统。如前所述,为此将空气冷却至接近其露点,并导入蒸馏塔系统中。与此不同,纯“空气液化设备”或“液化装置”并不包括蒸馏塔系统。此外,空气液化设备的结构可以对应于供应空气液化产品的空气分离设备的结构。当然,在空气分离设备中还可以产生液态空气作为副产品。
[0017] “液态空气产品”是指任何可以至少通过对空气进行压缩、冷却及随后的膨胀从而以低温液体形式制成的产品。如前所述,其尤其是可以是液氧(LOX)、液氮(LIN)、液氩(LAR)或液态空气(LAIR)。在此,术语“液氧”和“液氮”还分别指氧含量和/或氮含量超过大气空气的低温液体。因此其不一定必须为具有高含量的氧和/或氮的纯液体。因此,液氮不仅指纯氮或几乎纯的氮,还指氮含量超过大气空气的液化空气气体混合物。其氮含量例如为至少90摩尔%,优选为至少99摩尔%。
[0018] “低温(深冷)”液体或相应的流体、液态空气产品、流等是指其沸点远低于各自的环境温度且例如为200K或更低、尤其是220K或更低的液态介质。在上述意义上低温介质的例子是液态空气、液氧及液氮。
[0019] “热交换器”用于在至少两股彼此以逆流引导的流之间的间接传热,例如一股热的压缩空气流和一股或多股冷流或者一股低温液态空气产品和一股或多股热流。热交换器可以由一个单独的热交换器区段形成或者由多个并联和/或串联的热交换器区段形成,例如由一个或多个板式热交换器区形成。热交换器,例如在空气分离设备中使用的特征在于用其冷却或加热待冷却或待加热的流的主要部分的“主热交换器”,具有被构造成包含换热面的彼此分离的流体通路的“通道”。相应的热交换器在运行时具有温度不同的“热侧”和“冷侧”。热交换器的“热侧”温度是指待冷却的流被送入热交换器时的温度。因为可能有多股待冷却的流以不同温度平被送入热交换器,所以热侧温度也可以涉及其平均值或被送入的待冷却的流的最低或最高温度。
[0020] “压缩机”是将至少一股气态流由至少一种起始压力压缩到至少一种最终压力的装置,该气态流在该起始压力下送入压缩机,该气态流在该最终压力下由压缩机系统排出。压缩机在此形成一个结构单元,但是可以具有多个已知的活塞组件、螺杆组件和/或叶轮组件和/或涡轮组件(即轴流式或径流式压缩级)的形式的“压缩级”。这也适用于空气分离设备的“主空气压缩机”,其特征在于,用其压缩被送入空气分离设备中的空气量的全部或主要部分。这些压缩级尤其是利用共同的驱动装置例如利用共同的轴进行驱动。多个压缩机例如空气分离设备的主压缩机和后压缩机可以彼此连接。“后压缩机(增压机)”用于进一步提高已被加压的流的压力。“冷压缩机”的特征在于,可以在低温下,尤其是在深冷状态下,将相应的流送入其中。在此情况下,冷压缩机是依照现有技术设立的。
[0021] “膨胀涡轮机”可以通过共同的轴连接至其他膨胀涡轮机或能量转换器如油压制动器、发电机或压缩机,用于使气态流或至少部分液态的流膨胀。膨胀涡轮机尤其是可以作为涡轮膨胀机用于本发明。若压缩机由一个或多个膨胀涡轮机驱动,但是在没有外部的例如借助电动机供应的能量的情况下运行,则在此称作“涡轮驱动”压缩机。涡轮驱动压缩机和膨胀 涡轮机的 组件 (配置) 还称作“增压涡 轮机”。“加压 氮涡轮 机(Druckstickstoffturbine)”或“PGAN涡轮机”在本申请范畴内是指用于使在空气分离设备中产生并且由蒸馏塔系统排出的氮富集的加压流膨胀的膨胀涡轮机。然后膨胀的加压流例如可以在主热交换器中加热,并排放至周围环境。被称作“中压涡轮机”的膨胀涡轮机专与包括高压塔、中压塔及低压塔的三塔系统结合使用。中压涡轮机用于使通过主空气压缩机压缩且任选在后压缩机中再压缩的压缩空气流在主热交换器中冷却后膨胀进入中压塔。与此不同,“喷射涡轮机(Einblaseturbine)”用于使通过主空气压缩机压缩且任选在后压缩机中再压缩的压缩空气流在主热交换器中冷却后膨胀进入三塔或双塔系统的低压塔。与此不同,通过膨胀膨胀进入高压塔的流被称作“节制流(Drosselstrom)”。该流预先例如通过设置在主空气压缩机之中或下游的后压缩机和/或通过涡轮驱动压缩机压缩至高于高压塔的运行压力的压力水平。
[0022] 在本申请的范畴内,“槽罐系统”是指包括至少一个用于储存液态空气产品的低温储罐的配置。相应的槽罐系统具有绝缘件。
[0023] 本申请使用术语“压力水平”和“温度水平”表征压力和温度,由此表明,无需以精确的压力值或温度值的形式采用相应的压力和温度从而实现本发明的构思。但是这些压力和温度通常在围绕平均值的例如+/–1%、5%、10%、20%或者甚至50%的特定范围内变化。相应的压力水平和温度水平在此可以处于不相交的范围或彼此重叠的范围内。例如压力水平尤其是包括例如由于冷却效应而产生的不可避免或可预见的压力损失。这相应地也适用于温度水平。在此以巴给出的压力水平是指绝对压力。
[0024] 液态空气产品或相应的液态流可以通过加热而转变成气态或超临界状态。若在亚临界压力下进行加热,则通过蒸发实现正常相变。但是若在高于临界压力的压力下加热液态空气产品,则在加热超过临界温度时不发生实际意义上的相变,而是由液态转变成超临界状态。若在本申请范畴内使用术语“蒸发”,则其还包括由液态到超临界状态的转变。
[0025] 本发明的优点
[0026] 本发明涉及一种产生至少一种空气产品的方法,该方法使用空气分离设备,其具有主空气压缩机、主热交换器及蒸馏塔系统。如前所述,该方法包括第一及第二运行模式,其中在该第一运行模式下,储存至少一产生于该蒸馏塔系统内的液态空气产品,并且在该第二运行模式下,将该至少一种在该第一运行模式下储存的液态空气产品和/或至少一种肯定不在该第二运行模式下产生的其他液态空气产品和/或由外部输送的液态空气产品和/或以其他方式暂存的液态空气产品(例如液态空气、液氮或液氧)送入该蒸馏塔系统。
[0027] 根据本发明,在第二运行模式下,至少一股气态加压流在低于主热交换器的热侧温度的温度水平上被送入冷压缩机,在该冷压缩机内自第一超压(超大气压力的)压力水平被压缩至第二超压压力水平并在该第二超压压力水平上被送入蒸馏塔系统的至少一个蒸馏塔。此蒸馏塔以等于第二超压压力水平的运行压力运行。与现有技术相比,该方法具有诸多优点:
[0028] 如前所述,一般情况下可轻易向空气分离设备的冷箱进给较少量的低温液体或液态空气产品,因为因绝缘及(主)热交换器内损失(热侧温差)缘故,热渗透不可避免,从而始终需要一定的冷量。此冷量通常由所用的膨胀涡轮机
提供。
[0029] 若通过上述进给能满足需冷量,便可断开该膨胀机。在使用所谓的中压涡轮机且其内部进一步膨胀压缩空气的情况下,此能相应节约主空气压缩机和/或设于该主空气压缩机后面的后压缩机上的驱动功率。若在用以使空气膨胀进入所用蒸馏塔系统的低压塔的喷射涡轮机基础上实现相应方法,则能取得类似效果。若使用本申请图式中所示的加压氮涡轮机或PGAN涡轮机,断开涡轮机便能使得有大量加压氮可供使用,从中可回收压缩操作所消耗的能量。为此可使用外部膨胀机,相应加压流在前置加热器内加热后被送入该膨胀机,其再使该加压流膨胀至相关用途所需的压力(例如用作再生气体)。
[0030] 若通过进给低温液体或液态空气产品在一段较长时间内将超过需要的冷输入冷箱,便会导致所用热交换器内的温度分布发生不良变化(“变形”),从而使一个或多个流出热交换器的流的温度越来越低。自某一限值起便无法再确保空气分离设备可靠运行或按规定运行。此情况下无法再实现进一步进给,除非利用附加热源提高冷箱的热渗透。如前所述,为达此目的可使用任一种已知产热装置,例如空气加热型、蒸汽加热型、气体加热型、电力加热型热交换器或以其他方式加热的热交换器。
[0031] 就上述情况而言,使用冷压缩机(如前所述,即进气温度低于环境温度的压缩机)特别有益,因为冷压缩机并非仅为系统供热,而是能通过选择性压缩特定物质流来影响并改良整套方法。相应方法由下述图1及图2示出。该方法是(在进给相应的低温液体或液态空气产品的“第二”运行模式下)用冷压缩机压缩断开相应的膨胀涡轮机(例如上述图式所示的加压氮涡轮机,但亦可例如是喷射涡轮机)后可供使用的加压氮量,而后用预热器加热该加压氮并用单独的膨胀涡轮机使其膨胀。然而,带有前置式预热器的外部膨胀涡轮机并非在任何情况下皆能取得令人满意的使用效果,因为此类硬件部件非常昂贵且运行能耗极高。例如,运行相应预热器时通常须设置单独的(中压)蒸汽系统。由此会产生高损失。因此在降低成本和节能的意义上,不使用此类装置的方法和设备是特别值得期待和有利的。
[0032] 在空气分离设备中使用冷压缩机本身是已知的。如US 7272954B2中所披露,冷压缩机被用来压缩节制流。但此用途与本申请所描述的方法及相应设备的目标大相径庭:如前所述,压缩节制流正是为了能实施膨胀进入高压塔的操作,从而达到额外制冷的目的。因此,节制流被压缩至较高的超压压力水平,但又不在该较高的超压压力水平上被送入高压塔,而是此前再次膨胀。此外在本发明范围内,第一超压压力水平低于高压塔运行压力。
[0033] 在相应空气分离设备已被反复提及的“第一运行模式”下,不一定例如为富氧燃烧法或IGCC法提供气态空气产品。第一运行模式亦可包括自相应设备提取液态空气产品并(在电价低廉或电能过剩时期)将其导入专设储罐。第一运行模式的特点主要在于,例如借助加压氮涡轮机、喷射涡轮机和/或中压涡轮机在空气分离设备中产生额外的冷量。在第一运行模式下至多将少量此前储存于槽罐系统的空气产品送入所用蒸馏塔系统并在需要时作进一步分离处理,以免因过量输入冷量 而出现前述不良效应。
[0034] 而在前述“第二运行模式”下一般不借助加压氮涡轮机、喷射涡轮机和/或中压涡轮机产生额外的冷量,因为在该运行模式下,此前储存于储罐的空气产品被送入所用蒸馏塔系统并在需要时作进一步分离处理。亦可借助附加装置或设备,例如借助单独的液化器将该等空气产品储存于储罐或提供的。第二运行模式使用冷压缩机来确保热输入,同时对相应加压流进行压缩。
[0035] 本发明由此提供一种空气分离设备,其即使在被进给大量例如此前储存于储罐的液态空气产品的情况下仍能以低成本实现特别有益的运行。尤其与包含被加热型热交换器的空气分离设备及包含冷压缩机与外部膨胀涡轮机的设备相比,藉此能大幅降低成本。
[0036] 当然,该方法亦可包括前述第一运行模式,在该运行模式下,该至少一股气态加压流和/或至少一股其他的气态加压流在膨胀涡轮机内膨胀制冷( entspannt)。在此情况下,该方法可按需要在两运行模式间切换。
[0037] 该方法优选适用于以下情形:使用蒸馏塔系统,其包括高压塔及低压塔,其中该高压塔以高于该低压塔的运行压力运行。此类蒸馏塔系统(例如双塔系统或高、低压塔分离的系统)基本已为业界所知。故,该方法适于为众多既有空气分离设备加装相应的蒸馏塔系统。
[0038] 在此类蒸馏塔系统中,第一压力水平等于低压塔运行压力,和/或,第二压力水平等于高压塔运行压力。本发明在此实现相应的压力提升,并在定量输入冷量的同时实现将加压流导入蒸馏塔系统。
[0039] 若使用蒸馏塔系统,其进一步包括中压塔,且该中压塔以介于高压塔与低压塔的运行压力间的运行压力运行,便能实现特别的有益效果及更为灵活的制程控制。
[0040] 相应地,此时第一压力水平可等于低压塔运行压力,并且第二压力水平可等于中压塔或高压塔的运行压力。作为替代方案,第一压力水平可等于中压塔运行压力,并且第二压力水平可等于高压塔运行压力。
[0041] 无论何种情况,该至少一股气态加压流皆可由一提取自蒸馏塔系统以第一压力水平为运行压力运行的蒸馏塔(即低压塔,若存在中压塔,则亦可选择性地为中压塔)的流的至少一部分形成。经冷压缩机压缩后,可将该至少一股气态加压流至少部分送入压力水平相对较高的蒸馏塔(若提取自低压塔,则为中压塔或高压塔,若提取自中压塔,则为高压塔)。
[0042] 作为替代方案,该至少一股气态加压流亦可由一由主空气压缩机提供且经主热交换器冷却的流(即例如部分被送入蒸馏塔系统的中压塔且处于相应压力的“中压流”)的至少一部分形成。随后经冷压缩机压缩后,可将该气态加压流送入在相应压力水平上运行的蒸馏塔。
[0043] 在被送入相应蒸馏塔之前,该至少一股气态加压流亦可在第二压力水平上与至少一其他流汇合。若该第二压力水平例如等于高压塔运行压力,经相应压缩的气态加压流便可与一由主空气压缩机在该第二压力水平上提供且经主热交换器冷却的相应压缩空气流汇合。
[0044] 若该压缩气态加压流尚未处于标称温度,则该至少一股气态加压流可在经冷压缩机压缩后至少部分在主热交换器内被冷却。此亦为一项有益措施,能通过选择性热输入来应对因进给液态空气产品而导致主热交换器温度分布发生变化的不利局面。
[0045] 此情况下可按需要在任意有助于取得良好冷却效果和/或影响温度分布的位置上向热交换器进给,例如参见图9及图10。可将该至少一股气态加压流在经冷压缩机压缩后于热侧或在另一低于主热交换器的热侧温度的温度水平上送入主热交换器进行冷却。
[0046] 若该经冷压缩机压缩的气态加压流的一部分在主热交换器内被加热和/或至少部分被导出空气分离设备,则该方法亦能取得有益效果。相应的流例如可在包含吸附容器的净化装置内用作再生气体,且为此处于特别有益的压力及温度水平上。
[0047] 关于本发明的空气分离设备的特征与优点,请参阅前述优点。此种空气分离设备具有主空气压缩机、主热交换器及蒸馏塔系统且适于在前述第一运行模式及前述第二运行模式下运行,其中设置有用以在该第一运行模式下储存至少一产生于该蒸馏塔系统内的液态空气产品并且在该第二运行模式下将该至少一在该第一运行模式下储存的液态空气产品和/或至少一其他液态空气产品送入该蒸馏塔系统的装置。相应装置例如可包括手动转换件或采用控制技术而构建的转换件。该空气分离设备具有冷压缩机。此外设置有用以在该第二运行模式下将该至少一股气态加压流在低于主热交换器的热侧温度的温度水平上送入该冷压缩机,在该冷压缩机内将该至少一股气态加压流自第一超压压力水平压缩至第二超压压力水平,而后将该至少一股气态加压流在该第二压力水平上至少部分送入该蒸馏塔系统的至少一个蒸馏塔的装置。
[0048] 关于产生电能的本发明方法和本发明装置的特征与优点,亦请参阅前述内容。该方法及该装置尤其可以是富氧燃烧法或IGCC法及相应装置。
[0049] 下面参照所附图式详细阐述本发明。

附图说明

[0050] 图1所示为非本发明的空气分离设备处于第一运行模式时的设备示意图;
[0051] 图2所示为图1所示的空气分离设备处于第二运行模式时的设备示意图;
[0052] 图3所示为依据本发明的一实施方式的空气分离设备处于第二运行模式时的设备示意图;
[0053] 图4所示为依据本发明的一实施方式的空气分离设备处于第二运行模式时的设备示意图;
[0054] 图5所示为依据本发明的一实施方式的空气分离设备处于第二运行模式时的设备示意图;
[0055] 图6所示为依据本发明的一实施方式的空气分离设备处于第二运行模式时的设备示意图;
[0056] 图7所示为依据本发明的一实施方式的空气分离设备处于第二运行模式时的设备示意图;
[0057] 图8所示为依据本发明的一实施方式的空气分离设备处于第二运行模式时的设备示意图;
[0058] 图9所示为依据本发明的一实施方式的空气分离设备处于第二运行模式时,在该空气分离设备中设置冷压缩机的可行方案的部分示意图;及
[0059] 图10所示为依据本发明的一实施方式的空气分离设备处于第二运行模式时,在该空气分离设备中设置冷压缩机的可行方案的部分示意图。

具体实施方式

[0060] 对等组件在图式中具相同符号且不予重复说明以求简洁明了。
[0061] 图1至图10所示为部分相同的设备及其部件在不同运行模式下的图标,该等运行模式区别主要在于多个阀门在相应管线内的位置,故液态流及气态流穿过不同设备部件。阀门未予图示。但阻断管在线被打叉(-x-)。
[0062] 图1为非本发明的空气分离设备110的设备示意图。空气分离设备110在图1中处于第一运行模式,此运行模式下无大量来自“外源”(例如储罐或空气液化设备)的液态空气产品被送入该空气分离设备。图标第一运行模式例如用于在电价低廉或电能过剩时期产生液态空气产品,其中该等液态空气产品储存于相应储罐并准备在图2所示的第二运行模式下被送入空气分离设备110。其他运行模式亦可包括仅提供或主要提供气态空气产品。
[0063] 空气分离设备110的核心部件包括图中示意性示出的主空气压缩机10、主热交换器20及蒸馏塔系统30,该蒸馏塔系统在图标实施例中构造成包含高压塔31、中压塔32与低压塔的多塔系统,其中该低压塔具有第一区段38及第二区段33。此二区段通过一未采取任何变压措施的气体管线k相连接,从而形成统一的蒸馏室,该蒸馏室在分离效果、压力及温度方面与一体式低压塔无异。
[0064] 高压塔31的顶部运行压力例如为5.0至5.5巴,低压塔33的顶部运行压力例如为1.3至1.4巴。中压塔32的运行压力介于高压塔31的运行压力与低压塔33的运行压力间。
[0065] 为了向蒸馏塔系统30或各塔提供相应的压缩空气,主空气压缩机10被构造成可提供至少一第一压缩空气流a及一第二压缩空气流l。在此情况下,第一压缩空气流a的压力水平为高压塔31的运行压力(故亦称“高压空气”,HPAIR),第二压缩空气流l的压力水平则为中压塔32的运行压力(故亦称“中压空气”,MPAIR)。
[0066] 相应压缩空气流a及l的提供方式基本上是已知的,此处不再赘述。例如,主空气压缩机10可通过过滤器吸入大气空气并将其多级压缩至上述压力。例如可于多级压缩终点处提取第一压缩空气流a,于一中间位置处提取第二压缩空气流l。该空气可于压缩后在直接接触冷却器内借助与冷却水进行间接热交换而冷却。该冷却水可由蒸发室冷却器和/或外源提供。该压缩冷却空气随后可在净化装置内被净化。该净化装置可具有一对装有合适的吸附材料的容器。用富氮再生气体(此处指流v,相关描述见下)来使净化装置再生。
[0067] 在图示实施例中,第一压缩空气流a在前述压力水平上穿过主热交换器20的通道21并于该处被冷却至接近露点。该继续用a标示的冷却压缩空气流在主热交换器20下游一部分进入高压塔31,另一部分在装有富氧液体(见下)的浴蒸发器或浴冷凝器(Badkondensator)34内液化。该液化部分中的一部分被液态送入中压塔32,另一部分穿过过冷器35并膨胀进入低压塔33。
[0068] 第二压缩空气流l一部分穿过主热交换器20的通道24并于该处被冷却至接近露点。另一部分则穿过一亦可整合于主热交换器20的热交换器组件44并在该处用于蒸发富氧液态流n(见下)。两部分随后再度汇合并进入中压塔32。
[0069] 分别自高压塔31及中压塔32塔底提取氧富集液态流,其作为流h穿过过冷器35并膨胀进入低压塔33。
[0070] 自低压塔塔底提取富氧液态流i,该富氧液态流借助36升高压力,经膨胀阀(未标示符号)导入低压塔中间蒸发器37,在此与富氮流r(见下)相逆地部分蒸发并被导入低压塔的第一区段38,在其塔底设置有低压塔塔底蒸发器39。在实施例中,两冷凝蒸发器(低压塔中间蒸发器37及低压塔塔底蒸发器39)构造成降膜蒸发器。自氧塔38顶部获得的液态及气态部分作为流k被部分回输至低压塔33。流出低压塔中间蒸发器37的蒸发室的液体的另一部分作为回流液体被送往低压塔第一区段38。
[0071] 自低压塔38塔底提取液态富氧流并将其导入辅助冷凝器34,该辅助冷凝器构造成包含液浴的冷凝蒸发器(浴蒸发器)。自辅助冷凝器34顶部提取气态富氧流m,该气态富氧流在主热交换器20内被加热并被用来提供气态氧加压产品( Sauerstoff-Druckprodukt)(在此用GOX标示)。自辅助冷凝器34塔底提取液态富氧流,其一分流n在液态下被提高压力,在热交换器组件44内蒸发并同样被用来提供气态氧加压产品。分流o则部分在过冷器35内被过冷并被用来提供液态富氧空气产品(在此用LOX标示)。可将该液态空气产品导入合适储罐61并储存于此。
[0072] 自高压塔31顶部提取富氮气态流p并使其在降膜蒸发器或降膜冷凝器39内液化。一分流被回输至高压塔31,另一分流(参见连接符号A)穿过过冷器35,而后膨胀进入低压塔
33。
[0073] 自中压塔32顶部提取富氮气态流r,其一部分在降膜蒸发器或降膜冷凝器37内液化。一分流被回输至中压塔32,另一分流s穿过过冷器35,而后部分膨胀进入低压塔33,部分以液态富氮空气产品(在此用LIN标示)形式被提供。亦可将该液态富氮空气产品储存于合适储罐62。
[0074] 流r的另一(较大)分流t在图标第一运行模式下绕开冷压缩机45后在主热交换器20内被加热。可在中间温度下自主热交换器20提取另一部分(即图中的流u),此部分随后可在“冷的”膨胀涡轮机46(所谓的加压氮涡轮机)内膨胀制冷,该膨胀涡轮机例如可耦接发电机。以气态富氮空气产品(在此用MPGAN标示)的形式提供未在膨胀涡轮机45内膨胀的部分。
在膨胀涡轮机45内膨胀后,流u再度自冷端向热端穿过主热交换器20并于主热交换器20的热侧分成分流v及w。分流v在主空气压缩机10或分配给该主空气压缩机的净化装置内用作再生气体(REGGAS)(见上)。分流w则由利用热水流运行的热交换器51加热,而后在同样可耦接发电机的另一膨胀涡轮机52内膨胀。
[0075] 自低压塔33顶部提取富氮流y,在主热交换器20内加热该富氮流并将其导出空气分离设备110。
[0076] 因绝缘及主热交换器内损失(热侧温差)缘故,热渗透不可避免,而如前所述,使用膨胀涡轮机46是为了提供因此而始终需要的冷量 若当空气分离设备110处于图2所示的第二运行模式时,此冷量 已由所进给的液态空气产品提供,便可断开膨胀涡轮机46。在图示实施例中,其结果为大量相应的加压富氮空气产品可供使用,从中可回收能量。在其他配置中,若例如“直接”由主空气压缩机提供且在主热交换器内冷却的加压流在相应的膨胀涡轮机(类似于膨胀涡轮机46)内膨胀,则可减小主空气压缩机10中的驱动功率。
[0077] 图2示出空气分离设备110的相应第二运行模式。在该运行模式下,一方面将富氧液态空气产品(LOX)自储罐61导入浴蒸发器或浴冷凝器34(参见连接符号B),另一方面将液态空气产品(例如来自外部液化器的液化空气,在此用LAIR标示)自另一储罐63送入低压塔33。由于此时空气分离设备110的需冷量已超过需要地得到满足,可将膨胀涡轮机46断开。
如此一来,根据气态富氮空气产品(MPGAN)可通过阀门(未标示符号)而加以调节的提取量,有大量相应的加压富氮空气产品(在此亦标示为流x)可供使用,从中可在膨胀涡轮机52或其发电机内回收能量。但须预热空气。然而,使用相应预热装置较为麻烦。
[0078] 冷压缩机45在第二运行模式下亦运行。如前所述,液态空气产品(在此为LOX及LAIR)将超过需要的冷量输入空气分离设备110的冷箱,致使热交换器内的温度分布“变形”并且一个或多个流出热交换器的流的温度越来越低。自某一限值起便无法再确保空气分离设备可靠运行。此问题在空气分离设备110中借助将冷压缩机45作为热源运行而得到解决。然而,冷压缩机45并非仅为系统供热,而是通过选择性压缩特定物质流(在此为流t)来影响并改良整套方法,此为其他产热装置如空气加热型、蒸汽加热型、气体加热型、电力加热型热交换器或以其他方式加热的热交换器所不能达矣。冷压缩机45所引起的升压效果可在膨胀涡轮机52内得到利用。
[0079] 与非本发明的空气分离设备110相比,下述本发明的空气分离设备100具特别的有益效果,其中冷压缩机45用作所谓的进料压缩机(Feedverdichter)并整合于蒸馏塔系统30。换言的,在第二运行模式下,至少一股气态加压流(参见下述各流b至g)在低于主热交换器20的热侧温度的温度水平上被送入冷压缩机45,在冷压缩机45内自第一超压压力水平被压缩至第二超压压力水平并在第二超压压力水平上被送入蒸馏塔系统30的至少一个蒸馏塔31、32。换句话说,例如一相应气态加压流(例如来自主空气压缩机10且形式为下述流e的空气,或者来自其中一个蒸馏塔且形式为下述流b至d、f及g的富氮气态加压流)在冷压缩机
45内自一用于低压塔或中压塔32或33或者用于以较低压力为运行压力的塔的压力水平压缩至一用于中压塔或高压塔31或32或者用于以较高压力为运行压力的塔的压力水平。在主热交换器20内经相应冷却(若有必要)后,将该压缩流于合适位置处送入相应蒸馏塔31、32。
[0080] 尤其对于利用主压缩机10提供两不同压力水平的加压流a及l的方法如本方法,此能改良精馏效果。在三塔系统中,应被导入高压塔31且此前须被压缩至高压的空气的份额变小,应被导入中压塔且此前须被压缩至中压的空气的份额则变大。其结果为,相应空气分离设备100的总能耗显著降低。在此情况下,优选如此这般切换冷压缩机45,使得此情况下被断开的冷压缩机45的接头(管接头)得到使用。此能大幅降低设备成本与线路成本。
[0081] 参照图3所示,依据本发明的一实施方式的相应空气分离设备100处于第二运行模式。第一运行模式与图1所示大体一致,故不予再次图示:在第一运行模式下,一相应的流穿过膨胀涡轮机46并绕开冷压缩机45。在如图2所示的第二运行模式下,一方面将富氧液态空气产品(LOX)自储罐61导入浴蒸发器或浴冷凝器34(参见连接符号B),另一方面将液态空气产品(例如来自外部液化器的液化空气,在此用LAIR标示)自另一储罐63送入低压塔33。
[0082] 冷压缩机45在此以提取自低压塔33的富氮流y的分流b为进料,故该分流处于低压塔33顶部的前述超压压力水平上,例如1.3至1.4巴。此分流b在冷压缩机45内自该(“第一”)超压压力水平被压缩至等于中压塔32的运行压力的较高(“第二”)超压压力水平。而后在中间温度下将该压缩分流b送入主热交换器20的通道25并相应冷却的。冷却后将流b送往中压塔32顶部。需要时同样可将其他分流j(MPGAN)及z(部分用作再生气体REGGAS,任选仅用于第一运行模式)导出空气分离设备。由热交换器51及膨胀涡轮机52形成的配置未得到使用。
[0083] 参照图4所示,依据本发明的一实施方式的另一空气分离设备处于第二运行模式。冷压缩机45在此亦以提取自低压塔33的富氮流y的分流为进料,该分流在此用c标示且处于低压塔33顶部的前述超压压力水平上,例如1.3至1.4巴。此分流c在冷压缩机45内自该(“第一”)超压压力水平被压缩至等于高压塔31的运行压力的较高(“第二”)超压压力水平。而后在中间温度下将该压缩分流c送入主热交换器20的通道27并相应冷却的。冷却后将流c送往高压塔31顶部。需要时同样可将其他流j(MPGAN)与z(部分用作再生气体REGGAS,任选仅用于第一运行模式)及富氮高压流(HPGAN)导出空气分离设备。
[0084] 参照图5所示,依据本发明的一实施方式的另一空气分离设备处于第二运行模式。冷压缩机45在此以流d为进料,该流是提取自中压塔32顶部,故而处于中压塔32顶部的前述超压压力水平及中压塔的温度水平上。此分流d在冷压缩机45内自该(“第一”)超压压力水平被压缩至仍等于高压塔31的运行压力的较高(“第二”)超压压力水平。而后在中间温度下将该压缩分流d送入主热交换器20的相应通道27并相应冷却的。冷却后将流d送往高压塔31顶部。需要时同样可将其他流j(MPGAN)与z(部分用作再生气体REGGAS,任选仅用于第一运行模式)及富氮高压流(HPGAN)导出空气分离设备。
[0085] 参照图6所示,依据本发明的一实施方式的另一空气分离设备处于第二运行模式。冷压缩机45在此以来自主空气压缩机10的加压流l的分流e为进料,该分流处于等于中压塔
32的运行压力的前述超压压力水平上。自主热交换器20的冷端提取分流e,故其温度水平低于主热交换器20的热侧温度水平。此分流e在冷压缩机45内自该(“第一”)超压压力水平被压缩至仍等于高压塔31的运行压力的较高(“第二”)超压压力水平。该压缩分流e而后在中间温度下被送入主热交换器20的通道21,从而与流a汇合。该继续用a标示的流被相应冷却。
冷却后将流a送入高压塔31。如上所述,需要时同样可将其他流j(MPGAN)及z(部分用作再生气体REGGAS,任选仅用于第一运行模式)导出空气分离设备。
[0086] 参照图7所示,依据本发明的一实施方式的另一空气分离设备处于第二运行模式。冷压缩机45在此以流f为进料,该流是提取自低压塔33,故而处于低压塔33的前述超压压力水平(例如1.3至1.4巴)及其温度水平上。此分流f在冷压缩机45内自该(“第一”)超压压力水平被压缩至仍等于中压塔32的运行压力的较高(“第二”)超压压力水平。该压缩分流f而后在中间温度下被送入主热交换器20的通道24,从而与流l汇合。该继续用l标示的流被相应冷却。冷却后将流l送入中压塔32。如上所述,需要时同样可将其他流j(MPGAN)及z(部分用作再生气体REGGAS,任选仅用于第一运行模式)导出空气分离设备。
[0087] 参照图8所示,依据本发明的一实施方式的另一空气分离设备处于第二运行模式。冷压缩机45在此亦以流g为进料,该流是提取自低压塔33,故而处于低压塔33的前述超压压力水平(例如1.3至1.4巴)及其温度水平上。此分流g在冷压缩机45内自该(“第一”)超压压力水平被压缩至仍等于高压塔31的运行压力(例如5.0至5.5巴)的较高(“第二”)超压压力水平。该压缩分流g而后在中间温度下被送入主热交换器20的通道21,从而与流a汇合。该继续用a标示的流被相应冷却。冷却后将流a主要送入高压塔31。需要时同样可将其他流j(MPGAN)及z(部分用作再生气体REGGAS,任选仅用于第一运行模式)导出空气分离设备。
[0088] 图9及图10为设置冷压缩机45的可选方案的部分示意图。相应的流不再用符号标示。在图3至图8所示的所有设备及本发明其他未图示的实施方式中皆能实现该等可行方案。
[0089] 根据图9,经冷压缩机45压缩的流于热侧被送入主热交换器20。参照图10所示,在第一中间温度下自主热交换器20提取一流,而后压缩该流并在第二中间温度下将其再度送入主热交换器20。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈