首页 / 专利库 / 燃气和蒸汽发生器 / 整体煤气化联合循环 / 用于驻涡燃烧器中的燃料分级的燃烧腔布局

用于驻涡燃烧器中的燃料分级的燃烧腔布局

阅读:170发布:2020-05-26

专利汇可以提供用于驻涡燃烧器中的燃料分级的燃烧腔布局专利检索,专利查询,专利分析的服务。并且在一个 实施例 中,提供可选的燃烧腔布局以在驻涡(TVC)燃烧设备中实践 燃料 分级,该燃烧设备包括入口预混合器和一个以上的 涡流 预混合器,入口预混合器用于将燃料-空气混合物喷入燃烧设备的入口,涡流预混合器用于将燃料-空气混合物喷入一个以上的驻涡腔的每一个中的再循环涡流。多个TVC腔可例如轴向、径向、周向、内部设置或者以这些布置的组合设置。这些布局可以与燃料分级方法结合使用,由此能够根据操作条件改变通过入口预混合器和相应的涡流预混合器引入的混合物的相对比例。,下面是用于驻涡燃烧器中的燃料分级的燃烧腔布局专利的具体信息内容。

1.一种用于与燃料分级方法一起使用的燃烧设备,其中在所述燃烧设备中的多个燃料引入点处的燃料的比例根据功率需求而改变,所述燃烧设备包括:
(a)多个TVC腔;
(b)与所述多个TVC腔结合的预混合器,所述预混合器包括入口预混合器和多个涡流预混合器;
(c)所述入口预混合器包括主入口和多个同心共面的空气动学形状的圈元件,所述主入口产生通过所述燃烧设备的主流动,所述圈元件位于所述多个TVC腔的上游,在流径中轴向对齐,每个所述圈元件具有用于燃料的内部通道,每个所述圈元件还包括多个燃料喷射孔口,由此燃料从所述内部通道流入接近所述圈元件的入口流体流,并且其中每对所述圈元件在其间限定环形通道;以及
(d)所述多个涡流预混合器中的至少一个涡流预混合器附接到所述多个TVC腔中的至少一个TVC腔,其中所述多个涡流预混合器中的所述至少一个涡流预混合器包括燃料入口、空气入口、在其中混合燃料和空气的室、以及用于燃料-空气混合物的出口,所述燃料入口包括燃料歧管,在所述燃料歧管中布置有扩散板
并且其中所述燃料-空气混合物沿着与所述多个TVC腔中的所述至少一个TVC腔内的再循环流动相切的方向被直接引入所述多个TVC腔中的所述至少一个TVC腔中,其中燃料通过所述多个涡流预混合器中的每个的流动是独立可变的;
(e)锥形的钝体,所述钝体位于所述入口预混合器的正下游和所述多个TVC腔的上游,构造成提供喷嘴并且使得离开所述入口预混合器的预混合的混合物加速
2.如权利要求1所述的燃烧设备,其中,所述燃烧设备是环形燃烧设备,所述主流动限定通过所述燃烧设备的环状部。
3.如权利要求2所述的燃烧设备,其中,所述多个TVC腔相对于由所述主流动限定的环状部轴向布置。
4.如权利要求3所述的燃烧设备,其中,所述多个TVC腔位于所述环形燃烧设备中的周边,在由所述主流动限定的环状部的外部。
5.如权利要求4所述的燃烧设备,其中,所述多个TVC腔包括第一上游周边TVC腔和第二下游周边TVC腔。
6.如权利要求5所述的燃烧设备,其中,所述TVC腔由曲线壁限定。
7.如权利要求5所述的燃烧设备,其中,所述TVC腔由直线壁限定。
8.如权利要求3所述的燃烧设备,其中,所述多个TVC腔位于由所述主流动限定的所述环状部的内部。
9.如权利要求8所述的燃烧设备,其中,所述多个TVC腔包括第一上游内部TVC腔和第二下游内部TVC腔。
10.如权利要求2所述的燃烧设备,其中,所述多个TVC腔相对于由所述主流动限定的环状部径向布置。
11.如权利要求1所述的燃烧设备,其中,所述TVC腔由曲线壁限定。
12.如权利要求1所述的燃烧设备,其中,所述TVC腔由直线壁限定。
13.如权利要求1所述的燃烧设备,其中,所述多个涡流预混合器中的所述至少一个涡流预混合器布置在所述多个TVC腔中的所述至少一个TVC腔的下游侧。
14.如权利要求1所述的燃烧设备,其中,所述燃料-空气混合物通过所述出口引入,所述出口沿着所述多个TVC腔中的所述至少一个TVC腔的壁的曲线长度延伸。
15.一种发电组件,包括联接到燃气轮机的如权利要求1所述的燃烧设备。
16.一种发动机组件,包括联接到燃气轮机的如权利要求1所述的燃烧设备,所述发动机组件用作用于飞行的推进喷气发动机。
17.一种辅助发电单元组件,包括联接到燃气轮机的如权利要求1所述的燃烧设备。
18.一种燃烧涡轮机组件,包括联接到燃气轮机的如权利要求1所述的燃烧设备,所述燃烧涡轮机组件适于作为用于热电联产工厂的燃烧涡轮机。
19.一种燃烧涡轮机组件,包括联接到燃气轮机的如权利要求1所述的燃烧设备,所述燃烧涡轮机组件适于作为用于整体气化联合循环工厂的燃烧涡轮机。

说明书全文

用于驻涡燃烧器中的燃料分级的燃烧腔布局

[0001] 相关申请的交叉参考
[0002] 本申请要求2009年9月13日提交的美国临时专利申请61/241,940依照35U.S.C§119(e)的权益,其全部公开为了所有目的通过引用结合于此。

技术领域

[0003] 本发明属于燃烧和燃气轮机的领域,特别是用于干低排放的燃气轮机设计领域,更具体地涉及用于将燃料和空气预混合以实现超低燃烧排放的设备和方法。

背景技术

[0004] 预混合器能够用于增强能量释放/转换系统(例如用于为燃气轮机发动机或发电机提供动的燃烧器)中的火焰稳定性。为了简便,本公开始终使用术语“燃烧器”,但是应当理解本公开更加普遍地涉及能够根据操作条件作为燃烧器或燃料重整器以及专用燃烧器和重整器设备操作的能量释放/转换系统。除非文中另外明确要求,否则术语“燃烧器”、“重整器”和“能量释放/转换系统”应该被认为完全可互换。
[0005] 当前现有技术中使用的预混合器包括置于燃烧器入口处的“毂和辐条”构型的单元,例如通用电气、Pratt & Whitney、西子所采用的那些单元,其中燃料通过毂供应,喷射出径向辐条并且/或者集成到旋流叶片中。这些预混合器的辐条具有多个横向于燃烧器入口的尺寸均匀的轴向孔。这些预混合器的设计倾向于使它们对于特定燃料-空气动量流量比最优化。因此,这些预混合器在狭窄的功率带中最佳地工作,并且没有在整个发动机操作包线上提供最均匀的燃料-空气混合物。系统会产生太贫或太富的燃料-空气区域,从而不利地影响排放。因此,看上去可以通过重新设计与这些系统协作使用的预混合设备在更宽的操作条件范围上更好地工作而进一步改进能量释放/转换系统的操作。
[0006] 在公知为“驻涡”燃烧器(TVC,在本公开中稍后讨论)的一类燃烧设备中,在燃烧区域中,例如在钝体之间或者燃烧器的壁中提供腔,在腔中将形成涡流和/或其它湍流,从而稳定贫混合物的燃烧。例如参见授予Roquemore等人的美国专利No.5,857,339。燃料和/或空气可通过离散的喷射器喷入驻涡腔中,以引起该区域中更大的混合并且进一步提高火焰稳定性。离散的燃料和空气喷射器可例如位于由燃烧腔的壁限定的驻涡区域的前壁和后壁上。例如参见Burrus的美国专利No.5,791,148。
[0007] Haynes等人的GE全球研究“用于下一代燃气轮机的先进燃烧系统,最终报告(Advanced Combustion Systems for Next Generation Gas Turbines,Final Report)”,2006年1月(DE-FC26-01NT41020)描述了与Burrus描述的燃烧器布局类似的燃烧器。在Haynes等人公开的某些实施例中,作为前述离散的燃料和空气入口的替代,燃料和空气可以预混合,通过入口锥并且/或者通过燃烧腔的前壁或后壁引入。在入口锥和燃烧腔中都引入预混合物的实施例生成了堆积的双涡流,以及高度湍流混合。
[0008] 在描述了另一TVC实施例的美国专利No.7,603,841中,Steele等人公开了一种具有入口预混合以及向由钝体部分地限定的燃烧腔中喷射的后喷射器的燃烧器。在该实施例中,后喷射器指向与进入的预混合物流相反的方向,以引起湍流涡流混合。
[0009] 至今为止,向燃烧腔中喷射燃料、空气和/或预混合的燃料和空气的所有的TVC设计已经设计为引起湍流,从而导致形成额外的涡流,或者以其它方式增加涡流腔中的湍流混合。例如,Haynes等人的图3-7示出了每个TVC腔中的双驻涡。在这些腔中会发生的“自然”流动会是单涡流,该“自然”流动指的是在缺少预混合物喷射的情况下在腔中会自然发生的流体流动,假定流动以其它方式通过燃烧器的主流径发生。在Haynes等人的图3-7所示的情况下,所示“双涡流”中的第二涡流由预混合物喷射到TVC腔中而生成,不会以其它方式存在。在其它情况下,例如在仅提供单个涡流的情况下,所示的主涡流可能以其它方式存在,但是基本通过添加预混合物的冲击而修正,例如通过从其在腔中的自然位置平移运动,形成更多的湍流,或者以其它方式基本变形
[0010] Rakhmailov共同转让的美国专利公报2008/0092544A1(Rakhmailov’544公报)公开了一种预混合器,该预混合器与根据共同转让给Rakhmailov等人的美国专利No.7,086,854(Rakhmailov’854)的公开设计的燃烧器组合配置。Rakhmailov’544公报中的预混合器仅在燃烧器的入口处配置。该燃烧器的入口具有高流体流动速度,因而在高速度环境中进行入口预混合。
[0011] 虽然在Rakhmailov’544公报中描述的设计向Rakhmailov’854中描述的再循环涡流燃烧器添加入口预混合器,但是两个公开都没有包含用于直接向涡流腔中喷射燃料、空气和/或预混合的燃料和空气的任何设备。实际上,Rakhmailov’854明显教导不允许燃料进入再循环涡流腔中的热再循环气体中,阐述了湍流机械混合能够减小整体再循环速度,导致不均匀的燃料分布,并且降低再循环流动加入入口流动处的温度,这与Rakhmailov‘854的设计目的相背。
[0012] Roquemore 等 人、Burris、Haynes 等 人、Steele 等 人、Rakhmailov‘854 和Rakhmailov‘544公报的全部相应公开均为了所有目的通过引用全部结合于此。
[0013] 理想的是在多个方面中改进现有技术。首先,理想的是通过使用于任意类型的燃烧器的入口预混合器更加适于宽范围的操作条件而改进该预混合器。其次,理想的是在燃烧器的涡流区域中提供预混合而增强而不是扰乱正常涡流。第三,理想的是提供用于有利地彼此结合地使用入口预混合器和涡流预混合器的方法。

发明内容

[0014] 本发明的目的是提供一种在燃烧器中使用的优良的燃料-空气预混合设备和方法。
[0015] 该预混合器设备的期望属性包括:
[0016] 该预混合器应该在燃烧器入口的截面区域上提供均匀的燃料分布。
[0017] 该预混合器应该在宽的发动机操作条件范围上提供均匀的燃料-空气混合物。
[0018] 该预混合器应该提供短的预混合长度。
[0019] 该预混合器应该与宽范围的燃料相容,包括在燃气轮机中使用的所有气体和液体燃料
[0020] 该预混合器应该提供低排放产生。
[0021] 该预混合器或者单独的预混合器应该可修改以有助于稳定TVC的驻涡腔中的燃烧,与所设计的TVC的流动模式一致,流动模式包括所利用的低湍流模式。
[0022] 应该可以协调在设计中利用的任何多个预混合器的操作,以在系统的操作范围上提供最好的操作。
[0023] 所提供的该预混合器系统和方法应该能适用于宽范围的应用。
[0024] 在一个实施例中,这些目的可以通过提供入口预混合器组件实现,该入口预混合器组件包括毂、多个径向辐条和多个附接到辐条上的、具有多个径向指向的喷射孔的、同心的空气动力学喷射圈。喷射孔设有多个不同直径,以有利于在宽功率范围上的良好混合。由于构造和孔尺寸,组件与气体和液体相容。由于在截面区域上的燃料喷射位点数量较多,径向、同心喷射结构允许短的喷射路径。
[0025] 在第二方面中,为了与驻涡反应器设计结合使用,可以提供另一预混合器实施例,其将预混合的燃料和空气以与系统设计的腔中流动模式相容的方式直接喷射到驻涡腔中。当与再循环涡流设计结合使用时,该预混合器能够布置成使得预混合的燃料和空气以平滑连续的方式切向加入涡流,并且/或者加强环状部中的燃烧。在其它设计中,预混合物可以在一个以上的TVC位置沿着与引入区域中的局部涡流一致的一个以上的方向引入。
[0026] 对于上述两个实施例还可以提供彼此结合使用的方法,它们的设定彼此协调调节以用于操作期间的燃料分级。已经以该方式实现了极低的排放结果。
[0027] 在其它实施例中,提供可选的燃烧腔布局用于实践在驻涡(TVC)燃烧设备中的燃料分级,包括入口预混合器和一个以上的涡流预混合器,该入口预混合器用于将燃料-空气混合物喷入燃烧设备的入口中,涡流预混合器用于将燃料-空气混合物喷入一个以上的驻涡腔的每一个内的再循环涡流中。由预混合器供料的多个TVC腔例如可布局成轴向、径向、周向、内部或者这些布置的组合。这些布局可以与燃料分级方法结合使用,由此通过入口预混合器和相应的涡流预混合器引入的混合物的相对比例能够根据操作条件改变。
[0028] 根据本发明的燃烧设备和方法可用于所有燃气轮机应用,包括而不限于陆用发电、商用喷气式飞机发动机、用于飞机的辅助动力单元(APU)、整体气化联合循环(IGCC)工厂、热电联产(CHP)或废热发电工厂。
[0029] 从附图和之后的详细说明将清楚本发明的其它方面和优点。

附图说明

[0030] 为了更加完整地理解本发明及其优点,现在结合附图参照以下描述,附图中类似的附图标记表示类似的部件,其中:
[0031] 图1是根据本发明的某些实施例的、结合有两个不同预混合器装置的环筒燃烧器从入口侧到出口侧的立体截面图。
[0032] 图2A示出了图1所示的入口预混合器的截面图,图2B示出了包括该预混合器的辐条和圈元件的详细截面图。
[0033] 图3是图2A和2B所示的入口预混合器的另外的截面图,还示出了在喷射圈中燃料喷射孔口的设置。
[0034] 图4是图1所示的涡流预混合器的环状部从外部的局部剖切立体图。
[0035] 图5示出了与在驻涡腔中具有直线壁的TVC组合使用的涡流预混合器的可选实施例。
[0036] 图6A-6C示出了根据本发明一个实施例的燃料分级策略的示例,图6D-6E是火焰温度vs发动机功率的对应曲线图。
[0037] 图7A-7D示出了结合有多个TVC腔的多种燃烧器布局可以与各个可控的入口预混合器和涡流预混合器结合使用。

具体实施方式

[0038] 以下是对本发明的某些实施例的详细描述,选择这些实施例以提供如何可以有利地实施本发明的示例。本发明的范围不限于描述的具体实施例,也不限于附图中所示或者发明内容或摘要中阐述或描述的任何具体实施、组成、实施例或特征。此外,应注意,本公开描述了均包括多个步骤的多个方法。本说明书中包含的任何内容都不应理解为暗示这些方法中的步骤的任何必需顺序,除非由权利要求语句明确地规定。
[0039] 本公开可适用于任何燃气轮机燃烧器或反应室。本公开的某些方面与具有用于气体燃料或携带气体的液体燃料和化剂(空气)的入口的任何能量释放/转换系统相关。其它方面也是相关的,只要能量释放/转换系统具有TVC特征,如下所述。
[0040] 在多种能量释放/转换设备中,燃烧器和反应室在一些方面具有基本稳定状态的涡流循环,涡流循环至少部分地位于从燃烧器入口到出口的直接流径之外。这里使用术语“驻涡燃烧器”(TVC)来表示本公开可应用的一类设备,该术语将用来最普遍地指代具有这类特征的能量释放/转换系统(燃烧器和/或重整器),含有涡流的燃烧器的内部将称为“驻涡反应腔”。驻涡腔可容纳一个涡流、双涡流或多个涡流。驻涡腔可具有连续的弯曲壁,或者其可具有直线或其它形状的壁,或者形成在钝体之间,或者是壁和钝体的组合。燃烧器或反应室还可具有多个驻涡腔。之前讨论了根据Roquemore等人、Burris、Haynes等人、以及Steele等人的TVC实施例的示例。在Rakhmailov’854中公开的能量释放/转换系统尽管在材料方面与那些TVC不同,但是为了本公开中采用的术语的目的也应认为是TVC。
[0041] 根据反应器设计,额外的考虑能够与TVC相关。涡流通常设计为帮助保持燃烧器的火焰稳定性。一些设计还依赖于利用低湍流特性以帮助实现均匀混合,允许贫混合物在较低的燃烧温度点燃,从而改进排放。实际上,能量释放/转换系统的操作可受到波动和扰动,例如由于燃料流动或压缩机流动的不连续性、小表面不连续性、或者数据异常,该数据异常是当真实流体以高速度沿着真实机器表面动态行进并且彼此实时化学反应的时候连续层流的小偏差产生的不可避免的结果。这些波动和不连续性能够不时地导致火焰不稳定。在燃烧(或重整)之前燃料和空气的彻底混合能够用于改进这些设计以及其它设计(其中可以在引入燃料-空气混合物之后允许或促进湍流)的排放性能和稳定性。
[0042] 在TVC设计中,主入口上游的预混合器已经用于帮助混合燃料和空气。然而,试验表明有相当大的空间来改进这些入口预混合器设计的性能。
[0043] 在某些TVC设计中,燃料、空气和/或预混合的燃料和空气已经直接喷射到燃烧涡流中,以使整个燃烧器操作稳定。例如,某些这类设计的目的是使用涡流预混合器、或者离散地喷射燃料和/或空气,以引起一个以上的额外涡流(否则会存在更少或仅有一个的涡流),以产生更多的混合湍流,并增加TVC涡流腔中流体的停留时间。然而,之前实践的这类燃料或混合物的直接喷射(其中燃料、空气和/或预混合的燃料和空气扰乱性地喷射到自然涡流)能够导致不规则的混合和热点,并且对于排放控制不是最优的。
[0044] 从而,在本领域中除已经实践之外的另外不同的模式能够是有利的,对于TVC(包括低湍流TVC)和非TVC设计都是如此。然而,为了成功地使用预混合器,有些问题必须克服。
[0045] 通常从压缩机向能量释放/转换系统供给处于压缩状态的燃烧空气。在作为压缩机输出的特征的较高的压力和温度下的预混合的燃料和空气趋于是高度爆炸性的。为了避免该爆炸,该环境中的预混合可以以在将预混合物引入燃烧室之前减少预混合物的停留时间的方式执行。这意味着预混合设备应当优选可行地接近燃烧器入口(短预混合长度),而同时为期望的预混合平提供足够的停留时间(可通过具有小的预混合规模而部分实现)。因此,用于实现快速均匀预混合的构造是优选的。
[0046] 另外,预混合器优选应该与系统设计的其它部分相容。例如,在低湍流系统中,预混合器应该不依赖或者引入与整个系统设计不一致的大规模湍流。在其它TVC设计中,预混合器应该以与期望的腔流场一致的方式引入混合物。
[0047] 考虑到前述原理和评论,已经研发了两个互补的预混合器设计。图1是根据本发明的某些实施例的、结合有两个不同预混合器装置的示例21和31的燃烧器从入口侧到出口侧的立体截面图。
[0048] 图1的燃烧器在内部构造轴对称的同时,是“筒式”设计(有时称为“环筒”,但是区别于“全环”设计),使得在图1中均部分示出的多个这样的“筒”能够布置成圆形构造,它们的出口共同围绕大涡轮机指向。这样的布置一般用于为用于发电应用的大规模燃气轮机(例如涡轮机的轴驱动大发电机的情况)提供动力。虽然图1和4集中于筒式设计,但本领域技术人员会认识到,该设计的原理可容易地适于“全环”燃烧器设计,其中单个环形燃烧器被设计为与例如涡轮机的环形流体入口匹配。除了大规模发电涡轮机之外,全环设计可例如用于商用喷气飞机发动机和辅助动力单元(APU)。所有这些构造和它们所支持的应用处于本发明的范围内。
[0049] 图1所示的实施例中的筒式燃烧器具有入口6、出口5、再循环区域7和脱离点14。在三维空间中,再循环区域7形成了围绕从入口6到出口5的主流动轴线的环状结构,在该环状结构中涡流22将在燃烧器操作期间再循环,燃烧气体的一部分在点14处脱离并且沿着弯曲壁23在弯曲壁23内围绕环状部7再循环而再加入入口6。被压缩的燃烧空气在入口6上游的压缩机入口10处引入。入口预混合器21位于压缩机入口10与燃烧器入口6之间。在该实施例中,大致锥形的钝体3和4设置在预混合器21与燃烧器入口6之间,以提供喷嘴加速离开预混合器21的预混合物。(然而,注意在环形设计中,取代的是,钝体可以是围绕整个环形燃烧器入口环状延伸(为渐缩圈)的“2D”元件,而不是如图所示形成锥形结构。)
[0050] 在该实施例的其它细节中,钝体3、4抵靠板11终止,板11在三维空间中在入口区域6的中心形成圆形壁;钝体3、4由周向布置在入口区域6内的径向辐条17支撑;孔16设置在板11中,用于壁冷却(泄流、撞击泄流等);在燃烧器入口的上游设有压力端口12;用于点火器(未示出)的安装点15设置在环状部的壁中。而且在该实施例(即,筒式燃烧器)中,燃烧器容纳在大致筒形的外壳41中。
[0051] 在所示实施例中,还设置第二预混合器31(涡流预混合器)。第二预混合器向再循环空间7中喷射,但是其方式与现有技术中实践的预混合的燃料和空气的喷射不同。在现有技术的涡流预混合器中,预混合的空气和燃料以计算出的方式被引入TVC腔中,而生成一个以上的额外全新的涡流,或者大大扰乱自然存在的涡流的流场。在所示实施例中,将预混合的燃料和空气喷入涡流区域被设计成增强腔中的自然涡流,例如,在与腔中的自然再循环流动相切并且同向的方向上沿着外部壁引入腔中。从而,其增强了涡流流动,而没有扰乱或者明显增加湍流。
[0052] 应理解的是,虽然图1示出了就位的预混合器21和预混合器31,但是可以设置预混合器21或31中的任一个而取消另一个,尽管在本公开的稍后讨论中存在有利地具有两个预混合器的操作模式。
[0053] 在一个实施例中,涡流预混合器31包括多个燃料喷射器,所述燃料喷射器均围绕环状部7的外壁的周边布置,相对于燃烧器出口的方向切向指向,靠近环状部7的上死点因此近似与其相切,从而与环状部7中的流体的自然再循环流动同向地喷射预混合物。在图1的截面图中仅示出了一个这样的喷射器,但是应当理解通过围绕环状部7的周边并排的类似喷射器来复制喷射器结构。
[0054] 现在将进一步详细地描述两个预混合器系统。
[0055] 入口预混合器
[0056] 图2A、2B和3示出了入口预混合器21的进一步细节。在预混合器21反映的实施例中,燃料(可以是气体或液体燃料)在燃料入口13处引入中心毂1,并且经由四个径向辐条19等流出至安装在燃料辐条上的四个同心圈2A、2B等中。燃料与轴向成0-90度范围内的度(正或负(即,根据具体的圈对而远离或者朝向轴线),但是在任何情况下都使得角度的绝对值在0-90度的范围内,更优选地与轴向成30-90度角)喷射到形成在相邻的圈2A、2B等之间的环形通道内,进入来自压缩机的高速空气中。
[0057] 同心圈2A、2B等和辐条19是空气动力学形状的,如图2B所示。圈的数量应该在2到大约5的范围内,并且应该优选提供小于50%或者更优选小于40%的流动阻塞。圈2A、2B等中的燃料孔口(孔)201、202等被选为提供燃料至进入空气的足够渗透,从而在发动机的操作包线上提供最彻底混合(最小未混合水平)的混合物。因此,它们有不同的尺寸/直径,从而以负荷曲线上的不同点为目标。
[0058] 在替代实施例中,燃料能够从圈结构的外径212而不是毂211供给到辐条。
[0059] 优选地,孔201和202定向为沿主要径向方向将燃料喷射到交叉流动的压缩机空气中。在该实施例中,为了容易制造,孔被定向为相对于轴向成近似±70度。然而,该角度不是关键的。通常,角度范围能从大约±0度到大约±90度;优选在大约±60度与大约±90度之间;更优选为大约±90度。
[0060] 孔尺寸是不均匀的,为了不同功率范围,即不同燃料-空气动量流量比水平中的更优性能而提供不同尺寸的孔。不同的孔尺寸能够通过冷流动混合实验、CFD或经验公式、或者它们的任意组合而确定。孔的总数量可以大于传统预混合器中的对应数量。
[0061] 在一个构造中,孔尺寸被选为提供三个不同尺寸的多个孔,它们适于分别在低、中和高功率带中给出最优的混合。例如,小孔可以定尺寸为用于优化的低功率操作(0-30%发动机负荷);中间孔可以定尺寸为用于优化的中等功率操作(0-70%发动机负荷);大孔可以定尺寸为用于优化的高功率操作(70-100%发动机负荷),并且组合使用以在整个功率范围上提供最均匀的混合。优选地,在两个相邻圈上跨过由这两个圈限定的环形通道,每个孔与不同尺寸的孔成对。每个上述孔直径(在本示例中为三个不同直径,不过可以是更大的数)可以近似均匀地周向分布,以确保在预混合物入口的横截面区域中最均匀的混合物。
[0062] 图3中示出了一个示例性孔布局。角度χ1和χ2(图中未示出)是径向角度孔偏移。下表作为一个可能的示例示出了对于所示实施例中的八排孔的四分之一的孔布局:
[0063]排号 角度χ1(第一孔) 角度χ2(间隔) 孔
1 15 12 6
2 7 12.6 7
3 6 7.8 11
4 4.25 6.8 13
5 3.5 5.2 17
6 3.5 3.6 24
7 3.5 3.3 26
8 3 6.5 14
[0064] 这些特征的组合在发动机操作范围上提供了减小的混合长度和规模,较宽的混合均匀性包线,并且与气体和液体燃料相容。
[0065] 现有技术的燃料-空气混合器还包括一些如前讨论的毂和辐条设计。然而,它们没有从同心圈喷射燃料或者提供多个不同的喷射孔尺寸,并且它们没有在任何给定的发动机负荷点处表现和/或实现相同程度的混合均匀性。现有技术的预混合策略不会实现本发明的低排放性能。
[0066] 由于通过(a)不均匀孔尺寸、(b)多个孔和(c)较小/较短的混合规模实现的较高混合水平,上述入口预混合器实现了平坦的混合曲线和NOX、CO、UHC等超低的燃烧排放水平。这在较大的发动机操作包线上提供了整体更优的混合均匀性。这里描述的方法能够适合任何发动机燃料安排(即,如何在发动机的操作包线上计量燃料:燃料vs发动机负荷),并且与气体或液体燃料相容。其可适于任何使用液体和/或气体燃料、用于任何应用的燃烧器,该应用包括但不限于发电,用于飞行的主推进喷气发动机(包括涡轮扇、涡轮喷气发动机、冲压喷气发动机等)和APU。
[0067] 在几个普通燃气涡轮发动机操作负荷点处的几个月的燃烧测试表明,该预混合器与本文描述的其它部件协作能够提供超低排放结果(同时NOX、CO、UHC<3ppm,15%的O2)。
[0068] 涡流预混合器
[0069] 在一个实施例中,如图1和图4中的涡流预混合器31所示,燃料和空气在喷入环状部/腔流动之前预混合。喷射器提供小的混合规模、多个喷射位点、以及短的所需预混合长度。燃料和空气在喷射到环状部中之前被预混合,或者部分地预混合。预混合物的二次喷射有助于环状部/腔流动的整体稳定性。
[0070] 在图1所示的实施例中,环状部7中的自然流动,即在没有预混合物喷射时将存在的流动(例如由于流体流过燃烧器的主流径(从入口6到出口5)而产生的流动),会是从接近出口的脱离点14沿着环状部7的再循环空间的曲线壁回到接近燃烧器入口6的点循环的单个涡流22。在该实施例中,涡流腔7尽管容纳单个涡流,但是较大,延长了腔内用于燃烧的停留时间。与现有技术不同,预混合器31将预混合的燃料和空气与壁23相切地直接喷入再循环区域(驻涡腔)7,因而与腔中的自然涡流22对齐,从而引入预混合物而对涡流22的自然流动模式的扰乱最小并且没有明显增加湍流。
[0071] 如图4所示,在一个实施例中,涡流预混合器31具有由管状燃料入口39供料的单独的燃料歧管99,燃料歧管99紧邻空气进入口8,将燃料在喷入腔内之前通过端口8送入进入空气流中。在所示实施例中,燃料歧管99包围环状部7,但是仅有单个燃料入口39(尽管入口可以在其它径向位置复制)。而且在该实施例中,燃料歧管99被具有孔42等、用于计量进入子歧管43中的燃料的圆形扩散(DP)板38分隔,以减少单个供给管布置中燃料压力的周向不均匀性。从子歧管43流动的燃料进入进入空气流(从8),经过燃料孔口(孔)100等,与进入空气混合,并且通过孔24进入环状部7。预混合方式不是关键的,但是在当前实施例中是交叉流的简单喷射。本申请可以是任何流体燃料类型—液体、气体、低BTU、富氢(“合成”)气体等等。
[0072] 如图4中的多个孔24所示,元件8、100和24围绕环状部7的周边周向复制,燃料歧管99形成共同供给所有预混合器入口的圆柱形结构。在该实施例中,再循环涡流从出口5到入口6,进入的预混合物以设计成导致以低湍流近似与再循环涡流相切并且沿着与再循环涡流大约相同的方向的平滑进入的方式导入环状部7中。在一个实施例中,可以设有围绕环状部7的外壁的外形周边均匀隔开的近似100个以上的这类孔(24等),每个孔具有小于一英寸的直径,在环状部7的外周极点之前正切指向。例如在一个实施例中,可以设有围绕环状部7的外壁的环形周边布置的近似100个以上的喷射器端口,每个喷射器端口具有大约0.1英寸至大约0.2英寸的直径。通常期望具有多个喷射器端口用于均匀和连续的预混合引入,端口数量越大,端口直径越小(由涡流容器的整体尺寸规定),在任意特定尺寸规模下较大的数量和较小的端口尺寸受到流体流动考虑限制,因为由于小端口尺寸而使摩擦增加。这样,进入的混合物平滑进入,形成用于涡流22的边界层
[0073] 通过涡流预混合器31流入环状部中的预混合充料既增强/加强了环状流动,又提供了自由基群的高燃烧强度,以进一步稳定主流动。
[0074] 预混合器31能够位于围绕环状部7周边的任何位置,但是当再循环是沿着从出口到入口的方向运动的单个涡流时,预混合器31优选在图4所示的象限中,更优选地为了较长的停留时间,入口接近该图中的点A(即,更接近脱离点14)。
[0075] 图1和4所示的预混合器-TVC组合反应了如何可以在筒式燃烧器中结合本发明的实施例。在大规模发电应用中,多个该燃烧器可以以大致圆形布置配置到燃气轮机的出口,燃气轮机进而联接到发电机。
[0076] 空气进入口8还可从所示的筒式构造修改为环形构造。环形构造的端口布置在布局上类似于图4所示,尺寸定为围绕环形燃烧器的周边装配。环形燃烧器也可附接到用于大规模发电的燃气轮机。此外,本发明的环形变型可例如应用于用于飞行的主推进喷气发动机(包括涡轮风扇、涡轮喷气发动机、冲压喷气发动机等),或者应用于用作APU的较小燃气轮机/发电机。其它应用包括在整体煤气化联合循环(IGCC)工厂和热电联产(CHP)或废热发电工厂中的燃烧涡轮机。
[0077] 本文描述的涡流混合器不限于如图1和4所示具有曲线壁的TVC设计。例如如图5所示,涡流预混合器可以与具有矩形壁534等的TVC腔一起使用。图5所示的燃烧器501内的TVC腔532具有在三侧上为近似矩形的环绕壁轮廓。(在该实施例中,TVC腔531基本是TVC腔532的镜像并且类似设置)。TVC腔532成形并且尺寸定为使得由通过燃烧器501的主流动534在其中建立由箭头533近似指示的单个涡流。预混合的燃料和空气可以以增强TVC腔中的自然涡流的方式引入,例如在与箭头510和509对应的位置中的一个或两个位置处引入。在箭头510的情况下,预混合物喷射近似与涡流533相切,并且基本沿着与涡流533相邻的壁534进入。在箭头509的情况下(代表可以与箭头510相关的预混合器结合使用或者不结合使用的附加预混合器),喷射再次与涡流533近似相切,而且与进入流动
535加入涡流533的方向基本对齐。
[0078] 图5所示的TVC设计可用于三维矩形结构(即,在图5的页面的上下延伸)中,图5示出该结构的截面。可选地,具有这类腔的TVC设计可以以环面三维“包绕”,以形成环形燃烧室,“上”和“下”环形涡流腔具有直线壁,截面同样与图5所示的上下腔区域531和532对应。矩形设计可用作筒式燃烧器,环形设计用作环形燃烧器,并且分别配置在与关于图1和4的实施例描述类似的应用中。
[0079] 燃料分级
[0080] 尽管如前所述,预混合器21和31能够独立作用,这里描述的两个预混合器21和31的组合、或者其它类型的入口喷射器和直接涡流喷射器的组合,能够用在任何TVC应用的燃料分级策略中。
[0081] 相对于入口预混合器21增加通过涡流预混合器31的燃料进量能够在发动机减负荷和部分功率应用期间使操作更加稳定。向预混合器31和21添加相对等量的空气允许优良的减负荷性能。这可以取决于发动机,从而可以改变这些部分。然而典型地,通过预混合器31的空气应该一般少于通过预混合器21的空气,或者更精确地说,20-40%。
[0082] 更一般地,本发明的一个实施例设想的燃料分级使得在燃烧器中的多个离散位置喷射燃料,以在窄带中维持火焰温度,使得NOX/CO/UHC排放低于目标速率。当发动机加速时,燃料初始仅通过涡流预混合器31的孔100喷射,直到火焰温度(φ)达到它们的NOX限值。见图6A和6D。在中等功率带(图6B)中,切换操作使得主要通过入口预混合器21供给燃料。在高功率范围(图6C)中,燃料通过入口预混合器21和涡流预混合器31两者喷射。这样燃料离散区域允许在将NOX和CO保持在规定限值内的同时“沿着(walk up)”功率曲线,如火焰温度要求的那样。见图6E。
[0083] 此外,燃烧器能够设计有多个TVC腔,每个TVC腔具有单独的预混合器入口。各个TVC腔中的喷射能够相对彼此并且相对入口预混合改变,以提供更精细的控制,而且通过允许经一系列腔燃料供给的增量变化而不是依靠单个腔中的较大燃料供给变化,改进了减负荷期间的温度均匀性。
[0084] 参照图1和4中的实施例,优选地,涡流预混合器31在操作期间未完全关闭。相反,优选的是将燃料供给的比例从一个预混合器到下一个预混合器分阶段,同时总是保持涡流预混合器31至少最小地打开。
[0085] 其它实施例可涉及多个TVC腔。例如,图7A所示的实施例包括入口预混合器791和轴向定位的两个TVC腔,上游TVC腔702和下游TVC腔703,它们具有对应的预混合器入口742和743。
[0086] 由预混合器供料的多个TVC腔可包括相对彼此径向定位的TVC腔。该布置的一个示例在图7B中示出,图7B示出了径向布置的腔712和713,对应的预混合器入口752和753,以及入口预混合器792。
[0087] 多腔布置中的每个TVC腔,例如图7A和7B所示的TVC腔,可具有如所示的自身的涡流预混合器入口(或者可选地,离散的燃料和/或空气入口),这些入口能够独立于其它腔和/或主入口被供给燃料。该布置提供更大数量的燃料-空气区域,从而能通过经过更大数量的燃烧区域散布燃料供给变化而提供更优的减负荷性能。
[0088] 在其它实施例中,TVC腔可仅位于燃烧器内部,如图7C和7D所示。这些腔可例如是曲线和轴向分级的,例如图7C中的腔722和723、以及对应的预混合器入口762和763(以及入口预混合器793),这些腔可以是直线和轴向分级的,例如图7D中的腔732和733、以及对应的预混合器入口772和773(以及入口预混合器794),或者腔形状、位置和布置的其它组合。
[0089] 优选地,在轴向布置的多腔TVC实施例中,最上游的腔(至少),例如图7A中的腔702会在操作期间被连续供给燃料,不过供给水平可变化。在径向构造中,优选半径最大的腔(至少),例如图7B中的腔712,会在操作期间被连续供给燃料,同样供给水平可变化。
[0090] 如上所述,上述操作方式不限于本公开具体示出或描述的入口预混合器和涡流预混合器。虽然此处设想的“燃料分级”的操作原理主要具体参照本文具体教导的预混合器设计进行描述,但是应理解,提供入口预混合器和直接涡流预混合器的组合的任何TVC都能从该方法中潜在受益。
[0091] 对于超低排放性能而言,可以被独立供给燃料的入口预混合器和一个以上的涡流预混合器的组合比之前可用的提供了更优的优化。每个预混合器优选提供了减小的混合长度和/或规模,得到在发动机操作包线上更宽的混合均匀性范围,因此得到优良的排放性能,与多种燃料相容(气体或液体),能够适于任何发动机燃料安排并且实际上对于燃料分级应用是优化的。
[0092] 例如,在诸如图7A所示的轴向多腔布局中,用于燃烧器加负荷和减负荷的一个燃料分级策略可能涉及到:在0-33%的功率经过第一环状部预混合器入口742供给燃料,在33-66%功率的范围内放弃预混合器742,而主要通过主入口预混合器791供给燃料,然后在66-100%功率的范围内使用经过所有三个预混合器791、742和743的实质流动。可以对于图1、4、6A-6C、7A-7D中所示的任意布局以及其它构造设计类似以及变化的策略。在一些实施例中,可以手动致动对于各个预混合器的燃料控制;在其它实施例中,控制可以基于诸如功率、温度、NOX或CO浓度、时间等的输入而计算机化,或者可利用手动超越控制装置而计算机化。
[0093] 以上概述的燃料分级方法不限于与具有关于图1和4讨论的结构特性的预混合器一起使用。例如,Haynes等对于主燃烧器入口和TVC腔二者都利用传统的预混合器。然而,与上述类似的技术可以利用该燃烧器实践,以从一个预混合器到另一个预混合器将燃料和空气流动分阶段,或者将预混合器组合为最适合各种功率带中的操作。
[0094] 类似地,上述燃料分级的利用延及到需要可变功率输出的所有类型的燃气轮机应用,包括大框架发电、包括主推进喷气发动机(包括涡轮风扇、涡轮喷气发动机、冲压喷气发动机等)和APU的飞行应用、以及在整体煤气化联合循环(IGCC)工厂和热电联产(CHP)或废热发电工厂中的燃烧涡轮机。
[0095] 因此明显的是,本发明符合上述目的,相比现有技术在易于使用和有效性方面提供了许多优点。尽管已经详细描述本发明,但应理解,各种修改、替代和变更可容易被本领域技术人员发现并且可以在这里做出而不脱离由权利要求限定的本发明的精神和范围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈