首页 / 专利库 / 电子零件及设备 / 压电谐振器 / Microresonator of tuning fork configuration

Microresonator of tuning fork configuration

阅读:766发布:2023-03-26

专利汇可以提供Microresonator of tuning fork configuration专利检索,专利查询,专利分析的服务。并且A piezoelectric or ferroelectric microresonator of tuning fork configuration has an overall length of from about 100 mils to 500 mils, and a width of from about 15 mils to about 50 mils. In a typical embodiment, the microresonator includes a thin film electrode extending across the bottom surface of both tines, and on the top surface, a first set of electrodes extending along the outer tine edges and a second set of electrodes extending along the inner tine edges adjacent the tuning fork slot. The microresonator stem portion may be attached to a substrate by means of a eutectic pedestal or other mounting. Metal film weights at the tine ends may be used for adjusting the frequency of the microresonator, and the tines themselves may be tapered for improved temperature coefficient characteristics. Various other microresonator configurations are disclosed, as is a method for fabricating the tuning forks microlithographically.,下面是Microresonator of tuning fork configuration专利的具体信息内容。

1. A piezoelectric or ferroelectric microresonator of tuning fork configuration and having an overall length in the range of from about 100 mils to 500 mils, an overall width of from about 15 mils to 50 mils, and a thickness of less than about 3 mils, said microresonator having on the obverse surface thin film electrodes along the respective inner and outer edges of at least one tine and pads for attachment of electrical connection wires to said tine edge electrodes, said microresonator having on the reverse surface another thin film electrode extending across at least said one tine, and a pedestal for mounting the reverse surface of the microresonator stem to a substrate.
2. A microresonator according to claim 1 wherein the obverse surface includes a first thin film electrode along the outer edge of both tines and a second electrode along the inner edge of both tines, said other, reverse surface electrode extending across substantially the entire width of both tines.
3. A microresonator according to claim 2 further comprising, on the obverse surface of each tine, a third thin film electrode disposed between said inner and outer electrodes.
4. A microresonator according to claim 1 further comprising means for applying a driving signal between said reverse surface electrode and either an inner or outer electrode, an output signal being produced between said reverse surface electrode and another of said inner or outer electrodes.
5. A microresonAtor according to claim 1 further comprising a thick film metal weight disposed on each tine.
6. A microresonator according to claim 5 wherein the mass of said weights in controlled to adjust the resonant frequency of said microresonator to a preselected value.
7. A microresonator according to claim 6 wherein said mass is controlled by selective laser removal of portions of said thick film weights.
8. A microresonator according to claim 1 wherein the slot between said tines is in the range of from about 1 mil to 5 mils.
9. A microresonator according to claim 1 wherein the length of the tuning fork stem is at least three times the tine width.
10. A microresonator according to claim 1 wherein said pedestal comprises an epoxy resin.
11. A microresonator according to claim 1 wherein said pedestal is formed by alloying.
12. A microresonator according to claim 1 wherein electrical connection to said reverse surface electrode is made via said pedestal.
13. A microresonator according to claim 1 and fabricated microlithographically of quartz or lead zirconate titanate.
14. A microresonator according to claim 1 wherein said inner and outer edge electrodes each are segmented, segments of said electrodes being disposed to initiate oscillation of said microresonator in an odd harmonic mode.
15. A microresonator comprising a microminiature tuning fork of piezoelectric or ferroelectric quartz or leads zirconate titanate material, and having on the obverse surface a first substantially U-shaped thin metal film electrode extending along the outer edges of the tuning fork tines and a second substantially U-shaped thin metal film electrode extending along the inner edges of said tines adjacent the tuning fork slot, and having on the reverse surface a third thin metal film electrode extending substantially across both tines, thick film metal weights disposed on said tines adjacent the free ends thereof, said weights being dimensionally trimmed to establish the resonant frequency of said tuning fork.
16. A microresonator as defined in claim 15 wherein the length of the tuning fork stem is at least three times the tine width, and further comprising means for rigidly mounting one side of said stem to a support member.
17. A microresonator as defined in claim 15 having an overall length of between about 100 mils and 500 mils, an overall width of between about 15 mils and 50 mils, and a thickness of less than 3 mils, and formed by chemical etching of said material.
18. A microresonator according to claim 17 wherein said weights are formed by metal deposition, and wherein a portion of said deposited metal weights is removed by laser to establish the resonant frequency of said tuning fork.
19. A microresonator comprising a microminiature tuning fork of piezoelectric or ferroelectric material, and having on the obverse surface a first substantially U-shaped electrode extending along the outer edges of the tuning fork tines and a second substantially U-shaped electrode extending along the inner edges of said tines adjacent the tuning fork slot, and having on the reverse surface a third electrode extending substantially across both tines, further including means for rigidly mounting the stem of said tuning fork to a support member, said mounting means comprising a pedestal attached to the reverse surface of said tuning fork stem, electrical connection to said third electrode being via said pedestal.
20. A microresonator of tuning fork configuration and having low temperature coefficient, comprising a wafer of quartz situated within 10* of a 45* X cut and having a thickness in the range of from about 1 mil to 3 mils, the tines of said tuning fork being aligned substantially parallel to the Y axis of said quartz, the overall width of said microresonator being in the range of from about 15 mils to 50 mils.
21. A microresonator according to cLaim 20 further comprising thin film electrodes disposed on said tines and means for providing a driving signal to said electrodes, the resultant electric field produced in said tines initiating oscillation of said microresonator.
22. A microresonator according to claim 21 further comprising thick film metal weights disposed on said tines adjacent the free ends thereof.
23. A tuning fork: a. fabricated of piezoelectric or ferroelectric material, and b. having no dimension greater than 500 mils, c. thin film electrodes disposed on each tuning fork tine, cooperating with d. means for providing a driving signal to said thin film electrodes thereby to provide an electric field in said tines, e. said material being oriented to produce motion of said tines toward or away from each other in response to said provided electric field, f. pedestal means for rigidly mounting the stem of said tuning fork to a supporting substrate, and g. thick film metal weights disposed on said tines adjacent the free ends thereof, said weights being dimensionally trimmed to establish the resonant frequency of said tuning fork.
24. A tuning fork according to claim 23 wherein the stem length is at least three times the tine width.
25. A wrist watch, the time standard of said watch comprising a tuning fork according to claim 23.
26. A tuning fork according to claim 23 wherein the obverse surface of each tine includes an electrode adjacent the inner tine edge and an electrode adjacent the outer tine edge, and wherein the reverse surface of each tine includes another electrode extending substantially across the width of each tine.
27. An oscillator circuit incorporating as the frequency source a tuning fork according to claim 26.
28. In combination, an oscillator circuit according to claim 27, and means for adjusting the oscillation frequency of said circuit, comprising a capacitor connected between said reverse surface electrode and one of the electrodes on said obverse surface.
29. An oscillator according to claim 27 comprising: operational amplifier means for providing a driving signal to a first of said obverse surface electrodes, said operational amplifier means receiving an input derived from a second of said obverse surface electrodes, the phase shift of said means facilitating sustained oscillation of said tuning fork.
30. An oscillator according to claim 29 wherein said operational amplifier means comprises: a first operational amplifier providing a driving signal to the outer edge electrode on one tine, and a second operational amplifier receiving a signal from the inner edge electrodes on said tines, the output of said second operational amplifier providing the input to said first operational amplifier.
31. An oscillator according to claim 30 wherein each operational amplifier is provided with negative feedback, and further comprising a variable capacitor connected between said reverse surface electrode and the outer edge electrode on the other tine, said capacitor facilitating frequency adjustment of said oscillator.
32. An oscillator according to claim 27 comprising: complementary channel transistors connected in series across a source of voltage, means for driving the gates of said transistors with a signal obtained from a first of said obverse surface electrodes, and means for providing a driving signal obtained from the common connection of said series connected transistors to a second of said obverse surface electrodes.
33. A wrist watch comprising: an oscillator according to claim 32, circuit means for dividing the frequency of the signal provided by said oscillator, and motor means for driving the hands of said watch in response to the divided frequency supplied by said circuit means.
34. A tuning fork according to claim 23 and having an overall length of from about 100 mils to about 500 mils, an overall width of from about 15 mils to about 50 mils, a thickness of less than about 3 mils and a slot width of from about 1 mil to 5 mils.
35. A tuning fork according to claim 34 and fabricated microlithographically.
说明书全文
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈