首页 / 专利库 / 信号处理 / 滤波器 / 模拟滤波器 / 基于PWM编码激励的非线性超声导波检测系统及方法

基于PWM编码激励的非线性超声导波检测系统及方法

阅读:83发布:2020-05-11

专利汇可以提供基于PWM编码激励的非线性超声导波检测系统及方法专利检索,专利查询,专利分析的服务。并且本 发明 涉及一种基于PWM编码激励的非线性超声导波检测系统及方法,系统包括:主控模 块 ,用于产生PWM脉冲调制 信号 ,并接收反馈的 数字信号 ,对该数字 信号处理 获得待测材料的使用寿命评价结果;超声任意 波形 发生器,与主控模块连接,用于根据PWM脉冲调制信号产生 超 声波 电信号 ;发射端 探头 模块,用于在 超声波 电信号的激励下向待测材料发射高斯型的多周期正弦信号;接收端探头模块,用于接收经待测材料后反馈的超声导波信号,并转换为反馈电信号;超声信号采集模块,在主控模块的控制下,用于对反馈电信号进行 采样 ,转换为数字信号;多路电源模块,用于供电。与 现有技术 相比,本发明具有 信噪比 高、操作简便等优点。,下面是基于PWM编码激励的非线性超声导波检测系统及方法专利的具体信息内容。

1.一种基于PWM编码激励的非线性超声导波检测系统,其特征在于,包括:
主控模,用于产生PWM脉冲调制信号,并接收反馈的数字信号,对该数字信号处理获得待测材料的使用寿命评价结果;
超声任意波形发生器,与所述主控模块连接,用于根据所述PWM脉冲调制信号产生声波电信号
发射端探头模块,安装于所述待测材料上,用于在所述超声波电信号的激励下向所述待测材料发射高斯型的多周期正弦信号;
接收端探头模块,安装于所述待测材料上,用于接收经所述待测材料后反馈的超声导波信号,并转换为反馈电信号;
超声信号采集模块,与所述主控模块连接,在所述主控模块的控制下,用于对所述反馈电信号进行采样,转换为所述数字信号;
多路电源模块,用于供电。
2.根据权利要求1所述的基于PWM编码激励的非线性超声导波检测系统,其特征在于,所述发射端探头模块包括相连接的低通模拟滤波器和低频超声换能器
3.根据权利要求1所述的基于PWM编码激励的非线性超声导波检测系统,其特征在于,所述接收端探头模块包括相连接的高通模拟滤波器和高频超声换能器。
4.根据权利要求1所述的基于PWM编码激励的非线性超声导波检测系统,其特征在于,所述发射端探头模块和接收端探头模块分别通过一楔块安装于待测材料上,且两个楔块对称设置。
5.根据权利要求1所述的基于PWM编码激励的非线性超声导波检测系统,其特征在于,所述主控模块包括相连接的ARM主处理器和FPGA芯片,其中,
所述ARM主处理器内运行有程序,执行:根据设置参数,通过超声任意波形产生算法生成相应的PWM脉冲调制信号;
基于所述数字信号进行解调获得还原导波信号,计算获得该还原导波信号携带的材料非线性参数,基于该材料非线性参数获得待测材料的使用寿命评价结果;
所述FPGA芯片接收ARM主处理器发来的控制指令,分别控制超声任意波形发生器和超声信号采集模块工作。
6.根据权利要求5所述的基于PWM编码激励的非线性超声导波检测系统,其特征在于,所述ARM主处理器通过SPI总线与FPGA芯片进行双向通信。
7.根据权利要求5所述的基于PWM编码激励的非线性超声导波检测系统,其特征在于,所述ARM主处理器还连接有LCD显示器。
8.根据权利要求5所述的基于PWM编码激励的非线性超声导波检测系统,其特征在于,所述使用寿命评价结果的获取过程包括:
对所述还原导波信号进行数字滤波,对滤波后的导波信号进行快速傅里叶变换得到幅度谱,并计算谐波幅度与基波幅度平方的比,获得材料非线性参数,根据材料非线性参数与标准数据库的对比,获得待测材料的使用寿命评价结果。
9.根据权利要求5所述的基于PWM编码激励的非线性超声导波检测系统,其特征在于,所述设置参数包括换能器频响特性和发射信号周期数。
10.一种采用如权利要求1所述的基于PWM编码激励的非线性超声导波检测系统进行的检测方法,其特征在于,包括以下步骤:
主控模块产生PWM脉冲调制信号,超声任意波形发生器根据所述PWM脉冲调制信号产生超声波电信号;
发射端探头模块在所述超声波电信号的激励下向待测材料发射高斯型的多周期正弦信号,该多周期正弦信号在待测材料中传播;
接收端探头模块接收经所述待测材料后反馈的超声导波信号,并转换为反馈电信号;
超声信号采集模块对所述反馈电信号进行采样,转换为所述数字信号;
主控模块接收反馈的数字信号,对该数字信号处理获得待测材料的使用寿命评价结果。

说明书全文

基于PWM编码激励的非线性超声导波检测系统及方法

技术领域

[0001] 本发明属于无损检测技术领域,特别涉及一种利用无损检测评价材料使用寿命的基于PWM编码激励的非线性超声导波检测系统及方法。

背景技术

[0002] 超声在板状或管状固体材料中传播时,会与波导的边界发生来回多次反射,再加上超声横波和纵波的转换,进而产生导波。非线性超声是超声在介质中传播时由于介质的非线性的存在导致的波形发生畸变,信号上出现谐波成分而形成。
[0003] 这种非线性常见有两类,一类是材料的应-应变曲线的非线性,可用于力学特性的评价;第二类是材料结构的不连续造成的,例如缺陷,微裂纹和气泡等,可用于对材料内部结构进行探伤评价。非线性超声导波对传播介质的信息较为敏感,可用于工业管道、工业板材、路轨道以及骨骼诊断等无损检测领域中。
[0004] 材料损伤伴随着微裂纹的产生、传播与积累,会严重影响材料的使用寿命。微裂纹作为一种非线性因素会增强材料的非线性效应。通过研究超声在非线弹性范围内的特性可以用于评价材料的损伤情况,进而可建立数据库预估材料的使用寿命。通常采用计算超声导波信号的非线性参数,即二次谐波幅值的平方与基波幅值的比值,来反映材料的特性。
[0005] 超声导波的非线性成分远低于基波成分的幅度,在测量时容易受到耦合的影响。此外超声导波在板状或管状材料中传播的衰减比较大,谐波成分在传播过程中的衰减会更大,耦合剂的涂抹以及探头接触情况等也会增大超声导波信号的衰减,使得非线性导波难以检测。
[0006] 为了实现这样一个非线性超声导波系统,需要在发射端激励出高斯型的多周期正弦信号。传统方法是通过数模转换器和线性功率放大器实现的,该方法可通过提高发射激励信号的幅度来提高信噪比,但要求发射系统需要工作在高电压状态,对系统要求较高,提升了设计复杂度和成本,且系统体积庞大,操作复杂,难以进行实时数据分析。

发明内容

[0007] 本发明的目的在于克服上述现有技术存在的缺陷而提供一种信噪比高、操作简便的基于PWM编码激励的非线性超声导波检测系统及方法。
[0008] 本发明的目的可以通过以下技术方案来实现:
[0009] 一种基于PWM编码激励的非线性超声导波检测系统,包括:
[0010] 主控模,用于产生PWM脉冲调制信号,并接收反馈的数字信号,对该数字信号处理获得待测材料的使用寿命评价结果;
[0011] 超声任意波形发生器,与所述主控模块连接,用于根据所述PWM脉冲调制信号产生声波电信号
[0012] 发射端探头模块,安装于所述待测材料上,用于在所述超声波电信号的激励下向所述待测材料发射高斯型的多周期正弦信号;
[0013] 接收端探头模块,安装于所述待测材料上,用于接收经所述待测材料后反馈的超声导波信号,并转换为反馈电信号;
[0014] 超声信号采集模块,与所述主控模块连接,在所述主控模块的控制下,用于对所述反馈电信号进行采样,转换为所述数字信号;
[0015] 多路电源模块,用于供电。
[0016] 进一步地,所述发射端探头模块包括相连接的低通模拟滤波器和低频超声换能器
[0017] 进一步地,所述接收端探头模块包括相连接的高通模拟滤波器和高频超声换能器。
[0018] 进一步地,所述发射端探头模块和接收端探头模块分别通过一楔块安装于待测材料上,且两个楔块对称设置。
[0019] 进一步地,所述主控模块包括相连接的ARM主处理器和FPGA芯片,其中,[0020] 所述ARM主处理器内运行有程序,执行:根据设置参数,通过超声任意波形产生算法生成相应的PWM脉冲调制信号;
[0021] 基于所述数字信号进行解调获得还原导波信号,计算获得该还原导波信号携带的材料非线性参数,基于该材料非线性参数获得待测材料的使用寿命评价结果;
[0022] 所述FPGA芯片接收ARM主处理器发来的控制指令,分别控制超声任意波形发生器和超声信号采集模块工作。
[0023] 进一步地,所述ARM主处理器通过SPI总线与FPGA芯片进行双向通信。
[0024] 进一步地,所述ARM主处理器还连接有LCD显示器。
[0025] 进一步地,所述使用寿命评价结果的获取过程包括:
[0026] 对所述还原导波信号进行数字滤波,对滤波后的导波信号进行快速傅里叶变换得到幅度谱,并计算谐波幅度与基波幅度平方的比,获得材料非线性参数,根据材料非线性参数与标准数据库的对比,获得待测材料的使用寿命评价结果。
[0027] 进一步地,所述设置参数包括换能器频响特性和发射信号周期数。
[0028] 本发明还提供一种采用所述的基于PWM编码激励的非线性超声导波检测系统进行的检测方法,包括以下步骤:
[0029] 主控模块产生PWM脉冲调制信号,超声任意波形发生器根据所述PWM脉冲调制信号产生超声波电信号;
[0030] 发射端探头模块在所述超声波电信号的激励下向待测材料发射高斯型的多周期正弦信号,该多周期正弦信号在待测材料中传播;
[0031] 接收端探头模块接收经所述待测材料后反馈的超声导波信号,并转换为反馈电信号;
[0032] 超声信号采集模块对所述反馈电信号进行采样,转换为所述数字信号;
[0033] 主控模块接收反馈的数字信号,对该数字信号处理获得待测材料的使用寿命评价结果。
[0034] 与现有技术相比,本发明具有如下有益效果:
[0035] 1、本发明采用超声任意波形发生器,可发射任意波形超声信号,编解码的应用提高了导波信号的信噪比。
[0036] 2、本发明改变现有技术通过大功率放大器发出信号再经过衰减来发出信号的方式,直接通过PWM编码激励信号,且算法集成在软件层面,可以实时、便捷地编辑激励信号。
[0037] 3、本发明将ARM主处理器与底层硬件电路区分开,通过一定的通信协议实现ARM与FPGA的协同工作,便于系统的调试和维修。
[0038] 4、本发明采用PWM编码激励和低通滤波的方式产生高斯型多周期的正弦超声导波信号,可在不增加系统硬件复杂度和成本的前提下提升信噪比。
[0039] 5、本发明具有集成度高,体积小,便于携带,操作简便等优点,ARM处理器、FPGA芯片以及其它除发射、接收换能器的模块都集成在一款长约26cm,宽约22cm,高约5.5cm的外壳中,便携,且只需通过楔块及超声耦合剂将发射、接收换能器放置在待测材料上操作LCD显示器即可实现一次完整测量。
[0040] 6、本发明以谐波幅度与基波幅度平方的比等效为材料真实非线性参数,在不影响评估结果的前提下可以快速地根据得到的参数获得最终结果,降低设计复杂度。
[0041] 7、本发明在航空航天、桥梁、建筑等领域的金属材料超声无损检测方面具有前景和应用价值。附图说明
[0042] 图1为本发明的结构示意图;
[0043] 图中:1.多路电源模块,2.超声任意波形发生器,3.低通模拟滤波器,4.高通模拟滤波器,5.超声信号采集模块,6.FPGA芯片,7.ARM主处理器,8.低频超声换能器,9.高频超声换能器,10.LCD显示器,11.待测材料,12.楔块。

具体实施方式

[0044] 下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
[0045] 如图1所示,本实施例提供一种基于PWM编码激励的非线性超声导波检测系统,包括主控模块、超声任意波形发生器2、发射端探头模块、接收端探头模块、超声信号采集模块5和多路电源模块1,其中,主控模块用于产生PWM脉冲调制信号,并接收反馈的数字信号,对该数字信号处理获得待测材料11的使用寿命评价结果;超声任意波形发生器2与所述主控模块连接,用于根据所述PWM脉冲调制信号产生超声波电信号;发射端探头模块安装于所述待测材料11上,用于在所述超声波电信号的激励下向所述待测材料发射高斯型的多周期正弦信号;接收端探头模块安装于所述待测材料1上,用于接收经所述待测材料后反馈的超声导波信号,并转换为反馈电信号;超声信号采集模块5与所述主控模块连接,在所述主控模块的控制下,用于对所述反馈电信号进行采样,转换为所述数字信号;多路电源模块1用于供电。
[0046] 多路电源模块1为整个系统中所有电路模块提供电能。本实施例中,多路电源模块1包括驱动超声任意波形发生模块的正负高压电以及信号采集模块所需的正负对称基准电压。
[0047] 发射端探头模块包括相连接的低通模拟滤波器3和低频超声换能器8。接收端探头模块包括相连接的高通模拟滤波器4和高频超声换能器9。所述发射端探头模块和接收端探头模块分别通过一楔块12安装于待测材料11上,且两个楔块12对称设置。本实施例中,楔块12为直三角形,两个楔块12的一直角边一侧相互靠近设置。
[0048] 楔块12和待测材料11之间还设置有超声耦合剂。本实施例中,超声耦合剂采用工业检测领域常用的超声耦合剂。
[0049] 超声任意波形发生模器2采用具有对称和大电流动能力的PMOS和NMOS管推挽输出电路,并采用二极管单向导通电路进行隔离保护。超声信号采集模块5采用具有高共模抑制比的多级放大器以及14bit高精度和50MHz高速AD转换器。
[0050] 主控模块包括通过SPI总线双向通信连接的ARM主处理器7和FPGA芯片6。ARM主处理器7内运行有程序,执行:根据设置参数,包括换能器频响特性和发射信号周期数等,通过超声任意波形产生算法生成相应的PWM脉冲调制信号;基于所述数字信号进行解调获得还原导波信号,计算获得该还原导波信号携带的材料非线性参数,基于该材料非线性参数获得待测材料的使用寿命评价结果。所述FPGA芯片6接收ARM主处理器7发来的控制指令,通过SPI总线以及IO口分别控制超声任意波形发生器2和超声信号采集模块5工作。
[0051] 在某些实施例中,ARM主处理器7还连接有LCD显示器10,可用于显示采集到的波形和评价结果。
[0052] 本实施例中,ARM处理器、FPGA芯片以及其它除发射、接收换能器的模块都集成在一款长约26cm,宽约22cm,高约5.5cm的外壳中,集成度高,体积小,便携,,操作简便。
[0053] 上述基于PWM编码激励的非线性超声导波检测系统进行待测材料使用寿命检测的过程包括以下步骤:
[0054] 1)主控模块产生PWM脉冲调制信号,超声任意波形发生器根据所述PWM脉冲调制信号经过D类放大器放大后产生超声波电信号。
[0055] FPGA芯片7通过IO口发出PWM脉冲调制信号,输出±50V的高压PWM调制脉冲信号。
[0056] 2)发射端探头模块中的低通模拟滤波器3滤除高频成分,在超声波电信号的激励下低频超声换能器8向待测材料发射高斯型的多周期正弦信号。该多周期正弦信号通过楔块12和超声耦合剂传输到待测材料11上,超声在待测材料中传播产生超声导波。
[0057] 3)接收端探头模块接收经所述待测材料后反馈的超声导波信号,并转换为反馈电信号。
[0058] 超声导波在待测材料11中经过一段距离的传输后再通过楔块12和超声耦合剂由高频超声换能器9接收并转换为电信号。该电信号经过高通模拟滤波器4滤除超声导波的基波成分,便于非线性的谐波成分被超声信号采集模块5采样。
[0059] 4)超声信号采集模块5对所述反馈电信号进行采样,转换为所述数字信号。
[0060] 5)主控模块接收反馈的数字信号,对该数字信号处理获得待测材料的使用寿命评价结果。
[0061] FPGA芯片6通过LVDS高速数据传输接口读取该数字信号,经过多次采样做平均后通过SPI将数据发送给ARM主处理器7做进一步信号处理。
[0062] ARM主处理器7对接收到的信号进行解调和数字滤波等预处理,然后通过快速傅里叶变换计算出接收信号的幅度谱,通过计算二次谐波幅度A2f0与基波幅度的平方Af02之比得出非线性参数A2f0/Af02。A2f0/Af02与材料自身的非线性参量之间存在一个常数的倍数关系,因此A2f0/Af02可作为材料真实非线性的一个等效参数,此等效方法在不影响评估结果的前提下可以快速地根据得到的参数获得最终结果,降低设计复杂度。根据材料非线性参数与标准数据库的对比,获得待测材料的使用寿命评价结果。
[0063] 以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由本发明所确定的保护范围内。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈