首页 / 专利库 / 信号处理 / 滤波器 / 线性滤波器 / 低通滤波器 / 基于Cuk变换器拓扑的高压直流断路器及其切除故障的方法

基于Cuk变换器拓扑的高压直流断路器及其切除故障的方法

阅读:1发布:2023-08-12

专利汇可以提供基于Cuk变换器拓扑的高压直流断路器及其切除故障的方法专利检索,专利查询,专利分析的服务。并且基于 Cuk变换器 拓扑的高压直流 断路器 及其 切除 故障的方法,目的在于解决现有断路器设备成本高,响应速度慢,设备运行损耗高等问题,该高压直流断路器,包括断路器与控制系统,其中控制系统包括内环调节控制 电流 、外环调节控制 电压 ,通过在双闭环调节增加辅助 控制器 来进行高压直流断路器的变压和保护控制,实现相比于传统高压断路器具有更多的功能、开断速度快、节约成本等优点,既能在 高压直流输电 系统正常运行时实现断路器的升降压功能,并且能够在升压态和降压态之间进行切换,可以实现灵活地应用于不同电压等级的电 力 线路中;同时,也能够实现在输电线路发生 短路 故障时对短路故障进行及时有效的切除。,下面是基于Cuk变换器拓扑的高压直流断路器及其切除故障的方法专利的具体信息内容。

1.一种基于Cuk变换器拓扑的新型单向变压型高压直流断路器,其特征在于,包括高压直流断路器和控制系统,
高压直流断路器包括:设置在正输入端与负输入端间的输入电容Ci,输入电容器Ci的正输入端连接电感L1的输入端,电感L1的输出端IGBT开关组S1和中间电容器C的正端相连,电容器C的负端与电感L2的输入端和二极管正极相连,电感L2负端与输出电容器Co相连,IGBT开关模块组S1输出端、二极管的负极和输出电容器Co负端与负输入端连接,负输出端接地;
控制系统包括:依次连接的外环PI调节器、外环饱和环节、内环PI调节器、内环饱和环节、PWM发生器,还包括外环低通滤波器LPF和内环低通滤波器LPF;
高压直流断路器正输出端电压vo经过外环低通滤波器LPF后与输出电压参考值 进行比较后输入到外环PI调节器;
高压直流断路器中的电感电流iL经过内环低通滤波器LPF后与外环饱和环节输出的内环电感电流参考值 进行比较,比较的结果输入内环PI调节器;
在所述的内环饱和环节与PWM发生器之间还设置有一个辅助控制器
2.根据权利要求1所述的一种基于Cuk变换器拓扑的新型单向变压型高压直流断路器,其特征在于:所述的辅助控制器包括零值检测器和选择开关,零值检测器包括过零比较器和触发子系统,内环饱和环节的输出信号同时发送给过零比较器和触发子系统,过零比较器的输出信号作为触发子系统导通的条件,触发子系统的输出信号经过反向器输出至选择开关,选择开关的两个输入端分别与内环饱和环节的输出端和辅助控制器的零值信号连接,输出端与PWM发生器连接。
3.根据权利要求2所述一种基于Cuk变换器拓扑的新型单向变压型高压直流断路器,其特征在于:辅助控制器对占空比进行零值检测,当检测出零值时,判断出故障状态,执行选择开关操作,切断线路,直到故障排除,恢复正常后,零值检测器检测出占空比不为零,判断出属于正常状态,不动作。
4.一种根据1-4任一所述的一种基于Cuk变换器拓扑的新型单向变压型高压直流断路器的短路故障的切除方法,包括外环控制步骤、内环控制步骤、辅助控制步骤;
其中外环控制步骤包括以下步骤:
(a1)电压传感器采集高压直流断路器的正输出端电压vo;
(a2)正输出端电压vo经过外环低通滤波器LPF后与输出端电压参考值 进行比较;
(a3)比较的结果输入到外环PI调节器和外环饱和环节进行调节,外环饱和环节输出内环电感电流参考值
其中内环控制步骤包括以下步骤:
(b1)电流传感器采集到高压直流断路器中的电感电流iL;
(b2)将该电感电流iL通过低通滤波器LPF过滤掉高次谐波后得到反馈信号;
(b3)将反馈信号与输出电流参考值 进行比较;
(b4)比较的结果再经内环PI调节器、内环饱和环节的调节作用,输出断路器占空比D;
(b5)将步骤(b4)得到的输出信号占空比D经PWM发生器进行调制,控制高压直流断路器实现变压和故障切除功能;
其中辅助控制步骤包括以下步骤:
(c1)当高压直流输电系统正常运行时,占空比D保持一个稳定值,选择开关连接内环饱和环节输入端;
(c2)当高压直流输电线路短路故障发生时,占空比D由稳定值快速下降为零;
(c3)过零比较器进行比较输出值为1,触发子系统导通工作;
(c4)在输入占空比D值变为零的时刻开始,输出从0至1带上升沿阶跃信号,再经过反向器,触发子系统输出为在占空比D值变为零的那刻起从1至0的带下降沿阶跃信号;
(c5)选择开关接收到反向器输入的下降沿阶跃信号后,从上端位切换到下端位与零值信号连接将占空比D值置零并保持,直到故障完全隔离并清除。

说明书全文

基于Cuk变换器拓扑的高压直流断路器及其切除故障的方

技术领域

[0001] 本发明涉及一种高压直流输电变压及保护控制系统,具体是指一种基于Cuk变换器拓扑的新型单向变压型高压直流断路器及其切除短路故障的方法。

背景技术

[0002] 在高压交流输电系统中,输电线路的正常投入和事故切除,是通过高压交流断路器来实现的。而在高压直流输电系统中,则是利用换流控制(栅)极的控制来消除暂时性故障或者当发生短路故障时采用机械式高压断路器进行切除,但随着VSC-HVDC输电技术的发展和应用,由于机械式的高压直流断路器的响应时间过长难以满足短路故障的快速切除需求。因此,研制新型快速高压直流断路器,以促使高压直流输电系统的发展,甚为必要。ABB公司于2012年11月开发出了世界上第一台混合式高压直流断路器,将机械动学与电力电子设备相结合,可以在几毫秒之内断开一所大型发电站的输出电流,这使得大规模可再生能源的高效集成和交换以及建设全新高效电网进行远距离电力传输成为可能。高压直流断路器的类型主要有机械式断路器、固态断路器、混合式断路器、Z-source断路器和基于转换器的断路器。与高压直流转换开关只能开断正常运行电流不同的是,高压直流断路器具有故障电流的切断能力。
[0003] 目前的机械式高压直流断路器,能够在数十毫秒内切断短路电流,这种故障电流的切断速度尚不能满足新型VSC-HVDC输电系统的要求。固态断路器可以很容易地克服开断速度的限制,但在稳态运行时会产生大量损耗。混合式断路器兼具机械断路器良好的静态特性以及固态断路器无弧分断的动态特性,具有运行损耗低、使用寿命长、可靠性高和稳定性好等优点,但对于快速刀闸的制造要求很高,并且开断时间还是受到快速刀闸的影响以及保护系统和通信时间的影响。除了上述直接开断短路电流的方式之外,还可以考虑增加限流器配合断路器开关电流的方式,因为对于需要熄弧的机械开关,电流越大,熄弧越困难;而对于无需熄弧的电力电子器件,关断大电流会引起器件的动态过压,电流幅值越大,过压越高。

发明内容

[0004] 本发明的目的在于解决现有断路器设备成本高,响应速度慢,设备运行损耗高等问题,提供了一种基于Cuk变换器拓扑的新型单向变压型高压直流断路器及其短路故障的切除方法,达到同时能够实现在同一功率流方向实现升降压功能及断路器功能的目的。
[0005] 为了实现上述目的本发明采用以下技术方案:
[0006] 一种基于Cuk变换器拓扑的新型单向变压型高压直流断路器,其特征在于,包括高压直流断路器和控制系统,
[0007] 高压直流断路器包括:设置在正输入端与负输入端间的输入电容Ci,输入电容器的正输入端连接电感L1的输入端,电感L1的输出端IGBT开关模组S1和中间电容器C的正端相连,电容器C的负端与电感L2的输入端和二极管正极相连,电感L2负端与输出电容器Co相连,IGBT开关模块组S1输出端、二极管的负极和输出电容器Co负端与负输入端连接,负输出端接地;
[0008] 控制系统包括依次连接的外环PI调节器、外环饱和环节、内环PI调节器、内环饱和环节、PWM发生器,电压传感器采集到高压直流断路器的输出端电压vo,输出端电压vo经*过外环低通滤波器LPF后与输出电压参考值vo进行比较然后输入到外环PI调节器,电流传感器采集到高压直流断路器中的电感电流iL,电感电流iL经过内环低通滤波器LPF后与*
外环饱和环节输出的内环电感电流参考值iL进行比较,比较的结果输入内环PI调节器,在所述的内环饱和环节与PWM发生器之间还增加有一个辅助控制器
[0009] 本发明的基于Cuk变换器拓扑的新型单向变压型高压直流断路器运行导通态时,功率开关组S1导通,功率流经Ldc充电,断开态时,Ldc存储的能量通过二极管续流,电感电流连续时的运行模态,在一个开关周期Ts内,通过电感的直流电压平均值在不计损耗的情况下为零得出等式,计算分析式如下:
[0010] 在开关模态1[0,ton]中,t=0时,功率开关组S1导通,Cuk拓扑直流断路器器以功率开关组S1为界分为左右两个回路。左回路中输入电源电压Vi全部加到电感L1上,电感电流iL1线性增长。右回路电容器Co经负载对L2放电。D1在VC作用下反偏截止。L1和L2的电流全部流经功率开关组S1,具体如图5所示,根据基尔霍夫电压定理可得如下二式:
[0011]
[0012]
[0013] 在t=ton时,电感电流iL1升高至最大值iL1max,电感电流iL2也升高至最大值iL2max。电感电流iL1和iL2的增长量ΔiL1(+)和ΔiL2(+)分别通过以下二式求得:
[0014]
[0015]
[0016] 在开关模态2[ton,Ts]中,从t=ton时刻开始,功率开关组S1关断,电感电流iL通过二极管D1续流,形成以D1为边界的左右两个回路。L1和L2的电流全部流经D1。左回路中输入电源电压Vi和L1串联给C充电,因C容量较大,充电时电压VC增加不多,但电感储能因向C转移而使iL1下降;右边回路中电感电流iL2在输出电压Vo作用下下降,具体如图6中所示,两个电感电流的下降率分别如下二式所示:
[0017]
[0018]
[0019] 在t=Ts时,iL1下降至最小值iL1min,iL2也下降至最小值iL2min。在功率开关组S1导通期间,电感电流iL1和iL2的下降量ΔiL1(-)和ΔiL2(-)分别如下二式所示:
[0020]
[0021]
[0022] 在t=Ts时,功率开关组S1又导通,开始另一个开关周期。在该断路器拓扑中,输入电源的电能需要通过三个模态才能传至负载,第一个模态是功率开关组S1处于开通状态,电能转换为磁场能储能,电抗器L1储能升高;第二个模态是功率开关组S1截止时,L1的磁能转移为C的电能存储着;第三个模态是功率开 关组S1导通时,C的电能转移到负载和输出回路的电感L2和电容器Co,如图7所示模态。当该拓扑直流断路器稳态工作时,功率开关组S1导通期间电感L1和L2的电流的增长量ΔiL1(+)和ΔiL2(+)分别等于它在功率开关组S1截止期间的减小量ΔiL1(-)和ΔiL2(-)。所以由以上各式同样可以得到:
[0023]
[0024] 由上述公式可知,该改进的拓扑的性能相似于Buck-Boost变换器,当D=0.5时,Vo=Vi;若D<0.5,则Vo0.5时,则Vo>Vi。所以,Cuk变换器的输出电压Vo既可以高于也可以低于输入电压Vi。
[0025] 辅助控制器对占空比进行零值检测,当检测出零值时,判断出故障状态,执行选择开关操作,切断线路,直到故障排除,恢复正常后,零值检测器检测出占空比不为零,判断出属于正常状态,不动作,如此通过占空比的检测和调节,可以实现断路器的功能,及时地对短路进行切断,也就是说,该辅助控制器既能在断路器正常运行时保证断路器升降压功能的正常执行,并且能够在升压态与降压态之间切换,又能够在输电线路发生短路故障时快速地对短路故障进行及时有效的切除,实现保护高压直流输电设备及负载设备。
[0026] 所述的辅助控制器包括零值检测器和选择开关,其中零值检测器包括一个过零比较器和一个触发子系统,内环饱和环节的输出信号同时发送给过零比较器和触发子系统,其中过零比较器的输出信号作为触发子系统导通的条件,触发子系统的输出信号进过反向器输出至选择开关,选择开关的两个输入端分别与内环饱和环节的输出端和零值信号连接。具体的讲,辅助控制器主要包括选择开关和零值检测器,其中零值检测器是由一个过零比较器和一个触发子系统构成的,触发子系统的导通工作条件是过零比较器的输出信号,即当过零比较器的输出信号为大于零的时候,其输出信号1,这个阶跃信号使得触发子系统导通,输出脉冲使得选择开关进行动作,进行线路短路故障的切除。
[0027] 一种变压型高压直流断路器短路故障的切除方法,包括(a)外环控制步骤、(b)内环控制步骤、(c)辅助控制步骤。
[0028] 其中(a)内环控制步骤包括以下步骤:
[0029] (a1)电压传感器采集到高压直流断路器的输出端电压vo;
[0030] (a2)输出端电压vo经过外环低通滤波器LPF后与输出端电压参考值vo* 进行比较;
[0031] (a3)比较的结果输入到外环PI调节器和外环饱和环节进行调节,输出内环电感*电流参考值iL。
[0032] 其中(b)内环控制步骤包括以下步骤:
[0033] (b1)电流传感器采集到高压直流断路器中的电感电流iL;
[0034] (b2)将该电感电流iL通过低通滤波器LPF过滤掉高次谐波后得到反馈信号;
[0035] (b3)将反馈信号与输出电压参考值iL*进行比较;
[0036] (b4)比较的结果再经内环PI调节器、内环饱和环节的调节作用,输出断路器占空比D;
[0037] (b5)将步骤(b4)得到的输出信号D经PWM发生器进行调制,控制高压直流断路器实现变压和故障切除功能。
[0038] 其中(c)辅助控制步骤包括以下步骤:
[0039] (c1)当高压直流输电系统正常运行时,占空比D保持一个稳定值,选择开关连接内环饱和环节输入端;
[0040] (c2)当高压直流输电线路短路故障发生时,占空比D由稳定值快速下降为零;
[0041] (c3)过零比较器进行比较输出值为1,触发子系统导通工作;
[0042] (c4)在输入D值变为零的时刻开始,输出从0至1带上升沿阶跃信号,再经过反向器,触发子系统输出为在D值变为零的那刻起从1至0的带下降沿阶跃信号;
[0043] (c5)选择开关接收到反向器输入的下降沿阶跃信号后,从上端位切换到下端位与零值信号连接将D值置零并保持,直到故障完全隔离并清除。
[0044] 本发明一种变压型高压直流断路器短路故障的切除方法,采用在双环控制方法中增加一个辅助控制输出断路器占空比D的步骤,从而可以实现高压直流输电线路的短路故障状态监测,当高压直流线路处于短路状态时,输出断路器的占空比发生变化从而反应出输电线路发生短路故障,从而实现切断线路,起到保护的目的,相对于现有的高压直流断路器而言,具有变压功能、高速反应、快速执行,切断响应时间只需要4ms左右,相对于机械式和混合式高压直流断路器来说是一个很短的时间,具有较大的优势,在没有使用其他电流限制器的情况下故 障电流值被限制在一个非常安全的范围内,当故障被切除后,通过重置辅助控制器,可使控制系统能恢复到正常的工作状态。外环调节控制断路器的输出端电压vo:电压传感器采集到高压直流断路器输出端电压vo,通过外环低通滤波器LPF过滤掉高次*谐波后的反馈信号与输出电压参考值vo进行比较,再经PI调节器调节和饱和环节作用输*
出内环电感电流调节控制的参考值iL,计算公式如下:
[0045]
[0046] Kpv是外环PI调节器的比例调节系数,Kiv是外环PI调节器的积分调节系数;内环调节控制电感电流iL:电流传感器采集到高压直流断路器中电感电流iL,通过内环低通滤波器LPF过滤掉高次谐波后的反馈信号与输出电压参考值iL*进行比较,再经PI调节器调节和饱和环节作用输出断路器占空比D,计算如式如下:
[0047]
[0048] Kpi是内环PI调节器的比例调节系数,Kii是内环PI调节器的积分调节系数;为了解决传统双闭环控制方法中不理想的问题,本发明采用对占空比进行零值检测来进行控制:当故障发生时,由于双闭环的调节作用,D由原来的稳定值很快下降并降为零,此时零值检测器检测到就发送一个脉冲给二端开关,二端开关接受触发将D值置零并保持,直到故障完全隔离并清除,该脉冲信号失效,双闭环控制器恢复正常运行。
[0049] 本发明与现有技术相比,具有如下的优点和有益效果:
[0050] 1、本发明一种基于Cuk变换器拓扑的新型单向变压型高压直流断路器,在设备结构上,只采用了两个IGBT开关模块组,相对于其他多个IGBT开关模块组的拓扑,在实现设备升降压功能和断路器功能的基础上,大大降低了设备成本,降低了设备运行损耗。因为该高压直流断路器的IGBT开关模块组需要非常的多价格昂贵的IGBT单元串并联而成,而且该设备的主要损耗来自于IGBT的开关损耗和导通损耗;
[0051] 2、本发明相比于传统高压断路器更多的功能。既能在高压直流输电系统正常运行时实现断路器的升降压功能,也能够实现在输电线路发生短路故障时快速地对短路故障进行及时有效的切除,实现保护高压直流输电设备及负载设备。附图说明
[0052] 图1为本发明控制与保护系统的框图
[0053] 图2为本发明基于Cuk变换器拓扑的高压直流断路器的拓扑图;
[0054] 图3为本发明基于Cuk变换器拓扑的高压直流断路器的拓扑图局部A放大图;
[0055] 图4为本发明基于Cuk变换器拓扑的高压直流断路器的拓扑图局部B放大图;
[0056] 图5为本发明基于Cuk变换器拓扑的高压直流断路器导通阶段的运行原理图;
[0057] 图6为本发明基于Cuk变换器拓扑的高压直流断路器关断阶段的运行原理图;图7为断路器运行原理图;
[0058] 图8为基于Cuk变换器的高压直流断路器的工作波形
[0059] 图9为本发明基于Cuk变换器拓扑的高压直流断路器再次导通阶段的运行原理图;
[0060] 图10为本发明降压中短路故障切除高压仿真结果图;
[0061] 图11为本发明升压中短路故障切除高压仿真结果图;
[0062] 图12为本发明降压短路故障切除高压仿真结果对应的低压实验验证结果图;
[0063] 图13为图12对应的低压仿真结果图;
[0064] 图14为本发明升压短路故障切除高压仿真结果对应的低压实验验证结果图;
[0065] 图15为图14对应的低压仿真结果图。

具体实施方式

[0066] 下面结合实施例对本发明作进一步的详细说明,但本发明的实施方式不限于此。
[0067] 实施例
[0068] 如图1所示,一种基于Cuk变换器拓扑的新型单向变压型高压直流断路器,包括断路器与控制系统,其中断路器包括连接正在输入端和负输入端之间的输入电容Ci,输入电容器的正输入端与电感L1连接,L1的输出端与IGBT开关模块组S1和中间电容器C的正端相连,电容器C的负端与电感L2的输入端和二极管正极相连,电感L2负端与输出电容器Co相连。IGBT开关模块组S1输出端、二极管的负极和输出电容器Co负端与负输入端、负输出端同时接地,具体连接如图2所示,图2中的IGBT开关模块组是由多个IGBT模块串并联而成,局部放大图如图3所示,图2中的二极管模块组是由多个二极管模块串并联而成,局部 放大图如图4所示;控制系统包括依次连接的外环PI调节器、外环饱和环节、内环PI调节器、内环饱和环节、PWM发生器、以及高压直流断路器,电压传感器采集到高压直流断路器的*输出端电压vo,输出端电压vo经过外环低通滤波器LPF后与输出电压参考值vo进行比较然后输入到外环PI调节器,电流传感器采集到高压直流断路器中的电感电流iL,电感电流*
iL经过内环低通滤波器LPF后与外环饱和环节输出的内环电感电流参考值iL进行比较,比较的结果输入内环PI调节器,在所述的内环饱和环节与PWM发生器之间还增加有一个辅助控制器,运行导通态时,功率开关组S1导通,功率流经Ldc充电,断开态时,Ldc存储的能量通过二极管续流。
[0069] 将本发明高压直流断路器应用于如图5至8所示的该发明的高压断路器运行原理图和工作波形图,Ldc值的选取考虑断路器工作在连续模态,电感电流纹波系数5%,输出电容的选取考虑在变换器额定工作状态下输出电压纹波系数为10%,传输线的阻抗也考虑在测试之中,线路阻抗值选取多端直流系统中200km的传输线路,阻抗按0.11155mH/km和0.014Ω/km计算,仿真测试中线路电阻和电抗分别选为3Ω和20mH。
[0070] 图9和图10为本发明短路故障切除高压仿真结果图,其中图9为降压仿真结果,图10为升压仿真结果。从图9中可以看出,输出端电压由200kV下降为100kV,当输出电压稳定后,在0.6s时刻,加入一个短路故障,此时的输出端电压快速变为零,故障电流快速升高,此次的占空比D也在控制系统的作用下快速下降为零,从而达到关断IGBT开关模块组开关,实现隔离故障的目的。同样的切除短路故障的结果从图10中可以看出。本发明的断路器拓扑既能实现升压也能实现降压功能,在断路器故障发生时,能够有效快速将短路故障切除。并且该发明断路器拓扑还能够在升压态和变压态之间进行切换,达到灵活供电的目的。
[0071] 图11是本发明短路故障切除高压仿真结果对应的低压实验验证降压时的实验结果图,图13是升压时的仿真结果,图14是其局部放大图,从图中可以看出,本发明的高压直流断路器拓扑既能实现变压功能,也很好地实现了短路故障切除功能。图12是图11相对应的低压低功率仿真结果,从图可以看出,它们的波形很一致,这也更好地验证了高压仿真结果中变压功能和断路器功能的有效性。
[0072] 以上所述,仅是本发明的较佳实施例,并非对本发明做任何形式上的限制,凡是依据本发明的技术实质上对以上实施例所作的任何简单修改、等同变化,均 落入本发明的保护范围之内。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈