首页 / 专利库 / 信号处理 / 数字预失真 / 具有改善的线性度的RF收发器前端模块

具有改善的线性度的RF收发器前端模

阅读:99发布:2021-05-13

专利汇可以提供具有改善的线性度的RF收发器前端模专利检索,专利查询,专利分析的服务。并且功率 放大器 系统前端,测量与RF发射 信号 相关联的正向功率和反向功率两者。处理器,配置为使用从所测量的正向功率和反向功率输出而导出的测量值,来调节RF发射信号,以便补偿 功率放大器 系统的一个或多个记忆效应。,下面是具有改善的线性度的RF收发器前端模专利的具体信息内容。

1.一种功率放大器系统,包括:
调制器,配置为产生射频(RF)发射信号
前端模,包含功率放大器耦合器,所述功率放大器配置为放大所述RF发射信号以产生放大的RF发射信号,所述耦合器位于天线和所述功率放大器之间,所述耦合器配置为输出与所述RF发射信号相关联的正向功率和反向功率两者的测量值;
存储均衡器表的非易失性存储器,所述均衡器表具有在所述前端模块的预表征期间产生的多个条目;以及
处理器,配置为:(a)接收从所述耦合器输出的所述正向功率和所述反向功率而导出的电压驻波比(VSWR)测量值,(b)至少部分地基于所述VSWR测量值来访问所述均衡器表中的条目,以及(c)基于所访问的条目来调节所述RF发射信号,以补偿存在于所述功率放大器系统中的一个或多个记忆效应。
2.如权利要求1所述的功率放大器系统,其中使用可编程天线调谐器以将所述前端模块调谐到所需的VSWR点来产生所述均衡器表。
3.如权利要求1所述的功率放大器系统,其中所述前端模块不包含集成天线调谐器。
4.如权利要求1所述的功率放大器系统,其中所述前端模块还包含位于所述天线和所述耦合器之间的可编程天线调谐器。
5.如权利要求1所述的功率放大器系统,其中所述前端模块还包含位于所述功率放大器和双向耦合器之间的一个或多个双工器,且所述双工器促成了所述记忆效应中的至少一些。
6.如权利要求5所述的功率放大器系统,其中所述可编程天线调谐器是可调节的,以调谐由所述功率放大器所见的阻抗,以便在所述功率放大器系统内提供非线性的粗略校正,且基于所访问的条目对所述RF发射信号的调节在所述功率放大器系统内提供非线性的精细校正。
7.如权利要求1所述的功率放大器系统,其中所述耦合器是双向耦合器。
8.如权利要求1所述的功率放大器系统,还包括数字预失真(DPD)表,所述处理器配置为通过基于所述均衡器表中所访问的条目来适配所述DPD表中的值,来调节所述RF发射信号。
9.如权利要求1所述的功率放大器系统,还包括包络追踪系统,所述包络追踪系统配置为向所述功率放大器提供功率供给控制信号,以基于整形包络信号来控制所述功率放大器的电压平,所述处理器还配置为基于包含在所访问的均衡器表条目中的延迟值来调节所述RF发射信号和所述供给控制信号之间的延迟。
10.一种表征无线设备的前端模块的方法,包括:
使用可编程天线调谐器来调谐所述前端模块的功率放大器的输出处的阻抗负载,从而实现与多个前端模块表征状态中的第一表征状态相关联的电压驻波比(VSWR)值;
利用RF发射信号驱动所述前端模块,所述RF发射信号根据与所述第一表征状态相关联的一个或多个附加的参数值来驱动;
当利用所述RF发射信号驱动所述前端模块并将其调谐至所述VSWR值时,测量与所述前端模块的行为相关联的一个或多个变量;以及
非易失性存储器中的表中记录与所述第一表征状态相关联的所述一个或多个测量的变量。
11.如权利要求10所述的方法,还包括:对于所述多个前端模块表征状态中的多个附加的表征状态,重复所述使用、驱动、测量和记录的步骤。
12.如权利要求10所述的方法,其中所述可编程天线调谐器与所述前端模块分离,且所述前端模块不包含天线调谐器。
13.如权利要求10所述的方法,其中所述可编程天线调谐器集成在所述前端模块中。
14.如权利要求10所述的方法,其中所述一个或多个记录的变量包含功率放大器压缩。
15.如权利要求10所述的方法,其中所述一个或多个记录的变量包含最大包络功率。
16.如权利要求10所述的方法,其中所述一个或多个记录的变量包含用于所述功率放大器的功率控制信号和所述RF发射信号之间的延迟。
17.一种移动设备,包括:
调制器,配置为产生射频(RF)发射信号;
前端模块,包含功率放大器和耦合器,所述功率放大器配置为放大所述RF发射信号以产生放大的RF信号,所述耦合器配置为接收所述放大的信号,所述功率放大器配置为接收用于对所述功率放大器供电的功率放大器供给电压,所述耦合器配置为输出与所述RF发射信号相关联的正向功率和反向功率两者的测量值;
天线,配置为从所述前端模块接收所述放大的RF信号;
存储均衡器表的非易失性存储器,所述均衡器表具有在所述前端模块的预表征期间产生的多个条目;以及
处理器,配置为:(a)接收从所述耦合器输出的所述正向功率和所述反向功率而导出的电压驻波比(VSWR)测量值,(b)至少部分地基于所述VSWR测量值来访问所述均衡器表中的条目,以及(c)基于所访问的条目来调节所述RF发射信号,以补偿存在于所述功率放大器系统中的一个或多个记忆效应。
18.如权利要求17所述的移动设备,其中所述前端模块还包含一个或多个双工器,所述双工器促成了所述一个或多个记忆效应中的至少一些。
19.一种功率放大器系统,包括:
前端模块,包含:配置为放大RF发射信号以产生放大的RF发射信号的功率放大器、耦合至天线的可编程天线调谐器、以及位于所述功率放大器和所述天线调谐器之间的耦合器,所述耦合器配置为输出与所述RF信号相关联的正向功率和反向功率两者的测量值,所述天线调谐器是可调节的,以调谐由所述功率放大器所见的阻抗,以便在所述功率放大器系统内提供非线性的粗略校正;
存储均衡器表的非易失性存储器,所述均衡器表具有在所述前端模块的预表征期间产生的多个条目;以及
处理器,配置为:(a)接收从所述耦合器输出的所述正向功率和所述反向功率而导出的电压驻波比(VSWR)测量值,(b)至少部分地基于所述VSWR来访问所述均衡器表中的条目,以及(c)基于所访问的条目来调节所述RF发射信号。
20.如权利要求19所述的功率放大器系统,其中所述前端模块还包含双工器。

说明书全文

具有改善的线性度的RF收发器前端模

[0001] 相关交叉引用
[0002] 根据37 CFR 1.57,在本申请的申请数据表中标识外国或国内优先权声明的任何和所有申请(如果有的话)通过引用并入本文。

技术领域

[0003] 本发明实施例涉及电子系统,且特别的,涉及包含用于射频(RF)电子器件的功率放大器的系统。

背景技术

[0004] 功率放大器可以包含在移动设备中,以放大经由天线进行发射的RF信号。例如,在具有时分多址(TDMA)架构的移动设备中,例如可见于全球移动通信系统(GSM)、码分多址(CDMA)和宽带码分多址(W-CDMA)系统中的那些移动设备,功率放大器可以用于放大具有相
对低功率的RF信号。功率放大器可以包含在移动设备前端模块中,移动设备前端模块还包
含双工器、天线开关模块和耦合器。目前的前端模块在某些情况下可能经历显著的性能损
害,包含劣化的线性度。

发明内容

[0005] 本文所述的实施例用于解决这些以及其它问题。例如,劣化的线性度对于跨多个频带且在多个模式中操作的前端模块是特别令人关注的,多个模式例如是平均功率追踪
(APT)模式、包络追踪(ET)模式,数字预失真(DPD)模式(例如固定供给或ET DPD模式)等中
的一者或多者。当在天线处呈现失配时,一个问题是劣化的线性度(例如,相邻信道泄漏比(ACLR))。这可能特别是如下情况:在ET DPD模式下,当功率放大器由例如50资源块长期演进信号(50RB LTE)的宽带信号驱动时。在这种情况下,例如当在天线处呈现5:1电压驻波比(VSWR)时,可能存在10分贝(dB)的劣化。当调制带宽增加时,这种劣化可能变得越来越糟。
因此,在ET和高调制带宽的情况下,补偿这种劣化可能是特别有帮助的。
[0006] 双工器可能加剧性能劣化,例如当系统处于ET模式时。例如,双工器中的固有的组延迟结合差的匹配可能导致记忆效应,例如,在这种情况下,系统增益形状(例如,AM-AM/AM-PM)在传输RB带宽(即信道)上变化。此外,由于失配时的PA压缩点变化,AM-AM(幅度到幅度)和/或AM/PM(幅度到相位)响应变化通常经历各种失配条件(甚至对于窄带信号)。典型的开环、无记忆DPD通常不足以解决传输带宽内的增益形状变化。从而,本文所公开的某些实施例调节DPD以用于记忆或以其它方式解释记忆(即跨信道的增益形状变化),以及天线
处的特定失配状态。此外,在调制器和RF信号(用于ET操作)之间所应用的适当的(例如,最佳的)延迟也是VSWR状态的函数,并且在TX(发送)信道内变化。从而,本文所描述的某些实施例也适应传输带宽内的这种延迟。
[0007] 根据本公开的某些方面,提供系统和方法,以改善移动设备前端模块在失配时的性能(例如线性度)。这可以在标称条件下不会导致显著的附加或性能损失的情况下而实
现。取决于特定的实现方式,本文所提供的实施例可以在ET模式、APT模式、DPD模式或其组合中提供这样的益处,例如在组合的DPD/ET模式中。
[0008] 根据本公开的至少一个方面,提供一种功率放大器系统。所述系统包含配置为产生射频(RF)发射信号的调制器和前端模块。前端模块可以包含功率放大器,其配置为放大
RF发射信号,以产生放大的RF发射信号。前端模块还可以包含位于天线和功率放大器之间
的耦合器。耦合器可以配置为输出与RF发射信号相关联的正向功率和反向功率两者的测量
值。在一些实施例中,耦合器是双向耦合器。所述系统可以附加地包含存储均衡器表的非易失性存储器。均衡器表可以具有在前端模块的预表征期间产生的多个条目。所述系统还可
以包含处理器,配置为:(a)接收从耦合器输出的正向功率和反向功率而导出的电压驻波比(VSWR)测量值,(b)至少部分地基于VSWR测量值来访问均衡器表中的条目,以及(c)基于所
访问的条目来调节RF发射信号,以补偿存在于功率放大器系统中的一个或多个记忆效应。
例如,所述系统可以包含数字预失真表(DPD),在这种情况下,处理器配置为通过基于均衡器表中所访问的条目来适配DPD表中的值,从而调节RF发射信号。所述系统可以是移动设备的形式,其可以进一步包含配置为从前端模块接收放大RF信号的天线。
[0009] 功率放大器系统的前端模块可以以各种不同的方式来配置。在一些情况下,使用可编程天线调谐器来产生均衡器表,以将前端模块调谐到所需的VSWR点。在一些配置中,前端模块不包含集成的天线调谐器。在一些实现中,可编程天线调谐器可以包含在前端模块
中,并位于天线和耦合器之间。可编程天线调谐器可以是可调节的,以调谐由功率放大器所见的阻抗,以便在功率放大器系统内提供非线性的粗略校正。基于所访问的条目对RF发射
信号的调节在功率放大器系统内提供非线性的精细校正。前端模块可以包含定位在功率放
大器和双向耦合器之间的一个或多个双工器。在一些情况下,双工器促成了记忆效应中的
至少一些。
[0010] 功率放大器系统可以附加地包含包络追踪系统,其配置为向功率放大器提供功率供给控制信号,以基于整形包络信号来控制功率放大器的电压平。在一些情况下,处理器还配置为基于包含在所访问的均衡器表条目中的延迟值来调节RF发射信号和供给控制信
号之间的延迟。
[0011] 根据本公开的附加的方面,提供一种表征无线设备的前端模块的方法。所述方法可以包含使用可编程天线调谐器来调谐前端模块的功率放大器的输出处的阻抗负载,从而
实现与多个前端模块表征状态中的第一表征状态相关联的电压驻波比(VSWR)值。所述方法
还包含利用RF发射信号驱动前端模块。根据与第一表征状态相关联的一个或多个附加的参
数值来驱动RF发射信号。所述方法还可以包含当利用RF发射信号驱动前端模块并将其调谐
至VSWR值时,测量与前端模块的行为相关联的一个或多个变量。一个或多个记录的变量可
以包含功率放大器压缩、最大包络功率、和/或用于功率放大器的功率控制信号和RF发射信号之间的延迟。所述方法还可以包含在非易失性存储器中的表中记录与第一表征状态相关
联的一个或多个测得的变量。对于多个前端模块表征状态中的多个附加的表征状态,可以
重复使用、驱动、测量和记录的步骤。在一些情况下,可编程天线调谐器与前端模块分离,在这种情况下,前端模块不包含天线调谐器。在一些其它实现中,可编程天线调谐器集成在前端模块中。
[0012] 根据另外的方面的功率放大器系统包含前端模块,前端模块包含功率放大器,其配置为放大RF发射信号以产生放大的RF发射信号。前端模块还可以包含耦合至天线的可编
程调谐器。前端模块的耦合器可以位于功率放大器和天线调谐器之间,耦合器配置为输出
与RF信号相关联的正向功率和反向功率两者的测量值。天线调谐器可以是可调节的,以调
谐由功率放大器所见的阻抗,以便在功率放大器系统内提供非线性的粗略校正。所述系统
还可以包含存储均衡器表的非易失性存储器,均衡器表具有在前端模块的预表征期间产生
的多个条目。所述系统还可以包含处理器,配置为:接收从耦合器输出的正向功率和反向功率而导出的电压驻波比(VSWR)测量值,(b)至少部分地基于VSWR来访问均衡器表中的条目,以及(c)基于所访问的条目来调节RF发射信号。在一些配置中,前端模块可以附加地包含双工器。
附图说明
[0013] 图1是用于放大射频(RF)信号的功率放大器模块的示意图。
[0014] 图2是示例无线设备的示意框图
[0015] 图3是根据某些实施例的包含收发器和前端模块的功率放大器系统的一个示例的示意框图。
[0016] 图4A是不具有集成的天线调谐器的前端模块的一个实施例的示意图。
[0017] 图4B是具有集成的可编程天线调谐器的前端模块的一个实施例的示意图。
[0018] 图5是绘示了用于预表征前端模块的过程的流程图
[0019] 图6A-6B示出了用于示范性前端模块的部分的均衡器查找表的示例,其示出了在不同的表征状态下用于选择变量的预表征值。
[0020] 图7A示出了描绘了使用均衡器查找表来补偿前端模块操作的过程的流程图。
[0021] 图7B示出了描绘了通过组合使用利用集成的天线调谐器的粗调和利用均衡器查找表的微调来补偿前端模块操作的另一过程的流程图。
[0022] 图8A-8C分别示出了在固定供给电压模式、平均功率追踪模式和包络追踪模式中操作的功率放大器的功率放大器信号和供给波形
[0023] 图9示出了用于确定复阻抗的过程的一个实施例。
[0024] 具体实现
[0025] 本文提供的标题(如果有的话)仅是为了方便,并不一定影响要求保护的发明的范围或含义。
[0026] 图1是用于放大射频(RF)信号的功率放大器模块(PAM)10的示意图。图示的功率放大器模块10可以配置为放大RF信号RF_IN以产生放大的RF信号RF_OUT。如本文所述,功率放大器模块10可以包含一个或多个功率放大器。
[0027] 图2是示例无线设备11的示意框图,其可以包含图1的一个或多个功率放大器模块10。无线设备11可以包含实现本公开的一个或多个特征的功率放大器17和RF前端12。例如,根据一些实施例的功率放大器17和RF前端12配置为补偿非线性,包含由功率放大器17所见
的阻抗失配导致的记忆效应引起的那些非线性。特别地,耦合到功率放大器17的双工器可
以包含或操作为滤波器,其在其它失真之上对系统增加相应的频率响应分量,产生记忆效
应。例如,双工器可以呈现在发射信道/频带上的不均匀(flat)的失配,从而导致非线性功率放大器行为。
[0028] 这种补偿可以涉及使用查找表或其它数据结构,在这种情况下,适当的查找表条目是基于在操作期间进行的测量的访问,例如电压驻波比(VSWR)测量值或与功率放大器17
所见的复阻抗相关的其它测量值。根据某些实现的查找表中的值在表征阶段期间获得,在
这种情况下,可编程天线调谐器用于记录表征系统的行为的某些变量。例如,例如,用于功率放大器17的AM-AM和/或AM-PM响应曲线可以在多种操作状态下被捕获。这样的技术和相
关的部件组成将在本文中进一步详细描述。
[0029] 虽然在一些情况下将功率放大器17和RF前端12描述为分离的部件,但一些或所有的功率放大器17也可以形成RF前端12的部分,例如在RF前端12是包含功率放大器17的高度
集成的部件的实施例中。功率放大器17和RF前端12的组合可以一起被称为前端模块。
[0030] 图2绘示的示例无线设备11可以代表多频带和/或多模式设备,例如多频带/多模式移动电话。举例来说,全球移动通信系统(GSM)通信标准是在世界许多地区使用的数字蜂窝通信的模式。GSM模式移动电话可以在以下四个频带中的一个或多个频带上操作:850MHz(对于Tx(发送)大约为824-849MHz,对于Rx(接收)为869-894MHz)、900MHz(对于Tx大约为
880-915MHz,对于Rx为925-960MHz)、1800MHz(对于Tx大约为1710-1785MHz,对于Rx为1805-
1880MHz)、和1900MHz(对于Tx大约为1850-1910MHz,对于Rx为1930-1990MHz)。GSM频带的变化和/或区域/国家实现也在世界的不同地区使用。
[0031] 码分多址(CDMA)是可以在移动电话设备中实现的另一种标准。在某些实现中,CDMA设备可以在800MHz、900MHz、1800MHz和1900MHz频带中的一个或多个频带中操作,而某些W-CDMA和长期演进(LTE)设备可以在例如约22个射频谱带上操作。
[0032] 本公开的一个或多个特征可以在前述示例模式和/或频带中、以及其它通信标准中实现。例如,3G和4G是这样的标准的非限制性示例。
[0033] 图示的无线设备11包含RF前端12、收发器13、天线14,功率放大器17、控制部件18、计算机可读介质19、处理器20、电池21、以及供给控制块22。
[0034] 收发器13可以产生用于经由天线14发送的RF信号。另外,收发器13可以从天线14接收进入的RF信号。
[0035] 应当理解,与RF信号的发送和接收相关联的各种功能可以通过在图2中统一表示为收发器13的一个或多个部件来实现。例如,单个部件可以配置为提供发送和接收功能。在另一示例中,发送和接收功能可以由单独的多个部件提供。
[0036] 类似地,应当理解,与RF信号的发送和接收相关联的各种天线功能可以通过在图2中统一表示为天线14的一个或多个部件来实现。例如,单个天线可以配置为提供发送和接
收功能。在另一示例中,发送和接收功能可以由单独的天线提供。在又一示例中,可以向与无线设备11相关联的不同频带提供不同的天线。
[0037] 在图2中,来自收发器13的一个或多个输出信号被绘示为经由一个或多个发送路径15提供给天线14。在所示的示例中,不同的发送路径15可以表示与不同的频带和/或不同的功率输出相关联的输出路径。例如,所示的两个示例功率放大器17可以表示与不同的功
率输出配置(例如低功率输出和高功率输出)相关联的放大、和/或与不同的频带相关联的
放大。虽然图2示出了无线设备11包含两个发送路径15,但无线设备11可以适于包括更多或更少的发送路径15。
[0038] 在图2中,来自天线14的一个或多个检测到的信号被绘示为经由一个或多个接收路径16提供给收发器13。在所示的示例中,不同的接收路径16可以表示与不同的频带相关
联的路径。例如,所示的四个示例路径16可以表示提供给一些无线设备的四频带能。虽然图2示出无线设备11包含四个接收路径16,但是无线设备11可以适于包含更多或更少的接
收路径16。
[0039] 为了便于在接收路径和发送路径之间切换,RF前端12中的一个或多个开关可以配置为将天线14电连接到所选择的发送路径或接收路径。从而,开关可以提供与无线设备11
的操作相关联的多个切换功能。在某些实施例中,开关可以包含多个开关,其配置为提供与下述事项相关联的功能:例如,不同的频带之间的切换、不同的功率模式之间的切换、发送模式和接收模式之间的切换、或它们的某种组合。开关还可以配置为提供附加的功能,包含信号的滤波和/或双工。
[0040] 图2示出了,在某些实施例中,可以提供控制部件18以控制与RF前端、功率放大器17、供给控制22和/或其它操作部件的操作相关联的各种控制功能。在某些情况下,控制部件18可以被包含在图2所示的另一个部件中,例如收发器13。
[0041] 某些实施例中,处理器20可以配置为便于本文所述的各种过程的实现。在某些实现中,处理器20可以使用计算机程序指令来操作。某些实施例中,这些计算机程序指令还可以存储在计算机可读存储器19中,其可以指示计算机或其它可编程数据处理装置以特定方
式操作。例如,为了描述的目的,还可以参考方法、装置(系统)和计算机程序产品的流程图和/或框图来描述本公开的实施例。应当理解,流程图和/或框图的每个方框、以及流程图
和/或框图中的方框的组合可以通过计算机程序指令来实现。这些计算机程序指令可以被
提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器以产生机器,使得指
令(其经由计算机或其它可编程数据处理装置的处理器执行)创建用于实现在流程图和/或
(多个)框图的一个或多个方框中指定的动作的设备。
[0042] 某些实施例中,这些计算机程序指令还可以存储在计算机可读存储器19中,其可以指示计算机或其它可编程数据处理装置以特定方式操作,使得存储在计算机可读存储器
中的指令产生包含指令装置的制品,所述指令装置实现在流程图和/或(多个)框图的一个
或多个方框中指定的动作。计算机程序指令还可以加载到计算机或其它可编程数据处理装
置上,以使得在计算机或其它可编程装置上执行一系列操作,以产生计算机实现的过程,使得在计算机或其它可编程装置上运行的指令提供步骤,所述步骤用于实现在流程图和/或
(多个)框图的一个或多个方框中指定的动作。
[0043] 供给控制块22可以电连接至电池21,且供给控制块22可以配置为例如基于要放大的RF信号的包络,来改变提供给功率放大器17的电压。电池21可以是用于无线设备11的任
何合适的电池,包含例如锂离子电池。如将在下文详细描述的,通过控制提供给功率放大器的功率放大器供给电压的电压水平,可以减少电池21的功耗,从而改善无线设备11的性能。
如图2所示,包络信号可以从收发器13提供至供给控制块22。然而,可以以其它方式来确定包络。例如,可以通过处理RF信号(例如,使用任何合适的包络检测器来检测包络)来确定包络或其它类型的供给控制信号。
[0044] 一种用于降低功率放大器的功耗的技术是包络追踪(ET),其中,功率放大器的功率供给的电压水平相对于RF信号的包络而改变。例如,例如,当RF信号的包络增加时,可以增加功率放大器的功率供给的电压水平。同样地,当RF信号的包络减小时,可以减小功率放大器的功率供给的电压水平以降低功耗。另一种形式的功率追踪是平均功率追踪(APT),其中,类似于包络追踪,功率放大器17的功率供给的电压水平相对于包络而改变。然而,在APT模式的操作中,基于包络的平均水平而在两个或更多个离散值之间改变功率供给。例如,可以在逐个时隙(slot-by-slot)的基础上改变功率水平,在这种情况下,每个时隙对应于不
同的功率控制水平。这可以提高低功率下的效率,同时使得在较高的水平下比ET追踪较少
的功率节省。功率供给控制的另一种模式是固定供给或直接电池连接,在这种情况下,对功率放大器17的功率供给被保持在等于或高于RF信号的包络的最大水平的固定量。在8A、8B
和8C中分别示出了在示例固定功率供给、平均功率追踪和包络追踪操作期间产生的示例功
率和信号波形。
[0045] 图3是功率放大器系统26的一个示例的示意框图。例如,功率放大器系统26可以并入无线设备11中。图示的功率放大器系统26包含RF前端12、天线14、电池21、供给控制驱动器30、功率放大器17和收发器13。图示的收发器13包含基带处理器34、供给整形块或电路
35、延迟部件33、数模转换器(DAC)36、正交(I/Q)调制器37、混频器38、以及模数转换
(ADC)39。供给整形块35、延迟部件33、DAC 36和供给控制驱动器30一起形成供给整形分支
48。
[0046] 基带处理器34可以用于产生I信号和Q信号,其对应于正弦波的信号分量或具有所需幅度、频率和相位的信号。例如,I信号可以用于表示正弦波的同相分量,Q信号可以用于表示正弦波的正交分量,其可以是正弦波的等效表示。在某些实现中,I信号和Q信号可以以数字格式提供给I/Q调制器37。基带处理器34可以是配置为处理基带信号的任何合适的处
理器。例如,基带处理器34可以包含数字信号处理器、微处理器、可编程核心、或其任意组合。此外,在一些实现中,两个或更多个基带处理器34可以被包含在功率放大器系统26中。
[0047] I/Q调制器37可以配置为从基带处理器34接收I信号和Q信号,并且处理I信号和Q信号以产生RF信号。例如,I/Q调制器37可以包含:配置为将I信号和Q信号转换为模拟格式的DAC、用于将I信号和Q信号升频为射频的混频器、以及用于将升频的I信号和Q信号组合成适合由功率放大器17放大的RF信号的信号组合器。在某些实现中,I/Q调制器37可以包含一个或多个滤波器,其配置为对在其中处理的信号的频率内容进行滤波。
[0048] 供给整形块35可用于将与I信号和Q信号相关联的包络或幅度信号转换为整形功率供给控制信号,例如平均功率追踪(APT)信号或包络追踪(ET)信号,这取决于实施例。对来自基带处理器34的包络信号进行整形可以有助于增强功率放大器系统26的性能。在某些
实现中,例如在供应整形块配置为实现包络追踪功能的情况下,供给整形块35是配置为产
生数字整形包络信号的数字电路,并且DAC 36被用于将数字整形包络信号转换为适于供应
控制驱动器30使用的模拟整形包络信号。然而,在其它实现中,可以省略DAC 36,以有利于向供给控制驱动器30提供数字包络信号,从而帮助供给控制驱动器30进一步处理包络信
号。
[0049] 供给控制驱动器30可以从收发器13接收供应控制信号(例如,模拟整形包络信号或APT信号)且从电池21接收电池电压VBATT,并且可以使用供应控制信号来产生用于功率放大器17功率放大器供应电压VCC_PA,其相对于发射信号而改变。功率放大器17可以从收发器
13的I/Q调制器37接收RF发射信号,并且可以通过RF前端12向天线14提供放大的RF信号。在其它情况下,可以向功率放大器17提供固定的功率放大器供给电压VCC_PA。在一些这样的实施例中,可以不包含供给整形块35、DAC 36以及供给控制驱动器30中的一者或多者。在图
8A、8B和8C中分别示出了用于固定供给、APT和ET功率供给控制操作的功率放大器供给电压VCC_PA和相对应的RF发射信号的示范性波形。在一些实施例中,功率放大器系统26能够执行两种或更多种供给控制技术。例如,功率放大器系统26允许选择(例如通过固件编程或其它适当的机制)ET、APT和固定的功率供给控制模式中的两者或更多者。在这样的情况下,基带处理器、或者其它适当的控制器或处理器可以指示供给整形块35进入适当的选择的模式。
[0050] 延迟部件33在供给控制路径中实现可选择的延迟。如将进一步详细描述的,这在一些情况下可用于补偿非线性和/或信号劣化的其它潜在源。图示的延迟部件被示为在数
字域中的收发器13的部分,并且可以包括FIFO或其它类型的基于存储器的延迟元件。然而,延迟部件33可以以任何适当的方式实现,并且在其它实施例中,可以集成作为供给整形块
35的部分,或者例如可以在DAC 36之后的模拟域中实现。
[0051] RF前端12接收功率放大器17的输出,并且可以包含各种部件,所述各种部件包含一个或多个双工器、开关(例如形成在天线开关模块中)、定向耦合器等。下面关于图4A和4B示出和描述了兼容的RF前端的详细示例。
[0052] RF前端12内的定向耦合器(未示出)可以是双向耦合器、或其它适当的耦合器、或能够向混频器38提供感测的输出信号的其它设备。根据某些实施例,包含图示的实施例,定向耦合器能够向混频器38提供入射信号和反射信号(例如正向功率和反向功率)。例如,定
向耦合器可以具有至少四个端口,其可以包含配置为接收由功率放大器17产生的信号的输
入端口、耦合到天线14的输出端口、配置为向混频器38提供正向功率的第一测量端口、以及配置为向混频器38提供反向功率的第二测量端口。
[0053] 混频器38可以将感测的输出信号乘以受控频率的参考信号(未在图3中示出),以便使感测的输出信号的频谱降档(downshift)。降档的信号可以被提供给ADC 39,ADC 39可以将降档的信号转换为适于由基带处理器34处理的数字格式的反馈信号47。如将进一步详
细讨论的,通过在功率放大器17的输出与基带处理器34的输入之间包含反馈路径,基带处
理器34可以配置为动态地调节信号I信号和Q信号、和/或与I信号和Q信号相关联的功率控
制信号,以优化功率放大器系统26的操作。例如,以这种方式配置功率放大器系统26可以有助于控制功率放大器32的功率附加效率(PAE)和/或线性度。在一些实施例中,混频器38、
ADC 39和/或其它适当的部件组成通常可以执行正交(I/Q)解调功能。
[0054] 尽管功率放大器系统26被示出为包含单个功率放大器,但是本文的教导适用于包含多个功率放大器的功率放大器系统,包含例如多频和/或多模功率放大器系统。
[0055] 另外,尽管图3示出了收发器的特定配置,但是其它配置也是可能的,包括例如,其中收发器13包含更多或更少的部件、和/或部件的不同布置的配置。
[0056] 如图所示,基带处理器34可以包含数字预失真(DPD)表40、均衡器表41和复阻抗检测器44。DPT表40可以存储在基带处理器34可访问的收发器34的非易失性存储器(例如闪存
存储器、只读存储器(ROM)等)中。根据一些实施例,基带处理器34访问DPD表40中的条目以帮助线性化功率放大器17。例如,基带处理器34基于感测的反馈信号47在DPD表40中选择适当的条目,并且在将发射信号输出到I/Q调制器37之前相应地调节发射信号。例如,DPD可以用于补偿功率放大器17的某些非线性效应,包括例如,信号星座(constellation)失真和/
或信号频谱扩散。根据包含图示实施例的某些实施例,DPD表40实现无记忆DPD,例如,在这种情况下,DPD校正的发射信号的电流输出仅取决于电流输入。
[0057] 使用具有通过预表征RF前端所获得的值的查找表进行均衡的概述
[0058] 某些因素可能促成难以使用纯无记忆DPD经由DPD表40来处理的记忆效应,例如结合了功率放大器17所见的差的阻抗匹配的RF前端12的双工器中的固有的群延迟。为了补偿
这种记忆效应、和/或促成非线性或其它信号劣化的其它因素,功率放大器系统26可以采用均衡器表41。均衡器表41可以存储在非易失性存储器(例如闪存存储器、只读存储器(ROM)
等)中,其可以与存储DPD表40的存储器相同,或者是不同的存储器,这取决于实施例。虽然为了说明的目的,DPD表40和均衡器表41被示为驻留在基带处理器34内,但是含有表的存储器设备可以驻留在收发器13上的任何适当位置,或者在无线设备11中的其它位置。
[0059] 在表征阶段期间对均衡器表41填充(populate),其可以在制造点进行,例如,在这种情况下,在选择输入条件下表征功率放大器系统26。在表征期间,可以在选择复阻抗点处表征功率放大器系统26,在这种情况下,在每个复阻抗点处记录某些变量。例如,可编程天线调谐器可以在表征期间连接到功率放大器系统26,以设定所需的复阻抗点。该系统可以附加地在其它适当的参数间进行表征。举例来说,在一些实施例中,在不同的信道和频带上附加地记录变量,这可以允许对功率放大器系统26适配(例如,DPT表40的适配)以用于发射信道上的双工器波纹(ripple),考虑到一些记忆效应,以及其它益处。双向耦合器或其它适当的部件可以用于在每个设定点处捕获功率放大器系统26的行为(例如,相位、VSWR、信道和频带的每个被表征的组合)。每个记录的变量可以与相对应的表征设定点值一起存储在
表格中。
[0060] 形成每个设定点的表征信息的记录的变量可以包括以下事项中一些或全部:(1)传递到功率放大器17的RF信号与通过供给控制分支48的供给整形信号之间的所需的(例如
最佳的)相对延迟;(2)功率放大器17的压缩水平,其可以对应于功率放大器17在峰值包络
功率期间操作的压缩程度;以及(3)最大包络功率。图6A-6B提供了包括表征功率放大器系
统的实施例的记录的变量的表的部分600、650的示例。例如,这样的表可以形成或用于生成均衡器表41的一部分。将在本文进一步详细描述表征过程,例如关于图4A、4B、5以及6A-6B。
[0061] 在操作期间,利用阻抗检测器44检测复阻抗(例如VSWR和/或相位)。复阻抗。阻抗检测器44可以以任何适当的方式实现,且可以包含数字电路或模拟电路。例如,一些或全部的阻抗检测器44可以在基带处理器34内实现。在其它实施例中,一些或全部的阻抗检测器
驻留在基带处理器34的外部的反馈路径中。用于检测复阻抗的兼容部件的一些示例在题为
“Integrated VSWR Detector for Monolithic Microwave Integrated Circuits(用于单
微波集成电路的集成VSWR检测器)”的美国专利No.8,723,531中提供,其通过引用结合于本文。关于图9在本文示出并描述了用于确定复阻抗的过程的一个实施例。
[0062] 如图所示,均衡器表41可以包含tx表42和供给控制表43中的一者或两者。tx表42可以用于补偿DPD表40,涉及失配、非线性等,而供给控制表43可以用于控制供给控制分支
48的延迟部件33的延迟,例如基于RF发射信号49和供给整形信号之间的所需的相对延迟。
[0063] 如从由tx表42延伸到tx信号49的虚线所表示的,作为补偿DPT表40的替代或附加,tx表42可以用于直接补偿tx信号49。例如,在一些情况下,功率放大器系统26可以被置于
DPD被关闭的模式中,并且tx表42被用于补偿tx信号49。举例来说,DPD和包络追踪被禁用,直到达到某个发射功率水平(例如100毫瓦),在此时打开包络追踪和DPD变得更加能量
效。此外,在一些情况下,在任何给定时间仅使用tx表42和供给控制表43中的一者。例如,在一些实施例中,仅在功率放大器系统26被置于包络追踪模式时采用供给控制表43,而当功
率放大器系统26不处于包络追踪模式时(例如,在APT或固定供给模式中时),仅采用tx表
42。在一些实施例中,均衡器表41仅包括tx表42和供给控制表43中的一者。此外,包含在均衡器表41中的信息可以以各种不同的方式组织。例如,虽然示出为单独的表,但是tx表42和供给控制表43可以组合成单个表,或者在其它实施例中,在均衡器表41中所提供的信息与
DPD表40组合在一起。
[0064] 对于宽带信号(例如50资源块(RB)LTE信号),由于在RB频率跨度上的负载线和延迟变化,记忆效应可能变成特别显著的问题。在2:1或更大的VSWR下,无记忆DPD表40可能不足以解决信道上的AM-AM/AM-PM响应变化。在这些情况下,基带发射信号(例如I/Q信号)的
均衡可能是适当的,例如使用均衡器表41,其可以利用记忆系数来增强DPD表41。均衡器表
41的使用可以实现均衡器功能,其均衡了功率放大器17的压缩水平和/或实现功率放大器
17在频带上的所需的(例如最佳的)延迟。从而,均衡器表41(其可以包含在信道上提取的上述变量)可以用于针对大的RB信号(例如50或100RB或上行链路CA 40兆赫兹宽)执行均衡器
功能。根据某些实施例,均衡可以提供双重作用:将记忆效应补偿添加到无记忆DPD,以及使DPD适应于在各种表征条件(例如,表征的VSWR条件)下工作。如所描述的,均衡器功能可以具有两个路径,一个用于RF发射信号49,例如通过使用TX表42,一个用于供给控制路径48
(例如通过使用供给控制表43),其可以例如包络跟踪器。
[0065] 根据一些实现,均衡表41包含用于每个单独的RB的单独的增益和延迟,其仅应用于RF发射信号49,并且没有用于供给控制路径48的单独的均衡。在另一实施例中,均衡表41经由以下两个单独的路径实现逼近沃尔特拉(Volterra)级数的函数:一个用于RF发射信号
49,一个用于包络追踪器路径48。这种实现可以由以下事项组成:有限脉冲响应(FIR)滤波器,随后是非线性查找表,随后是另一个FIR。一个块被施加到RF信号,而另一个块被施加到调制器信号。FIR系数以及非线性查找表根据均衡表和标称条件无记忆DPD表导出。
[0066] 示范性前端模块
[0067] 图4A和4B示出了示范性前端模块45,其任一个与图1-3所示的系统兼容并且可并入所述系统中。参考图4A和4B两者,图示的前端模块45包含输入开关55、一组功率放大器
17、一组双工器50、一组天线开关模块51、双向耦合器52和测量开关53。图4B所示的前端模块45还包含集成的天线调谐器54。
[0068] 输入开关55在不同的功率放大器17和相对应的双工器件50之间切换调制的RF发射信号。接通的功率放大器17放大接收的信号,并将放大的信号转发给双工器50。双工器50配置为将发送的信号转发到天线开关模块51。为了简单起见,在图4A-4B中仅示出了发送路径。然而,应当理解,双工器50配置为允许收发器13和天线14之间的双向通信。例如,双工器
50可以附加地配置为接受来自天线开关模块51的接收信号,并转发接收的信号以传送到收
发器13。双工器50可以附加地实现滤波或其它适当的功能。例如,双工器50可以提供在接收频率下的发送器噪声的抑制、隔离以防止接收脱敏等。
[0069] 天线开关模块51可以配置为将天线14电连接到所选择的发送路径或接收路径。从而,天线开关模块51可以提供与前端模块45的操作相关联的多个切换功能。某些实施例中,天线开关模块51可以包含与下述事项相关联的功能:例如,不同的频带之间的切换、不同的功率模式之间的切换、发送模式和接收模式之间的切换、或它们的某种组合。天线开关模块
51还可以配置为提供附加的功能,例如信号的滤波和/或双工。
[0070] 图示的实施例包含能够向测量开关53提供感测的输出信号的双向耦合器52。测量开关53可以例如是单刀双掷(SPDT)开关。根据包含图示实施例的某些实施例,定向耦合器
能够提供发送路径中的入射信号和反射信号两者的测量值(例如,正向功率和反向功率)。
例如,双向耦合器52可以具有至少四个端口,其可以包含:配置为接收由功率放大器17产生的信号的输入端口、耦合到天线14的输出端口、配置为向测量开关53提供正向功率的第一
测量端口、以及配置为向测量开关53提供反向功率的第二测量端口。尽管图示的实施例包
含双向耦合器53,但是在其它实施例中,可以使用其它类型的设备、或设备的组合。通常,可以使用能够在发射路径中检测入射信号和反射信号两者(例如,正向功率和反向功率)的任
何设备。双向耦合器52输出用于传送到天线的发射信号,并将正向功率和反向功率信号输
出到测量开关53。测量开关53在两个端口之间切换(例如在检测的正向功率和反向功率信
号之间),并且转发被切换的输出以传送到阻抗检测器。
[0071] 与图4B所示的前端模块45相对比,图4A中所示的前端模块45不包含可编程天线调谐器。在这样的实施例中,可以使用均衡器表41来充分地补偿由于失配而导致的那些记忆
效应,而无需使用集成的天线调谐器,从而降低了成本和复杂性,并且还避免了由于并入天线调谐器而引起的损耗。在这些情况下,可编程天线调谐器可以临时地连接到系统,例如在双向耦合器52和天线之间,以便表征系统。例如,可以在制造期间使用天线调谐器来设定每个表征设定点的复阻抗值。图4A所示的配置可以与根据一些实施例的预表征的均衡器表41
组合使用,以实现至少6dB的线性度改善。
[0072] 在一些其它实施例中,例如图4B所示的实施例中,集成的天线调谐器54设置在前端模块45内。在一些实施例中,天线调谐器54包含包括pi网络和/或T网络的电路。天线调谐器54可以是可编程的以提供阻抗调谐,并且在一些实施例中与均衡器表41组合使用以补偿
记忆效应。例如,可编程天线调谐器54可以用于提供某些非线性(例如AM-AM和/或AM-PM响
应变化、记忆效应等)的粗略校正。天线调谐器54可以被调节以提供阻抗调谐功能,使得功率放大器17见到更接近所需的值(例如50欧姆)的特定阻抗,从而提供VSWR补偿。另一方面,均衡器表41可以提供用于某些非线性(例如AM-AM和/或AM-PM响应变化、记忆效应等)的精
细校正。包含集成的天线调谐器54可以提供附加的益处:为双向耦合器52提供校准。例如,耦合器52的方向性可以在通过解嵌、线性变换等校准之后进行软件或固件增强。集成的调
谐器54还可以在服务器失配的条件下提供改善的性能。
[0073] 前端模块45的表征可以以任何所需的频率完成,包含基于逐个部分的方式,或者为了降低校准成本,基于每个批次一个部分或每几个批次一个部分的方式。
[0074] 用于预表征前端模块的方法的示例
[0075] 图5是绘示了用于预表征前端模块的过程的流程图500。过程500可以导致用于每个单独表征状态的AM-AM和/或AM-PM响应曲线的测量。一个或多个处理器和/或无线设备的
其它适当的部件可以实现过程的某些部分。例如,虽然为了说明的目的,而将过程的某些部分描述为使用图3和图4A-4B中所示的设备的某些部件来实现,但是该过程也可以使用图1
的无线设备11来实现,或者任何其它兼容的无线设备11。
[0076] 在方框502,过程包含使用可编程天线调谐器将VSWR设定为用于当前表征设定点状态的适当的值。例如,参考图6A所示的示例部分均衡器查找表600中所示的第一行602,天线调谐器可以用于将VSWR设定为与当前表征设定点状态相对应的值(1.2)。在前端模块45
中设置集成的天线调谐器54(图4B)的情况下,集成调谐器54可以用于调节VSWR。在没有设
置集成的调谐器(图4A)的情况下,为了表征的目的,可以将天线调谐器临时地附接到前端
模块45。可以调节天线调谐器,同时使用集成的阻抗检测器44或其它检测器来监测VSWR点,直到达到设定点。
[0077] 在方框504,将对应于当前表征设定点的其它参数设定为适当的值。例如,再次参考与图6A所示的部分均衡器查找表600中的第一行602相对应的示例设定点,可以将复阻抗
的相位、信道和频带设定为适当的值(0度、20525、B5)。这些设定点中的一些或全部可以通过使用信号发生器或其它适当的工具来调节测试输入信号来实现。
[0078] 在方框506,在当前表征状态表征系统。例如,在506处记录与前端模块45的行为相关联的一组变量。变量通常可以包含可用于补偿前端模块45的非线性的任何适当的变量或测量。例如,再次参考图6A所示的部分表600的第一行602,示范性实施例中的变量包含:(1)传送到功率放大器17的RF信号与通过供给控制分支48的供给整形信号之间的测量的所需
的(例如最佳的)相对延迟(1.11纳秒[ns]);(2)功率放大器17的压缩水平(2.0dB),其可以
对应于功率放大器17在峰值包络功率期间操作的压缩程度;以及(3)最大包络功率(29分
贝-毫瓦[dBm])。参考包含部分查找表650的另一示例的图6B,记录的变量还可以包含:表征AM-AM和AM-PM响应曲线的AM-AM系数(变量B)和AM-PM系数(变量C)。
[0079] 在方框508,变量被记录在查找表41中,或以其它方式存储在非易失性存储器中。在某些实现中,变量在表征时直接记录在收发器13内的非易失性存储器中(例如用以形成
均衡器表41)。在其它情况下,变量被记录到一些单独的存储介质(例如闪存驱动器、磁盘驱动器等),并且稍后被及时地下载到基带处理器34或无线设备11内的其它适当的位置。例
如,在一些情况下,在组装无线设备11之前表征前端模块12,并且在组装无线设备11或其部分时,记录的值被下载到可由基带处理器34访问的非易失性存储器中、或到无线设备11内
的某个其它适当位置。
[0080] 然后,对于下一个表征设定点重复该过程。再次参考图6A,下一个设定点可以对应于部分表600中的第二行604,在这种情况下,相位值被设定为45度。
[0081] 图6A仅示出了表征表的一部分,其中相位以增加的值扫描,同时保持其它设定点参数(VSWR、信道和频带)不变。应当理解,为了完成表征并由此获得用于均衡表41中的记录值的完整集合,可以通过附加值(例如通过360度)扫描相位,并且还可以扫描每个其它设定点参数,同时保持一些或所有的其它参数不变。
[0082] 虽然图6A-B中所示的部分表600、650在本文被称为形成均衡器表41的一部分,但在一些情况下,部分表600、650中的值实际上不直接存储在均衡器表41中。作为替代,来自表600、650的记录值用于导出包含在均衡器表41中的值。例如,图6B的部分表650中所示的AM-AM系数(变量B)和AM-PM系数(变量C)可以从表征期间记录的其它变量中导出。
[0083] 根据某些实施例,在禁用DPD时,执行表征过程500的部分或全部。
[0084] 图7A和7B示出了使用具有在前端模块的表征期间获得的值的均衡器表来补偿前端模块操作的示例过程。例如,该过程可以涉及使用图3所示的均衡器表41,其可以使用图5所示的过程或类似的过程来获得。虽然为了说明的目的,而将过程的某些部分描述为由图3的功率放大器系统26的收发器13内的基带处理器34实现,但是该过程可以由任何其它适当
的处理器来实现,例如由图3的功率放大器系统26的收发器13内的另一处理器,由图2的无
线设备11内的任何处理器,等等。
[0085] 参考图7A,在方框702,基带处理器34接收在信号发送期间由阻抗检测器44感测的复阻抗值(例如VSWR和/或相位)。
[0086] 在方框704,基带处理器34使用感测的阻抗值从均衡器表41访问适当的记录。例如,参考图6A-6B所示的部分表600、650,VSWR可以与其它表征设定点参数(例如相位、信道和频带信息)一起用于索引均衡器表41。基带处理器34可以基于无线设备11的当前操作设
定来知道相位、信道和频带信息,或者在一些情况下,可以从感测的反馈信号导出相位、信道和频带中的一者或多者。
[0087] 在方框706,基带处理器34基于所访问的记录来应用校正。取决于实施例,来自均衡表41的所访问的记录可以包含在表征期间记录的一个或多个变量的值(例如,RF对包络
追踪器延迟、压缩水平和功率最大值(Pmax))。在这些情况下,基带处理器34可以处理变量以应用适当的校正。以功率放大器压缩为例,基带处理器34可以调节输入信号以实现所需
的压缩水平。例如,如果在所访问的记录中指定2.0dBm的压缩水平,并且当前增益被确定为
2.7dBm,则基带处理器34可以相应地降低输入信号水平。关于延迟偏移量,基带处理器34可以根据在所访问的记录中指定的延迟偏移来设定延迟部件33的可编程延迟。
[0088] 在一些情况下,索引的记录可以包含从变量导出的值。例如,在记录被用于补偿DPD表的情况下,校正值可以从记录的变量导出,并存储在均衡器表41中。
[0089] 图7B示出了使用预表征查找表来补偿前端模块操作的另一过程750。类似于图7A的过程700,基带处理器34在框752接收感测的复阻抗值。
[0090] 在方框754,使用集成在前端模块45内的天线调谐器54执行粗调功能。如先前关于图4B所描述的,可编程天线调谐器54可以被调谐以在一定程度上补偿感测到的失配,例如
将由功率放大器17所见的阻抗负载调谐为更接近所需的值(例如更接近50欧姆),从而减小
VSWR。
[0091] 在方框756,基带处理器34使用感测到的阻抗值来从均衡器表41访问适当的记录,类似于图7A的过程700的方框704。在方框758,基带处理器34以类似于图7B的过程700的方
框706的方式基于所访问的记录来应用精调校正。例如,精调可以补偿具有比那些使用天线调谐器54所实现的粗略校正所涉及的幅度相对来说较小的幅度的非线性(例如记忆效应)。
[0092] 功率放大器供给模式的示例
[0093] 图8A-8C分别示出了在固定供给电压模式、平均功率追踪(APT)模式和包络追踪模式下操作的功率放大器的波形。
[0094] 在图8A中,曲线图示出了相对于时间的RF信号804的电压和功率放大器供给电压802。RF信号804具有信号包络805。重要的是,功率放大器的功率放大器供给电压802具有的电压水平大于RF信号804的电压水平。例如,向功率放大器提供具有小于RF信号804的幅度
的供给电压可能对信号削波(clip),从而产生信号失真和/或其它问题。从而,重要的是,功率放大器供给电压802大于信号包络805的电压。然而,可能期望减小功率放大器供给电压
802与RF信号804的信号包络805之间的电压差,这是因为功率放大器供给电压802和信号包
络805之间的面积可以表示损耗的能量,这可能减少电池寿命并增加移动设备中产生的热
量。
[0095] 图8B是示出了相对于RF信号810的信号包络807而变化或改变的功率放大器供给电压808的曲线图。图8B所示的曲线图可以对应于功率放大器操作的平均功率追踪(APT)模
式。与图8A的功率放大器供给电压802相对比,图8B的功率放大器供给电压808在由虚线描
绘的不同的时隙期间以离散电压增量改变。在特定的时隙期间的放大器供给电压808可以
例如基于在该时隙期间的包络807的平均功率来调节。例如,右侧的时隙可以对应于比左侧的时隙低的功率操作模式。通过在某些时隙期间降低供给电压,与图8A所示的固定的供给
操作相比,APT操作可以改善功率效率。
[0096] 在图8C中,曲线图示出了相对于时间的RF信号816的电压和功率放大器供给电压814。图8C所示的曲线图可以对应于功率放大器操作的包络追踪模式。与图8A的功率放大器供给电压802相对比,图8B的功率放大器供给电压814相对于信号包络815而变化或改变。图
8C中的功率放大器供给电压814和信号包络815之间的面积小于图8A中的功率放大器供给
电压802和信号包络805之间的面积,从而图8C的曲线图可以与具有更高能量效率的功率放
大器系统相关联。与图8A所示的固定的供给操作和图8B所示的APT模式两者相比,通过将供给电压追踪到包络,包络追踪操作可以改善功率效率。
[0097] 虽然图8A-8C示出了功率放大器供给电压相对于时间的三个示例,但本文的教导适用于功率供给生成的其它配置,例如,本文的教导适用于其中供给电压模块限制功率放
大器供给电压的最小电压水平的配置。
[0098] 确定复阻抗的示例方法
[0099] 图9示出了用于确定复阻抗的一个示例方法900的流程图。所确定的阻抗例如可以用于访问均衡器表41中的记录和/或在表征过程期间使用。
[0100] 在方框902,方法900包含对入射发射信号路径进行采样,例如,在这种情况下,测量开关53被切换以从双向耦合器52的相对应端口接收正向功率信号。在方框904,方法包含从基带处理器34获得理想的I/Q数据。例如,I/Q数据可以对应于在数据流受到前端模块45内的失配和其它效应的影响之前的发送的数据流。在方框906,基带处理器34或其它适当的部件使得理想的I/Q数据以及从前端模块45接收的用于入射路径的I/Q数据互相关联并且
时间对准。例如,基带处理器34可以使用子采样移位技术。在方框908,基带处理器34或其它适当的部件计算与入射信号相关联的复相量,其可以根据图9的方框908中所示的示范性等
式来计算。
[0101] 在方框910,功率放大器系统26切换测量开关53,使得开关耦合到来自双向耦合器52的相对应端口的反向功率信号。在方框912,对反射的发射信号路径进行采样。在方框
914,方法包含从基带处理器34获得理想的I/Q数据,其可以对应于在数据流受到前端模块
45内的失配和其它效应的影响之前的发送的数据流。在方框906,基带处理器34或其它适当的部件使得理想的I/Q数据以及从前端模块45接收的用于反射路径的I/Q数据互相关联并
且时间对准。例如,基带处理器34可以使用子采样移位技术。在方框918,基带处理器34或其它适当的部件计算与反射信号相关联的复相量,其可以根据图9的方框918中所示的示范性
等式来计算。
[0102] 在方框920,基带处理器34、阻抗检测器44或其它适当的部件计算原始伽(例如复阻抗)。例如,可以通过将计算的反射复相量除以入射复相来计算原始伽马。
[0103] 应用
[0104] 上述一些实施例已经提供了与移动电话相关的示例。然而,实施例的原理和优点可以用于需要功率放大器系统的任何其它系统或设备。
[0105] 这样的功率放大器系统可以在各种电子设备中实现。电子设备的示例可以包括但不限于消费电子产品、消费电子产品的部件、电子测试设备等。电子设备的示例还可以包含但不限于存储器芯片、存储器模块、光学网络或其它通信网络的电路,以及磁盘驱动器电
路。消费电子产品可以包含但不限于移动电话、电话、电视、计算机监视器、计算机、手持式计算机、个人数字助理(PDA)、微波炉箱、汽车、立体声系统、盒式录音机或播放器、DVD播放器、CD播放器、VCR、MP3播放器、收音机、摄像机、相机、数码相机、便携式存储器芯片、洗衣机烘干机、洗衣机/烘干机、复印机、传真机、扫描仪、多功能外围设备手表、钟表等。电子设备可以包含未完成的产品。
[0106] 结论
[0107] 除非上下文清楚地要求,否则贯穿本说明书权利要求书中的词语“包括”、“包含”等被解释为具有包容性的含义,而不是排他或者穷举的含义;也就是说,是“包括,但不限于”的含义。词语“耦合”,如本文通常使用的,是指两个或多个元件可以直接连接,或者通过一个或多个中间元件连接。类似地,词语“连接”,是指两个或多个元件可以直接连接,或者通过一个或多个中间元件连接。另外,词语“本文”、“上述”、“下文”以及类似的词语,当在本申请中使用时,应指本申请的整体且并非指本申请的任何特定部分。当上下文允许时,上述具体实现中使用的单数或复数的词语也可以分别包括复数或者单数。词语“或者”参考两个或多个项目的列表,这个词语涵盖了词语的所有下列解释:列表中的任何项目、列表中的所有项目、以及列表中的项目的任意组合。
[0108] 此外,除非另有明确说明,或在所使用的上下文中以其它方式理解,否则在本文中使用的条件语言,例如“可以”、“可能”、“能够”、“可”、“例如”、“诸如”、“比如”,等等,通常旨在表达某些实施例包含而其它实施例不包含某些特征、元件和/或状态。从而,这些条件语言通常不旨在暗示特征、元件和/或状态以任何方式对于一个或多个实施例是必需的,或者,在具有或不具有作者输入或提示的情况下,一个或多个实施例必然包含逻辑,以确定这些特征、元件和/或状态是否被包含在任何特定实施例中,或将在任何特定实施例中执行。
[0109] 本发明的实施例的上述详细描述不旨在穷举或限制本发明为上述公开的精确形式。虽然为了说明的目的,在上面描述了本发明的具体实施例和示例,但在本发明的范围内的各种等效修改方式是可能的,相关领域的技术人员将认识到这些。例如,尽管过程或者区块以给定的顺序呈现,但是替代的实施例可以以不同的顺序执行具有步骤的程序、或使用
具有区块的系统,并且一些过程或区块可以被删除、移动、增加、细分、组合、和/或修改。这些过程或者区块中的每一个可以以各种不同的方式执行。同样,尽管过程或者区块在时间
上示出为连续执行,但是这些过程或者区块可以替代为并列执行,或者在不同时间执行。
[0110] 本文提供的本发明的教导可以应用于其它系统、而不必是上述系统。上述各个实施例的元件和动作可以组合以提供另外的实施例。
[0111] 虽然本发明的一些实施例已被描述,这些实施例仅以示例提出,并且不旨在限制本发明的范围。事实上,本文所述的新颖的方法和系统可能以各种其它形式体现;此外,在不脱离本发明的精神的情况下,可以对本文所述的方法和系统的形式进行各种省略、替代
和改变,所附权利要求及其等同旨在覆盖这些形式或变型以落入本发明的范围和精神内。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈