首页 / 专利库 / 信号处理 / 数字预失真 / 数字预失真方法和装置

数字预失真方法和装置

阅读:241发布:2020-05-12

专利汇可以提供数字预失真方法和装置专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种 数字预失真 方法,通过获取数字 信号 的多种 正交 模型结构;根据获取的各种正交模型结构,确定模型参量数值和对应的参量区间;根据确定的模型参量数值和对应的参量区间,选择最佳的正交模型结构。本发明还公开了一种数字预失真装置。本发明有效保证了DPD 迭代 的 稳定性 、同时保证了预失真的 精度 和鲁棒性。,下面是数字预失真方法和装置专利的具体信息内容。

1.一种数字预失真方法,其特征在于,所述数字预失真方法包括以下步骤:
获取数字信号的多种正交模型结构;
根据获取的各种正交模型结构,确定模型参量数值和对应的参量区间;
根据确定的模型参量数值和对应的参量区间,选择最佳的正交模型结构。
2.如权利要求1所述的数字预失真方法,其特征在于,所述获取数字信号的多种正交模型结构的步骤包括:
按照正交多项式获取数字信号的多种正交模型结构。
3.如权利要求2所述的数字预失真方法,其特征在于,所述正交多项式为模值正交多项式、勒让德正交多项式、切比夫正交多项式、拉盖尔正交多项式和/或埃尔米特正交多项式。
4.如权利要求1所述的数字预失真方法,其特征在于,所述正交模型结构为R矩阵和/或表格;所述模型参量数值为R矩阵的条件数、R矩阵的列向量、R矩阵的特征值和/或表格的峰值。
5.如权利要求1至4任一项所述的数字预失真方法,其特征在于,所述根据确定的模型参量数值和对应的参量区间,选择最佳的正交模型结构的步骤包括:
若计算出来的模型参量数值最佳和所述正交模型结构对应的参量区间在预设的参量区间阈值范围内时,则所述正交模型结构为最佳的正交模型结构。
6.一种数字预失真装置,其特征在于,所述数字预失真装置包括:
生成模,用于获取数字信号的多种正交模型结构;
计算模块,用于根据获取的各种正交模型结构,确定模型参量数值和对应的参量区间;
选择模块,用于根据确定的模型参量数值和对应的参量区间,选择最佳 的正交模型结构。
7.如权利要求6所述的数字预失真装置,其特征在于,所述生成模块用于按照正交多项式获取数字信号的多种正交模型结构。
8.如权利要求7所述的数字预失真装置,其特征在于,所述正交多项式为模值正交多项式、勒让德正交多项式、切比雪夫正交多项式、拉盖尔正交多项式和/或埃尔米特正交多项式。
9.如权利要求6所述的数字预失真装置,其特征在于,所述正交模型结构为R矩阵和/或表格;所述模型参量数值为R矩阵的条件数、R矩阵的列向量、R矩阵的特征值和/或表格的峰值。
10.如权利要求6至9任一项所述的数字预失真装置,其特征在于,所述选择模块用于若计算出来的模型参量数值最佳和所述正交模型结构对应的参量区间在预设的参量区间阈值范围内时,则所述正交模型结构为最佳的正交模型结构。

说明书全文

数字预失真方法和装置

技术领域

[0001] 本发明涉及数字信号处理领域,尤其涉及数字预失真方法和装置。

背景技术

[0002] DPD(Digital Pre-Distortion,数字预失真技术)是数字中频数字信号解调处理中很重要的一部分,数字中频处理是发射机中不可缺少的一环,发射机广泛应用于GSM(Global System for Mobile Communications,全球移动通信系统)、PHS(Personal Handy-phone System,个人手持电话系统)、CDMA(Code Division Multiple Access,码分多址)和WCDMA(Wideband Code Division Multiple Access,宽带码分多址)等各种制式的现代无线通信系统中,无论是基站还是直放站,都是不可或缺且极其重要的。而数字预失真的作用是根据功率放大器的特性提取相应的模型参量,然后把模型参量反作用在基带数字信号上,达到改善功率放大器后发射信号线性度的目的,有效地抑制三阶互调杂散的目的,保证了发射信号的高效率高质量输出。
[0003] 在数字预失真处理过程中,为了提高数字域上模型参量拟合的精度,尝试采用各种数学模型来提升,在参量精度高的模型中,不能有效保证DPD迭代稳定性,这样必然会导致在实际应用中,互调指标有波动的可能,对发射信号的稳定高质量输出造成了不可持续的隐患。另外,在现有技术上,数字预失真采用经典模型来拟合,这样来做不能同时保证精度和鲁棒性,而且,对现在超宽带功放特性的模型更难把握。因此,亟待采用一种技术来提高数字预失真的鲁棒性,以确保功率放大器后发射信号的良好线性度。

发明内容

[0004] 本发明的主要目的在于提供一种数字预失真方法和装置,旨在有效保证DPD迭代的稳定性以及同时保证预失真的精度和鲁棒性。
[0005] 为实现上述目的,本发明提供一种数字预失真方法,所述数字预失真方法包括以下步骤:
[0006] 获取数字信号的多种正交模型结构;
[0007] 根据获取的各种正交模型结构,确定模型参量数值和对应的参量区间;
[0008] 根据确定的模型参量数值和对应的参量区间,选择最佳的正交模型结构。
[0009] 优选地,所述获取数字信号的多种正交模型结构的步骤包括:
[0010] 按照正交多项式获取数字信号的多种正交模型结构。
[0011] 优选地,所述正交多项式为模值正交多项式、勒让德正交多项式、切比夫正交多项式、拉盖尔正交多项式和/或埃尔米特正交多项式。
[0012] 优选地,所述正交模型结构为R矩阵和/或表格;所述模型参量数值为R矩阵的条件数、R矩阵的列向量、R矩阵的特征值和/或表格的峰值。
[0013] 优选地,所述根据确定的模型参量数值和对应的参量区间,选择最佳的正交模型结构的步骤包括:
[0014] 若计算出来的模型参量数值最佳和所述正交模型结构对应的参量区间在预设的参量区间阈值范围内时,则所述正交模型结构为最佳的正交模型结构。
[0015] 为了解决上述的技术问题,本发明进一步提供一种数字预失真装置,所述数字预失真装置包括:
[0016] 生成模,用于获取数字信号的多种正交模型结构;
[0017] 计算模块,用于根据获取的各种正交模型结构,确定模型参量数值和对应的参量区间;
[0018] 选择模块,根据确定的模型参量数值和对应的参量区间,选择最佳的正交模型结构。
[0019] 优选地,所述生成模块用于按照正交多项式获取数字信号的多种正交模型结构。
[0020] 优选地,所述正交多项式为模值正交多项式、勒让德正交多项式、切比雪夫正交多项式、拉盖尔正交多项式和/或埃尔米特正交多项式。
[0021] 优选地,所述正交模型结构为R矩阵和/或表格;所述模型参量数值为R矩阵的条件数、R矩阵的列向量、R矩阵的特征值和/或表格的峰值。
[0022] 优选地,所述选择模块用于若计算出来的模型参量数值最佳和所述正交模型结构对应的参量区间在预设的参量区间阈值范围内时,则所述正交模型结构为最佳的正交模型结构。
[0023] 本发明提供的数字预失真方法,通过获取数字信号的多种正交模型结构;根据获取的各种正交模型结构,确定模型参量数值和对应的参量区间;根据确定的模型参量数值和对应的参量区间,选择最佳的正交模型结构。本发明有效保证了DPD迭代的稳定性、同时保证了预失真的精度和鲁棒性。附图说明
[0024] 图1为本发明数字预失真方法第一实施例的流程示意图;
[0025] 图2为本发明数字预失真方法第二实施例的流程示意图;
[0026] 图3为本发明数字预失真方法第三实施例的流程示意图;
[0027] 图4为本发明数字预失真装置一实施例的功能模块示意图;
[0028] 图5为数字预失真系统应用场景示意图。
[0029] 本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。

具体实施方式

[0030] 应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
[0031] 本发明提供一种数字预失真方法,参照图1,图1为本发明数字预失真方法第一实施例的流程示意图,在第一实施例中,所述数字预失真方法包括以下步骤:
[0032] S100、获取数字信号的多种正交模型结构。
[0033] 数字预失真装置按照正交多项式的结构对输入的数字信号进行各种模型的构架,生成各种正交模型结构,所述正交模型结构可以是R矩阵,也可以是LUT(Look-up table,查找表)表格,所述正交多项式为模值正交多项式、勒让德正交多项式、切比雪夫正交多项式、拉盖尔正交多项式、埃尔米特正交多项式中的一种或几种。
[0034] S200、根据获取的各种正交模型结构,确定模型参量数值和对应的参量区间。
[0035] 数字预失真装置根据生成的各种正交模型结构,计算出模型参量数值,例如数字预失真装置根据生成的R矩阵,计算出相应的矩阵条件数、估计出矩阵任意两列之间的相关性、计算出矩阵R对应的特征值、并估计出特征值分布的疏密性。数字预失真装置也可以根据生成的LUT表格,计算出表格的峰值参量。数字预失真装置根据各种正交模型结构计算出对应的参量区间,例如R矩阵和LUT表格各自对应的参量区间。
[0036] S300、根据确定的模型参量数值和对应的参量区间,选择最佳的正交模型结构。
[0037] 数字预失真装置根据R矩阵的相应的矩阵条件数、矩阵任意两列之间的相关性和特征值、特征值分布的疏密性和表格的峰值参量,选择最佳的R矩阵或LUT表格,从而找出最佳鲁棒性下的DPD迭代模型结构。
[0038] 本实施例提供的数字预失真方法有效保证了DPD迭代的稳定性、同时保证了预失真的精度和鲁棒性。
[0039] 如图2所示,图2为本发明数字预失真方法第二实施例的流程示意图,在第一实施例的基础上,所述步骤S100包括:
[0040] 步骤S100A、按照正交多项式生成数字信号的多种正交模型结构获取数字信号的多种正交模型结构。
[0041] 数字预失真装置的正交模型结构按照正交多项式的结构生成,所述正交多项式可以为模值正交多项式、勒让德正交多项式、切比雪夫正交多项式、拉盖尔正交多项式、埃尔米特正交多项式中的一种或几种。正交多项式是由多项式构成的正交函数系的通称。其中,[0042] 本实施例数字预失真装置对输入的数字信号按照模值正交多项式的结构来生成,采用的递推公式包括但不限于下述公式:
[0043]
[0044] 本实施例数字预失真装置对输入的数字信号按照勒让德正交多项式的结构来生成,采用的递推公式包括但不限于下述公式:
[0045] (n+1)Pn+1(x)=(2n+1)xPn(x)-nPn-1(x)(n=1,2,…) (2)
[0046] 本实施例数字预失真装置对输入的数字信号按照切比雪夫正交多项式结构来生成,采用的递推公式包括但不限于下述公式:
[0047] Tn+1(x)=2xTn(x)-Tn-1(x)(n=1,2,…) (3)
[0048] 本实施例数字预失真装置对输入的数字信号按照拉盖尔正交多项式的结构来生成,采用的递推公式包括但不限于下述公式:
[0049] Ln+1(x)=(1+2n-x)Ln(x)-n2Ln-1(x)(n=1,2,…) (4)
[0050] 本实施例数字预失真装置对输入的数字信号按照埃尔米特正交多项式结构来生成,采用的递推公式包括但不限于下述公式:
[0051] Hn+1(x)=2xHn(x)-2nHn-1(x)(n=1,2,…) (5)
[0052] 如图3所示,图3为本发明数字预失真方法第三实施例的流程示意图,在第一实施例的基础上,所述步骤S300包括:
[0053] 步骤S300A、若计算出来的模型参量数值最佳和所述正交模型结构对应的参量区间在预设的参量区间阈值范围内时,则所述正交模型结构为最佳的正交模型结构。
[0054] 本实施例数字预失真装置对R矩阵或LUT表格的参量区间进行检测,若计算出来的模型参量数值最佳和所述正交模型结构对应的参量区间在预设的参量区间阈值范围内时,则所述正交模型结构为最佳的正交模型结构。所述预设的参量区间阈值范围可以根据实际的需求实时进行更改,使参量区间阈值范围在最佳的参量区间范围之内。例如LUT表格的预设的参量区间阈值范围预设为20至50,而根据实际的需求,可将参量区间阈值范围修改为30至40。
[0055] 本实施例提供的数字预失真方法,通过最佳正交模型对应的各参量区间,根据各种不同正交模型多项式构建预失真结构,通过性能指标来映射最佳模型对应的参量区间。有效保证了DPD迭代的稳定性、同时保证了预失真的精度和鲁棒性。
[0056] 如图4所示,图4为本发明数字预失真装置一实施例的功能模块示意图,一实施例提供的数字预失真装置,包括:
[0057] 生成模块10,用于获取数字信号的多种正交模型结构;
[0058] 计算模块20,用于根据获取的各种正交模型结构,确定模型参量数值和对应的参量区间;
[0059] 选择模块30,用于根据对应的参量区间,选择最佳的正交模型结构。
[0060] 数字预失真装置的生成模块10按照正交多项式的结构对输入的数字信号进行各种模型的构架,生成各种正交模型结构,所述正交模型结构可以是R矩阵,也可以是LUT表格,所述正交模型结构可以按照正交多项式的结构生成,也可以通过其他方式生成,所述正交多项式为模值正交多项式、勒让德正交多项式、切比雪夫正交多项式、拉盖尔正交多项式、埃尔米特正交多项式中的一种或几种。
[0061] 数字预失真装置的计算模块20根据生成的各种正交模型结构,计算出模型参量数值,例如数字预失真装置根据生成的R矩阵,计算出相应的矩阵条件数、估计出矩阵任意两列之间的相关性、计算出矩阵R对应的特征值,并估计出特征值分布的疏密性。数字预失真装置也可以根据生成的LUT表格,计算出表格的峰值参量。数字预失真装置根据各种正交模型结构计算出对应的参量区间,例如R矩阵和LUT表格各自对应的参量区间。
[0062] 数字预失真装置的选择模块30根据R矩阵的相应的矩阵条件数、矩阵任意两列之间的相关性和特征值、特征值分布的疏密性和表格的峰值参量,选择最佳的R矩阵或LUT表格,从而找出最佳鲁棒性下的DPD迭代模型结构。
[0063] 本实施例提供的数字预失真装置,有效保证了DPD迭代的稳定性、同时保证了预失真的精度和鲁棒性。
[0064] 进一步参见图4,一实施例提供的数字预失真装置,所述生成模块10用于按照正交多项式获取数字信号的多种正交模型结构。
[0065] 数字预失真装置的生成模块的正交模型结构按照正交多项式的结构生成,所述正交多项式可以为模值正交多项式、勒让德正交多项式、切比雪夫正交多项式、拉盖尔正交多项式、埃尔米特正交多项式中的一种或几种。正交多项式是由多项式构成的正交函数系的通称。其中,
[0066] 本实施例数字预失真装置对输入的数字信号按照模值正交多项式的结构来生成,采用的递推公式包括但不限于下述公式:
[0067]
[0068] 本实施例数字预失真装置对输入的数字信号按照勒让德正交多项式的结构来生成,采用的递推公式包括但不限于下述公式:
[0069] (n+1)Pn+1(x)=(2n+1)xPn(x)-nPn-1(x)(n=1,2,…) (7)
[0070] 本实施例数字预失真装置对输入的数字信号按照切比雪夫正交多项式结构来生成,采用的递推公式包括但不限于下述公式:
[0071] Tn+1(x)=2xTn(x)-Tn-1(x)(n=1,2,…) (8)
[0072] 本实施例数字预失真装置对输入的数字信号按照拉盖尔正交多项式的结构来生成,采用的递推公式包括但不限于下述公式:2
[0073] Ln+1(x)=(1+2n-x)Ln(x)-nLn-1(x)(n=1,2,…) (9)
[0074] 本实施例数字预失真装置对输入的数字信号按照埃尔米特正交多项式结构来生成,采用的递推公式包括但不限于下述公式:
[0075] Hn+1(x)=2xHn(x)-2nHn-1(x)(n=1,2,…) (10)
[0076] 进一步参见图4,一实施例提供的数字预失真装置,所述选择模块30用于若计算出来的模型参量数值最佳和所述正交模型结构对应的参量区间在预设的参量区间阈值范围内时,则所述正交模型结构为最佳的正交模型结构。
[0077] 本实施例数字预失真装置的选择模块30对R矩阵或LUT表格的参量区间进行检测,若计算出来的模型参量数值最佳和所述正交模型结构对应的参量区间在预设的参量区间阈值范围内时,则所述正交模型结构为最佳的正交模型结构。所述预设的参量区间阈值范围可以根据实际的需求实时进行更改,使预设的参量区间阈值范围在最佳的参量区间范围之内。例如LUT表格的预设的参量区间阈值范围预设为20至50,而根据实际的需求,可将参量区间阈值范围修改为30至40。
[0078] 本实施例提供的数字预失真装置,通过最佳正交模型对应的各参量区间,根据各种不同正交模型多项式构建预失真结构,通过性能指标来映射最佳模型对应的参量区间。有效保证了DPD迭代的稳定性、同时保证了预失真的精度和鲁棒性。
[0079] 如图5所示,图5为数字预失真系统应用场景示意图,所述数字预失真系统在数字预失真系统的基础上还包括基带数字信号模块11、成型滤波和插值模块12、削峰模块13、数字预失真装置、调制模块14、DAC(Digital to analog converter,数字模拟转换)模块15、PA((power amplifier,功率放大)模块16和天馈模块17,所述基带数字信号模块11、成型滤波和插值模块12、削峰模块13、数字预失真装置、调制模块14、DAC模块15、PA模块
16和天馈模块17按序串联,其中,
[0080] 所述基带数字信号模块11,用于产生基带数字信号;
[0081] 所述成型滤波和插值模块12,用于对基带数字信号进行脉冲成型和数字信号进行变速率处理;
[0082] 所述削峰模块13,用于对中频数字信号进行降低峰均比处理;
[0083] 所述调制模块14,用于对数字预失真后数字信号进行加密处理;
[0084] 所述DAC模块15,用于对数字信号进行数模转换处理,将数字信号转换为模拟信号
[0085] 所述PA模块16,用于放大模拟信号;
[0086] 所述天馈模块17,用于将放大的模拟信号发射到空中。
[0087] 本实施例提供的数字预失真系统,数字信号通过基带数字信号模块、成型滤波和插值模块、削峰模块的削峰后,输入到数字预失真装置进行数字预失真处理后,并经过调制模块的加密、DAC模块的数模转换、PA模块的广大和天馈模块的发射,对发射信号的稳定高质量输出作了有效保证,确保了功率放大器后发射信号的良好线性度。
[0088] 以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈