首页 / 专利库 / 信号处理 / 滤波器组 / 一种非接触非侵入无损伤的癫痫路径可达方式监测预警干预系统及获取干扰脑电分布的方法

一种非接触非侵入无损伤的癫痫路径可达方式监测预警干预系统及获取干扰脑电分布的方法

阅读:421发布:2024-01-18

专利汇可以提供一种非接触非侵入无损伤的癫痫路径可达方式监测预警干预系统及获取干扰脑电分布的方法专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种非 接触 非侵入无损伤的 癫痫 路径可达方式监测预警干预系统及获取干扰脑电分布的方法,该系统包括非接触采集模 块 、非接触控 制模 块与非接触干预模块;采集模块包括若干与头皮不接触的 信号 采集 电极 ; 控制模块 包括时间预测单元和空间预测单元;干预模块包括若干可控脉冲电磁单元,可控脉冲电磁单元具有正对头皮的电磁线圈,电磁线圈与信号采集电极交错布置;本发明系统可以在癫痫发作之前预测其发作时间、发作 位置 、并根据其预测结果以路径可达方式干预大脑中电荷分布与 电流 趋势,充分利用了混沌 电路 的初始敏感性、 机器学习 以及 生物 电磁耦合原理非接触非侵入无损伤测量脑电与干预癫痫,可应用于可穿戴设备与移动医疗领域。,下面是一种非接触非侵入无损伤的癫痫路径可达方式监测预警干预系统及获取干扰脑电分布的方法专利的具体信息内容。

1.一种非接触非侵入无损伤的癫痫路径可达方式监测预警干预系统,其特征在于,该系统为三层叠加结构,从内至外分别为:非接触采集模、非接触干预模块和非接触控制模块;
所述非接触采集模块包括n个信号采集电极,信号采集电极与头皮不接触,通过放大器放大信号采集电极采集的癫痫患者脑电波,通过机器学习得到脑电波和实际电位信息的关系,从而通过非接触方式得到电位e'i,i=1,2,3,...,n,随后通过滤波器对电位e′i进行降噪、过滤处理得到滤波后的电位ei,i=1,2,3,...,n;
所述非接触控制模块包括时间预测单元和空间预测单元;
所述时间预测单元通过t时刻之前的设定时间间隔内的各个时间点采集的电位序列,训练得到预测函数P,通过预测函数P得到每个信号采集电极预测时刻t*的电位e(t*),预测电位e(t*)和设定电位阈值θ比较,将大于等于θ的预测电位e(t*)标记e*,e*对应的信号采集电极的位置集合A={(x,y)|e*≥θ}判断为时间预测的爆发位置,其中x代表信号采集电极在非接触采集模块中的行数,y代表信号采集电极在非接触采集模块中的列数,e*对应的时间t*为癫痫预测爆发时间;将预测的爆发位置发送给空间预测单元,同时启动空间预测单元,否则继续进行监测;
所述空间预测单元通过n个信号采集电极的当前时刻t1的邻域时刻的电位,结合n个信号采集电极在非接触采集模块的位置(x,y),获得n个信号采集电极的n(η+1)个电压e(i,t)(x,y),(t=t1-η,...,t1-2,t1-1,t1;i=1,2,...,n),每个信号采集点的η+1个电压e(i,t)(x,y)中,取相邻的电压两两作差,得到每个信号采集电极的η个电压梯度D(i,j),(i=1,2,...,n,j=1,2,...η);对每个信号采集点的η个电压梯度取平均得到电压梯度平均值通过比较n个信号采集电极的电压梯度平均值 得到电压梯度极大值坐
标(x',y')的集合B与极小值坐标(x",y")的集合C;
通过求集合A和B的交集得到大脑兴奋区域坐标(x*,y*)集合P,通过求集合 和C的交集得到大脑非兴奋区域坐标(x^,y^)集合N,并将坐标集合信息发送给干预模块;
所述非接触干预模块包括m个可控脉冲电磁单元,所述可控脉冲电磁单元具有正对头皮的电磁线圈,所述电磁线圈与信号采集电极交错布置,在垂直方向上无重叠;所述电磁线圈产生大小与极性可控的干预磁场B,所述干预磁场B能够与大脑中的生物电场耦合;可控脉冲电磁单元对非兴奋区域集合N进行电磁刺激按摩,通过路径可达的干预方式疏散兴奋区域集合P所在大脑区域的大量积聚电荷;
所述路径可达的干预方式是指:
通过测量历史数据,得到大脑内电荷的可达路径,当兴奋区域电荷积聚过多时,电磁脉冲单元发出电磁脉冲,通过电磁耦合的作用,由可达路径将过多电荷引流到大脑非兴奋区域;所述的可达路径由以下的方式测量得到:
以第i个坐标信号采集点为中心,定义z个相邻的信号采集点组成的邻域,通过邻域脑电差分法获得第i个信号采集点的可达路径元λi,同理可以得到另外n-1个信号采集点的可达路径元λj(j=1,2,...,j≠i,...,n);
得到电势升高路径元λ1,λ2,...,λi,...,λn后,多个可控电磁单元发出的电磁脉冲Bi,通过磁聚焦方法将焦点fB对准电荷积聚最高坐标σmax,按照路径可达的方向将σmax的多余电荷向电荷积聚最低区域σmin移动,其中σmax是兴奋区域P中电压与电压梯度最大的信号采集点对应的坐标,其中σmin是非兴奋区域N中电压与电压梯度最小的信号采集点对应的坐标,磁聚焦的焦点fB从σmax到σmin的路径为λ1,λ2,...,λi,...,λn的排列组合,可以有多种排列组合,也可以通过多个磁聚焦点移动;
干预时间持续ΔT后,若兴奋区域信号采集单元电位ek(k=1,2,…,p)电位都小于电位阈值θ时,则干预模块工作结束,否则重复以上干预过程。
2.根据权利要求1所述的非接触非侵入无损伤的癫痫路径可达方式监测预警干预系统,其特征在于,该系统置于大脑外侧,外观呈帽形。
3.根据权利要求1所述的非接触非侵入无损伤的癫痫路径可达方式监测预警干预系统,其特征在于,所述放大器为杜芬电路放大器,通过以下公式搭建而成:
其中k是阻尼比,x为测量信号,(x3-x5)为非线性恢复,γsin(ωt+π)为内置驱动信号,γ为内置驱动信号的幅值,ω为内置驱动信号的频率
4.根据权利要求1所述的非接触非侵入无损伤的癫痫路径可达方式监测预警干预系统,其特征在于,所述通过预测函数P得到每个信号采集电极预测时刻t*的电位e(t*)具体为:
对于第i个信号采集电极,通过放大过滤后得到的电位时间序列为ei(t),(i=1,2,...,n),设c(i)为与节点i相邻的节点集合,m为c(i)中的元素个数,表示相邻节点的个数,ec(i)(t)为节点集合c(i)的电位;以ei(t)与ec(i)(t)的历史数据作为输入输出样本来训练预测函数P;
训练过程具体如下:
定义预测函数P的输入为input,输出为output;训练第k代的时候,input的输入长度为(1+m)*(1+τ),输出长度为1;取Δt为一个时间间隔,则t时刻第i个信号采集点电位为ei(t),t时刻以前τ个时间间隔Δt的电位表示为ei(t-1),ei(t-2)...,ei(t-τ);第i个信号采集点的相邻采集点的电位为ec(i)(t)、τ个时间间隔Δt的电位表示为ec(i)(t-1),ec(i)(t-
2)...,e(i)(t-τ),以上这长度为1+τ个数为1+m的时间序列作为输入,则输入表示为:
input={ei(t),ei(t-1),...,ei(t-τ),ec(i)(t),ec(i)(t-1),...,ec(i)(t-τ)};
训练时的输出为t时刻经过一个时间间隔Δt的电位,表示为ei(t+1),则输出表示为:
output={ei(t+1)};则
若t取之前的某一时刻t0,则
input={ei(t0),ei(t0-1),...,ei(t0-τ),ec(i)(t0),ec(i)(t0-1),...,ec(i)(t0-τ)},训练输出output={ei(t0+1)}作为一组训练样本;取时间间隔为Δt'、且从t0时刻后取N个时间间隔如t0,t0+1,...,t0+N-1作为N组训练样本,训练1000次到10000次,得到训练函数P,且output=P(input);
当t取当前时刻,则通过预测函数P预测得到下一时刻t+Δt的采集点电压幅值ei(t+Δt);令t*=t+Δt,则t*表示为预测时刻,同时预测电位表示为e(t*)。
5.根据权利要求1所述的非接触非侵入无损伤的癫痫路径可达方式监测预警干预系统,其特征在于,所述空间预测单元中,电压梯度平均值 的获取方法如下:
通过n个信号采集电极的当前时刻t1的邻域时刻的电位,结合n个信号采集电极在非接触采集模块的位置(x,y),获得n个信号采集电极n(η+1)个时刻的采集电位e(i,t)(x,y),(t=t1-η,...,t1-2,t1-1,t1;i=1,2,...,n),将e(i,t)(x,y)记作e(i,t),则有采集电位矩阵:
采集电位矩阵的每一行表示η+1个较短时刻的采集电位序列,对矩阵相邻两列作差,得到n个信号采集电极的η个电位梯度
D(i,j)=e(i,t)(x,y)-e(i,t-1)(x,y),(t=t1-η+1,...,t1-2,t1-1,t1.i=1,2,...,n,j=1,
2,...η),则有电位梯度矩阵:
电压梯度矩阵的第i行表示第i个信号采集点的电位时间差分序列,第j列表示第j个相邻的电位时间梯度,随后对每一行的电位时间差分序列求取平均值 得到电压
梯度平均值
6.根据权利要求1所述的非接触非侵入无损伤的癫痫路径可达方式监测预警干预系统,其特征在于,所述可控脉冲电磁单元包括PWM波控制模块、全控可关断电力电子器件模块、电磁线圈;所述全控可关断电力电子器件模块采用IGBT,PWM波控制模块的输出端接IGBT的极G,IGBT的集电极C分别接电容C1的一端和滑动变阻器R1的第一固定端,滑动变阻器R1的第二固定端连接电源的正极,IGBT的发射极E接电磁线圈的一端,电磁线圈的另一端和电容C1的另一端相连后接电源的负极;所述滑动变阻器R1能够改变电磁线圈中电流的大小;通过PWM波控制模块控制IGBT的开启和关断,从而改变电磁线圈中的电流大小,进而改变干预磁场 的方向以及强弱。
7.根据权利要求1所述的非接触非侵入无损伤的癫痫路径可达方式监测预警干预系统,其特征在于,所述通过邻域脑电差分法步骤如下:
第i个信号采集点的脑电为ei,设c(j)(j=1,2,…,z-1)为与第i个坐标信号采集点(中心位置信号采集点)相邻信号采集点,则相邻采集点的脑电为ec(j)(j=1,2,…,z-1);在时刻T0,得到中心位置信号采集点的脑电e'i与相邻采集点的脑电e'c(j)(j=1,2,…,z-1),在经过ΔT后的时刻T1,得到中间位置信号采集点的脑电e"i与相邻采集点的脑电e"c(j),并对T0时刻与T1时刻的脑电作差得到脑电时间差分di、dc(j)(j=1,2,…,z-1);并对脑电时间差分di与dc(j)(j=1,2,…,z-1)作差,得到脑电差分差值Cc(j)(j=1,2,…,z-1),即Cc(j)=dc(j)-di,比较z-1个脑电差分差值Cc(j)的大小,并将z-1个Cc(j)按照由高到低的顺序排列,将脑电差分差值的两个最值Cc(max),Cc(min)对应的三个坐标(xmin,xmin),(xi,yi),(xmax,ymax)的连线作为电荷逐渐累计并且可以流通的一个可达路径,记作电势升高路径元λi;对另外n-1个信号采集点及其邻域进行如上的计算得到以每个信号采集点为中心的三坐标连线作为可达路径,记作电势升高路径元λj(j=1,2,...,j≠i,...,n)。
8.根据权利要求1所述的非接触非侵入无损伤的癫痫路径可达方式监测预警干预系统,其特征在于,所述磁聚焦方法是指:信号采集点相邻两个或多个成对的可控脉冲电磁单元发出极性相反且同步的电磁脉冲,使得一对可控脉冲单元之间的磁力线能够覆盖到信号采集点上,从而该信号采集点位置的神经元细胞膜上垂直运动的电流元能够受到磁力线的作用而产生安培力,使其在细胞膜上移动,磁聚焦的焦点fB是一对可控脉冲电磁单元的中心位置。
9.根据权利要求1所述的非接触非侵入无损伤的癫痫路径可达方式监测预警干预系统,其特征在于,所述磁聚焦法路径元排列组合的规则如下:当某个区域电荷过多的时候,以一个坐标位置作为一个干预单位,根据从σmax到σmin的所用干预单位最少的准则确定λ1,λ2,...,λi,...,λn的组合;若出现m个相同长度的干预单位,则可以取m个磁聚焦点fB同时作用在m个相同长度的干预路径。
10.一种非接触非侵入无损伤路径可达方式获取干扰脑电分布的方法,其特征在于,以一种非接触非侵入无损伤的方法获取并以路径可达的方式干扰电荷的分布与电流的趋势;
这种方法包括非接触测量大脑中的电荷与电流的分布,时间预测结合空间预测来定位电荷积聚较多且积聚速度块或者电荷积聚较少且积聚速度慢的区域,并基于路径可达的方法干预大脑中的电荷的分布与神经元中的电流趋势;具体步骤如下:
第1步:通过n个信号采集电极采集被试者的脑电波,信号采集电极与头皮不接触,通过机器学习得到脑电波和实际电位信息的关系,从而通过非接触方式得到电位e'i,i=1,2,
3,...,n,随后通过滤波器对电位e′i进行降噪、过滤处理得到滤波后的电位ei,i=1,2,
3,...,n;
第2步:时间预测:通过t时刻之前的设定时间间隔内的各个时间点采集的电位序列,训练得到预测函数P,通过预测函数P得到每个信号采集电极预测时刻t*的电位e(t*),预测电位e(t*)和设定电位阈值θ比较,将大于等于θ的信号采集电极的位置集合设置为A={(x,y)|e*≥θ},其中(x,y)为信号采集电极的位置坐标;
第3步:空间预测:通过n个信号采集电极的当前时刻t1的邻域时刻的电位,结合n个信号采集电极的位置(x,y),获得n个信号采集电极的n(η+1)个电压e(i,t)(x,y),(t=t1-η,...,t1-2,t1-1,t1;i=1,2,...,n),每个信号采集点的η+1个电压e(i,t)(x,y)中,取相邻的电压两两作差,得到每个信号采集电极的η个电压梯度D(i,j),(i=1,2,...,n,j=1,2,...η);对每个信号采集点的η个电压梯度取平均得到电压梯度平均值 通过比较n个信
号采集电极的电压梯度平均值 得到电压梯度极大值坐标(x',y')的集合B与极小值坐标(x",y")的集合C;
第4步:通过集合A和B的交集得到大脑兴奋区域坐标(x*,y*)集合P,通过求集合A和C的交集得到大脑非兴奋区域坐标(x^,y^)集合N;
第5步:获得可达路径:以第i个坐标信号采集点为中心,定义z个相邻的信号采集点组成的邻域,中心位置信号采集点的脑电为ei,设c(j)(j=1,2,…,z-1)为与第i个坐标信号采集点(中心位置信号采集点)相邻信号采集点,则相邻采集点的脑电为ec(j)(j=1,2,…,z-
1);在时刻T0,得到中心位置信号采集点的脑电e'i与相邻采集点的脑电e'c(j)(j=1,2,…,z-1),在经过ΔT后的时刻T1,得到中间位置信号采集点的脑电e"i与相邻采集点的脑电e"c(j),并对T0时刻与T1时刻的脑电作差得到脑电时间差分di、dc(j)(j=1,2,…,z-1);并对脑电时间差分di与dc(j)(j=1,2,…,z-1)作差,得到脑电差分差值Cc(j)(j=1,2,…,z-1),即Cc(j)=dc(j)-di,比较z-1个脑电差分差值Cc(j)的大小,并将z-1个Cc(j)按照由高到低的顺序排列,将脑电差分差值的两个最值Cc(max),Cc(min)对应的三个坐标(xmin,xmin),(xi,yi),(xmax,ymax)的连线作为电荷逐渐累计并且可以流通的一个可达路径,记作电势升高路径元λi;对另外n-1个信号采集点及其邻域进行如上的计算得到以每个信号采集点为中心的三坐标连线作为可达路径,记作电势升高路径元λj(j=1,2,...,j≠i,...,n);
第6步:脑电干扰:得到电势升高路径元λ1,λ2,...,λi,...,λn后,通过磁聚焦方法将焦点fB对准电荷积聚起始坐标σ1,按照路径可达的方向将σ1的电荷向目标区域σ2移动,其中磁聚焦方法是指信号采集点相邻两个或多个成对的可控脉冲电磁单元发出极性相反且同步的电磁脉冲Bi,使得一对可控脉冲单元之间的磁力线能够覆盖到信号采集点上,从而该信号采集点位置的神经元细胞膜上垂直运动的电流元能够受到磁力线的作用而产生安培力,使其在细胞膜上移动,磁聚焦的焦点fB是一对可控脉冲电磁单元的中心位置;
磁聚焦的焦点fB从σ1到σ2的路径为λ1,λ2,...,λi,...,λn的排列组合,可以有多种排列组合,也可以通过多个磁聚焦点移动;排列组合的规则如下:当某个区域电荷过多的时候,以一个坐标位置作为一个干预单位,根据从σ1到σ2的所用干预单位最少的准则确定λ1,λ2,...,λi,...,λn的组合;若出现m个相同长度的干预单位,则可以取m个磁聚焦点fB同时作用在m个相同长度的干预路径;
干预时间持续ΔT后,若兴奋区域信号采集单元电位ek(k=1,2,…,p)电位都小于电位阈值θ时,则停止干扰,否则继续干扰操作。

说明书全文

一种非接触非侵入无损伤的癫痫路径可达方式监测预警干预

系统及获取干扰脑电分布的方法

技术领域

[0001] 本发明涉及电磁理疗领域,具体涉及一种非接触、非侵入、无损伤的癫痫监测预警干预系统及获取干扰脑电分布的方法。

背景技术

[0002] 癫痫即俗称的羊或羊癫风,是由内部网络缺陷引起的、部分网络节点过高,从而引发的部分网络节点压力过高的放电现象。
[0003] 除了患者脑部区域结构损伤以外,癫痫发作造成的抽搐、丧失意识,也会使患者造成跌伤、磕碰等二次伤害。目前主要的治疗分为:药物治疗辅助以手术治疗。
[0004] 越来越多的证据表明:电磁场可能作为诱导因子对细胞的信号通道产生影响;细胞膜是环境电磁场与细胞作用的主要靶部位,细胞膜受体是电磁场可能的信号耦合点之一。此外,由于混沌动力系统的动力学行为对初始参数的极端敏感性,人们可以通过非线性电路对一些微弱信号进行检测与提取。

发明内容

[0006] 本发明的目的是通过以下技术方案来实现的:一种非接触非侵入无损伤的癫痫路径可达方式监测预警干预系统,该系统为三层叠加结构,从内至外分别为:非接触采集模、非接触干预模块和非接触控制模块;
[0007] 所述非接触采集模块包括n个信号采集电极,信号采集电极与头皮不接触,通过放大器放大信号采集电极采集的癫痫患者脑电波,通过机器学习得到脑电波和实际电位信息的关系,从而通过非接触方式得到电位e'i,i=1,2,3,...,n,随后通过滤波器对电位e′i进行降噪、过滤处理得到滤波后的电位ei,i=1,2,3,...,n;
[0008] 所述非接触控制模块包括时间预测单元和空间预测单元,时间-空间耦合控制确定癫痫爆发的时刻与癫痫爆发的位置
[0009] 所述时间预测单元通过t时刻之前的设定时间间隔内的各个时间点采集的电位序列,训练得到预测函数P,通过预测函数P得到每个信号采集电极预测时刻t*的电位e(t*),预测电位e(t*)和设定电位阈值θ比较,将大于等于θ的预测电位e(t*)标记e*,e*对应的信号采集电极的位置集合A={(x,y)|e*≥θ}判断为时间预测的爆发位置,其中x代表信号采集电极在非接触采集模块中的行数,y代表信号采集电极在非接触采集模块中的列数,e*对应的时间t*为癫痫预测爆发时间;将预测的爆发位置发送给空间预测单元,同时启动空间预测单元,否则继续进行监测;
[0010] 所述空间预测单元通过n个信号采集电极的当前时刻t1的邻域时刻的电位,结合n个信号采集电极在非接触采集模块的位置(x,y),获得n个信号采集电极的n(η+1)个电压e(i,t)(x,y),(t=t1-η,...,t1-2,t1-1,t1;i=1,2,...,n),每个信号采集点的η+1个电压e(i,t)(x,y)中,取相邻的电压两两作差,得到每个信号采集电极的η个电压梯度D(i,j),(i=1,2,...,n,j=1,2,...η);对每个信号采集点的η个电压梯度取平均得到电压梯度平均值通过比较n个信号采集电极的电压梯度平均值 得到电压梯度极大值坐
标(x',y')的集合B与极小值坐标(x",y")的集合C;
[0011] 通过求集合A和B的交集得到大脑兴奋区域坐标(x*,y*)集合P,通过求集合 和C的交集得到大脑非兴奋区域坐标(x^,y^)集合N,并将坐标集合信息发送给干预模块;
[0012] 所述非接触干预模块包括m个可控脉冲电磁单元,所述可控脉冲电磁单元具有正对头皮的电磁线圈,所述电磁线圈与信号采集电极交错布置,在垂直方向上无重叠;所述电磁线圈产生大小与极性可控的干预磁场B,所述干预磁场B能够与大脑中的生物电场耦合;可控脉冲电磁单元对非兴奋区域集合N进行电磁刺激按摩,通过路径可达的干预方式疏散兴奋区域集合P所在大脑区域的大量积聚电荷;
[0013] 在大脑中,神经元中的脉冲电信号传导是有一定的通路,大脑中的神经元组成神经元网络,当大量电荷积聚到一个网络节点时,引起节点电荷积聚过多,引起癫痫爆发;因此我们如果可以知道电荷流动的方向以及路径,我们就可以通过可控脉冲电磁单元与神经元之间的耦合,移动流动中的电荷向其他电荷积聚较少的区域流动。由于神经元之间的传导是单向的,就像洪爆发时会由地势高的地方流向地势低的地方,我们想要释放掉节点积聚的电荷,这就要求我们首先能够提前知道电荷流动可达的路径;
[0014] 所述路径可达的干预方式是指:
[0015] 通过测量历史数据,得到大脑内电荷的可达路径,当兴奋区域电荷积聚过多时,电磁脉冲单元发出电磁脉冲,通过电磁耦合的作用,由可达路径将过多电荷引流到大脑非兴奋区域;所述的可达路径由以下的方式测量得到:
[0016] 以第i个坐标信号采集点为中心,定义z个相邻的信号采集点组成的邻域,通过邻域脑电差分法获得第i个信号采集点的可达路径元λi,同理可以得到另外n-1个信号采集点的可达路径元λj(j=1,2,...,j≠i,...,n);
[0017] 得到电势升高路径元λ1,λ2,...,λi,...,λn后,多个可控电磁单元发出的电磁脉冲Bi,通过磁聚焦方法将焦点fB对准电荷积聚最高坐标σmax,按照路径可达的方向将σmax的多余电荷向电荷积聚最低区域σmin移动,其中σmax是兴奋区域P中电压与电压梯度最大的信号采集点对应的坐标,其中σmin是非兴奋区域N中电压与电压梯度最小的信号采集点对应的坐标,磁聚焦的焦点fB从σmax到σmin的路径为λ1,λ2,...,λi,...,λn的排列组合,可以有多种排列组合,也可以通过多个磁聚焦点移动;
[0018] 干预时间持续ΔT后,若兴奋区域信号采集单元电位ek(k=1,2,…,p)电位都小于电位阈值θ时,则干预模块工作结束,否则重复以上干预过程;
[0019] 进一步地,该系统置于大脑外侧,外观呈帽形。
[0020] 进一步地,所述放大器为非接触信号放大器,不同于以往需要开颅手术或是给头皮上涂抹盐水等手段增强信号,信号采集电极与头皮可以接触也可以不接触,采用非线性电路,利用混沌电路的初始敏感性可以测量微小的扰动,如杜芬电路振子电路可以用来测量微弱信号的变化;非接触信号放大器通过杜芬电路公式搭建而成:
[0021]
[0022] 其中k是阻尼比,x为测量信号,(x3-x5)为非线性恢复力,γsin(ωt+π)为内置驱动信号,γ为内置驱动信号的幅值,ω为内置驱动信号的频率
[0023] 进一步地,所述通过预测函数P得到每个信号采集电极预测时刻t*的电位e(t*)具体为:
[0024] 对于第i个信号采集电极,通过放大过滤后得到的电位时间序列为ei(t),(i=1,2,...,n),设c(i)为与节点i相邻的节点集合,m为c(i)中的元素个数,表示相邻节点的个数,ec(i)(t)为节点集合c(i)的电位;以ei(t)与ec(i)(t)的历史数据作为输入输出样本来训练预测函数P;
[0025] 训练过程具体如下:
[0026] 定义预测函数P的输入为input,输出为output;训练第k代的时候,input的输入长度为(1+m)*(1+τ),输出长度为1;取Δt为一个时间间隔,则t时刻第i个信号采集点电位为ei(t),t时刻以前τ个时间间隔Δt的电位表示为ei(t-1),ei(t-2)...,ei(t-τ);第i个信号采集点的相邻采集点的电位为ec(i)(t)、τ个时间间隔Δt的电位表示为ec(i)(t-1),ec(i)(t-2)...,e(i)(t-τ),以上这长度为1+τ个数为1+m的时间序列作为输入,则输入表示为:
[0027] input={ei(t),ei(t-1),...,ei(t-τ),ec(i)(t),ec(i)(t-1),...,ec(i)(t-τ)};
[0028] 训练时的输出为t时刻经过一个时间间隔Δt的电位,表示为ei(t+1),则输出表示为:
[0029] output={ei(t+1)};则
[0030] 若t取之前的某一时刻t0,则input={ei(t0),ei(t0-1),...,ei(t0-τ),ec(i)(t0),ec(i)(t0-1),...,ec(i)(t0-τ)},训练输出output={ei(t0+1)}作为一组训练样本;取时间间隔为Δt'、且从t0时刻后取N个时间间隔如t0,t0+1,...,t0+N-1作为N组训练样本,训练1000次到10000次,得到训练函数P,且output=P(input);
[0031] 当t取当前时刻,则通过预测函数P预测得到下一时刻t+Δt的采集点电压幅值ei(t+Δt);令t*=t+Δt,则t*表示为预测时刻,同时预测电位表示为e(t*)。
[0032] 进一步地,所述空间预测单元中,电压梯度平均值 的获取方法如下:
[0033] 通过n个信号采集电极的当前时刻t1的邻域时刻的电位,结合n个信号采集电极在非接触采集模块的位置(x,y),获得n个信号采集电极n(η+1)个时刻的采集电位e(i,t)(x,y),(t=t1-η,...,t1-2,t1-1,t1;i=1,2,...,n),将e(i,t)(x,y)记作e(i,t),则有采集电位矩阵:
[0034]
[0035] 采集电位矩阵的每一行表示η+1个较短时刻的采集电位序列,对矩阵相邻两列作差,得到n个信号采集电极的η个电位梯度D(i,j)=e(i,t)(x,y)-e(i,t-1)(x,y),(t=t1-η+1,...,t1-2,t1-1,t1.i=1,2,...,n,j=1,2,...η),则有电位梯度矩阵:
[0036]
[0037] 电压梯度矩阵的第i行表示第i个信号采集点的电位时间差分序列,第j列表示第j个相邻的电位时间梯度,随后对每一行的电位时间差分序列求取平均值 得到电压梯度平均值
[0038] 进一步地,所述可控脉冲电磁单元包括PWM波控制模块、全控可关断电力电子器件模块、电磁线圈;所述全控可关断电力电子器件模块采用IGBT,PWM波控制模块的输出端接IGBT的极G,IGBT的集电极C分别接电容C1的一端和滑动变阻器R1的第一固定端,滑动变阻器R1的第二固定端连接电源的正极,IGBT的发射极E接电磁线圈的一端,电磁线圈的另一端和电容C1的另一端相连后接电源的负极;所述滑动变阻器R1能够改变电磁线圈中电流的大小;通过PWM波控制模块控制IGBT的开启和关断,从而改变电磁线圈中的电流大小,进而改变干预磁场 的方向以及强弱。
[0039] 进一步地,所述通过邻域脑电差分法步骤如下:
[0040] 第i个信号采集点的脑电为ei,设c(j)(j=1,2,…,z-1)为与第i个坐标信号采集点(中心位置信号采集点)相邻信号采集点,则相邻采集点的脑电为ec(j)(j=1,2,…,z-1);在时刻T0,得到中心位置信号采集点的脑电e'i与相邻采集点的脑电e'c(j)(j=1,2,…,z-1),在经过ΔT后的时刻T1,得到中间位置信号采集点的脑电e"i与相邻采集点的脑电e"c(j),并对T0时刻与T1时刻的脑电作差得到脑电时间差分di、dc(j)(j=1,2,…,z-1);并对脑电时间差分di与dc(j)(j=1,2,…,z-1)作差,得到脑电差分差值Cc(j)(j=1,2,…,z-1),即Cc(j)=dc(j)-di,比较z-1个脑电差分差值Cc(j)的大小,并将z-1个Cc(j)按照由高到低的顺序排列,将脑电差分差值的两个最值Cc(max),Cc(min)对应的三个坐标(xmin,xmin),(xi,yi),(xmax,ymax)的连线作为电荷逐渐累计并且可以流通的一个可达路径,记作电势升高路径元λi;对另外n-1个信号采集点及其邻域进行如上的计算得到以每个信号采集点为中心的三坐标连线作为可达路径,记作电势升高路径元λj(j=1,2,...,j≠i,...,n)。
[0041] 进一步地,所述磁聚焦方法是指:信号采集点相邻两个或多个成对的可控脉冲电磁单元发出极性相反且同步的电磁脉冲,使得一对可控脉冲单元之间的磁力线能够覆盖到信号采集点上,从而该信号采集点位置的神经元细胞膜上垂直运动的电流元能够受到磁力线的作用而产生安培力,使其在细胞膜上移动,磁聚焦的焦点fB是一对可控脉冲电磁单元的中心位置。
[0042] 进一步地,所述磁聚焦法路径元排列组合的规则如下:当某个区域电荷过多的时候,以一个坐标位置作为一个干预单位,根据从σmax到σmin的所用干预单位最少的准则确定λ1,λ2,...,λi,...,λn的组合;若出现m个相同长度的干预单位,则可以取m个磁聚焦点fB同时作用在m个相同长度的干预路径。
[0043] 一种非接触非侵入无损伤路径可达方式获取干扰脑电分布的方法,以一种非接触非侵入无损伤的方法获取并以路径可达的方式干扰电荷的分布与电流的趋势;这种方法包括非接触测量大脑中的电荷与电流的分布,时间预测结合空间预测来定位电荷积聚较多且积聚速度块或者电荷积聚较少且积聚速度慢的区域,并基于路径可达的方法干预大脑中的电荷的分布与神经元中的电流趋势;具体步骤如下:
[0044] 第1步:通过n个信号采集电极采集被试者的脑电波,信号采集电极与头皮不接触,通过机器学习得到脑电波和实际电位信息的关系,从而通过非接触方式得到电位e'i,i=1,2,3,...,n,随后通过滤波器对电位e′i进行降噪、过滤处理得到滤波后的电位ei,i=1,2,
3,...,n;
[0045] 第2步:时间预测:通过t时刻之前的设定时间间隔内的各个时间点采集的电位序列,训练得到预测函数P,通过预测函数P得到每个信号采集电极预测时刻t*的电位e(t*),预测电位e(t*)和设定电位阈值θ比较,将大于等于θ的信号采集电极的位置集合设置为A={(x,y)|e*≥θ},其中(x,y)为信号采集电极的位置坐标;
[0046] 第3步:空间预测:通过n个信号采集电极的当前时刻t1的邻域时刻的电位,结合n个信号采集电极的位置(x,y),获得n个信号采集电极的n(η+1)个电压e(i,t)(x,y),(t=t1-η,...,t1-2,t1-1,t1;i=1,2,...,n),每个信号采集点的η+1个电压e(i,t)(x,y)中,取相邻的电压两两作差,得到每个信号采集电极的η个电压梯度D(i,j),(i=1,2,...,n,j=1,2,...η);对每个信号采集点的η个电压梯度取平均得到电压梯度平均值 通过比较n个信号采集电极的电压梯度平均值 得到电压梯度极大值坐标(x',y')的集合B与极小值坐标(x",y")的集合C;
[0047] 第4步:通过集合A和B的交集得到大脑兴奋区域坐标(x*,y*)集合P,通过求集合和C的交集得到大脑非兴奋区域坐标(x^,y^)集合N;
[0048] 第5步:获得可达路径:以第i个坐标信号采集点为中心,定义z个相邻的信号采集点组成的邻域,中心位置信号采集点的脑电为ei,设c(j)(j=1,2,…,z-1)为与第i个坐标信号采集点(中心位置信号采集点)相邻信号采集点,则相邻采集点的脑电为ec(j)(j=1,2,…,z-1);在时刻T0,得到中心位置信号采集点的脑电e'i与相邻采集点的脑电e'c(j)(j=
1,2,…,z-1),在经过ΔT后的时刻T1,得到中间位置信号采集点的脑电e"i与相邻采集点的脑电e"c(j),并对T0时刻与T1时刻的脑电作差得到脑电时间差分di、dc(j)(j=1,2,…,z-1);并对脑电时间差分di与dc(j)(j=1,2,…,z-1)作差,得到脑电差分差值Cc(j)(j=1,2,…,z-1),即Cc(j)=dc(j)-di,比较z-1个脑电差分差值Cc(j)的大小,并将z-1个Cc(j)按照由高到低的顺序排列,将脑电差分差值的两个最值Cc(max),Cc(min)对应的三个坐标(xmin,xmin),(xi,yi),(xmax,ymax)的连线作为电荷逐渐累计并且可以流通的一个可达路径,记作电势升高路径元λi;对另外n-1个信号采集点及其邻域进行如上的计算得到以每个信号采集点为中心的三坐标连线作为可达路径,记作电势升高路径元λj(j=1,2,...,j≠i,...,n);
[0049] 第6步:脑电干扰:得到电势升高路径元λ1,λ2,...,λi,...,λn后,通过磁聚焦方法将焦点fB对准电荷积聚起始坐标σ1,按照路径可达的方向将σ1的电荷向目标区域σ2移动,其中磁聚焦方法是指信号采集点相邻两个或多个成对的可控脉冲电磁单元发出极性相反且同步的电磁脉冲Bi,使得一对可控脉冲单元之间的磁力线能够覆盖到信号采集点上,从而该信号采集点位置的神经元细胞膜上垂直运动的电流元能够受到磁力线的作用而产生安培力,使其在细胞膜上移动,磁聚焦的焦点fB是一对可控脉冲电磁单元的中心位置;
[0050] 磁聚焦的焦点fB从σ1到σ2的路径为λ1,λ2,...,λi,...,λn的排列组合,可以有多种排列组合,也可以通过多个磁聚焦点移动;排列组合的规则如下:当某个区域电荷过多的时候,以一个坐标位置作为一个干预单位,根据从σ1到σ2的所用干预单位最少的准则确定λ1,λ2,...,λi,...,λn的组合;若出现m个相同长度的干预单位,则可以取m个磁聚焦点fB同时作用在m个相同长度的干预路径;
[0051] 干预时间持续ΔT后,若兴奋区域信号采集单元电位ek(k=1,2,…,p)电位都小于电位阈值θ时,则停止干扰,否则继续干扰操作
[0052] 本发明的有益效果是:
[0053] (1)由于传统的脑电测量手段需要对被试验者开颅插电极片或是紧贴头皮抹生理盐水贴电极片来获取所需数据,对被试验者带来了极大的困扰。本发明采用非接触手段如杜芬信号检测电路等对本系统使用者的脑电数据进行检测。利用混沌电路的初始敏感性可以以非侵入、无损伤的方法获得脑电信号;
[0054] (2)一般的发明只是预测癫痫爆发时间来提出预警,预警功能并不完善。本发明提出了一种利用脑电梯度场的方法对癫痫位置进行预测,结合时-空预测结合的方法得到脑电中电荷大量积聚到临界值的时间以及空间位置。
[0055] (3)电荷在大脑中流动时会因为某些结构上的缺陷而导致电荷大量积聚,引发癫痫等脑部放电症状。本发明通过可控磁场的干预作用,提出了全新的基于路径可达方式的干预方法,使电荷积聚区域电荷转移至电荷积聚较少区域。
[0056] (4)本发明轻便快捷,可应用于可穿戴设备与移动医疗领域。附图说明
[0057] 图1本系统的外观概念图
[0058] 图2可控脉冲电磁单元与杜芬脑电采集单元分布图;
[0059] 图3本系统的杜芬脑电采集电路图;
[0060] 图4时间序列预测示意图;
[0061] 图5空间预测电压拟合表面图;
[0062] 图6可控脉冲电磁单元电路图;
[0063] 图7路径可达干预方式示意图;
[0064] 图8磁聚焦方法示意图;
[0065] 图9本系统的组成框图
[0066] 图10本系统的完整工作流程图

具体实施方式

[0067] 为了使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明做进一步的描述。
[0068] 本发明提供的一种非接触非侵入无损伤的癫痫路径可达方式监测预警干预系统,如图1所示,该系统外观呈帽形或是包裹住大脑的形状,具有三层结构,从内至外分别为:非接触采集模块、非接触干预模块和非接触控制模块;杜芬脑电采集单元与可控脉冲电磁单元分布如图2所示,彼此互不重叠,交错排列。
[0069] 非接触采集模块包括n个信号采集电极,信号采集电极与头皮不接触,通过放大器放大信号采集电极采集的癫痫患者脑电波,通过机器学习得到脑电波和实际电位信息的关系,从而通过非接触方式得到电位e'i,i=1,2,3,...,n,随后通过滤波器对电位e'i进行降噪、过滤处理得到滤波后的电位ei,i=1,2,3,...,n;如图3所示,信号采集电极电路由杜芬电路方程实现。
[0070] 如图4所示,所述时间预测单元通过t时刻之前的设定时间间隔内的各个时间点采集的电位序列,训练得到预测函数P;
[0071] 对于第i个信号采集电极,通过放大过滤后得到的电位时间序列为ei(t),(i=1,2,...,n),设c(i)为与节点i相邻的节点集合,m为c(i)中的元素个数,表示相邻节点的个数,ec(i)(t)为节点集合c(i)的电位;
[0072] 定义预测函数P的输入为input,输出为output;取Δt为一个时间间隔,则t时刻第i个信号采集点电位为ei(t),t时刻以前τ个时间间隔的电位表示为ei(t-1),ei(t-2)...,ei(t-τ);第i个信号采集点的相邻采集点的电位为ec(i)(t)、τ个时间间隔的电位表示为ec(i)(t-1),ec(i)(t-2)...,e(i)(t-τ);以1+m个长度为1+τ的样本作为输入,则输入表示为:input={ei(t),ei(t-1),...,ei(t-τ),ec(i)(t),ec(i)(t-1),...,ec(i)(t-τ)};
[0073] 预测函数P的输出为t时刻经过一个时间间隔Δt的电位ei(t+1),则输出表示为:output={ei(t+1)};
[0074] 训练第k代的时候,input的输入长度为(1+m)*(1+τ),输出长度为1;
[0075] 若t取之前的某一时刻t0,将训练输入input={ei(t0),ei(t0-1),...,ei(t0-τ),ec(i)(t0),ec(i)(t0-1),...,ec(i)(t0-τ)}和训练输出output={ei(t0+1)}作为一组训练样本;取时间间隔为Δt'、且从t0时刻后取N个时间间隔,即t0,t0+1,...,t0+N-1对应的input和output作为N组训练样本,训练代数k取1000次到10000次,根据训练结果得到训练函数P,即output=P(input);
[0076] 当t取当前时刻,则通过预测函数P预测得到下一时刻t+Δt的采集点电压幅值ei(t+Δt);令预测时刻t*=t+Δt,得到预测时刻t*的预测电位e(t*);
[0077] 预测电位e(t*)和设定电位阈值θ比较,将大于等于θ的预测电位e(t*)标记e*,e*对应的信号采集电极的位置集合A={(x,y)|e*≥θ}判断为时间预测的爆发位置,其中x代表信号采集电极在采集模块中的行数,y代表信号采集电极在采集模块中的列数,e*对应的时间t*为癫痫预测爆发时间;将预测的爆发位置发送给空间预测单元,同时启动空间预测单元,否则继续进行监测;
[0078] 如图5所示,所述空间预测单元通过n个信号采集电极的当前时刻t1的邻域时刻的电位,结合n个信号采集电极在非接触采集模块的位置(x,y),获得n个信号采集电极的n(η+1)个电压e(i,t)(x,y),(t=t1-η,...,t1-2,t1-1,t1;i=1,2,...,n),每个信号采集点的η+1个电压e(i,t)(x,y)中,取相邻的电压两两作差,得到每个信号采集电极的η个电压梯度D(i,j),(i=1,2,...,n,j=1,2,...η);对每个信号采集点的η个电压梯度取平均得到电压梯度平均值 通过比较n个信号采集电极的电压梯度平均值 得到电压梯度
极大值坐标(x',y')的集合B与极小值坐标(x",y")的集合C;
[0079] 通过求集合A和B的交集得到大脑兴奋区域坐标(x*,y*)集合P,通过求集合 和C的交集得到大脑非兴奋区域坐标(x^,y^)集合N,并将坐标集合信息发送给干预模块;
[0080] 所述非接触干预模块包括m个可控脉冲电磁单元,如图6所示,可控脉冲电磁单元具有正对头皮的电磁线圈,所述电磁线圈与信号采集电极交错布置,在垂直方向上无重叠;
[0081] 神经元之间的传导是单向的,就像洪水爆发时会由地势高的地方流向地势低的地方,我们想要释放掉节点积聚的电荷,这就要求我们首先能够提前知道电荷流动可达的路径。
[0082] 大脑中电荷可达路径由以下的方法确定出每一个信号采集点的电荷可达路径元:
[0083] 以第i个坐标信号采集点为中心,定义z个相邻的信号采集点组成的邻域,中心位置信号采集点的脑电为ei,设c(j)(j=1,2,…,z-1)为与第i个坐标信号采集点(中心位置信号采集点)相邻信号采集点,则相邻采集点的脑电为ec(j)(j=1,2,…,z-1);在时刻T0,得到中心位置信号采集点的脑电e'i与相邻采集点的脑电e'c(j)(j=1,2,…,z-1),在经过ΔT后的时刻T1,得到中间位置信号采集点的脑电e"i与相邻采集点的脑电e"c(j),并对T0时刻与T1时刻的脑电作差得到脑电时间差分di、dc(j)(j=1,2,…,z-1);并对脑电时间差分di与dc(j)(j=1,2,…,z-1)作差,得到脑电差分差值Cc(j)(j=1,2,…,z-1),即Cc(j)=dc(j)-di,比较z-1个脑电差分差值Cc(j)的大小,并将z-1个Cc(j)按照由高到低的顺序排列,将脑电差分差值的两个最值Cc(max),Cc(min)对应的三个坐标(xmin,xmin),(xi,yi),(xmax,ymax)的连线作为电荷逐渐累计并且可以流通的一个可达路径,记作电势升高路径元λi;对另外n-1个信号采集点及其邻域进行如上的计算得到以每个信号采集点为中心的三坐标连线作为可达路径,记作电势升高路径元λj(j=1,2,...,j≠i,...,n);
[0084] 如图7所示,得到电势升高路径元λ1,λ2,...,λi,...,λn后,多个可控电磁单元发出的电磁脉冲Bi,通过磁聚焦方法将焦点fB对准电荷积聚最高坐标σmax,按照路径可达的方向将σmax的多余电荷向电荷积聚最低区域σmin移动,其中σmax是兴奋区域P中电压与电压梯度最大的信号采集点对应的坐标,其中σmin是非兴奋区域N中电压与电压梯度最小的信号采集点对应的坐标;磁聚焦方法如图8所示,是指信号采集点相邻两个或多个成对的可控脉冲电磁单元发出极性相反且同步的电磁脉冲,使得一对可控脉冲单元之间的磁力线能够覆盖到信号采集点上,从而该信号采集点位置的神经元细胞膜上垂直运动的电流元能够受到磁力线的作用而产生安培力,使其在细胞膜上移动,磁聚焦的焦点fB是一对可控脉冲电磁单元的中心位置;
[0085] 磁聚焦的焦点fB从σmax到σmin的路径为λ1,λ2,...,λi,...,λn的排列组合,可以有多种排列组合,也可以通过多个磁聚焦点移动;排列组合的规则如下:当某个区域电荷过多的时候,以一个坐标位置作为一个干预单位,根据从σmax到σmin的所用干预单位最少的准则确定λ1,λ2,...,λi,...,λn的组合;若出现m个相同长度的干预单位,则可以取m个磁聚焦点fB同时作用在m个相同长度的干预路径;
[0086] 干预时间持续ΔT后,若兴奋区域信号采集单元电位ek(k=1,2,…,p)电位都小于电位阈值θ时,则干预模块工作结束,否则重复以上干预过程。
[0087] 本系统组成图如图9所示,完整工作流程图如图10所示。
[0088] 实施例1:
[0089] 下面以一个佩戴此系统的被试对象为例,具体说明本系统的使用方法:
[0090] 具体地,当被试对象佩戴本系统时,信号采集电极与头皮不接触,通过放大器放大信号采集电极采集的癫痫患者脑电波,通过机器学习得到脑电波和实际电位信息的关系,从而通过非接触方式得到电位e'i,i=1,2,3,...,n,随后通过滤波器对电位e′i进行降噪、过滤处理得到滤波后的电位ei,i=1,2,3,...,n;
[0091] 对于第i个信号采集电极,通过放大过滤后得到的电位时间序列为ei(t),(i=1,2,...,n),设c(i)为与节点i相邻的节点集合,m为c(i)中的元素个数,表示相邻节点的个数,ec(i)(t)为节点集合c(i)的电位;将被试对象佩戴此系统的时刻设置为t0,将训练输入input={ei(t0),ei(t0-1),...,ei(t0-τ),ec(i)(t0),ec(i)(t0-1),...,ec(i)(t0-τ)}和训练输出output={ei(t0+1)}作为一组训练样本;取时间间隔为Δt'、且从t0时刻后取N个时间间隔,即t0,t0+1,...,t0+N-1对应的input和output作为N组训练样本,训练代数k取5000次,根据训练结果得到训练函数P,即output=P(input);
[0092] 当t取佩戴时刻,则通过预测函数P预测得到下一时刻t+Δt的采集点电压幅值ei(t+Δt);令预测时刻t*=t+Δt,得到预测时刻t*的预测电位e(t*)。
[0093] 预测电位e(t*)和设定电位阈值θ比较,将大于等于θ的预测电位e(t*)标记e*,e*对应的信号采集电极的位置集合A={(x,y)|e*≥θ}判断为时间预测的爆发位置,其中x代表信号采集电极在采集模块中的行数,y代表信号采集电极在采集模块中的列数,e*对应的时间t*为癫痫预测爆发时间;将预测的爆发位置发送给空间预测单元,同时启动空间预测单元;
[0094] 空间预测单元通过n个信号采集电极的当前时刻t1的邻域时刻的电位,结合n个信号采集电极在非接触采集模块的位置(x,y),获得n个信号采集电极的n(η+1)个电压e(i,t)(x,y),(t=t1-η,...,t1-2,t1-1,t1;i=1,2,...,n),每个信号采集点的η+1个电压e(i,t)(x,y)中,取相邻的电压两两作差,得到每个信号采集电极的η个电压梯度D(i,j),(i=1,2,...,n,j=1,2,...η);对每个信号采集点的η个电压梯度取平均得到电压梯度平均值通过比较n个信号采集电极的电压梯度平均值 得到电压梯度极大值坐标(x',y')的集合B与极小值坐标(x",y")的集合C;
[0095] 通过求集合A和B的交集得到大脑兴奋区域坐标(x*,y*)集合P,通过求集合 和C的交集得到大脑非兴奋区域坐标(x^,y^)集合N,并将坐标集合信息发送给干预模块;
[0096] 干预模块通过脑电差分做差值的方法得到每个采集点电势升高路径元λ1,λ2,...,λi,...,λn后,多个可控电磁单元发出的电磁脉冲Bi,通过磁聚焦方法将焦点fB对准电荷积聚最高坐标σmax,按照路径可达的方向将σmax的多余电荷向电荷积聚最低区域σmin移动;
[0097] 磁聚焦的焦点fB从σmax到σmin的路径为λ1,λ2,...,λi,...,λn的排列组合,根据从σmax到σmin的所用干预单位最少的准则确定λ1,λ2,...,λi,...,λn的组合;若出现2条用到3个干预单位的可达路径组合为用到干预路径最少的路径,则取m为2,取2个磁聚焦点fB同时作用在2条相同长度的干预路径来将积聚电荷由σmax到σmin移动;
[0098] 干预时间持续ΔT后,若兴奋区域信号采集单元电位ek(k=1,2,…,p)电位都小于电位阈值θ时,则干预模块工作结束,否则重复以上干预过程。
[0099] 实施例2:
[0100] 下面以一个系统的使用者使用该系统使用本系统的时间-空间耦合方法预测与只进行时间预测方法的系统对比使用效果:
[0101] 假设一个室外场景,癫痫患者佩戴此系统搭乘公交车前往某地,假设t0时刻为佩戴系统的时间,t1为当前时刻,也为时间预测单元发出预警信号的时刻。从t0时刻开始,非接触采集模块开始检测脑电患者的脑电电压值,若只有简单时间预测,即在t1时刻预警癫痫爆发并向外界发出信号,在这个时间段内患者可以找到地方坐下来或是平躺在地上,但是依然无法避免癫痫的爆发,在室外场景或是没有人陪同的场景下依然会对患者造成伤害;
[0102] 当采用本发明的时间-空间耦合方法预警癫痫爆发的时间t*以及爆发点的兴奋区域P与非兴奋区域N,则可以使得患者在t1时刻接受到系统的报警并接受系统采用路径可达的方法干扰大脑中的电荷分布,当患者大脑内的电荷达到平衡的时候报警解除,系统继续监测患者的脑电,并将刚刚预警以及干扰的操作发送给患者以及患者的医疗数据中以备后面医生进行进一步的分析与诊断。
[0103] 实施例3:
[0104] 根据设置脑电电位阈值θ值的大小,可以将此方法用来抑制大脑内过高电荷积聚或是大脑内过低电荷积聚;当大脑神经元亢奋时使用将阈值θ调成较高的值,当大脑神经元低迷时使用将阈值θ调成较低的值;
[0105] 下面以两个佩戴此系统的使用者来实现使用该系统的方法以非接触非侵入无损伤地获取以及干扰脑电分布:
[0106] 系统使用者甲是一名夜晚失眠的使用者,在睡觉的时间点神经元亢奋,非接触测量得到的兴奋区域P脑电电压值高于阈值θ;
[0107] 当他佩戴此系统时,首先以一种非接触非侵入无损伤的方法获取大脑中的电荷分布,当检测到脑电电压值过高的情况,时间预测单元提示脑电出现异常,表明此刻大脑神经元此刻处于亢奋状态,利用时间-空间耦合控制的方法确定出脑电电压值过高的兴奋区域集合P以及脑电电压值较低的非兴奋区域集合N,通过路径可达方法将兴奋区域P的电荷移动到非兴奋区域N,使得兴奋区域P的电位下降,大脑重新恢复平静状态,进而可以进入安稳的睡眠状态;
[0108] 而系统使用者乙是一名夜晚疲劳驾驶的使用者,驾驶过程中大部分时间神经元处于低迷状态,非接触测量得到的非兴奋区域N脑电电压值低于阈值θ;
[0109] 当他佩戴此系统时,首先以一种非接触非侵入无损伤的方法获取大脑中的电荷分布,当检测到脑电电压值过低的情况,时间预测单元提示脑电出现异常,可能需要使其保持头脑清醒;利用时间-空间耦合控制的方法确定出神经元非兴奋区域集合N与正常兴奋区域P,通过路径可达方法将兴奋区域P的电荷移动到非兴奋区域N,使得非兴奋区域N的电位上升,大脑重新恢复清醒状态,可以预防疲劳驾驶的危害。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈