首页 / 专利库 / 信号处理 / 载波频率 / 用于无线通信的自含式时分双工(TDD)子帧结构的方法和装置

用于无线通信的自含式时分双工(TDD)子结构的方法和装置

阅读:347发布:2020-05-08

专利汇可以提供用于无线通信的自含式时分双工(TDD)子结构的方法和装置专利检索,专利查询,专利分析的服务。并且本公开内容的方面提供了一种用于时分双工(TDD)载波的自含式子 帧 结构。在TDD载波上发送的信息可以被分成子帧,并且每个子帧可以在两个方向(例如,上行链路和下行链路)上提供通信,以实现这样的通信而无需另一个子帧中的进一步的信息。在本公开内容的一个方面中,单个子帧可以包括调度信息,与该调度信息相对应的数据传输、以及与该数据传输相对应的确认分组。此外,该子帧另外可以包括报头和/或尾部以提供某些双向通信功能。,下面是用于无线通信的自含式时分双工(TDD)子结构的方法和装置专利的具体信息内容。

1.一种同步网络中的无线通信的方法,其用于调度实体利用时分双工,TDD,载波来与一个或多个次级实体的集合进行通信,其中,所述TDD载波包括多个子,所述方法包括:
提供针对所述多个子帧中的每个子帧的子帧结构,所述子帧结构包括报头、控制部分、数据部分和确认部分;
通过以下操作来生成所述多个子帧中的子帧:
将第一双向数据包括在所述子帧的所述报头中,其中,所述第一双向数据包括来自所述调度实体和所述一个或多个次级实体的数据分组;
将调度信息包括在所述子帧的所述控制部分中;
将与所述调度信息相对应的数据信息包括在所述子帧的所述数据部分中,其中,所述数据信息与所述次级实体的集合相关联,并且包括在所述控制部分中调度的所有数据分组;以及
将与所述数据信息相对应的确认信息包括在所述子帧的所述确认部分中,其中,所述数据部分中的所述数据分组中的所有数据分组在所述确认部分中被确认;以及在所述调度实体和所述次级实体的集合之间传输所述子帧。
2.根据权利要求1所述的方法,
其中,所述子帧结构还包括尾部,所述尾部包括所述确认部分和尾部部分,并且其中,所述生成所述子帧还包括:
将第二双向数据包括在所述尾部中,其中,所述第二双向数据的所有数据分组在所述尾部中被确认。
3.根据权利要求1所述的方法,其中,所述子帧结构的持续时间是可配置的。
4.根据权利要求1所述的方法,其中,所述报头中的所述第一双向数据与一个或多个信道参数相对应。
5.根据权利要求4所述的方法,其中,所述一个或多个信道参数包括时间-频率分配、信道状态、信道质量或者干扰电平中的至少一个。
6.根据权利要求1所述的方法,其中,所述报头包括上行链路传输和下行链路传输之间的一个或多个切换位置
7.根据权利要求1所述的方法,其中,所述报头的所述第一双向数据包括:
被配置为传送信道状态信息-参考信号,CSI-RS,的下行链路数据;以及被配置为传送信道质量指示符,CQI,和探测参考信号,SRS,中的至少一个的上行链路数据。
8.根据权利要求1所述的方法,其中,所述报头的所述第一双向数据包括:
被配置为向所述一个或多个次级实体发送轮询信号的下行链路数据;以及被配置为从所述一个或多个次级实体接收通信能的上行链路数据。
9.根据权利要求1所述的方法,其中,所述报头的所述第一双向数据包括:
被配置为警告在所述数据部分中即将发生数据传输的下行链路数据。
10.根据权利要求1所述的方法,其中,所述多个子帧是发射机调度的子帧。
11.根据权利要求1所述的方法,其中,所述多个子帧是接收机调度的子帧。
12.一种同步网络中的无线通信的方法,其用于调度实体利用时分双工,TDD,载波来与一个或多个次级实体的集合进行通信,其中,所述TDD载波包括多个子帧,所述方法包括:
提供针对所述多个子帧中的每个子帧的子帧结构,所述子帧结构包括控制部分、数据部分和尾部;
通过以下操作来生成所述多个子帧中的子帧:
将调度信息包括在所述子帧的所述控制部分中;
将与所述调度信息相对应的数据信息包括在所述子帧的所述数据部分中,其中,所述数据信息与所述次级实体的集合相关联,并且包括在所述控制部分中调度的所有数据分组;
将与所述数据信息相对应的确认信息包括在所述尾部的确认部分中,其中,所述数据部分中的所述数据分组中的所有数据分组在所述确认部分中被确认;以及将第一双向数据包括在所述子帧的所述尾部中,其中,所述第一双向数据包括来自所述调度实体和所述一个或多个次级实体的数据分组;以及
在所述调度实体和所述次级实体的集合之间传输所述子帧。
13.根据权利要求12所述的方法,
其中,所述子帧结构还包括报头,并且
其中,所述生成所述子帧还包括:
将第二双向数据包括在所述子帧的所述报头中,其中,所述第二双向数据的所有数据分组在所述报头中被确认。
14.根据权利要求12所述的方法,其中,所述子帧结构的持续时间是可配置的。
15.一种同步网络中的无线通信的方法,其用于次级实体利用时分双工,TDD,载波来与调度实体进行通信,其中,所述TDD载波包括多个子帧,所述方法包括:
提供针对所述多个子帧中的每个子帧的子帧结构,所述子帧结构包括报头、数据部分和确认部分;
通过以下操作来生成所述多个子帧中的子帧:
将双向数据包括在所述子帧的所述报头中,其中,所述双向数据包括来自所述调度实体和所述次级实体的数据分组;
将调度信息包括在所述子帧的所述报头中;
将与所述调度信息相对应的数据信息包括在所述子帧的所述数据部分中,其中,所述数据信息与所述调度实体相关联,并且包括在所述报头中调度的所有数据分组;以及将与所述数据信息相对应的确认信息包括在所述子帧的所述确认部分中,其中,所述数据部分中的所述数据分组中的所有数据分组在所述确认部分中被确认;以及在所述次级实体和所述调度实体之间传输所述子帧。
16.一种用于同步网络中的无线通信的装置,包括:
通信接口,其被配置为利用时分双工,TDD,载波来与一个或多个次级实体的集合进行通信,其中,所述TDD载波包括多个子帧;
存储器,其包括可执行代码;以及
处理器,其操作地与所述通信接口和所述存储器耦合,所述处理器通过所述可执行代码被配置为:
提供针对所述多个子帧中的每个子帧的子帧结构,所述子帧结构包括报头、控制部分、数据部分和确认部分;
通过以下操作来生成所述多个子帧中的子帧:
将第一双向数据包括在所述子帧的所述报头中,其中,所述第一双向数据包括来自所述装置和所述一个或多个次级实体的数据分组;
将调度信息包括在所述子帧的所述控制部分中;
将与所述调度信息相对应的数据信息包括在所述子帧的所述数据部分中,其中,所述数据信息与所述次级实体的集合相关联,并且包括在所述控制部分中调度的所有数据分组;以及
将与所述数据信息相对应的确认信息包括在所述子帧的所述确认部分中,其中,所述数据部分中的所述数据分组中的所有数据分组在所述确认部分中被确认;以及经由所述通信接口来在所述装置和所述次级实体的集合之间传输所述子帧。
17.根据权利要求16所述的装置,
其中,所述子帧结构还包括尾部,所述尾部包括所述确认部分和尾部部分,并且其中,所述处理器还被配置为:
将第二双向数据包括在所述尾部中,其中,所述第二双向数据的所有数据分组在所述尾部中被确认。
18.根据权利要求16所述的装置,其中,所述子帧结构的持续时间是可配置的。
19.根据权利要求16所述的装置,其中,所述报头中的所述第一双向数据与一个或多个信道参数相对应。
20.根据权利要求19所述的装置,其中,所述一个或多个信道参数包括时间-频率分配、信道状态、信道质量或者干扰电平中的至少一个。
21.根据权利要求16所述的装置,其中,所述报头包括上行链路传输和下行链路传输之间的一个或多个切换位置。
22.根据权利要求16所述的装置,其中,所述报头的所述第一双向数据包括:
被配置为传送信道状态信息-参考信号,CSI-RS,的下行链路数据;以及被配置为传送信道质量指示符,CQI,和探测参考信号,SRS,中的至少一个的上行链路数据。
23.根据权利要求16所述的装置,其中,所述报头的所述第一双向数据包括:
被配置为向所述一个或多个次级实体发送轮询信号的下行链路数据;以及被配置为从所述一个或多个次级实体接收通信能力的上行链路数据。
24.根据权利要求16所述的装置,其中,所述报头的所述第一双向数据包括:
被配置为警告在所述数据部分中即将发生数据传输的下行链路数据。
25.根据权利要求16所述的装置,其中,所述多个子帧是发射机调度的子帧。
26.根据权利要求16所述的装置,其中,所述多个子帧是接收机调度的子帧。
27.一种用于同步网络中的无线通信的装置,包括:
通信接口,其被配置为利用时分双工,TDD,载波来与一个或多个次级实体的集合进行通信,其中,所述TDD载波包括多个子帧;
存储器,其包括可执行代码;以及
处理器,其操作地与所述通信接口和所述存储器耦合,所述处理器通过所述可执行代码被配置为:
提供针对所述多个子帧中的每个子帧的子帧结构,所述子帧结构包括控制部分、数据部分和尾部;
通过以下操作来生成所述多个子帧中的子帧:
将调度信息包括在所述子帧的所述控制部分中;
将与所述调度信息相对应的数据信息包括在所述子帧的所述数据部分中,其中,所述数据信息与所述次级实体的集合相关联,并且包括在所述控制部分中调度的所有数据分组;
将与所述数据信息相对应的确认信息包括在所述尾部的确认部分中,其中,所述数据部分中的所述数据分组中的所有数据分组在所述确认部分中被确认;以及将第一双向数据包括在所述子帧的所述尾部中,其中,所述第一双向数据包括来自所述装置和所述一个或多个次级实体的数据分组;以及
在所述装置和所述次级实体的集合之间传输所述子帧。
28.根据权利要求27所述的装置,
其中,所述子帧结构还包括报头,并且
其中,所述处理器还被配置为:
将第二双向数据包括在所述子帧的所述报头中,其中,所述第二双向数据的所有数据分组在所述报头中被确认。
29.根据权利要求27所述的装置,其中,所述子帧结构的持续时间是可配置的。
30.一种用于同步网络中的无线通信的装置,包括:
通信接口,其被配置为利用时分双工,TDD,载波来与调度实体进行通信,其中,所述TDD载波包括多个子帧;
存储器,其包括可执行代码;以及
处理器,其操作地与所述通信接口和存储器耦合,所述处理器通过所述可执行代码被配置为:
提供针对所述多个子帧中的每个子帧的子帧结构,所述子帧结构包括报头、数据部分和确认部分;
通过以下操作来生成所述多个子帧中的子帧:
将双向数据包括在所述子帧的所述报头中,其中,所述双向数据包括来自所述调度实体和所述装置的数据分组;
将调度信息包括在所述子帧的所述报头中;
将与所述调度信息相对应的数据信息包括在所述子帧的所述数据部分中,其中,所述数据信息与所述调度实体相关联,并且包括在所述报头中调度的所有数据分组;以及将与所述数据信息相对应的确认信息包括在所述子帧的所述确认部分中,其中,所述数据部分中的所述数据分组中的所有数据分组在所述确认部分中被确认;以及在所述装置和所述调度实体之间传输所述子帧。

说明书全文

用于无线通信的自含式时分双工(TDD)子结构的方法和

装置

[0001] 相关申请的交叉引用
[0002] 本申请要求享有于2015年3月15日在美国专利和商标局提交的临时申请第62/133,390号以及于2015年11月17日在美国专利和商标局提交的非临时申请第14/943,796号的优先权和权益,通过引用方式将其全部内容并入本文。

技术领域

[0003] 概括而言,本公开内容的方面涉及无线通信系统,并且更特别地,涉及利用自含式时分双工(TDD)子帧结构的无线通信。

背景技术

[0004] 广泛地部署无线通信网络以提供各种通信服务,例如,电话、视频、数据、消息传送、广播等。这样的网络(其通常是多址接入网络)通过共享可用的网络资源来支持针对多个用户的通信。
[0005] 分配给这样的无线通信网络的频谱可以包括经许可的和/或未经许可的频谱。除了如由政府机构或者给定的地区或国家内的其它当局规定的经许可的用途之外,经许可的频谱在其用途方面通常被限于无线通信。未经许可的频谱通常在一定范围内免费使用,而无需购买或者使用这样的许可证。针对重新分配额外的频谱用于在许多不同用途(包括但不限于,电话、智能电话、PC、智能仪表、远程传感器、智能警报器、网格节点等)的情况下使用的需求,随着对无线通信系统的使用持续增加。
[0006] 在许多情况下,该频谱是(或者期望是)以在许多现有的频分双工(FDD)系统中使用的成对的载波要么不可用,要么在匹配的带宽配置中不可用的方式分配的。因此,期望在许多未来的部署中将时分双工(TDD)载波用于无线通信系统。发明内容
[0007] 下面提出了本公开内容的一个或多个方面的简化的概要,以便提供对这样的方面的基本的理解。该概要不是对本公开内容的所有预期的特征的全面的概述,并且既不旨在标识本公开内容的所有方面的关键的或者决定性的要素,也不旨在描绘本公开内容的任何方面或者所有方面的范围。其唯一的目的是以简化的形式提出本公开内容的一个或多个方面的一些概念,作为稍后提出的更加详细的描述的序言。
[0008] 本公开内容的各个方面提供了一种自含式子帧或者子帧结构,其可以与时分双工(TDD)载波一起使用。通常,一种自含式子帧在同一子帧中包括控制/调度信息、有效载荷数据、以及相应的确认/反馈的集合。在TDD载波上发送的信息可以被分成子帧,并且自含式子帧可以以合适的方式在两个方向上(例如,上行链路和下行链路)提供通信或者数据业务,以实现这样的通信而无需另一个子帧中的任何进一步的信息。在本公开内容的一些方面中,自含式子帧结构可以包括扩展的报头部分和/或扩展的尾部部分,以提供某些额外的信号交换和数据通信功能。
[0009] 本公开内容的一个方面提供了一种用于调度实体利用时分双工(TDD)载波与一个或多个次级实体的集合进行通信的同步网络中的无线通信的方法。该调度实体可以通过TDD载波发送和/或接收多个子帧。该方法提供针对多个子帧中的每个子帧的子帧结构,并且该子帧结构包括报头、控制部分、数据部分和确认部分。该方法通过下列各项来生成多个子帧中的子帧:将双向数据包括在子帧的报头中;将调度信息包括在子帧的控制部分中;将与调度信息相对应的数据信息包括在子帧的数据部分中,以及将与数据信息相对应的确认信息包括在子帧的确认部分中。双向数据包括来自调度实体和一个或多个次级实体的数据分组。
[0010] 在本公开内容的该方面中,数据信息与次级实体的集合相关联,并且包括在控制部分中调度的所有数据分组。数据部分中的数据分组中的所有数据分组在确认部分中被确认。该方法还在调度实体和次级实体的集合之间传输上述子帧。
[0011] 本公开内容的另一个方面提供了一种用于调度实体利用时分双工(TDD)载波与一个或多个次级实体的集合进行通信的同步网络中的无线通信的方法。该调度实体可以经由TDD载波发送和/或接收多个子帧。该方法提供针对多个子帧中的每个子帧的子帧结构,并且该子帧结构包括控制部分、数据部分和尾部。该方法通过下列各项来生成多个子帧中的子帧:将调度信息包括在子帧的控制部分中;将与调度信息相对应的数据信息包括在子帧的数据部分中;将与数据信息相对应的确认信息包括在尾部的确认部分中;以及将双向数据包括在子帧的尾部中。双向数据包括来自调度实体和一个或多个次级实体的数据分组。
[0012] 在本公开内容的该方面中,数据信息与次级实体的集合相关联,并且包括在控制部分中调度的所有数据分组。数据部分中的数据分组中的所有数据分组在确认部分中被确认。该方法还在调度实体和次级实体的集合之间传输上述子帧。
[0013] 本公开内容的另一个方面提供了一种用于次级实体利用时分双工(TDD)载波与调度实体进行通信的同步网络中的无线通信的方法。次级实体可以经由TDD载波发送和/或接收多个子帧。该方法提供针对多个子帧中的每个子帧的子帧结构,并且该子帧结构包括报头、数据部分和确认部分。该方法通过下列各项来生成多个子帧中的子帧:将双向数据包括在子帧的报头中;将调度信息包括在子帧的报头中;将与调度信息相对应的数据信息包括在子帧的数据部分中;以及将与数据信息相对应的确认信息包括在子帧的确认部分中。双向数据包括来自调度实体和次级实体的数据分组。
[0014] 在本公开内容的该方面中,数据信息与调度实体相关联,并且包括在报头中调度的所有数据分组,并且数据部分中的数据分组中的所有数据分组在确认部分中被确认。该方法还在次级实体和调度实体之间传输子帧。
[0015] 本公开内容的另一个方面提供了一种用于同步网络中的无线通信的调度实体。该调度实体包括被配置为利用时分双工(TDD)载波与一个或多个次级实体的集合进行通信的通信接口,其中,TDD载波包括多个子帧。该调度实体还包括存储器(所述存储器包括可执行代码)、以及操作地与通信接口和存储器耦合的处理器。
[0016] 该处理器通过可执行代码被配置为:提供针对多个子帧中的每个子帧的子帧结构,该子帧结构包括报头、控制部分、数据部分、以及确认部分。该处理器还被配置为通过下列各项来生成多个子帧中的子帧:将双向数据包括在子帧的报头中;将调度信息包括在子帧的控制部分中;将与调度信息相对应的数据信息包括在子帧的数据部分中;以及将与数据信息相对应的确认信息包括在子帧的确认部分中。双向数据包括来自调度实体和一个或多个次级实体的数据分组。
[0017] 在本公开内容的该方面中,数据信息与次级实体的集合相关联,并且包括在控制部分中调度的所有数据分组,并且数据部分中的数据分组中的所有数据分组在确认部分中被确认。该处理器还被配置为经由通信接口在调度实体和次级实体的集合之间传输上述子帧。
[0018] 本公开内容的另一个方面提供了一种用于同步网络中的无线通信的调度实体。该调度实体包括被配置为利用时分双工(TDD)载波与一个或多个次级实体的集合进行通信的通信接口,其中,TDD载波包括多个子帧。该调度实体还包括存储器(所述存储器包括可执行代码)、以及操作地与通信接口和存储器耦合的处理器。
[0019] 该处理器通过可执行代码被配置为:提供针对多个子帧中的每个子帧的子帧结构,该子帧结构包括控制部分、数据部分以及尾部。该处理器还被配置为通过下列各项来生成多个子帧中的子帧:将调度信息包括在子帧的控制部分中;将与调度信息相对应的数据信息包括在子帧的数据部分中;将与数据信息相对应的确认信息包括在尾部的确认部分中;以及将双向数据包括在子帧的尾部中。双向数据包括来自调度实体和一个或多个次级实体的数据分组。
[0020] 在本公开内容的该方面中,数据信息与次级实体的集合相关联,并且包括在控制部分中调度的所有数据分组,并且数据部分中的数据分组中的所有数据分组在确认部分中被确认。该处理器还被配置为在调度实体和次级实体的集合之间传输上述子帧。
[0021] 本公开内容的另一个方面提供了一种用于同步网络中的无线通信的次级实体。该次级实体包括被配置为利用时分双工(TDD)载波与调度实体进行通信的通信接口,其中,TDD载波包括多个子帧。该次级实体还包括存储器(所述存储器包括可执行代码);以及操作地与通信接口和存储器耦合的处理器。
[0022] 该处理器通过可执行代码被配置为:提供针对多个子帧中的每个子帧的子帧结构,该子帧结构包括报头、数据部分、以及确认部分。该处理器还被配置为通过下列各项来生成多个子帧中的子帧:将双向数据包括在子帧的报头中;将调度信息包括在子帧的报头中;将与调度信息相对应的数据信息包括在子帧的数据部分中;以及将与数据信息相对应的确认信息包括在子帧的确认部分中。双向数据包括来自调度实体和次级实体的数据分组。
[0023] 在本公开内容的该方面中,数据信息与调度实体相关联,并且包括在报头中调度的所有数据分组,并且数据部分中的数据分组中的所有数据分组在确认部分中被确认。该处理器还被配置为在次级实体和调度实体之间传输子帧。
[0024] 在审阅随后的具体实施方式时,本公开内容的这些和其它方面将变得更加充分地理解。在结合附图审阅以下的本公开内容的具体示例的描述时,对本领域的普通技术人员而言,本公开内容的其它方面和特征将变得显而易见。尽管可以关于下文的某些示例和附图来讨论本公开内容的特征,但是本公开内容的所有实施例可以包括本文论述的特征中的一个或多个特征。换句话说,尽管可以将本公开内容的一个或多个方面论述为具有某些有利的特征,但是还可以根据本文论述的本公开内容的各个方面来使用这样的特征中的一个或多个特征。以类似的方式,尽管可以将示例性实施例论述为设备、系统、或者方法实施例,但是应当理解的是,可以在各种设备、系统和方法中实现这样的示例性实施例。

附图说明

[0025] 图1是根据本公开内容的一些方面的示出了与一个或多个次级实体进行通信的调度实体的示例的框图
[0026] 图2是根据本公开内容的一些方面的示出了采用处理系统的调度实体的硬件实现方式的示例的框图。
[0027] 图3是根据本公开内容的一些方面的示出了采用处理系统的次级实体的硬件实现方式的示例的框图。
[0028] 图4是根据本公开内容的一个方面的示出了时分双工载波的相反的(共轭的)配对的示意图。
[0029] 图5是根据本公开内容的方面的示出了Tx-调度的自含式子帧的示例的图。
[0030] 图6是根据本公开内容的方面的示出了具有扩展的报头部分的Tx-调度的自含式子帧的图。
[0031] 图7是根据本公开内容的方面的示出了具有扩展的尾部的Tx-调度的自含式子帧的图。
[0032] 图8是根据本公开内容的方面的示出了具有扩展的报头部分和扩展的尾部部分的Tx-调度的自含式子帧的图。
[0033] 图9是根据本公开内容的方面的示出了Rx-调度的子帧的示例的图。
[0034] 图10是根据本公开内容的方面的示出了具有扩展的报头部分的Rx-调度的自含式子帧的图。
[0035] 图11是根据本公开内容的方面的示出了用于调度实体与一个或多个次级实体的集合进行通信的同步网络中的无线通信的示例性方法的流程图
[0036] 图12是根据本公开内容的方面的示出了用于调度实体与一个或多个次级实体的集合进行通信的同步网络中的无线通信的另一种示例性方法的流程图。
[0037] 图13是根据本公开内容的方面的示出了用于次级实体与调度实体进行通信的同步网络中的无线通信的示例性方法的流程图。

具体实施方式

[0038] 在下文中结合附图阐述的具体实施方式旨在作为对各种配置的描述,而不旨在表示可以在其中实践本文描述的概念的唯一配置。具体实施方式包括出于提供对各种概念的彻底理解的具体细节。然而,对本领域的技术人员而言将显而易见的是,可以在没有这些具体细节的情况下实践这些概念。在一些实例中,以框图的形式示出了公知的结构和部件,以便避免使这样的概念难以理解。
[0039] 遍及本公开内容提出的各种概念可以跨越各种各样的电信系统、网络架构和通信标准来实现。为了示出遍及本公开内容描述的实体或者设备中的一些,图1是示出了与一个或多个次级实体104相无线通信的示例性调度实体102的框图。调度实体发送下行链路(DL)数据信道106和下行链路控制信道108,而次级实体104发送上行链路(UL)数据信道110和上行链路控制信道112。当然,图1中示出的信道不必然是可以在调度实体102和次级实体104之间使用的信道中的所有信道,并且本领域的普通技术人员将认识到的是,除了示出的那些信道之外,还可以使用其它信道,例如,其它数据、控制、确认和反馈信道。UL或者DL数据信道可以与一个或多个频率载波相对应。对于某个数据传输而言,发射机是发送(Tx)节点,以及接收机是接收(Rx)节点。
[0040] 在本公开内容的一些方面中,调度实体102可以是基站或者接入点,或者设备对设备(D2D)和/或网格网络中的用户设备(UE)。调度实体102管理信道或者载波上的资源,并且将资源分配给信道的其它用户,包括次级实体,例如,蜂窝网络中的一个或多个UE。调度实体102负责所有无线相关的功能,包括无线承载控制、准入控制、移动性控制、调度、安全性、以及到集中控制器和/或网关的连接性。在图1的示例中未示出集中控制器,但是可以在替代的配置中使用集中控制器。
[0041] 在调度实体102和次级实体104之间传送的数据的大小可以由传输时间间隔(TTI)来规定。TTI是子帧的持续时间。遍及本公开内容,自含式子帧至少包括调度控制信息、用户数据、以及针对用户数据的确认或者反馈。帧是子帧的集合,并且帧可以由上层用于各种目的,例如,同步、获取、应用层控制。
[0042] 如图1中示出的,调度实体102可以向一个或多个次级实体104广播下行链路数据106。根据本公开内容的方面,术语下行链路(DL)可以指代源自调度实体102的点对多点传输。广义地,调度实体102是负责对无线通信网络中的业务(包括下行链路传输,以及在一些示例中的从一个或多个次级实体104至调度实体102的上行链路数据110)进行调度的节点或者设备。(用以描述该方案的另一种方式可以使用术语广播信道复用)。调度实体可以是基站、网络节点、用户设备(UE)、接入终端、对等设备、网格节点、或者无线通信网络中的任何合适的节点,或者可以存在于上述设备内。一些设备可以同时地或者在不同的时间段期间被配置为调度实体和次级实体。
[0043] 根据本公开内容的方面,术语上行链路(UL)可以指代源自次级实体104的点对点传输。广义地,次级实体104是用于接收调度控制信息的节点或者设备,所述调度控制信息包括但不限于:调度准许、同步或者时序信息、频率信息、或者来自无线通信网络中的另一实体(例如,调度实体),例如,调度实体102的其它控制信息。次级实体可以是基站、网络节点、UE、接入终端、对等设备、网格节点、或者无线通信网络中的任何合适的节点,或者可以存在于上述设备内。在本公开内容的一些方面中,调度实体102和次级实体104可以经由一个或多个时分双工(TDD)载波来彼此进行通信。
[0044] 图2是示出了采用处理系统214的调度实体102的硬件实现方式的示例的图。根据本公开内容的各个方面,可以利用包括一个或多个处理器204的处理系统214来实现元件、或者元件的任何部分、或者元件的任意组合。
[0045] 在本公开内容的各个方面中,调度实体102可以是任何合适的无线收发机装置,并且在一些示例中,可以由基站(BS)、基站收发机(BTS)、无线基站、无线收发机、收发机功能单元、基本服务集(BSS)、扩展服务集(ESS)、接入点(AP)、节点B、演进型节点B(eNB)、网格节点、设备到设备(D2D)节点、中继、或者某种其它合适的术语来体现。在本文档内,基站可以被称为调度实体,其表示基站向一个或多个次级实体(例如,UE)提供调度信息。
[0046] 在其它示例中,调度实体102可以由无线用户设备(UE)来体现。UE的示例包括蜂窝电话、智能电话、会话发起协议(SIP)电话、膝上型计算机、笔记本计算机、上网本、智能本、个人数字助理(PDA)、卫星无线单元、全球定位系统(GPS)设备、多媒体设备、视频设备、数字音频播放器(例如,MP3播放器)、照相机、游戏控制台、娱乐设备、车辆部件、可穿戴计算设备(例如,智能手表、健康或者健身追踪器等)、家用电器、传感器、自动售货机、或者任何其它类似功能的设备。UE还可以被本领域的技术人员称为移动站(MS)、用户站、移动单元、用户单元、无线单元、远程单元、移动设备、无线设备、无线通信设备、远程设备、移动用户站、接入终端(AT)、移动终端、无线终端、远程终端、手持机、终端、用户代理、移动客户端、客户端、或者某种其它合适的术语。在本文档内,UE可以是调度实体或者次级实体或者两者。即,在本公开内容的各个方面中,无线UE可以操作为向一个或多个次级实体提供调度信息的调度实体,或者可以操作为根据由调度实体提供的调度信息进行操作的次级实体。
[0047] 处理器204的示例包括被配置为执行遍及本公开内容描述的各种功能的微处理器微控制器数字信号处理器(DSP)、现场可编程阵列(FPGA)、可编程逻辑器件(PLD)、状态机、门控逻辑、分立硬件电路、以及其它合适的硬件。即,如在装置200中使用的处理器204可以被用来实现下文在图9和图10中描述的过程中的任何一个或多个过程。
[0048] 在该示例中,处理系统214可以利用通常由总线202表示的总线架构来实现。总线202可以包括取决于处理系统214的具体应用和整个设计约束的任意数量的互连总线和桥接器。总线202将包括一个或多个处理器(通常由处理器204表示)、存储器205、以及计算机可读介质(通常由计算机可读介质206表示)的各种电路链接在一起。总线202还可以将本领域中公知的、并且因此将不再进一步描述的各种其它电路(例如,定时源、外围设备电压调节器、以及电源管理电路)链接在一起。总线接口208在总线202和收发机210之间提供接口。
收发机210提供用于通过传输介质来与各种其它装置进行通信的单元。例如,收发机201可以包括被配置为利用一种或多种无线接入技术来进行通信的一个或多个发射机和接收机。
取决于装置的性质,还可以提供用户接口212(例如,小键盘、显示器、扬声器、麦克、操纵杆、触摸屏)。
[0049] 处理器204可以包括报头通信220、数据有效载荷块222和尾部通信块224。在本公开内容的一个方面中,报头通信块220、数据有效载荷块222和尾部通信块224可以由被存储在计算机可读介质206处的TDD通信代码配置为利用图6-8和图10中示出的自含式子帧结构来执行TDD通信。
[0050] 在本公开内容的一个方面中,报头通信块220可以被配置为利用子帧的报头用于与一个或多个次级实体104进行无线通信。例如,报头部分可以具有用于交换信息(例如,一个或多个信道参数)的上行链路部分和下行链路部分。数据有效载荷块222可以被配置为利用子帧的数据部分用于与一个或多个次级实体104进行无线通信。数据部分可以携带根据子帧的报头部分中携带的信息传送的数据或者信息。尾部通信块224可以被配置为利用子帧的尾部用于与一个或多个次级实体104进行无线通信。
[0051] 处理器204负责管理总线202和一般的处理,包括对被存储在计算机可读介质206上的软件的执行。该软件当由处理器204执行时,使得处理系统214对于任何特定的装置执行下文在图11和12中描述的各种功能。计算机可读介质206可以包括用于配置报头通信块220的报头通信代码230。计算机可读介质206可以包括用于配置数据有效载荷块222的数据有效载荷代码232。计算机可读介质206可以包括用于配置尾部通信块224的尾部通信代码
234。计算机可读介质206还可以被用于存储当执行软件时由处理器204操纵的数据。
[0052] 无论被称为软件、固件中间件、微代码、硬件描述语言或者其它术语,软件应当被广义地解释为意指指令、指令集、代码、代码片段、程序代码、程序、子程序、软件模块、应用、软件应用、软件包、例程、子例程、对象、可执行文件、执行的线程、过程、功能等等。软件可以存在于计算机可读介质206上。计算机可读介质206可以是非暂时性计算机可读介质。非暂时性计算机可读介质通过示例的方式包括:磁存储设备(例如,硬盘软盘、磁条)、光盘(例如,压缩光盘(CD)或者数字多功能光盘(DVD))、智能卡、闪速存储器设备(例如,卡、棒、或者键驱动)、随机存取存储器(RAM)、只读存储器(ROM)、可编程ROM(PROM)、可擦除PROM(EPROM)、电可擦除PROM(EEPROM)、寄存器、可移动盘和用于存储可以由计算机访问和读取的软件和/或指令的任何其它合适的介质。计算机可读介质还可以通过示例的方式包括:载波、传输线以及用于传输可以由计算机访问和读取的软件和/或指令的任何其它合适的介质。计算机可读介质206可以存在于处理系统214中、处理系统214之外、或者跨越包括处理系统214的多个实体来分布。计算机可读介质206可以被体现在计算机程序产品中。通过示例的方式,计算机程序产品可以将计算机可读介质包括在封装材料中。本领域的技术人员将认识到,如何根据特定的应用和被施加到整个系统上的整个设计约束来最佳地实现遍及本公开内容提出的所描述的功能。
[0053] 图3是示出了针对采用处理系统314的示例性次级实体104的硬件实现方式的示例的图。根据本公开内容的各个方面,可以利用包括一个或多个处理器304的处理系统314来实现元件、或者元件的任意部分、或者元件的任意组合。
[0054] 处理系统314可以基本上与图2中示出的处理系统214相同,包括总线接口308、总线302、存储器305、处理器304、以及计算机可读介质306。此外,处理系统314可以包括基本上与上面在图2中描述的那些类似的用户接口312和一个或多个收发机310。如在次级实体104中使用的处理器304可以被用来实现下文例如在图11和12中描述的过程中的任何一个或多个过程。
[0055] 在本公开内容的一个方面中,处理器304可以包括报头通信块320、数据有效载荷块322和尾部通信块324。报头通信块320、数据有效载荷块322和尾部通信块324可以由被存储在计算机可读介质306处的TDD通信代码配置为利用图6-8和图10中示出的自含式子帧结构来执行TDD通信。
[0056] 报头通信块320可以被配置为利用子帧的报头用于与调度实体102进行无线通信。例如,报头可以具有用于交换关于一个或多个信道参数的信息的上行链路部分和下行链路部分。数据有效载荷块322可以被配置为利用子帧的数据部分用于与调度实体102进行无线通信。数据部分可以携带根据子帧的报头中携带的信息传送的数据或者信息。尾部通信块
324可以被配置为利用子帧的尾部用于与调度实体102进行无线通信。计算机可读介质306可以包括用于配置报头通信块320的报头通信代码330。计算机可读介质306可以包括用于配置数据有效载荷块322的数据有效载荷代码332。计算机可读介质306可以包括用于配置尾部通信块324的尾部通信代码334。
[0057] 本领域的普通技术人员将容易地理解的是,利用TDD载波的通信具有某些缺点。例如,仅仅按照相对长的时标来实现全双工通信。在子帧的持续时间的范围内,按照非常短的时标,每次仅仅一个方向上的通信在TDD载波上是可用的。即,当设备正在发送信号时,其接收机可能被禁用并且其通常不能够接收符号。类似地,当设备正在接收符号时,其发射机可能被禁用,并且其通常不能够发送符号。
[0058] 克服该问题的一种方式是将两个TDD载波以可以实现全双工通信的方式相互配对。图4示出了对两个TDD分量载波(CC)进行配对的一个示例。在该图示中,第一CC(分量载波1或者CC1)与第二CC(分量载波2或者CC2)配对。横轴代表时间,并且纵轴代表频率(未按比例)。CC1和CC2两者都是TDD载波,其中,利用U表示的上行链路时隙与利用D表示的下行链路时隙在每个相应的载波上时分复用。另外,一些时隙被标识为下文进一步描述的特殊时隙,并且利用S表示。在本文中,时隙可以与任何合适的持续时间相对应,并且可以与其它术语相对应,例如,传输时间间隔(TTI)、子帧、帧、符号持续时间等。
[0059] 如果仅仅CC1或者CC2可以由通信设备使用,则可以看出在任何单独的时刻只存在下行链路、上行链路或者特殊时隙。该图示示出了被标识为配置A和配置B的两种不同类型的子帧。在被标识为配置A的第一子帧中,存在相同数量的上行链路时隙U和下行链路时隙D,和两个被标识为特殊时隙S的时隙。在被标识为配置B的第二子帧中,大多数时隙是下行链路时隙D,和一个上行链路时隙U以及一个特殊时隙S。第三子帧被示作另一个配置A子帧。这些配置仅仅是一个示例,其与TD-LTE标准中规定的一些现有的配置相对应。
[0060] 在任何时刻,例如,在被标识为配置B的第二帧期间,如果通信设备(例如,调度设备或者次级设备)具有在上行链路上发送反馈或者信息的需要,则其可能不被提供有这样的机会,因为其面对一长段时间的仅下行链路时隙。这里,在没有可用的配对的分量载波(例如,CC2)的情况下,该反馈将需要被缓存至少直到在图4中示出的示例中的第三子帧的第三时隙中提供的下一次机会为止。
[0061] 因此,第一TDD分量载波CC1可以与第二TDD分量载波CC2配对。这里,CC2可以实现相对于CC1的结构相反的、共轭的或者互补的发送/接收结构。在本公开内容中,术语相反的、互补的和共轭的可交换地使用,通常指代在其中CC1中的下行链路时隙D中的至少一些下行链路时隙D与CC2中的上行链路U配对、并且CC1中的上行链路时隙U中的至少一些上行链路时隙U与CC2中的下行链路时隙D配对的配置。示出的配置在性质上仅仅是示例性的,并且可以在本公开内容的范围内使用其它配置,其中的一些配置可以与跨越两个分量载波的所有时隙配对,而其中的其它配置可以包括一些未配对的上行链路/下行链路时隙。
[0062] 如示出的,配置A子帧与配置-A子帧配对,其中,配置-A代表配置A的相反的(或者共轭的)配置。同样,配置B子帧与配置-B子帧配对。
[0063] 在所示出的示例中,利用S符号表示的特殊时隙可以被用于下行链路到上行链路的切换。即,参考由次级实体104进行的通信,当利用TDD载波时,在针对上行链路传输和下行链路传输的时序是由调度实体102驱动的情况下,可能存在当从下行链路时隙D转变到上行链路时隙U时针对某个时间间隙的需求。即,在从调度实体102到次级实体104的下行链路时隙D的传输之间,以及在从次级实体104到调度实体102的上行链路时隙U的传输之间存在某个传播延迟。为了考虑这些传播延迟,特殊时隙S在下行链路时隙D的末端和上行链路时隙U的开始插入间隙,使得调度实体102和次级实体104可以保持同步。这里,间隙可以与上行链路通信和下行链路通信都不发生的时间相对应。可以根据小区的大小或者其它设计因素来配置特殊时隙S中的间隙(或者保护时段)的长度。
[0064] 在本公开内容的各个方面中,一个分量载波中的特殊时隙S可以与其配对的分量载波上的任何合适的时隙配对,所述任何合适的时隙包括下行链路时隙D、上行链路时隙U、或者另一个特殊时隙S。在一些示例中,例如图4中所示出的示例,可以将一个分量载波(CC1)中的特殊时隙S中的每个特殊时隙S映射(例如,时间对齐)至其配对的分量载波(CC2)中的相应的下行链路时隙。然而,这仅仅是一个示例,而不旨在在性质上进行限制。
[0065] 在另外的示例中,根据需要,可以将特殊时隙S插入到相反的或者配对的分量载波CC2中、从下行链路时隙到上行链路时隙的转换中间。
[0066] 图4中的图示作为一个示例示出了具有基本上相同带宽的两个配对的TDD分量载波。即,每个分量载波在纵向的频率维度上具有相同的宽度。然而,这仅仅是一个示例,并且在另一个示例中,第一TDD分量载波CC1可以具有比另一个分量载波更宽的带宽(例如,100MHz)。该分量载波可以与具有窄的带宽(例如,10MHz)的第二TDD分量载波CC2配对。可以根据上行链路和下行链路上携带的业务的特征(例如,上行链路业务和下行链路业务之间的不对称度)做出对载波的各自的带宽之间的比率的选择。例如,下行链路侧大量较密集的业务可以通过在较宽带宽的分量载波上部署较大数量的下行链路时隙来容纳。
[0067] 然而,如上文描述的分量载波的配对可能不总是一个选项。即使在这样的未配对使用的情况下,也可以期望针对利用TDD载波的双向通信提供调度、数据和反馈的灵活性。
[0068] 根据本公开内容的一些方面,公开了利用自含式子帧结构用于无线通信的装置、方法和计算机指令。在本公开内容的一些方面中,自含式子帧结构可以是TDD子帧,所述TDD子帧可以被用于发射机-调度(Tx-调度)的传输。在本公开内容中,Tx-调度的子帧还可以被称为以下行链路为中心(以DL为中心)的子帧。在一个示例中,基于调度实体102被调度以在数据信道(例如,DL信道)上向一个或多个次级实体104发送数据(例如,DL数据)的假设来配置Tx-调度的子帧。在该示例中,调度实体102是Tx节点,并且次级实体104是Rx节点。
[0069] 自含式子帧在其自身中和其本身中可以是完全的和全面的。即,自含式子帧可以为同一子帧内的用户数据中的全部用户数据提供控制和调度信息。此外,自含式子帧可以包括针对该子帧内的用户数据中的所有用户数据的确认/反馈。因此,用户数据分组中的所有用户数据分组可以在下一个调度实例之前被确认。换句话说,直到所有之前调度的用户数据分组已经被确认为止,才将发生针对用户数据分组的进一步调度/控制。
[0070] 图5示出了根据本公开内容的方面的示例性自含式子帧500。自含式子帧500可以是TDD自含式子帧,并且具有固定的持续时间(t),但是还可以具有可配置的和在网络部署期间确定的和/或可以通过系统消息更新的持续时间。在一个示例中,自含式子帧500的持续时间可以是500μs。
[0071] 图5中示出的自含式子帧结构可以是发射机-调度(Tx-调度)的子帧,还被称为下行链路TTI子帧或者以DL为中心的子帧。调度实体102可以利用以DL为中心的子帧500来将控制和/或数据信息携带给次级实体104,该次级实体104可以是例如UE。调度实体还可以在同一子帧内从次级实体接收数据或者确认信息。因此,每个以DL为中心的子帧包括DL传输和UL传输两者,并且关于时间(t)被分成DL传输和UL传输部分或者字段。
[0072] 在图5中示出的示例中,DL传输部分包括控制部分502和数据部分504,并且UL传输部分包括确认部分506。因此,在子帧结构500内,调度实体有机会在控制部分502中发送控制信息和/或调度信息,并且接着有机会在DL数据部分504中利用时分复用、频分复用、码分复用、或者任何其它合适的复用方案中的至少一种方案来将数据信息发送给一个或多个次级实体。控制部分502还可以被称为调度部分。在保护时段(GP)部分508之后,调度实体有机会在同一子帧内,在确认部分506中从一个或多个次级实体接收对所有DL数据的确认。该确认可以是确认(ACK)信号或者否定确认(NACK)信号。确认部分506还可以被称为反馈字段。因此,在子帧500内发送的数据分组中的所有数据分组在同一子帧500内可以被确认为成功地或者错误地接收。该子帧结构500是以下行链路为中心的,因为与用于上行链路方向(例如,来自次级实体的传输)上的传输相比,更多的资源被分配用于下行链路方向上的传输。
[0073] 在一个示例中,控制部分502可以被用来发送用于指示预期用于一个或多个次级实体的数据分组的时间-频率分配的物理下行链路控制信道(PDCCH),并且数据部分504可以被用来在所分配时间-频率时隙内发送或者传送包括预期用于一个或多个次级实体的数据分组的数据有效载荷或者信息(例如,DL数据)。例如,数据信息可以包括在控制部分502中调度的所有数据分组。因此,被调度为接收子帧500的数据部分504中的数据的每个次级实体在子帧500的控制部分502中可以被单独地编址,使得次级实体可以正确地接收并且处理相应的下行链路数据分组。在GP部分508之后,调度实体可以在确认部分506期间从在数据部分504期间接收数据分组的每个次级实体接收确认(例如,ACK或者NACK信号)或者其它反馈,以指示是否成功地接收了数据分组。因此,在子帧500内发送的数据分组中的所有数据分组可以在同一子帧内被确认(例如,ACK或者NACK)。
[0074] 在其它示例中,控制部分502可以被用来发送或者传送其它下行链路控制信道,例如,物理广播信道(PBCH),以及其它下行链路导频,例如,信道状态信息-参考信号(CSI-RS)。这些另外的下行链路信道和/或导频,连同任何其它下行链路控制信息一起可以在控制部分502内与PDCCH一起发送。此外,确认部分506还可以被用来发送其它上行链路控制信道和信息,例如,物理上行链路控制信道(PUCCH)、随机接入信道(RACH)、调度请求(SR)、探测参考信号(SRS)、信道质量指示符(CQI)、信道状态反馈信息、以及缓冲状态。广义地,可以作出对上面在确认部分506内描述的ACK/NACK和其它信息的补充的UL方向上的任何合适的传输。
[0075] 在本公开内容的方面中,数据部分504可以被用来在子帧500内将数据传输复用至次级实体的集合(即,两个或更多个次级实体)。例如,调度实体可以使用时分复用(TDM)、频分复用(FDM)(即,OFDM)、码分复用(CDM)、和/或任何其它合适的复用方案来将下行链路数据复用至次级实体的集合。因此,DL数据部分504可以包括针对多个用户的并且多达高阶的多用户MIMO的数据。此外,控制部分502和确认部分506还可以被用来以TDM、FDM、CDM、和/或其它合适的方式将控制信息复用至次级实体的集合,或者复用来自次级实体的集合的控制信息。
[0076] GP部分508可以被调度以适应UL时序和DL时序的变化性。例如,由于RF天线方向切换(例如,从DL到UL)而导致的延时和传输路径延时可能导致次级实体在UL上提前进行发送以匹配DL时序。这样的提前发送可能干扰从调度实体接收的符号。因此,GP部分508可以在DL数据部分504之后插入合适的时间量以防止或者减少干扰,其中GP部分508可以为调度实体(在Tx和Rx之间)切换其RF天线方向提供合适的时间量,包括用于相环(PLL)、滤波器放大器的校正时间,用于无线(OTA)传输的时间,以及用于由次级实体进行确认处理的时间。GP部分508还可以提供合适的时间量用于次级实体切换其RF天线方向(例如,从DL到UL)、处理数据有效载荷、以及用于无线(OTA)传输的时间。
[0077] GP部分508的持续时间可以是基于例如小区大小和/或处理时间要求来可配置的。例如,GP部分508可以有一个符号周期(例如,31.25μs)的持续时间。然而,根据本公开内容的一些方面,从DL传输到UL传输的切换点在整个网络中可以是确定的。因此,尽管GP部分
508的开始点可能是可变的和可配置的,但是对应于从DL到UL的切换点的GP部分508的结束点可以被网络固定,以管理DL传输和UL传输之间的干扰。在本公开内容的方面中,切换点可以由网络或者调度实体以半静态的方式更新或者调整,并且在PDCCH中指示。此外,还可以在PDCCH中指示GP的持续时间和/或GP部分508的开始点。
[0078] 在利用未经许可的频谱的网络中,可以将切换点保持在为不同的小区所共用的确定的位置。在要被发送的数据的量小于分配给数据部分504的量的场景下,为了避免失去对TDD载波的接入,可以通过要么扩展传输以仅仅占据一部分频段,要么利用导频或者其它填充符符号来填入到传输中来对子帧500的数据部分504进行填充或者填补。
[0079] 在本公开内容的一些方面中,子帧500可以另外包括报头部分和/或尾部部分以提供如下文关于图6-8的示例中描述的另外的功能。在一些示例中,报头部分可以包括预调度字段和相应的调度响应字段,其可以被用于各种各样的双向通信的目的。在其它示例中,尾部可以包括用于另外的确认功能(例如,ACK/NACK)的和出于各种各样的目的的数据通信的双向业务部分。双向数据可以包括源自调度实体和一个或多个次级实体的数据分组。
[0080] 图6是示出了根据本公开内容的方面的具有报头部分的Tx-调度的自含式子帧600的图。在一个示例中,Tx-调度的子帧600可以是TDD自含式子帧,并且可以具有可配置的持续时间,在一些示例中,TDD自含式子帧的持续时间可以是固定的。Tx-调度的子帧600具有包括预调度部分602(Pre-Sched)和调度响应部分604(Sched Resp)的报头部分601。报头部分601允许同一子帧内的双向通信(UL和DL)。预调度部分602和调度响应部分604可以由保护时段(GP)来分隔。在该示例中,预调度部分602可以是下行链路(DL)部分,并且调度响应部分604可以是上行链路(UL)部分。与图5的子帧500中的那些部分类似,Tx-调度的子帧600还具有控制部分606、数据传输部分608、以及确认部分610。
[0081] 报头部分601可以被配置为使用时分复用、频分复用、码分复用、或者任何适合的复用方案中的至少一种方案来促进调度实体102(图2)和一个或多个次级实体104(图3)之间的双向通信。在本公开内容的一些方面中,调度实体可以利用预调度部分602来向一个或多个次级实体发送诸如信道参数的信息(例如,预调度信息)。信道参数的非限制性示例包括时间-频率分配、信道状态、信道质量以及干扰。调度实体可以利用调度响应部分604来从次级实体接收调度响应和状态信息。在一个示例中,预调度传输包括从调度实体到预期的接收机(或者次级实体)的导频。这还为接收机测量来自感兴趣的调度实体,连同其它可能的干扰调度实体的信道响应提供了机会。在调度响应持续时间(调度响应部分604)期间,可以发送回关于所期望的信号强度与经历的干扰的程度的该信息。这可以帮助确定在链路上成功地实现通信的速率,连同调度实体之间的任何干扰协调,包括在子帧期间将一些传输静音。
[0082] 广义地,调度实体可以利用预调度部分602来向一个或多个次级实体提供信息,或者从一个或多个次级实体请求信息。次级实体可以利用调度响应部分604来向调度实体提供或者传送合适的信息和/或数据。预调度部分和调度响应部分还可以被用于控制和信号交换功能,其可以在本公开内容的各个方面中使用。一些非限制性应用包括大规模多输入和多输出(MIMO)部署、网格、设备到设备(D2D)部署、利用未经许可的频谱的网络部署、协作多点(CoMP)部署等。
[0083] 在本公开内容的一个方面中,可以在大规模MIMO系统中使用Tx-调度的子帧600。大规模MIMO系统的一些示例包括大规模天线系统、超大型MIMO、超MIMO、以及全维度MIMO。
大规模MIMO系统可以利用完全相干地和自适应地操作的大量的服务天线。在TDD系统中的大规模MIMO实现方式的一个示例中,调度实体可以利用预调度部分602来请求一个或多个次级实体向调度实体提供某些信息。
[0084] 在大规模MIMO示例中,调度实体可以利用预调度部分602来发送CSI-RS(DL传输),并且次级实体可以利用调度响应部分604来报告相应的CQI和SRS(UL传输)。SRS可以由调度实体用来估计上行链路信道质量。由于TDD系统中的信道响应的互易性,SRS信号还可以由调度实体用来确定传输的方向,用于优化诸如用户吞吐量的链路指标或者最小化对非预期的用户的干扰。次级实体可以利用调度响应部分604来发送一个或多个UL数据分组或者信息,其可以由调度实体在该子帧的接着的数据传输部分608中来确认。在一些示例中,调度实体可以基于调度响应来选择预调度的用于数据传输的次级实体的子集(一个或多个)。子帧600是自含式的,因为该子帧的所有数据传输都可以由接收端在同一子帧内确认。在本公开内容的一些方面中,确认部分610还可以携带从一个或多个次级实体到调度实体的其它数据传输。
[0085] 在本公开内容的一个方面中,Tx-调度的子帧600可以被用于D2D系统中的设备之间的通信。D2D设备可以轮流充当调度实体或者次级实体。在一些示例中,Tx节点可以是调度实体102,并且Rx节点可以是次级实体104。在一个示例中,当D2D设备是调度实体时,其可以与正在充当次级实体的其它D2D设备进行通信。
[0086] 在本公开内容的一个方面中,调度实体可以利用子帧600的预调度部分602向次级实体的集合(一个或多个)发送轮询信号或者消息。例如,调度实体可以轮询次级实体以确定其通信性能(例如,频带、带宽、协议、RAT、速度等)。响应于轮询信号,次级实体可以利用子帧的调度响应部分604、向调度实体提供其通信性能(例如,信道质量、带宽、频带、载波、或者其它能)来作出响应。基于来自次级实体的响应,调度实体可以选择次级实体的子集(一个或多个)来利用子帧的数据传输部分608进行通信。次级实体可以利用确认部分610来确认(例如,ACK或者NACK)同一子帧中的数据通信。在本公开内容的一些方面中,确认部分610还可以携带其它传输或者来自D2D设备的数据。
[0087] 在本公开内容的一个方面中,Tx-调度的子帧600可以被用来促进未经许可的频谱的通信。未经许可的频谱还可以被称为开放频谱或者免费频谱。不同的无线设备可以共享未经许可的频谱,并且如果多个设备同时尝试使用同一未经许可的频谱或者频带来用于通信,则可能引起对彼此的干扰。在一个示例中,第一无线设备(例如,调度实体或者进行轮询的设备)可以利用子帧600的预调度部分602来轮询或者查询潜在的第二无线设备(例如,次级实体)的集合(一个或多个)关于利用未经许可的频谱进行数据通信的可能性。第一无线设备还可以利用预调度部分602来警告在附近的或者通信范围中的其它节点或者设备关于对未经许可的介质和/或即将发生的数据通信的预期占用。响应于来自第一无线设备的轮询信号,被轮询的无线设备可以利用调度响应部分604来指示其做好准备或者用于利用未经许可的频谱进行通信的能力。同时,调度响应部分604的传输(例如,轮询信号)可以警告其它邻近节点或者设备关于对未经许可的介质或者频谱的预期使用。在一些示例中,被轮询的设备(例如,次级实体)可以利用调度响应部分604来向进行轮询的设备(例如,调度实体)提供链路质量信息(例如,SRS)。
[0088] 在本公开内容的一个方面中,Tx-调度的子帧600可以被用在协作多点(CoMP)传输系统中。CoMP是小区间的协作技术,其可以改善小区覆盖、小区边缘的吞吐量、和/或系统效率。CoMP的一个示例是LTE协作多点。在CoMP系统中,存在各种类型的小区间协作,例如,协作调度(CS)、协作波束成形(CB)、联合传输(JT)、以及动态点选择(DPS)。利用CoMP,小区边缘处的无线设备(例如,UE)可以通过与彼此的协作不仅与服务小区通信,还与其它小区通信。CoMP设备可以同时从多个小区(例如,基站)接收信号,并且CoMP设备的传输可以同时由多个小区接收。在一个示例中,一个或多个小区(例如,调度实体)可能希望与一个或多个UE(例如,次级实体)通信,并且每个UE可以同时与一个或多个小区相通信。
[0089] CoMP依靠于最新的信道状态信息。如果基站事先具有UE的信道信息,则基站可以向UE发送利用合适的加权预编码的数据流以改善接收。为了这个目的,UE可以测量其信道,并且向基站报告相应的信道状态信息(CSI)。在本公开内容的一个方面中,基站(调度实体)可以在子帧600的预调度部分602中向UE(次级实体)发送CSI-RS消息。CSI-RS消息指示UE测量其CSI。作为响应,UE测量CSI,并且可以在子帧的调度响应部分604中将其报告回基站。
[0090] 在上述的示例中,在UL传输和DL传输之间具有确定的切换位置的情况下,Tx-调度的子帧600可以具有固定的或者可配置的持续时间。在本公开内容的一些方面中,调度响应部分604还可以携带来自次级实体的数据有效载荷。如果需要的话,可以在同一子帧中的随后的数据传输部分608中对数据有效载荷进行确认。
[0091] 图7是示出了根据本公开内容的方面的具有尾部的Tx-调度的自含式子帧700的图。Tx-调度的子帧700与具有尾部部分添加的自含式子帧500类似。在一个示例中,Tx-调度的子帧700是自含式TDD子帧。与图5和图6的子帧的部分类似,子帧700具有控制部分702和数据传输部分704。控制部分702可以被称为调度部分。子帧700还具有确认部分706和尾部部分708。确认部分706和尾部部分708可以被称为尾部。确认部分706和尾部部分708可以使用时分多址、频分多址、码分多址、或者任何其它合适的多址方案中的至少一种方案,来用于在调度实体和一个或多个次级实体之间,在同一子帧中进行双向通信。在本公开内容的一些方面中,与图5和图6中的子帧500、600的确认部分506、610类似,确认部分706可以被用来接收针对数据部分704的所有数据分组的确认信息。在一个示例中,调度实体可以利用确认部分706来接收针对数据传输部分704的确认(例如,ACK/NACK)和/或来自次级实体的其它数据。调度实体可以利用尾部部分708来发送针对在确认部分706中接收的对UL数据的确认(例如,ACK/NACK)。在其它示例中,子帧700的尾部可以被用于针对各种各样的应用的其它确认/信号交换功能和数据通信。
[0092] 在本公开内容的一个方面中,次级实体可以利用确认部分706来发送UL数据和/或针对数据传输704(DL数据)的确认(例如,ACK/NACK分组)。此外,调度实体可以利用尾部部分708来发送针对在确认部分706中接收的对UL数据的确认(例如,ACK/NACK分组)。因此,子帧700的尾部可以降低应用层延时,因为不需要调度完整的UL子帧来使次级实体得以向调度实体发送数据和/或确认。
[0093] 图8是示出了根据本公开内容的方面的具有报头部分和尾部部分的Tx-调度的自含式子帧800的图。在一个示例中,Tx-调度的子帧800是TDD自含式子帧。自含式子帧800包括报头部分802、数据传输部分804、以及尾部。与子帧600(图6)的报头部分的那些部分类似,报头部分802包括预调度部分808(Pre-Sched)和调度响应部分810(Sched Resp)。与子帧700(图7)的尾部的那些部分类似,尾部包括确认部分814和尾部部分816。通过提供报头部分和尾部部分两者,Tx-调度的子帧800可以在同一自含式子帧中,为调度实体和一个或多个次级实体之间的UL通信和DL通信提供另外的机会。报头部分802和尾部部分816的各种功能与子帧600和700的那些功能类似,并且为了简洁起见将不重复其描述。
[0094] 在本公开内容的一些方面中,子帧可以被配置用于接收机-调度(Rx-调度)的传输。在本公开内容中,Rx-调度的子帧可以被等价地称为以上行链路为中心(以UL为中心)的子帧。在一个示例中,基于次级实体104被调度以在数据信道(例如,UL信道)上向调度实体102发送有效载荷数据(例如,UL数据)的假设来配置Rx-调度的子帧。
[0095] 图9是示出了根据本公开内容的方面的Rx-调度的自含式子帧900的示例的图。在一个示例中,Rx-调度的子帧900是TDD自含式子帧,在其中,所有数据通信可以在同一子帧中被确认。即,控制/调度信息可以提供针对该子帧内的数据分组中的所有数据分组的控制/调度,并且确认信息可以包括针对该子帧内的数据分组中的所有数据分组的确认/否定确认(ACK/NACK)信号。Rx-调度的子帧900是以UL为中心的子帧,因为该子帧的很大部分携带来自次级实体的UL数据有效载荷或者信息。Rx-调度的子帧900具有控制部分902、数据传输部分904、和确认部分906。控制部分902还可以被称为调度部分。控制部分902和数据传输部分904可以被时间间隙或者保护时段(GP)分隔。自含式子帧900可以具有固定的持续时间(t),但是也可以具有在网络部署期间确定的可配置的持续时间和/或可以通过系统消息来更新。
[0096] 在一个示例中,调度实体可以使用时分多址、频分多址、码分多址、或者任何其它合适的多址方案中的至少一种方案来利用控制部分902向一个或多个次级实体发送调度或者控制信息。例如,调度实体可以在控制部分902中的物理下行链路控制信道(PDCCH)上发送调度信息(例如,准许),并且发送与在图5的控制部分502中传送的那些信息类似的其它控制信息。次级实体可以基于调度/控制信息在数据传输部分904中向调度实体发送数据(UL数据)。作为响应,次级实体可以在确认部分906中从调度实体接收确认(例如,ACK或者NACK分组)。调度实体还可以利用确认部分906来向次级实体发送其它数据或者信息。
[0097] 图10是示出了根据本公开内容的方面的具有报头的Rx-调度的子帧1000的图。在一个示例中,Rx-调度的子帧1000是具有报头的TDD自含式子帧。报头具有预调度部分1002(Pre-Sched)和调度响应部分1004(Sched Resp)。在本公开内容的一些方面中,调度响应部分1004还提供与子帧900的控制部分902类似的功能。可以在预调度部分1002和调度响应部分1004之间提供间隙时段(GP)。与图9的子帧900的那些部分类似,Rx-调度的子帧1000还具有数据传输部分1006和确认部分1008。因此,为了简洁起见将不重复其描述。Rx-调度的子帧1000是自含式子帧,因为数据通信在同一子帧内被确认而不需要另外的子帧。
[0098] Rx-调度的子帧1000的报头可以使用时分多址、频分多址、码分多址、或者任何其它合适的多址方案中的至少一种方案来用于调度实体和一个或多个次级实体之间的双向(UL和DL)通信。例如,次级实体可以利用预调度部分1002来向调度实体提供信息或者从调度实体请求信息。作为响应,调度实体可以利用调度响应部分1004来向次级实体发送所请求的信息和/或确认。在本公开内容的一些方面中,调度响应部分1004另外可以被用于向次级实体发送控制或者调度信息。以该方式,报头可以被用于各种应用中的双向通信(例如,信号交换、调度控制)。
[0099] 在本公开内容的一些方面中,调度响应部分1004可以携带来自调度实体的小的有效载荷(例如,DL数据),使得调度实体不需要等待以DL为中心的子帧(例如,Tx-调度的子帧)来向次级实体发送DL数据。可以在数据部分1006中接收针对小的有效载荷(DL数据)的确认。
[0100] Rx-调度的子帧1000的一些非限制性应用包括大规模多输入和多输出(MIMO)部署、网格、设备到设备(D2D)部署、利用未经许可的频谱的网络部署、协作多点(CoMP)部署等。在一些示例中,次级实体(例如,UE)可以具有多个无线单元。因此,在这样的示例中,次级实体可以利用Rx-调度的子帧1000来调度其数据传输(例如,UL数据),使得可以降低或者避免不同无线单元之间的干扰。
[0101] 图11是根据本公开内容的方面的示出了用于调度实体与一个或多个次级实体的集合进行通信的同步网络中的无线通信的方法的流程图。同步网络可以利用时分双工(TDD)载波。调度实体可以与图1和图2中示出的调度实体相同。次级实体可以与图1和图3中示出的次级实体相同。在本公开内容的一个方面中,TDD载波具有子帧结构,所述子帧结构具有可配置的或者固定的子帧持续时间。该子帧可以是图6-8中示出的自含式子帧中的任何一个子帧。
[0102] 参考图11,在框1102处,调度实体可以提供针对多个子帧中的每个子帧的子帧结构。所述子帧结构包括报头、控制部分、数据部分、以及确认部分。在框1104处,调度实体的报头通信块220(图2)可以通过将双向数据包括在子帧的报头中来生成多个子帧中的子帧。双向数据的UL数据分组和DL数据分组可以在子帧的报头、控制部分、数据部分、或者确认部分中被确认。在框1106处,报头通信块220(图2)可以通过将调度信息包括在子帧的控制部分中来生成子帧。在框1108处,调度实体的数据有效载荷块222(图2)可以通过将与调度信息相对应的数据信息包括在子帧的数据部分中来生成子帧,其中,该数据信息与次级实体的集合相关联,并且包括在控制部分中调度的所有数据分组。
[0103] 在框1110处,调度实体的尾部通信块224(图2)可以通过将与数据信息相对应的确认信息包括在子帧的确认部分中来生成子帧,其中,数据部分中的数据分组中的所有数据分组在确认部分中被确认。在框1112处,调度实体可以利用收发机210(图2)来在调度实体和次级实体的集合之间传输子帧。
[0104] 在本公开内容的一些方面中,该子帧结构还可以包括尾部,所述尾部包括确认部分和尾部部分,并且调度实体还可以将双向数据包括在尾部中,其中,双向数据的所有数据分组在尾部中被确认。该子帧结构的持续时间可以由调度实体来配置。报头中的双向数据可以与一个或多个信道参数相对应。一个或多个信道参数可以包括时间-频率分配、信道状态、信道质量、或者干扰电平中的至少一项。报头可以具有上行链路传输和下行链路传输之间的一个或多个切换位置。在本公开内容的一些方面中,报头部分的双向数据可以包括被配置为传送CSI-RS的下行链路数据和被配置为传送CQI和SRS中的至少一个的上行链路数据。在本公开内容的一个方面中,报头的双向数据可以包括被配置为向一个或多个次级实体发送轮询信号的下行链路数据,以及被配置为从一个或多个次级实体接收通信能力的上行链路数据。在本公开内容的一个方面中,报头部分的双向数据可以包括被配置为警告子帧的数据部分中即将发生数据传输的下行链路数据。
[0105] 图12是根据本公开内容的方面的示出了用于调度实体与一个或多个次级实体集合进行通信的同步网络中的无线通信的方法的流程图。同步网络可以利用时分双工(TDD)载波。调度实体可以与图1和图2中示出的调度实体相同。次级实体可以与图1和图3中示出的次级实体相同。在本公开内容的一个方面中,TDD载波具有子帧结构,所述子帧结构具有可配置的或者固定的子帧持续时间。该子帧可以是图6-8中示出的自含式子帧中的任何一个子帧。
[0106] 参考图12,在框1202处,调度实体可以提供针对多个子帧中的每个子帧的子帧结构。该子帧结构包括控制部分、数据部分、以及尾部。在框1204处,调度实体的报头通信块220(图2)可以通过将调度信息包括在子帧的控制部分中来生成多个子帧中的子帧。调度信息可以包括针对一个或多个次级实体的数据的时间-频率分配。在本公开内容的各个方面中,控制部分可以是图6-8中示出的子帧的控制部分中的任何一个。
[0107] 在框1206处,调度实体的数据有效载荷块222(图2)可以通过将与调度信息相对应的数据信息包括在子帧的数据部分中来生成子帧,其中,数据信息与次级实体的集合相关联,并且包括在控制部分中调度的所有数据分组。数据信息可以包括根据控制部分的时间-频率分配传送的数据或者信息。
[0108] 在框1208处,调度实体的尾部通信块224(图2)可以通过将与数据信息相对应的确认信息包括在尾部的确认部分中来生成子帧,其中,数据部分中的数据分组中的所有数据分组在确认部分中被确认。在框1210处,调度实体的尾部通信块224(图2)可以通过将双向数据包括在子帧的尾部中来生成子帧。在框1212处,调度实体可以利用收发机210(图2)来在调度实体和次级实体的集合之间传输子帧。
[0109] 图13是根据本公开内容的方面的示出了用于次级实体与调度实体进行通信的同步网络中的无线通信的方法的流程图。同步网络可以利用时分双工(TDD)载波。次级实体可以与图1和图3中示出的次级实体中的任何一个次级实体相同。在本公开内容的一个方面中,TDD载波具有子帧结构,所述子帧结构具有可配置的或者固定的子帧持续时间。该子帧可以是图10中示出的自含式子帧。
[0110] 参考图13,在框1302处,次级实体可以提供针对多个子帧中的每个子帧的子帧结构。该子帧结构包括报头、控制部分、数据部分、以及确认部分。在框1304处,次级实体的报头通信块320(图3)可以通过将双向数据包括在子帧的报头中来生成多个子帧中的子帧,其中,双向数据的所有数据分组在报头中被确认。在框1306处,报头通信块320可以通过将调度信息包括在子帧的报头中来生成子帧。在框1308处,次级实体的数据有效载荷块322(图3)可以通过将与调度信息相对应的数据信息包括在子帧的数据部分中来生成子帧,其中,该数据信息与调度实体相关联,并且包括在报头中调度的所有数据分组。
[0111] 在框1310处,次级实体的尾部通信块324(图3)可以通过将与数据信息相对应的确认信息包括在子帧的确认部分中来生成子帧,其中,数据部分中的数据分组中的所有数据分组在确认部分中被确认。在框1312处,次级实体可以利用收发机310(图3)来在次级实体和调度实体之间传输子帧。
[0112] 当然,仅仅提供这些示例以说明本公开内容的某些概念。本领域的普通技术人员将理解的是,这些在性质上仅仅是示例性的,并且其它示例可以落入本公开内容和所附权利要求的范围内。
[0113] 本领域的技术人员将容易地意识到,遍及本公开内容描述的各个方面可以被扩展到任何合适的电信系统、网络架构、以及通信标准。通过示例的方式,可以将各个方面应用于UMTS系统,例如,W-CDMA、TD-SCDMA、以及TD-CDMA。还可以将各个方面应用于采用下列各项的系统:长期演进(LTE)(在FDD、TDD、或者两种模式中)、改进的LTE(LTE-A)(在FDD、TDD、或者两种模式中)、CDMA2000、演进数据优化(EV-DO)、超移动宽带(UMB)、IEEE 802.11(WiFi)、IEEE 802.16(WiMAX)、IEEE 802.20、超宽带(UWB)、蓝牙,和/或其它合适的系统,包括由尚未被定义的广域网标准描述的那些系统。采用的实际的电信标准、网络架构、和/或通信标准将取决于具体的应用和被施加到系统上的整体设计约束。
[0114] 在本公开内容内,词“示例性的”被用来意指“充当示例、实例、或者说明”。本文作为“示例性的”描述的任何实现方式或者方面不必然地被解释为优选的或者比本公开内容的其它方面有优势。同样地,术语“方面”不要求本公开内容的所有方面包括所讨论的特征、优点、或者操作模式。术语“被耦合”在本文被用来指代两个对象之间的直接的或者间接的耦合。例如,如果对象A物理地接触对象B,并且对象B接触对象C,那么对象A和C仍然可以被认为是相互耦合的,即使它们不直接物理地接触彼此。例如,即使第一管芯无法直接物理地与第二管芯相接触,第一管芯也可以被耦合至封装中的第二管芯。术语“电路”和“电路系统”被广义地使用,并且在不关于电子电路的类型进行限制的情况下,旨在包括电气设备和导体的硬件实现方式以及信息和指令的软件实现方式二者,所述电气设备和导体当被连接和配置时,实现对本公开内容中描述的功能的执行,以及所述信息和指令当被处理器执行时,实现对本公开内容描述的功能的执行。
[0115] 图1-4中示出的部件、步骤、特征、和/或功能中的一个或多个可以被重新排列和/或组合成单独的部件、步骤、特征或者功能,或者被体现在若干部件、步骤、或者功能中。在不背离本文公开的新颖性特征的情况下,还可以添加另外的要素、部件、步骤、和/或功能。图1-4中示出的装置、设备、和/或部件可以被配置为执行本文描述的方法、特征、或者步骤中的一个或多个。本文描述的新颖性算法还可以被高效地实现在软件中和/或被嵌入到硬件中。
[0116] 应当理解的是,公开的方法中的步骤的具体顺序或者层级是对示例性过程的说明。应当理解的是,可以基于设计偏好来重新排列方法中的步骤的具体顺序或者层级。所附方法权利要求以样本顺序呈现了各个步骤的要素,并且除非在其中特别地记载,否则不意指被限制到呈现的具体顺序或者层级。
[0117] 提供先前的描述以使得本领域的任何技术人员能够实践本文描述的各个方面。对这些方面的各种修改对于本领域的技术人员而言将是显而易见的,并且可以将本文定义的一般原理应用于其它方面。因此,权利要求不旨在被限制到本文示出的方面,而是要符合与权利要求表达的内容相一致的全部范围,其中,以单数形式对要素的提及不旨在意指“一个和仅仅一个”,除非特别地如此声明,否则更确切地意指“一个或多个”。除非另外特别地声明,否则术语“一些”指代一个或多个。短语对项目的列表“中的至少一个”的提及指代那些项目的任意组合,包括单个成员。作为示例,“a、b、或c中的至少一个”旨在覆盖:a;b;c;a和b;a和c;b和c;以及a、b和c。遍及本公开内容描述的对本领域的普通技术人员而言已知的或者稍后渐渐已知的各个方面的要素的所有结构上的和功能上的等价物通过引用方式被明确地并入本文,并且旨在被权利要求所包含。此外,本文公开的任何内容都不旨在奉献于公众,无论这样的公开内容是否被明确地记载在权利要求中。任何权利要求要素都不应当根据美国专利法第112条第(f)款的规定来解释,除非使用短语“用于……的单元”来明确地记载,或者在方法权利要求的情况下,使用短语“用于……的步骤”来记载该要素。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈