首页 / 专利库 / 信号处理 / 信噪比 / 峰值信噪比 / 一种基于地形匹配的声呐图像的超分辨率重建方法

一种基于地形匹配的声呐图像的超分辨率重建方法

阅读:140发布:2020-05-08

专利汇可以提供一种基于地形匹配的声呐图像的超分辨率重建方法专利检索,专利查询,专利分析的服务。并且本 发明 属于图像超 分辨率 重建技术领域,具体涉及一种基于地形匹配的声呐图像的超分辨率重建方法。本发明通过使用中值 滤波器 、拉普拉斯滤波器对声呐图像进行预处理,在声呐图像中识别并 选定 地形作为参照物,对同一地形参照物进行配准,解决声呐图像在产生的过程中同一地形在图像中的 位置 不同的问题。本发明利用声呐图像中的同一地形,将多张声呐图像依据该地形进行配准,使用多张声呐图像重建一张新的图像,直到最终高分辨率图像的生成,解决了声呐图像分辨率低、 信噪比 低、 对比度 低、斑点噪声突出的问题,提高了声呐图像的分辨率从而获得更多信息。,下面是一种基于地形匹配的声呐图像的超分辨率重建方法专利的具体信息内容。

1.一种基于地形匹配的声呐图像的超分辨率重建方法,其特征在于,包括以下步骤:
步骤1:对输入的某个时间段某个区域的低分辨率声纳图像,使用中值滤波器对声呐图像进行降噪处理,得到降噪后的声呐图像;
步骤2:对降噪后的声纳图像,使用拉普拉斯滤波器抑制背景和目标增强,得到背景抑制和目标增强后的声呐图像;
步骤3:根据图像内容相似性进行分组,在组内按照时间进行排序;
步骤4:在每组中选定基准图像;
步骤5:利用Gabor滤波器对基准图像生成地形纹理;
步骤6:选择基准图形中靠近图像中心且检测效果最好的地形纹理作为主参照物,并记录下主参照物的坐标;选择位置基准图形中靠近图像中心且检测效果较好的地形纹理作为次参照物,并记录下次参照物的坐标;
步骤7:在组内其他图像中进行模板匹配,并记录下坐标;
步骤8:在基准图像上,根据主参照物及记录的坐标进行配准,建立坐标系
步骤9:在同一组内进行配准之后,计算组内的所有图像对应位置的有效灰度值进行重建;
步骤10:输出每组对应的最高分辨率图像;若输出了多幅图像,则返回步骤3;否则输出该最高分辨率的声纳图像。
2.根据权利要求1所述的一种基于地形匹配的声呐图像的超分辨率重建方法,其特征在于:所述的步骤3中根据图像内容相似性进行分组具体为:采用结构相似性SSIM作为衡量图像内容相似性的标准;所述的结构相似性SSIM的计算方法为:
其中,x和y为输入的图像;μx为x的平均值;μy为y的平均值; 为x的方差; 为y的方差;σxy为x和y的协方差;c1,c2是为了避免公式中分子或分母为0的情况而设置的常数,一般c1=6.5025,c2=26.01。
3.根据权利要求1或2所述的一种基于地形匹配的声呐图像的超分辨率重建方法,其特征在于:所述的步骤4中在每组中选定基准图像的方法具体为:使用图像的峰值信噪比PSNR作为图像质量的标准,在每个组内选择图像质量最好的图像作为基准图像;所述的峰值信噪比PSNR的计算方法为:
其中,L为图像中最大的灰度值;MSE的计算方法为:
其中,M和N为图像的宽和高;Sij为图像S在(i,j)处的灰度值,Iij表示图像I在(i,j)处的灰度值。
4.根据权利要求1或2所述的一种基于地形匹配的声呐图像的超分辨率重建方法,其特征在于:所述的步骤7中在组内其他图像中进行模板匹配的方法具体为:使用模板在待匹配图像中进行滑动比较,使用相关性系数R(x,y)匹配作为匹配程度的度量;
其中,x和y为两幅图像,E(x)表示x的均值,E(y)表示y的均值。
5.根据权利要求3所述的一种基于地形匹配的声呐图像的超分辨率重建方法,其特征在于:所述的步骤7中在组内其他图像中进行模板匹配的方法具体为:使用模板在待匹配图像中进行滑动比较,使用相关性系数R(x,y)匹配作为匹配程度的度量;
其中,x和y为两幅图像,E(x)表示x的均值,E(y)表示y的均值。
6.根据权利要求1或2所述的一种基于地形匹配的声呐图像的超分辨率重建方法,其特征在于:所述的步骤9中有效灰度值的计算方法为:
其中,GEA(x,y)为点(x,y)的有效灰度值;Gx,y表示在(x,y)处的灰度值;P表示灰度值不为0的图像数量。
7.根据权利要求3所述的一种基于地形匹配的声呐图像的超分辨率重建方法,其特征在于:所述的步骤9中有效灰度值的计算方法为:
其中,GEA(x,y)为点(x,y)的有效灰度值;Gx,y表示在(x,y)处的灰度值;P表示灰度值不为0的图像数量。
8.根据权利要求4所述的一种基于地形匹配的声呐图像的超分辨率重建方法,其特征在于:所述的步骤9中有效灰度值的计算方法为:
其中,GEA(x,y)为点(x,y)的有效灰度值;Gx,y表示在(x,y)处的灰度值;P表示灰度值不为0的图像数量。
9.根据权利要求5所述的一种基于地形匹配的声呐图像的超分辨率重建方法,其特征在于:所述的步骤9中有效灰度值的计算方法为:
其中,GEA(x,y)为点(x,y)的有效灰度值;Gx,y表示在(x,y)处的灰度值;P表示灰度值不为0的图像数量。

说明书全文

一种基于地形匹配的声呐图像的超分辨率重建方法

技术领域

[0001] 本发明属于图像超分辨率重建技术领域,具体涉及一种基于地形匹配的声呐图像的超分辨率重建方法。

背景技术

[0002] 声呐图像通常有分辨率低,目标边缘模糊,目标细节纹理不清晰,斑点噪声突出的特点,导致基于声呐图像的下目标定位识别问题难以处理,这是因为声呐在用于目标探测时,会受到海洋环境噪声、舰船自噪声和混响信号的干扰,其中混响干扰是由于海底的起伏不平整、海底表面的粗糙度及海底附近的各种散射体对声波的散射作用形成的。
[0003] 目前,图像超分辨率重建的方法主要分成两大类,即基于插值的方法和基于学习的方法。
[0004] 基于插值的超分辨率重建方法包括双线性插值、双三次插值、最近邻插值,插值实现有可解释、实现简单的特点,但是生成图像的质量不高,图像纹理等细节较为模糊。
[0005] 基于学习的超分辨率重建方法是现在的一个研究热点,主要是基于卷积神经网络的超分辨率重建方法,深度学习的方法是直接学习低分辨率图像和高分辨率图像端到端映射,通过构造更多的隐藏层将原始空间特征变换到新的空间,从而能够拟合更加复杂的函数关系达到重建的目的
[0006] 由于声呐图像分辨率低、信噪比低、对比度低、斑点噪声突出的特点,利用多张具有互补信息的低分辨率声呐图像来重建一张高分辨率声呐图像是提高声呐图像分辨率的有效途径,但是声呐系统处于运动的状态下,对于同一个地形,由于距离、水平度或垂直角度的改变,会导致在多幅声呐图像中该地形的位置和大小出现变化。

发明内容

[0007] 本发明的目的在于提供一种基于地形匹配的声呐图像的超分辨率重建方法。
[0008] 本发明的目的通过如下技术方案来实现:包括以下步骤:
[0009] 步骤1:对输入的某个时间段某个区域的低分辨率声纳图像,使用中值滤波器对声呐图像进行降噪处理,得到降噪后的声呐图像;
[0010] 步骤2:对降噪后的声纳图像,使用拉普拉斯滤波器抑制背景和目标增强,得到背景抑制和目标增强后的声呐图像;
[0011] 步骤3:根据图像内容相似性进行分组,在组内按照时间进行排序;
[0012] 步骤4:在每组中选定基准图像;
[0013] 步骤5:利用Gabor滤波器对基准图像生成地形纹理;
[0014] 步骤6:选择基准图形中靠近图像中心且检测效果最好的地形纹理作为主参照物,并记录下主参照物的坐标;选择位置基准图形中靠近图像中心且检测效果较好的地形纹理作为次参照物,并记录下次参照物的坐标;
[0015] 步骤7:在组内其他图像中进行模板匹配,并记录下坐标;
[0016] 步骤8:在基准图像上,根据主参照物及记录的坐标进行配准,建立坐标系
[0017] 步骤9:在同一组内进行配准之后,计算组内的所有图像对应位置的有效灰度值进行重建;
[0018] 步骤10:输出每组对应的最高分辨率图像;若输出了多幅图像,则返回步骤3;否则输出该最高分辨率的声纳图像。
[0019] 本发明还可以包括:
[0020] 所述的步骤3中根据图像内容相似性进行分组具体为:采用结构相似性SSIM作为衡量图像内容相似性的标准;所述的结构相似性SSIM的计算方法为:
[0021]
[0022] 其中,x和y为输入的图像;μx为x的平均值;μy为y的平均值; 为x的方差; 为y的方差;σxy为x和y的协方差;c1,c2是为了避免公式中分子或分母为0的情况而设置的常数,一般c1=6.5025,c2=26.01。
[0023] 所述的步骤4中在每组中选定基准图像的方法具体为:使用图像的峰值信噪比PSNR作为图像质量的标准,在每个组内选择图像质量最好的图像作为基准图像;所述的峰值信噪比PSNR的计算方法为:
[0024]
[0025] 其中,L为图像中最大的灰度值;MSE的计算方法为:
[0026]
[0027] 其中,M和N为图像的宽和高;Sij为图像S在(i,j)处的灰度值,Iij表示图像I在(i,j)处的灰度值。
[0028] 所述的步骤7中在组内其他图像中进行模板匹配的方法具体为:使用模板在待匹配图像中进行滑动比较,使用相关性系数R(x,y)匹配作为匹配程度的度量;
[0029]
[0030] 其中,x和y为两幅图像,E(x)表示x的均值,E(y)表示y的均值。
[0031] 所述的步骤9中有效灰度值的计算方法为:
[0032]
[0033] 其中,GEA(x,y)为点(x,y)的有效灰度值;Gx,y表示在(x,y)处的灰度值;P表示灰度值不为0的图像数量。
[0034] 本发明的有益效果在于:
[0035] 本发明提出了一种基于地形匹配的声呐图像的超分辨率重建方法,为了解决声呐图像分辨率低、信噪比低、对比度低、斑点噪声突出的问题,提高声呐图像的分辨率从而获得更多信息。本发明通过先使用中值滤波器、拉普拉斯滤波器对声呐图像进行预处理,然后在声呐图像中识别并选定地形作为参照物,对同一地形参照物进行配准,来解决声呐图像在产生的过程中同一地形在图像中的位置不同的问题,使用多张低分辨率声呐图像重建一张较高分辨率声呐图像,迭代上面过程从而能使用多张低分辨率声呐图像来重建一张高分辨率图像。本发明利用声呐图像中的同一地形,将多张声呐图像依据该地形进行配准,使用多张声呐图像重建一张新的图像,直到最终高分辨率图像的生成。附图说明
[0036] 图1为本发明的声呐图像超分辨率重建框架图。
[0037] 图2为本发明的总体流程图

具体实施方式

[0038] 下面结合附图对本发明做进一步描述。
[0039] 本发明提出了一种基于地形匹配的声呐图像的超分辨率重建方法,为了解决声呐图像分辨率低、信噪比低、对比度低、斑点噪声突出的问题,提高声呐图像的分辨率从而获得更多信息。本发明通过先使用中值滤波器、拉普拉斯滤波器对声呐图像进行预处理,然后在声呐图像中识别并选定地形作为参照物,对同一地形参照物进行配准,来解决声呐图像在产生的过程中同一地形在图像中的位置不同的问题,使用多张低分辨率声呐图像重建一张较高分辨率声呐图像,迭代上面过程从而能使用多张低分辨率声呐图像来重建一张高分辨率图像。本发明利用声呐图像中的同一地形,将多张声呐图像依据该地形进行配准,使用多张声呐图像重建一张新的图像,直到最终高分辨率图像的生成。该方法包括如下步骤:
[0040] 步骤1:对输入的某个时间段某个区域的低分辨率声纳图像,使用中值滤波器对声呐图像进行降噪处理,得到降噪后的声呐图像;
[0041] 步骤2:对降噪后的声纳图像,使用拉普拉斯滤波器抑制背景和目标增强,得到背景抑制和目标增强后的声呐图像;
[0042] 步骤3:根据图像内容相似性进行分组,在组内按照时间进行排序;
[0043] 步骤4:在每组中选定基准图像;
[0044] 步骤5:利用Gabor滤波器对基准图像生成地形纹理;
[0045] 步骤6:选择基准图形中靠近图像中心且检测效果最好的地形纹理作为主参照物,并记录下主参照物的坐标;选择位置基准图形中靠近图像中心且检测效果较好的地形纹理作为次参照物,并记录下次参照物的坐标;
[0046] 步骤7:在组内其他图像中进行模板匹配,并记录下坐标;
[0047] 步骤8:在基准图像上,根据主参照物及记录的坐标进行配准,建立坐标系;
[0048] 步骤9:在同一组内进行配准之后,计算组内的所有图像对应位置的有效灰度值进行重建;
[0049] 步骤10:输出每组对应的最高分辨率图像;若输出了多幅图像,则返回步骤3;否则输出该最高分辨率的声纳图像。
[0050] 所述的步骤3中根据图像内容相似性进行分组具体为:采用结构相似性SSIM作为衡量图像内容相似性的标准;所述的结构相似性SSIM的计算方法为:
[0051]
[0052] 其中,x和y为输入的图像;μx为x的平均值;μy为y的平均值; 为x的方差; 为y的方差;σxy为x和y的协方差;c1,c2是为了避免公式中分子或分母为0的情况而设置的常数,一般c1=6.5025,c2=26.01。
[0053] 所述的步骤4中在每组中选定基准图像的方法具体为:使用图像的峰值信噪比PSNR作为图像质量的标准,在每个组内选择图像质量最好的图像作为基准图像;所述的峰值信噪比PSNR的计算方法为:
[0054]
[0055] 其中,L为图像中最大的灰度值;MSE的计算方法为:
[0056]
[0057] 其中,M和N为图像的宽和高;Sij为图像S在(i,j)处的灰度值,Iij表示图像I在(i,j)处的灰度值。
[0058] 所述的步骤7中在组内其他图像中进行模板匹配的方法具体为:使用模板在待匹配图像中进行滑动比较,使用相关性系数R(x,y)匹配作为匹配程度的度量;
[0059]
[0060] 其中,x和y为两幅图像,E(x)表示x的均值,E(y)表示y的均值。
[0061] 所述的步骤9中有效灰度值的计算方法为:
[0062]
[0063] 其中,GEA(x,y)为点(x,y)的有效灰度值;Gx,y表示在(x,y)处的灰度值;P表示灰度值不为0的图像数量。
[0064] 实施例1:
[0065] 本发明通过在声呐图像中识别并选定地形作为参照物,对同一地形参照物进行配准,来解决声呐图像在产生的过程中同一地形在图像中的位置不同的问题,从而能使用多张低分辨率声呐图像来重建一张高分辨率图像。具体来说是,先对输入的低分辨率声呐图像进行预处理,去掉图像中的噪声、抑制背景、增强目标;然后使用分治的思想将输入图像分成若干组,组内进行地形的识别以及选择地形作为参照物;然后使用组内的多张低分辨率图像进行叠加得到一张较高分辨率声呐图像;重复以上过程直到得到一张高分辨率声呐图像。本发明充分利用多张声呐图像,而且解决了图像中同一物体位置运动的问题。
[0066] 一种基于地形匹配的声呐图像超分辨率重建方法,包括如下步骤:
[0067] 1.对输入的声呐图像使用中值滤波器进行降噪处理,使用拉普拉斯滤波器进行背景抑制;
[0068] 2.根据图像内容相似性进行分组,保证组内图像内容大致相似,并在组内按照时间进行排序;
[0069] 3.在每组中选择图像质量较好的图像作为基准图像;
[0070] 4.利用Gabor滤波器对之前选择的基准图像生成地形纹理;
[0071] 5.选择声呐图形中靠近图像中心且检测效果较好的地形作为主参照物和次参照物,并且记录下其坐标;
[0072] 6.在组内其他图像中进行模板匹配,并记录下其坐标;
[0073] 7.在基准图像之上,根据之前记录的坐标并根据主参照物进行配准,建立同一的坐标系;
[0074] 8.在同一组内进行配准之后,计算基准图像中对应位置的有效灰度值;
[0075] 9.输出每组对应的较高分辨率图像;
[0076] 10.判断是否只剩下一张图像,如果是则输出高分辨率声呐图像,否则重复步骤2至10;
[0077] (1)声呐图像预处理:设输入的某一时间段内某个区域的低分辨率声呐图像为{X1,X2,…,XN},N表示低分辨率声呐图像的数量。对于每个输入Xi,声呐图像预处理要进行以下操作:
[0078] 1)降噪处理:由于低分辨率声呐图像存在随机的高斯白噪声,所以先使用中值滤波器对声呐图像进行降噪处理,从而得到降噪后的声呐图像;
[0079] 2)背景抑制和目标增强:声呐图像存在目标和背景对比度不高的问题,使用拉普拉斯滤波器抑制背景,得到背景抑制后的声呐图像;
[0080] (2)识别地形做参照物:对于经过步骤(1)处理的声呐图像,使用分治的思想进行处理,进行以下操作:
[0081] 1)分组并排序:根据图像内容对图像进行分组,并且组内按照生成时间进行排序,这样能保证组内图像表达的内容大致相似,而且还可以使用多组图像的信息。得到K组每组m张图像,每个组可以表示为 其中k∈{1,2,…,K};
[0082] 2)选定基准图像:计算图像的峰值信噪比(PSNR),在每个组内选择出PSNR值较高的图像作为基准图像;
[0083] 3)利用Gabor滤波生成地形纹理:Gabor函数对图像的边缘敏感,而地形纹理恰好由大量边缘组成,所以使用Gabor滤波器处理基准图像得到地形纹理;
[0084] 4)选定参照物:选择基准图像中靠近图像中心且检测效果较好的地形作为主参照物,并记录下参照物相对于图像左上角的坐标;选择位置靠近图像中心且检测效果较好的两个地形纹理作为次参照物,并记录下其坐标;
[0085] 5)进行模板匹配:把3)中得到的三个目标,在组内其他图像中进行模板匹配,并记录下其相对于图像左上角的坐标;
[0086] (3)配准:根据步骤(2)中每个组 内选定的主参照物,对于每张低分辨率图像Xi来说,以主参照物的质心作为原点构建坐标系,并记录下次参照物质心在该坐标系下的坐标为
[0087] (4)叠加:在每个组的基准图像上根据参照物将组内所有图像的灰度值进行叠加并求出灰度有效平均值;
[0088] (5)超分辨率重建:完成步骤(4)之后会得到每个组对应的一张高分辨率声呐图像,重复步骤(2)至(4)直到只剩下一张高分辨率图像,即为最后输出的高分辨率声呐图像。
[0089] 下面结合附图对本发明的具体实施方式做详细的说明。
[0090] 1.设输入的某一时间段内某个区域的低分辨率声呐图像为{X1,X2,…,XN},N表示低分辨率声呐图像的数量。使用3×3大小的中值滤波器对声呐图像进行降噪处理,中值滤波是这样进行的:设置一个滤波器窗口,使用其遍历图像,且用窗口内各原始值的中值代替窗口中心点的值;
[0091] 2.在上一步的基础上,使用3×3的八方向的拉普拉斯滤波器对声呐图像进行背景抑制的操作;
[0092] 3.经过上两步操作后,根据图像的内容相似度进行分组,并且在组内按照生成时间进行排序得到K组每组m张图像,每个组可以表示为 其中k∈{1,2,…,K}。图像内容相似度使用结构相似性(Structural Similarity Index,SSIM)作为衡量标准,可以定义成如下所示:
[0093]
[0094] 其中x,y表示输入的图像,μx表示x的平均值,μy表示y的平均值, 表示x的方差,表示y的方差,σxy表示x和y的协方差,c1,c2是为了避免公式中分子或分母为0的情况而设置的常数,一般c1=6.5025,c2=26.01。
[0095] 4.使用图像的峰值信噪比作为图像质量的标准,在每个组内选择图像质量较好的图像作为基准图像,峰值信噪比的定义如下:
[0096]
[0097]
[0098] 其中,L为图像中最大的灰度值;M和N为图像的宽和高;Sij为图像S在(i,j)处的灰度值,Iij表示图像I在(i,j)处的灰度值。
[0099] 5.使用Gabor滤波器对基准图像进行滤波,在空域中,一个二维的Gabor滤波器是一个正弦平面波和高斯核函数的乘积,对基准图像进行滤波之后得到图像中的地形纹理;
[0100] 6.选择基准图形中靠近图像中心且检测效果较好的地形作为主参照物,并记录下参照物相对于图像左上角的坐标;选择位置靠近图像中心且检测效果较好的两个地形纹理作为次参照物,并记录下其坐标
[0101] 7.根据上一步得到的三个目标,在组内其他图像中进行模板匹配,并记录下其质心相对于图像左上角的坐标。模板匹配过程是:使用模板在待匹配图像中进行滑动比较,使用一个度量来表示匹配的程度好坏,使用相关性系数匹配作为度量,该度量定义为:
[0102]
[0103] 其中x,y分别表示两张图像,E(x)表示x的均值,E(y)表示y的均值。
[0104] 8.根据之前步骤中每个组 内选定的主参照物,对于每张低分辨率图像Xi来说,以主参照物的质心作为原点构建坐标系,并记录下次参照物质心在该坐标系下的坐标为
[0105] 9.在基准图像的基础上,使用组内的所有图像对应位置的有效灰度值进行重建,即对于某个点(x,y),其灰度有效平均值GEA定义如下:
[0106]
[0107] 其中Gx,y表示在(x,y)处的灰度值,P表示灰度值不为0的图像数量;
[0108] 10.经过以上步骤每组都会输出一张基于基准图像的较高分辨率的声呐图像,判断当前输出图像的数量是否大于一张,如果是,则重复步骤3至10;如果不是,则最后的输出就是重建的高分辨率声呐图像。
[0109] 以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈