首页 / 专利库 / 信号处理 / 插补器 / 一种有效提高电机硬件在环实时仿真速度和精度的方法

一种有效提高电机硬件在环实时仿真速度和精度的方法

阅读:453发布:2024-02-13

专利汇可以提供一种有效提高电机硬件在环实时仿真速度和精度的方法专利检索,专利查询,专利分析的服务。并且一种有效提高 电机 硬件 在环实时仿真速度和 精度 的方法,尤其适用于功率级硬件在环实时仿真技术。本方法充分利用了在一个电机模型解算周期内相 电压 的变化情况和模拟功率负载 电路 系统与实际电机系统的系统误差特点,实时添加补偿,提高了模型解算的精度。采用本方法,可以有效提高电机硬件在环实时仿真的仿真精度和速度,尤其是阶跃输入(如突加负载)条件提高硬件在环仿真动态响应仿真精度,使硬件在环实时仿真速度至少提高一个数量级。,下面是一种有效提高电机硬件在环实时仿真速度和精度的方法专利的具体信息内容。

1.一种有效提高电机硬件在环实时仿真速度和精度的方法,其基于的硬件部分包括:
输入单元(1),高速数据处理单元(2),输出单元(3);输入单元(1)获取电机模型解算数据和模拟系统采集实时数据,并将数据及时送给高速数据处理单元(2);高速数据处理单元(2)对输入单元(1)送过来的数据进行处理,并将处理结果实时的传递给输出单元(3),输出单元(3)输出信号直接控制模拟功率负载和作为电机控制器的反馈信号;高速数据处理单元(2)需要的输入数据包括电机模型解算数据和实时相电压、相电流数据;其中,电机模型解算数据包括电机相电流、电机转速、电机转子位置、电机转矩;对数据处理包括对电机相电流、电机转速、电机转子位置、电机转矩数据进行线性预估、插值、补偿;
其特征在于:
所述数据线性预估构建方法如下:首先计算出当前解算完毕周期物理量的增量斜率,然后依据此增量斜率线性预估下一个模型解算周期的变量增量极值;

y1'(n+1)=k(n)*Tm+y(n)
其中,y(n)为第n个电机模型解算周期解算结果,y(n-1)为第n-1个电机模型解算周期解算的结果,Tm为电机模型解算周期,k(n)为第n个电机模型解算周期解算结果的增量斜率,y1′(n+1)为线性预估第n+1个电机模型解算周期解算完毕后电机模型解算结果,即为预估的一个极值点;
另一个极值点求解公式为:
y2'(n+1)=-k(n)*Tm+y(n)
其中,y2′(n+1)为线性预估第n+1个电机模型解算周期解算完毕后另一个极值;
两个极值点y1′(n+1),y2′(n+1)确定了增量的极值范围。
2.根据权利要求1所述的一种有效提高电机硬件在环实时仿真速度和精度的方法,其特征在于:所述电机模型解算周期Tm中等时间间隔t插值m个节点,在每个插值点数据增量的大小为Δy;
Tm=m*t
Δy=(y1'(n+1)-y(n))/m。
3.根据权利要求1所述的一种有效提高电机硬件在环实时仿真速度和精度的方法,其特征在于:需要根据实时采集相电压数据和模拟功率回路反馈相电流数据决定插值数据增量方向;插值节点处增量方向采取直接测相电压来判断或者读取给定PWM控制信号来判断。
4.根据权利要求3所述的一种有效提高电机硬件在环实时仿真速度和精度的方法,其特征在于:读取相电压大小确定插值节点增量方向,增量方向判定公式如下:

其中,signx(s)为插值节点处电机解算模型的增量方向,Ux为x相相电压向量,x代表电机具体的某一相;H是相电压大小的一个 值,其值大小为电机稳态运行时相电压峰值的一半。
5.根据权利要求3所述的一种有效提高电机硬件在环实时仿真速度和精度的方法,其特征在于:读取给定PWM控制信号来判断增量方向,三相电机接收六路PWM信号a+,a-,b+,b-,c+,c-,其中a+代表a相上桥臂,a-代表a相下桥臂,b、c相同理;相应相的PWM触发信号高电平认为是1,低电平认为是0,由此PWM计算出三相电机相电压Ua,Ub,Uc增量方向;
ua=2(a+-a-)-(b+-b-)-(c+-c-)
ub=2(b+-b-)-(a+-a-)-(c+-c-)
+ - + - + -
uc=2(c-c )-(a-a )-(b-b )

其中,signx(s)为插值节点处电机解算模型的增量方向,Ux为某一相相电压向量,x代表具体的相,在三相电机,x代表a,b,c三相。
6.根据权利要求1所述的一种有效提高电机硬件在环实时仿真速度和精度的方法,其特征在于:插值节点处,数据解算结果公式:
y(n+s*t)=y(n+(s-1)*t)+signx(s)*Δy
其中,s=1,2,3……,m;s为当前插值节点的标号,y(n+s*t)为第n+1个电机模型解算周期插值节点s处输出变量的大小,
y(n+(s-1)*t)为第n+1个电机模型解算周期插值节点s-1处输出变量 的大小。
7.根据权利要求1所述的一种有效提高电机硬件在环实时仿真速度和精度的方法,其特征在于:所述模拟功率负载电流补偿构建方法如下:
Yout(n+s*t)=y(n+s*t)+Δg
其中Yout(n+s*t)为考虑到实际系统的电流补偿后解算出来的控制信号;Δg为实时补偿向量,该补偿向量值主要是弥补模拟系统与实际系统的差异,添加的一个补偿向量;其大小和方向由相电压大小和方向与模拟功率负载阻抗共同决定;
所述模拟功率负载电流补偿值的大小和方向由下面方法确定:

其中,Ux为某一相相电压向量,含大小和方向;Yout(n+s*t)为实际期望模拟功率负载输出电流大小;Z为模拟功率负载的阻抗。

说明书全文

一种有效提高电机硬件在环实时仿真速度和精度的方法

技术领域

[0001] 本发明涉及电机硬件在环实时仿真技术,提出一种有效提高硬件在环实时仿真速度和精度的方法。

背景技术

[0002] 硬件在环实时仿真技术充分利用了硬件系统的特性对实际系统进行模拟仿真,比离线数字仿真更加接近真实系统效果,而且有助于技术的研发,有效降低新技术开发成本。目前该技术正在快速发展,也在航空航天,军事国防和汽车等领域得到应用。
[0003] (1)硬件在环仿真技术对处理器速度要求很高。由于这一特点,多处理器分布式并行解决方案得到应用和推广。目前在实时仿真领域做的比较出色的有dSPACE、RT-LAB等,其仿真步长通常为几十微秒,所以在很高实时性场所就难以满足要求。
[0004] (2)就当前硬件技术发展平而言,电机硬件在环实时仿真技术,其模型解算速度仍然处在几微秒到几十微秒的级别。这就意味着电机实时仿真技术至少存在几微秒到几十微秒时间延时,对于信号级别的硬件在环实时仿真技术而言,这种延时不会有很大的影响;但是对于功率级别的硬件在环实时仿真技术而言,模型解算延时,再加上硬件本身存在的响应延时,这种延时很可能造成功率部分模拟失真或者无法模拟仿真。
[0005] (3)模型仿真精度和运算速度也一直是制约实时仿真技术发展的关键因素。对于电机实时模型而言,提高模型精度,往往造成运算速度的降低,导致仿真的实时性变差。如果将精度降低,实时仿真技术和实际系统相比将会有很大误差或者严重失真,仿真失去了本来的意义。
[0006] (4)电机模型解算结果(电流位置,转速,转矩等)的处理,目前采用的方法是,认为在一个电机模型解算周期内保持上一周期解算结果不变,即第n个电机模型解算周期运算结果保持不变直到第n+1个周期模型解算结果出来。这种处理方法,对于突加负载转矩等情况模拟会产生较大误差,动态响应至少存在一个模型解算周期的延时。

发明内容

[0007] 本发明的目的在于提出一种提高硬件在环实时仿真精度和仿真速度方法,改善电机硬件在环仿真的速度和精度,尤其是阶跃输入(如突加负载)条件下提高硬件在环仿真动态响应仿真精度。
[0008] 本方法结合插值思想,根据实时采样电压信号合理预估插值节点处解算结果变量(电流、位置、转速、转矩)的值,并作必要的补偿。
[0009] 根据当前电机模型解算结果(电流、位置、转速、转矩),以及当前该结果变量变化率,采用线性运算预估下一周期模型解算完毕该结果变量(电流、位置、转速、转矩)的大小。然后在下一电机模型解算周期中等时间间隔的插入m个节点,计算出每个插值点该变量的平均增量,根据实时相电压在每个插值点处的符号,决定在每个插值点处的增量方向,计算出插值点处变量的大小。考虑到电机硬件在环实时仿真系统只是对实际电机系统的模拟,其本身并不具有真实电机系统的各种属性,故针对这种差异性,仿真过程还需要添加一些必要的补偿。在插值节点处,根据当前相电压的采样情况实时添加补偿,使模拟仿真效果更加接近真实系统。
[0010] 本发明所采用的具体技术方案如下:
[0011] 一种有效提高电机硬件在环实时仿真速度和精度的方法,其基于的硬件部分包括:输入单元1,高速数据处理单元2,输出单元3;输入单元1获取电机模型解算数据和模拟系统采集实时数据,并将数据及时送给高速数据处理单元2;高速数据处理单元2对输入单元1送过来的数据进行处理,并将处理结果实时的传递给输出单元3,输出单元3输出信号直接控制模拟功率负载和作为电机控制器的反馈信号。
[0012] 高速处理器2需要的输入数据包括电机模型解算数据和实时相电压、相电流数据;其中,电机模型解算数据包括电机相电流、电机转速、电机转子位置、电机转矩。
[0013] 对数据处理包括对电机相电流、电机转速、电机转子位置、电机转矩数据进行线性预估、插值、补偿。
[0014] 所述数据线性预估构建方法如下:首先计算出当前解算完毕周期物理量的增量斜率,然后依据此增量斜率线性预估下一个模型解算周期该变量增量极值;
[0015]
[0016] y1'(n+1)=k(n)*Tm+y(n)
[0017] 其中,y(n)为第n个电机模型解算周期解算结果,y(n-1)为第n-1个电机模型解算周期解算的结果,Tm为电机模型解算周期,k(n)为第n个电机模型解算周期解算结果的增量斜率,y1′(n+1)为线性预估第n+1个电机模型解算周期解算完毕后电机模型解算结果,即为预估的一个极值点;
[0018] 另一个极值点求解公式为:
[0019] y2'(n+1)=-k(n)*Tm+y(n)
[0020] 其中,y2′(n+1)为线性预估第n+1个电机模型解算周期解算完毕后另一个极值;
[0021] 两个极值点y1′(n+1),y2′(n+1)确定了增量的极值范围。
[0022] 所述电机模型解算周期Tm中等时间间隔t插值m个节点,在每个插值点数据增量的大小为Δy;
[0023] Tm=m*t
[0024] Δy=(y1'(n+1)-y(n))/m
[0025] 需要根据实时采集相电压数据和模拟功率回路反馈相电流数据决定插值数据增量方向;插值节点处增量方向采取直接测相电压来判断或者读取给定PWM控制信号来判断。
[0026] 读取相电压大小确定插值节点增量方向,增量方向判定公式如下:
[0027]
[0028] 其中,signx(s)为插值节点处电机解算模型的增量方向,Ux为x相相电压向量,x代表电机具体的某一相;H是相电压大小的一个值,其值大小为电机稳态运行时相电压峰值的一半;
[0029] 读取给定PWM控制信号来判断增量方向,三相电机接收六路PWM信号a+,a-,b+,b-,c+,c-,其中a+代表a相上桥臂,a-代表a相下桥臂,b、c相同理;相应相的PWM触发信号高电平认为是1,低电平认为是0,由此PWM计算出三相电机相电压Ua,Ub,Uc增量方向;
[0030] ua=2(a+-a-)-(b+-b-)-(c+-c-)
[0031] ub=2(b+-b-)-(a+-a-)-(c+-c-)
[0032] uc=2(c+-c-)-(a+-a-)-(b+-b-)
[0033]
[0034] 其中,signx(s)为插值节点处电机解算模型的增量方向,Ux为某一相相电压向量,x代表具体的相,在三相电机,x代表a,b,c三相;
[0035] 插值节点处,数据解算结果公式:
[0036] y(n+s*t)=y(n+(s-1)*t)+signx(s)*Δy
[0037] 其中,s=1,2,3……,m;s为当前插值节点的标号,y(n+s*t)为第n+1个电机模型解算周期插值节点s处输出变量的大小,y(n+(s-1)*t)为第n+1个电机模型解算周期插值节点s-1处输出变量的大小;
[0038] 所述模拟功率负载电流补偿构建方法如下:
[0039] Yout(n+s*t)=y(n+s*t)+Δg
[0040] 其中Yout(n+s*t)为考虑到实际系统的电流补偿后解算出来的控制信号;Δg为实时补偿向量,该补偿值主要是弥补模拟系统与实际系统的差异,添加的一个补偿值;其大小和方向由相电压大小和方向与模拟功率负载阻抗共同决定;
[0041] 所述模拟功率负载电流补偿值的大小和方向由下面方法确定:
[0042]
[0043] 其中,Ux为某一相相电压向量,含大小和方向;Yout(n+s*t)为实际期望模拟功率负载输出电流大小;Z为模拟功率负载的阻抗。
[0044] 与现有技术相比,本发明有以下优点:
[0045] (1)本方法能够有效减少实时仿真情况下软件延时造成的仿真失真。
[0046] (2)本方法采用插值方法,能够将电机模型解算结果更新速度提高至少一个数量级。
[0047] (3)本方法合理利用流水线思想,和电机模型解算并行运行,有效提高实时仿真速度而不影响电机模型解算速度。
[0048] (4)本方法实时考虑输入相电压对电机系统的影响,改善了电机硬件在环实时仿真系统动态响应效果,提高仿真精度。
[0049] (5)本方法充分考虑了模拟系统与实际电机系统的系统误差,实时针对模拟系统的特点添加补偿,使仿真结果更逼真。附图说明
[0050] 图1数据处理原理框图
[0051] 图2线性预估插值方法处理示意图
[0052] 图3 PWM周期和电机模型解算周期和插值周期关系
[0053] 图4电压型电机控制逆变器某一相桥臂示意图

具体实施方式

[0054] 根据本方法,采用下列技术方案实现:
[0055] 参考图1,一种有效提高电机硬件在环实时仿真速度和精度的方法是针对电机模型解算出的结果做一些处理,提高硬件在环仿真的速度和精度的方法。其基于硬件部分包含以下三部分:输入单元1,高速数据处理单元2,输出单元3。输入单元1获取电机模型解算数据(相电流、转速、转子位置、转矩)和模拟系统实时数据(含相电压,相电流),并将这些数据及时送给高速数据处理单元2。高速数据处理单元2对输入单元1送过来的数据采用本方法进行处理,并将处理结果实时的传递给输出单元3,输出单元3输出信号直接控制模拟功率负载。
[0056] 数据解算是在高速信号处理单元2上面完成的。参考图2,图2是选取电机模型解算数据过程中的一种情况(电机模型解算某个结果呈增加趋势。其他情况下,如该变量保持不变或者减小,结论相同)来说明本方法的。图2中含有两个相邻的电机模型解算周期,它们是第n个电机模型解算周期(Tm(n-1),Tm(n))和第n+1个电机模型解算周期(Tm(n),Tm(n+1))。本方法运行的起点是第n个电机模型解算周期刚好解算完毕。解算要求输入量包括电机模型解算数据和实际模拟功率负载反馈相电流和相电压数据,做如下运算:
[0057] (1)首先计算出当前解算完毕周期物理量的增量斜率,然后依据此增量斜率线性预估下一个模型解算周期该变量增量极值;
[0058]
[0059] y1'(n+1)=k(n)*Tm+y(n)
[0060] 其中,y(n)(图2中C点)为第n个电机模型解算周期解算结果,y(n-1)(图2中A点)为第n-1个电机模型解算周期解算的结果,Tm(参考图3)为电机模型解算周期,k(n)(参考图2中AC线段斜率)为第n个电机模型解算周期解算结果的增量斜率,y1′(n+1)(参考图2中D点)为线性预估第n+1个电机模型解算周期解算完毕后电机模型解算结果,即为预估的一个极值点;
[0061] 另一个极值点求解公式为:
[0062] y2'(n+1)=-k(n)*Tm+y(n)
[0063] 其中,y2′(n+1)(参考图2中B点)为线性预估第n+1个电机模型解算周期解算完毕后另一个极值。
[0064] 两个极值点y1′(n+1),y2′(n+1)确定了增量的极值范围(参考图2中线段BD),在第n+1电机模型解算周期内,所有插值数据将会落在三形BCD内。
[0065] (2)在一个电机模型解算周期中等时间间隔插值m个节点,在每个插值点数据增量的大小为Δy(参考图2)。
[0066] Tm=m*t
[0067] Δy=(y1'(n+1)-y(n))/m
[0068] 其中,Tm(参考图3)为电机模型解算周期,m为一个电机模型解算周期中插值节点的个数,t(参考图3)为相邻两个插值节点之间的时间间隔,即是插值周期,Δy为一个插值增量单位。
[0069] (3)根据实时采集相电压数据和模拟功率回路反馈相电流数据决定插值数据增量方向;插值节点处增量方向采取直接测相电压来判断或者读取给定PWM控制信号来判断。
[0070] 方法一,读取相电压大小确定插值节点增量方向,增量方向判定公式如下:
[0071]
[0072] 其中,signx(s)为插值节点处电机解算模型的增量方向,Ux为x相相电压向量,x代表电机具体的某一相;H是相电压大小的一个阀值,其值大小为电机稳态运行时相电压峰值的一半。
[0073] 方法二,读取给定PWM控制信号来判断增量方向,三相电机接收六路PWM信号a+,a-,b+,b-,c+,c-(参考图4,图4中x代表a,b,c),其中a+代表a相上桥臂,a-代表a相下桥臂,b、c相同理。相应相的PWM触发信号高电平认为是1,低电平认为是0,由此PWM计算出三相电机相电压Ua,Ub,Uc增量方向。
[0074] ua=2(a+-a-)-(b+-b-)-(c+-c-)
[0075] ub=2(b+-b-)-(a+-a-)-(c+-c-)
[0076] uc=2(c+-c-)-(a+-a-)-(b+-b-)
[0077]
[0078] 其中,signx(s)为插值节点处电机解算模型的增量方向,Ux为某一相相电压向量,x代表具体的相,在三相电机,x代表a,b,c三相;
[0079] (4)插值节点处,数据解算结果公式:
[0080] y(n+s*t)=y(n+(s-1)*t)+signx(s)*Δy
[0081] 其中,s=1,2,3……,m。s(参考图2)为当前插值节点的标号,y(n+s*t)(参考图2)为第n+1个电机模型解算周期插值节点s处输出变量的大小,y(n+(s-1)*t)(参考图2)为第n+1个电机模型解算周期插值节点s-1处输出变量的大小。
[0082] (5)所述模拟功率负载电流补偿构建方法如下:
[0083] Yout(n+s*t)=y(n+s*t)+Δg
[0084] 其中Yout(n+s*t)为考虑到实际系统的电流补偿后解算出来的控制信号;Δg为实时补偿向量,该补偿值主要是弥补模拟系统与实际系统的差异,添加的一个补偿值;其大小和方向由相电压大小和方向与模拟功率负载阻抗共同决定。
[0085] (6)所述模拟功率负载电流补偿值的大小和方向由下面方法确定:
[0086]
[0087] 其中,Ux为某一相相电压向量,含大小和方向;Yout(n+s*t)为实际期望模拟功率负载输出电流大小;Z为模拟功率负载的阻抗。
[0088] (7)与传统方法相比,本方法对模拟仿真数据精度有提高。参考图2,在第n+1电机模型解算周期(Tm(n),Tm(n+1)),传统方法电机模型解算数据保持不变(图2中线段CH),直到n+1电机模型解算周期解算完毕,才能够更新数据(图2中线段HF,F点代表第n+1电机模型解算周期解算结果数据,F点可以在线段BD内,也可以在线段BD外某一位置),可以看到,数据的改变呈现出较大的阶梯。采用本方法,以时间t为时间增量单位,实时参考相电压数据,数据以Δy为增量单位,进行小阶梯更新(参考图2中三角形BCD内部小阶梯实线部分,I点是采用本方法处理的第n+1电机模型解算周期最终数据,这一数据在时间Tm(n+1)点需要更新为电机模型解算数据F)。
[0089] (8)与传统方法相比,采用本方法,数据刷新速度提高m倍。参考图2,传统方法数据刷新是以时间Tm为时间单位进行的;采用本方法,数据则是以时间t为时间单位进行刷新的,时间分度明显减小,增强了数据输出的连续性。
[0090] (9)与传统方法相比,采用本方法,能够有效的减小输出误差。参考图2,在时间点Tm(n+1)处,参考实时相电压数据,采用本方法解算数据点I更加靠近点电机模型解算数据F,传统方法解算数据在H点。并且在时间段(Tm(n),Tm(n+1))内,传统方法数据在此时间段内保持不变(参考图2,线段CH),采用本方法,数据在此时间段内参考实时采集相电压数据,进行调整,逐渐逼近实际数据。
[0091] (10)参考图3,该图体现了PWM周期、电机模型解算周期以及插值周期之间的关系。在一个PWM周期中PWM信号最多呈现为两种状态,在线段E2E3之间PWM为高,其他阶段PWM为低。在一个PWM周期内,PWM保持高或者低,电机模型中各个变量(相电流,转子位置,转速,电磁转矩)变化相对缓慢。而在PWM的上升沿E2或者下降沿E3处,电机模型中各个量变化相对较大,实时读取电机相电压或者电机控制器发出的PWM,在电机模型解算结果上叠加这种实时数据,增强实时仿真的动态响应,使仿真更加逼近真实效果。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈