首页 / 专利库 / 传感器与探测器 / 电阻带 / 一种太阳能吸热陶瓷材料的制备方法

一种太阳能吸热陶瓷材料的制备方法

阅读:267发布:2024-01-12

专利汇可以提供一种太阳能吸热陶瓷材料的制备方法专利检索,专利查询,专利分析的服务。并且本 发明 涉及新 能源 技术领域,具体涉及一种 太阳能 吸热陶瓷材料的制备方法。本发明以 白油 与九 水 偏 硅 酸钠溶液为原料制备出内含白油的白色微胶囊,将 碳 化硅粉、刚玉粉等放入硅溶胶中得到碳化硅 泡沫 陶瓷浆料,将海绵放入白色微胶囊与硅溶胶混合而成的白油硅胶中处理得到泡沫陶瓷预制体,再将其放入乙酸锆溶胶中,填入碳化硅泡沫陶瓷浆料经烧制得到太阳能吸热陶瓷材料,乙酸锆在孔隙中被白油包覆,在 烧结 过程中形成 氧 化锆 纤维 ,陶瓷的泡沫结构又能够提高陶瓷 比表面积 ,促进 传热 ,从而提高吸热陶瓷的高温强度和抗热震性,氧化锆纤维负载于吸热陶瓷的泡沫孔隙,提高了泡沫陶瓷的高温强度和致 密度 ,具有广阔的应用前景。,下面是一种太阳能吸热陶瓷材料的制备方法专利的具体信息内容。

1.一种太阳能吸热陶瓷材料的制备方法,其特征在于具体制备步骤为:
(1)将40~50mL白油置于带有搅拌器和恒压滴液漏斗的三口烧瓶中,启动搅拌器搅拌,用恒压滴液漏斗向三口烧瓶中滴加200~300mL九酸钠溶液,搅拌反应,自然冷却至室温,出料后用真空抽滤机抽滤,去除滤液得到滤渣,用石油醚洗涤滤渣3~5次后,置于烘箱中,加热升温,干燥得到白色微胶囊;
(2)按重量份数计,将60~65份化硅粉、30~35份刚玉粉、10~15份氮化硅放入混料机中混料4~5min,得到混合粉料,向混合粉料中加入8~10份硅溶胶、80~100份去离子水,搅拌分散后加入氢化钠溶液,调节pH,静置2~3h,得到混合浆料;
(3)将上述混合浆料置于球磨机中,球磨转速为400~500r/min,球磨1~2h后,向球磨机中加入正丁醇静置消泡40~50min,得到碳化硅泡沫陶瓷浆料,按重量份数计,取70~80份锆英砂、20~25份柠檬、40~45份醋酸、100~120份去离子水放入球磨机中,球磨4~5h后,过滤去除滤渣,得到球磨浆液,将球磨浆液置于反应釜中,水浴加热升温,浓缩得到乙酸锆溶胶,备用;
(4)将白色微胶囊与硅溶胶混合得到白油硅胶,将尺寸为80mm×80mm×60mm的聚酯海绵浸入氢氧化钠溶液中,加热升温,水解,取出后放入清水中搓洗,自然晾干后放入白油溶胶中浸渍,取出后放入鼓干燥箱中干燥后得到泡沫陶瓷预制体;
(5)将泡沫陶瓷预制体放入装有乙酸锆溶胶中的反应釜中,在氧气气氛下加热升温,得到纤维填充泡沫模板,将纤维填充泡沫模板置于模腔尺寸为100mm×100mm×80mm模具中,向模具中填充碳化硅泡沫陶瓷浆料,再向模具内添加10~12g硬脂酸锌粉末,将模具竖直放入高温电阻炉中,程序升温,恒温处理,继续升温,恒温烧结,自然冷却至室温后脱模得到太阳能吸热陶瓷材料。
2.根据权利要求1所述的一种太阳能吸热陶瓷材料的制备方法,其特征在于:步骤(1)所述的恒压滴液漏斗滴加速率为2~3mL/min,九水偏硅酸钠溶液的质量分数为40%,搅拌反应时间为2~3h,加热升温后温度为40~50℃,干燥时间为12~15h。
3.根据权利要求1所述的一种太阳能吸热陶瓷材料的制备方法,其特征在于:步骤(2)所述的硅溶胶质量分数为40%,氢氧化钠溶液质量分数为40%,调节pH为10.0~10.5。
4.根据权利要求1所述的一种太阳能吸热陶瓷材料的制备方法,其特征在于:步骤(3)所述的控制球料质量比为10︰1,正丁醇加入量为混合浆料重量2%,反应釜水浴加热升温后温度为70~75℃。
5.根据权利要求1所述的一种太阳能吸热陶瓷材料的制备方法,其特征在于:步骤(4)所述的硅溶胶质量分数为35%,白色微胶囊与硅溶胶混合质量比为1︰10,氢氧化钠溶液质量分数为15%,加热升温后温度为60~65℃,水解时间为40~45min,鼓风干燥箱设定温度为80~90℃,干燥时间为2~3h。
6.根据权利要求1所述的一种太阳能吸热陶瓷材料的制备方法,其特征在于:步骤(5)所述的反应釜加热升温后温度为140~160℃,向模具中填充碳化硅泡沫陶瓷浆料至模具体积的2/3~3/4处,升温速率为4~5℃/min,升温后温度为400~450℃,恒温处理时间为45~
55min,继续升温后温度为1300~1400℃,恒温烧结时间为3~4h。

说明书全文

一种太阳能吸热陶瓷材料的制备方法

技术领域

[0001] 本发明涉及新能源技术领域,具体涉及一种太阳能吸热陶瓷材料的制备方法。

背景技术

[0002] 短缺的能源已严重影响人们的生活和制约社会的发展,第一次石油危机之后,各国竞相开展太阳能、能、能等清洁和可再生能源的应用研究,尤其是太阳能的应用研究最为广泛。太阳能作为一种绿色能源对环境没有任何污染性,而且其来源简单,无需运输,还可免费使用,可以说是在人类的生存年限内其是取之不尽用之不竭的。因此,开发和利用太阳能是实现能源供应多元化、保证能源安全的重要途径之一。近年来,在节能减排的政策引导和要求下,我国建筑中太阳能光热技术的应用显著增加,对于太阳能建筑一体化的要求也越来越高。
[0003] 太阳光吸热应用一般采用黑色金属或合金粉末涂层作为吸热材料,其主要吸热范围为可见光,对于红外和紫外光吸收效率差异较大,各有优劣。最早人们使用黑板漆作为吸光材料,吸收率可达97%,但是它边吸收,又同时以不可见红外线的形式把热量又辐射出去好大一部分,造成总效率降低。
[0004] 目前较为成熟发电方式为太阳能热发电。太阳能热发电是利用聚光器聚集太阳能,经吸收器吸收后转化成热能,产生高温蒸汽或气体进入汽轮机电机组或燃气轮机发电机组产生电能。按聚光形式不同,太阳能热发电可分为塔式太阳能热发电、槽式太阳能热发电和碟式太阳能热发电。其中,塔式太阳能热发电系统由于聚光比高(200~1000kW/m2)、热循环温度高、热损耗小、系统简单且效率高的特点得到世界各国的重视。作为塔式太阳能热发电核心的高温吸热体材料担负着接收太阳聚光能量,以及吸热换热的重要作用,影响着整个热发电系统的稳定性及效率的高低。太阳能热发电用吸热体材料应具有优良的耐热震性、较高的强度及耐火度,以满足当前太阳能热发电吸热材料要求。
[0005] 但是,现有太阳能吸热材料还存在以下缺陷:(1)由于塔式吸热器聚光能流密度不均匀性和不稳定性形成的吸热体局部热斑易造成材料热应力破坏、空气流动稳定性差以及耐久性不高等问题;(2)材料机械强度与韧性、传热与吸热性能差,不能满足太阳能热发电吸热器对吸热体材料的要求等问题。
[0006] 因此,迫切开发一种具有抗高温化性好、抗热震性好、高比表面以及高热导率的新型吸热体材料具有重要意义。

发明内容

[0007] 本发明主要解决的技术问题,针对目前太阳能吸热材料抗热震性差,高温条件下机械强度低,传热性能差,导致塔式吸热器聚光能流密度不均匀和不稳定,形成的吸热体局部产生热斑,使材料在热应力下被破坏,耐久性差的缺陷,提供了一种太阳能吸热陶瓷材料的制备方法。
[0008] 为了解决上述技术问题,本发明所采用的技术方案是:一种太阳能吸热陶瓷材料的制备方法,其特征在于具体制备步骤为:
(1)将40~50mL白油置于带有搅拌器和恒压滴液漏斗的三口烧瓶中,启动搅拌器搅拌,用恒压滴液漏斗向三口烧瓶中滴加200~300mL九水偏酸钠溶液,搅拌反应,自然冷却至室温,出料后用真空抽滤机抽滤,去除滤液得到滤渣,用石油醚洗涤滤渣3~5次后,置于烘箱中,加热升温,干燥得到白色微胶囊;
(2)按重量份数计,将60~65份化硅粉、30~35份刚玉粉、10~15份氮化硅放入混料机中混料4~5min,得到混合粉料,向混合粉料中加入8~10份硅溶胶、80~100份去离子水,搅拌分散后加入氢氧化钠溶液,调节pH,静置2~3h,得到混合浆料;
(3)将上述混合浆料置于球磨机中,球磨转速为400~500r/min,球磨1~2h后,向球磨机中加入正丁醇静置消泡40~50min,得到碳化硅泡沫陶瓷浆料,按重量份数计,取70~80份锆英砂、20~25份柠檬、40~45份醋酸、100~120份去离子水放入球磨机中,球磨4~5h后,过滤去除滤渣,得到球磨浆液,将球磨浆液置于反应釜中,水浴加热升温,浓缩得到乙酸锆溶胶,备用;
(4)将白色微胶囊与硅溶胶混合得到白油硅胶,将尺寸为80mm×80mm×60mm的聚酯海绵浸入氢氧化钠溶液中,加热升温,水解,取出后放入清水中搓洗,自然晾干后放入白油溶胶中浸渍,取出后放入鼓风干燥箱中干燥后得到泡沫陶瓷预制体;
(5)将泡沫陶瓷预制体放入装有乙酸锆溶胶中的反应釜中,在氧气气氛下加热升温,得到纤维填充泡沫模板,将纤维填充泡沫模板置于模腔尺寸为100mm×100mm×80mm模具中,向模具中填充碳化硅泡沫陶瓷浆料,再向模具内添加10~12g硬脂酸锌粉末,将模具竖直放入高温电阻炉中,程序升温,恒温处理,继续升温,恒温烧结,自然冷却至室温后脱模得到太阳能吸热陶瓷材料。
[0009] 步骤(1)所述的恒压滴液漏斗滴加速率为2~3mL/min,九水偏硅酸钠溶液的质量分数为40%,搅拌反应时间为2~3h,加热升温后温度为40~50℃,干燥时间为12~15h。
[0010] 步骤(2)所述的硅溶胶质量分数为40%,氢氧化钠溶液质量分数为40%,调节pH为10.0~10.5。
[0011] 步骤(3)所述的控制球料质量比为10︰1,正丁醇加入量为混合浆料重量2%,反应釜水浴加热升温后温度为70~75℃。
[0012] 步骤(4)所述的硅溶胶质量分数为35%,白色微胶囊与硅溶胶混合质量比为1︰10,氢氧化钠溶液质量分数为15%,加热升温后温度为60~65℃,水解时间为40~45min,鼓风干燥箱设定温度为80~90℃,干燥时间为2~3h。
[0013] 步骤(5)所述的反应釜加热升温后温度为140~160℃,向模具中填充碳化硅泡沫陶瓷浆料至模具体积的2/3~3/4处,升温速率为4~5℃/min,升温后温度为400~450℃,恒温处理时间为45~55min,继续升温后温度为1300~1400℃,恒温烧结时间为3~4h。
[0014] 本发明的有益效果是:(1)本发明以白油与九水偏硅酸钠溶液为原料制备出内含白油的白色微胶囊,将碳化硅粉、刚玉粉、氮化硅混合放入硅溶胶中,经稀释、化、球磨、消泡得到碳化硅泡沫陶瓷浆料,将聚氨酯海绵放入白色微胶囊与硅溶胶混合而成的白油硅胶中浸渍、干燥得到泡沫陶瓷预制体,再将泡沫陶瓷预制体放入乙酸锆溶胶中,加热使乙酸锆负载于泡沫陶瓷预制体的微孔中,最后装入模具,并填入碳化硅泡沫陶瓷浆料,经烧制得到太阳能吸热陶瓷材料,本发明通过锆英砂、柠檬酸、醋酸等原料混合球磨,使锆英砂中的重金属离子被柠檬酸络合形成柠檬酸盐,从而提取出氧化锆纤维的前驱体乙酸锆溶胶,泡沫陶瓷预制体经烧结后,聚氨酯热解形成疏松多孔结构,白色微胶囊中白油热熔作为液态润滑剂,能够防止孔结构的连通重叠,形成均匀的孔隙,乙酸锆在孔隙中被白油包覆,在烧结过程中形成氧化锆纤维,增强陶瓷的韧性和高温强度,碳化硅泡沫陶瓷浆料烧结后白油还能封堵外孔,起到提高闭孔率的作用,陶瓷的泡沫结构又能够提高陶瓷比表面积,促进传热,并且内层未被分解的白油能够在高温下吸热,流动散热,使吸热陶瓷传热性能提高,不易发生急剧的温度变化,从而提高吸热陶瓷的高温强度和抗热震性;
(2)本发明中烧结过程中的液相为硅溶胶,硅溶胶中的无定形二氧化硅在升温过程中首先凝胶脱水并发生颗粒团聚,一方面使Si-OH键变为Si-O键结合,产生初步的致密化作用,使坯体在中低温时保持一定强度和形状,另一方面,非晶态二氧化硅具有很高的活性,随着饱和蒸汽压的变化,可形成多种晶态与变体,产生热力学稳定相,当饱和蒸汽压达到一定值时,这些稳定固相会转变为液相,从而促进粉体的流动、扩散、烧成,高温时还可与基体中的其他氧化物反应,生成低熔点共熔物,从而起到弥补大空隙、促进致密化并形成均匀微孔隙的作用,并且由于高强度、抗蠕变的氧化锆纤维负载于吸热陶瓷的泡沫孔隙,提高了泡沫陶瓷的高温强度和致密度,而碳化硅在基体中充当骨架,在中低温条件下烧结所形成第二相生成物的致密化作用,可提高泡沫陶瓷的高温强度,碳化硅在高温下氧化,其表面产生高活性的非晶态SiO2氧化层,既可与基体内的杂质反应生成低熔点相促进烧结,又可与氧化反应形成莫来石,提高陶瓷基体强度,从而使太阳能吸热陶瓷的高温强度提高,具有广阔的应用前景。

具体实施方式

[0015] 将40~50mL白油置于带有搅拌器和恒压滴液漏斗的三口烧瓶中,启动搅拌器搅拌,用恒压滴液漏斗以2~3mL/min的滴加速率向三口烧瓶中滴加200~300mL质量分数为40%的九水偏硅酸钠溶液,搅拌反应2~3h,自然冷却至室温,出料后用真空抽滤机抽滤,去除滤液得到滤渣,用石油醚洗涤滤渣3~5次后,置于烘箱中,加热升温至40~50℃,干燥12~15h,得到白色微胶囊;按重量份数计,将60~65份碳化硅粉、30~35份刚玉粉、10~15份氮化硅放入混料机中混料4~5min,得到混合粉料,向混合粉料中加入8~10份质量分数为
40%的硅溶胶、80~100份去离子水,搅拌分散后加入质量分数为40%的氢氧化钠溶液,调节pH为10.0~10.5,静置2~3h,得到混合浆料;将上述混合浆料置于球磨机中,控制球料质量比为10︰1,球磨转速为400~500r/min,球磨1~2h后,向球磨机中加入混合浆料重量2%的正丁醇静置消泡40~50min,得到碳化硅泡沫陶瓷浆料,按重量份数计,取70~80份锆英砂、20~25份柠檬、40~45份醋酸、100~120份去离子水放入球磨机中,球磨4~5h后,过滤去除滤渣,得到球磨浆液,将球磨浆液置于反应釜中,水浴加热升温至70~75℃,浓缩30~40min得到乙酸锆溶胶,备用;将白色微胶囊与质量分数为35%的硅溶胶按质量比为1︰10混合得到白油硅胶,将尺寸为80mm×80mm×60mm的聚氨酯海绵浸入质量分数为15%的氢氧化钠溶液中,加热升温至60~65℃,水解40~45min,取出后放入清水中搓洗,自然晾干后放入白油溶胶中浸渍4~5h,取出后放入设定温度为80~90℃的鼓风干燥箱中干燥2~3h后得到泡沫陶瓷预制体;将泡沫陶瓷预制体放入装有乙酸锆溶胶中的反应釜中,在氧气气氛下加热升温至
140~160℃,得到纤维填充泡沫模板,将纤维填充泡沫模板置于模腔尺寸为100mm×100mm×80mm模具中,向模具中填充碳化硅泡沫陶瓷浆料至模具体积的的2/3~3/4处,再向模具内添加10~12g硬脂酸锌粉末,将模具竖直放入高温电阻炉中,以4~5℃/min的速率程序升温至400~450℃,恒温处理45~55min,继续升温至1300~1400℃,恒温烧结3~4h,自然冷却至室温后脱模得到太阳能吸热陶瓷材料。
[0016] 实例1将40mL白油置于带有搅拌器和恒压滴液漏斗的三口烧瓶中,启动搅拌器搅拌,用恒压滴液漏斗以2mL/min的滴加速率向三口烧瓶中滴加200mL质量分数为40%的九水偏硅酸钠溶液,搅拌反应2h,自然冷却至室温,出料后用真空抽滤机抽滤,去除滤液得到滤渣,用石油醚洗涤滤渣3次后,置于烘箱中,加热升温至40℃,干燥12h,得到白色微胶囊;按重量份数计,将60份碳化硅粉、30份刚玉粉、10份氮化硅放入混料机中混料4min,得到混合粉料,向混合粉料中加入8份质量分数为40%的硅溶胶、80份去离子水,搅拌分散后加入质量分数为40%的氢氧化钠溶液,调节pH为10.0,静置2h,得到混合浆料;将上述混合浆料置于球磨机中,控制球料质量比为10︰1,球磨转速为400r/min,球磨1h后,向球磨机中加入混合浆料重量2%的正丁醇静置消泡40min,得到碳化硅泡沫陶瓷浆料,按重量份数计,取70份锆英砂、20份柠檬、
40份醋酸、100份去离子水放入球磨机中,球磨4h后,过滤去除滤渣,得到球磨浆液,将球磨浆液置于反应釜中,水浴加热升温至70℃,浓缩30min得到乙酸锆溶胶,备用;将白色微胶囊与质量分数为35%的硅溶胶按质量比为1︰10混合得到白油硅胶,将尺寸为80mm×80mm×
60mm的聚氨酯海绵浸入质量分数为15%的氢氧化钠溶液中,加热升温至60℃,水解40min,取出后放入清水中搓洗,自然晾干后放入白油溶胶中浸渍4h,取出后放入设定温度为80℃的鼓风干燥箱中干燥2h后得到泡沫陶瓷预制体;将泡沫陶瓷预制体放入装有乙酸锆溶胶中的反应釜中,在氧气气氛下加热升温至140℃,得到纤维填充泡沫模板,将纤维填充泡沫模板置于模腔尺寸为100mm×100mm×80mm模具中,向模具中填充碳化硅泡沫陶瓷浆料至模具体积的的2/3处,再向模具内添加10g硬脂酸锌粉末,将模具竖直放入高温电阻炉中,以4℃/min的速率程序升温至400℃,恒温处理45min,继续升温至1300℃,恒温烧结3h,自然冷却至室温后脱模得到太阳能吸热陶瓷材料。
[0017] 实例2将45mL白油置于带有搅拌器和恒压滴液漏斗的三口烧瓶中,启动搅拌器搅拌,用恒压滴液漏斗以2mL/min的滴加速率向三口烧瓶中滴加250mL质量分数为40%的九水偏硅酸钠溶液,搅拌反应2h,自然冷却至室温,出料后用真空抽滤机抽滤,去除滤液得到滤渣,用石油醚洗涤滤渣4次后,置于烘箱中,加热升温至45℃,干燥13h,得到白色微胶囊;按重量份数计,将63份碳化硅粉、33份刚玉粉、13份氮化硅放入混料机中混料4min,得到混合粉料,向混合粉料中加入9份质量分数为40%的硅溶胶、90份去离子水,搅拌分散后加入质量分数为40%的氢氧化钠溶液,调节pH为10.3,静置2h,得到混合浆料;将上述混合浆料置于球磨机中,控制球料质量比为10︰1,球磨转速为450r/min,球磨1h后,向球磨机中加入混合浆料重量2%的正丁醇静置消泡45min,得到碳化硅泡沫陶瓷浆料,按重量份数计,取75锆英砂、23份柠檬、43份醋酸、110份去离子水放入球磨机中,球磨4h后,过滤去除滤渣,得到球磨浆液,将球磨浆液置于反应釜中,水浴加热升温至73℃,浓缩35min得到乙酸锆溶胶,备用;将白色微胶囊与质量分数为35%的硅溶胶按质量比为1︰10混合得到白油硅胶,将尺寸为80mm×80mm×60mm的聚氨酯海绵浸入质量分数为15%的氢氧化钠溶液中,加热升温至63℃,水解43min,取出后放入清水中搓洗,自然晾干后放入白油溶胶中浸渍4h,取出后放入设定温度为85℃的鼓风干燥箱中干燥2h后得到泡沫陶瓷预制体;将泡沫陶瓷预制体放入装有乙酸锆溶胶中的反应釜中,在氧气气氛下加热升温至150℃,得到纤维填充泡沫模板,将纤维填充泡沫模板置于模腔尺寸为100mm×100mm×80mm模具中,向模具中填充碳化硅泡沫陶瓷浆料至模具体积的的2/3处,再向模具内添加11g硬脂酸锌粉末,将模具竖直放入高温电阻炉中,以4℃/min的速率程序升温至425℃,恒温处理50min,继续升温至1350℃,恒温烧结3h,自然冷却至室温后脱模得到太阳能吸热陶瓷材料。
[0018] 实例3将50mL白油置于带有搅拌器和恒压滴液漏斗的三口烧瓶中,启动搅拌器搅拌,用恒压滴液漏斗以3mL/min的滴加速率向三口烧瓶中滴加300mL质量分数为40%的九水偏硅酸钠溶液,搅拌反应3h,自然冷却至室温,出料后用真空抽滤机抽滤,去除滤液得到滤渣,用石油醚洗涤滤渣5次后,置于烘箱中,加热升温至50℃,干燥15h,得到白色微胶囊;按重量份数计,将65份碳化硅粉、35份刚玉粉、15份氮化硅放入混料机中混料5min,得到混合粉料,向混合粉料中加入10份质量分数为40%的硅溶胶、100份去离子水,搅拌分散后加入质量分数为40%的氢氧化钠溶液,调节pH为10.5,静置3h,得到混合浆料;将上述混合浆料置于球磨机中,控制球料质量比为10︰1,球磨转速为500r/min,球磨2h后,向球磨机中加入混合浆料重量2%的正丁醇静置消泡50min,得到碳化硅泡沫陶瓷浆料,按重量份数计,取80份锆英砂、25份柠檬、45份醋酸、120份去离子水放入球磨机中,球磨5h后,过滤去除滤渣,得到球磨浆液,将球磨浆液置于反应釜中,水浴加热升温至75℃,浓缩40min得到乙酸锆溶胶,备用;将白色微胶囊与质量分数为35%的硅溶胶按质量比为1︰10混合得到白油硅胶,将尺寸为80mm×80mm×
60mm的聚氨酯海绵浸入质量分数为15%的氢氧化钠溶液中,加热升温至65℃,水解45min,取出后放入清水中搓洗,自然晾干后放入白油溶胶中浸渍5h,取出后放入设定温度为90℃的鼓风干燥箱中干燥3h后得到泡沫陶瓷预制体;将泡沫陶瓷预制体放入装有乙酸锆溶胶中的反应釜中,在氧气气氛下加热升温至160℃,得到纤维填充泡沫模板,将纤维填充泡沫模板置于模腔尺寸为100mm×100mm×80mm模具中,向模具中填充碳化硅泡沫陶瓷浆料至模具体积的的3/4处,再向模具内添加12g硬脂酸锌粉末,将模具竖直放入高温电阻炉中,以5℃/min的速率程序升温至450℃,恒温处理55min,继续升温至1400℃,恒温烧结4h,自然冷却至室温后脱模得到太阳能吸热陶瓷材料。
[0019] 对比例以杭州市某公司生产的太阳能吸热陶瓷材料作为对比例 对本发明制得的太阳能吸热陶瓷材料和对比例中的太阳能吸热陶瓷材料进行检测,检测结果如表1所示:
抗热震性测定
抗热震性反映的是材料承受温度的急剧变化而不致破坏的能力,它是决定材料使用寿命的最关键的参数之一。将本发明制得的太阳能吸热陶瓷材料和对比例中的太阳能吸热陶瓷材料置于高温电阻炉内,热震至30次后取出,测试其抗压强度。
[0020] 导热系数测定采用热常数分析仪进行测试。
[0021] 表1性能测定结果测试项目 实例1 实例2 实例3 对比例
气孔率(%) 96.6 96.9 97.1 92.8
抗压强度(MPa) 0.72 0.73 0.75 0.37
冲击强度(MPa) 75.16 75.41 75.78 58.32
抗折强度(MPa) 101.3 101.8 102.5 78.1
伸长率(%) 45.54 45.87 46.17 34.06
导热率W/(m·k) 85.8 86.7 89.2 52.5
30次热震后抗压强度(MPa) 0.61 0.64 0.65 0.27
根据表1中数据可知,本发明制得的太阳能吸热陶瓷材料气孔均匀,具有良好的传热与吸热性能,同时具有良好的机械强度与韧性,且抗热震性好,可以广泛应用于太阳能领域,具有广阔的前景。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈